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A Mutual information1

A.1 Properties of mutual information2

Theorem A.1 (Supermodularity under mutual independence). Let S,X1, X2 be random vari-3

ables such that S,X1, X2 are mutually independent. Then, I(Y ;S,X1, X2) − I(Y ;S,X2) ≥4

I(Y ;S,X1)− I(Y ;S) [25, 33].5

Proof.

I(Y ;S,X1, X2)− I(Y ;S,X2)

= I(Y ;S) + I(Y ;X2|S) + I(Y ;X1|S,X2)− [I(Y ;S) + I(Y ;X2|S)] (by chain rule)
= I(Y ;X1|S,X2) = I(Y, S,X2;X1) (by mutual independence)
≥ I(Y, S;X1) (by monotonicity of I(·; f))
= I(Y ;X1|S) (by mutual independence)
= I(Y ;S,X1)− I(Y ;S) (by the chain rule for mutual information)

6

Theorem A.2 (Data processing inequality). Let X,Y, Z be three random variables forming a Markov7

chain X → Y → Z, i.e. X ⊥⊥ Z|Y . Then, I(X;Y ) ≥ I(X;Z).8

Proof. The proof can be found in Cover and Thomas [13, p. 32].9

Theorem A.3. Let F be a set of features used to predict the response Y . Then I(Y ;F ) ≥ I(Y ; g(F ))10

for any function g. If g is injective, then I(Y ;F ) = I(Y ; g(F )).11

Proof. The first claim I(Y ;F ) ≥ I(Y ; g(F )) follows from the data processing inequality A.2 since12

Y → F → g(F ) forms a Markov chain.13

If g is injective, then we may write F = h(g(F )) where h : Im(g) → F is the inverse of g14

restricted to the image of g. Hence, it follows that Y → g(F ) → F is a Markov chain. Note that15

Y ⊥⊥ F |g(F ) is equivalent to Y ⊥⊥ h(g(F ))|g(F ), and therefore F is a constant given g(F ). By the16

data processing inequality, I(Y ; g(F )) ≥ I(Y ;F ) and combining with the above inequality yields17

the desired claim, I(Y ; g(F )) = I(Y ;F ) when g is injective.18

A.2 Mutual information and feature importance19

Let F = {x1, ..., xp} be a set of features used to predict Y . As shown in Griffith and Koch [20], the20

mutual information I(Y ;F ) = I(Y ;x1, ..., xp) can be visualized using a partial information (PI)21

diagram [38]. We may interpret the mutual information shared between Y and F as a collection of22
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non-negative pieces of information, whose sum forms I(Y ;F ). Each of these pieces of information23

can be classified as (1) unique, (2) redundant, or (3) synergistic (Figure 4).24

We note that the distinction between feature importance methods that seek to explain data vs. methods25

that seek to explain the model comes from their treatment of redundant information, i.e. their26

treatment of dependent features. A true-to-data method, like MCI or UMFI, should count all of the27

redundant information pertaining to xi in I(Y ;F ) towards the feature importance of xi. Indeed, even28

though this information can be found elsewhere in the model, redundant information still constitutes29

part of the information that xi shares about Y in the data. Conversely, a true-to-model approach, like30

conditional permutation importance (CPI), would count none of the redundant information towards31

the evaluation of a feature’s importance, since this information is already found in another feature.32

Figure 4: PI-diagrams taken from Griffith and Koch [20] for I(Y ;F ) when |F | = 2 (left) and |F | = 3
(right). Magenta represents unique information, redundant information is colored with yellow, and
synergistic information is in cyan. The starred regions represent a single region.

Mutual information itself is a common choice in the context of feature selection [4, 3, 41, 5]. However,33

due to the computational cost and the limited number of observations available for the calculation of34

the high-dimensional joint probability density function, it is not practical to compute I(Y ;S). For35

feature selection, users are only interested in the importance given to the top k features. Therefore,36

mutual information-based feature selection methods typically bypass the computation of I(Y ;S)37

by instead studying the mutual information between the candidate feature and the response along38

with the mutual information between the candidate and the previously selected features [5, 4]. These39

methods are much less suitable for feature importance when the goal is to explain the data since40

interactions cannot be considered, which is why the prevalent approach is to train machine learning41

models to determine feature importance.42

Another connection between feature importance and mutual information comes from Louppe et al.43

[27], who showed that when extremely randomized trees’ mean decrease in impurity (MDI) is used44

as a feature importance score, the MDI of a single feature converges to a quantity that is defined by45

conditional mutual information [27, Eq. 4], as the number of trees and the number of observations46

goes to infinity. Also, the sum of the MDI scores across the feature set F converges to I(Y ;F ).47

A.3 Mutual information and machine learning evaluation functions48

The evaluation function for a machine learning model νf (S) : P(S)→ R≥0 measures how well the
response Y can be predicted using the model f and the features S ⊆ F . Intuitively, νf (S) should
ideally mirror or at least covary with mutual information I(Y ;S). Direct relationships between
mutual information and machine learning evaluation functions have been observed in previous works.
For example, the Gini value is equivalent to the first order Taylor approximation of information
entropy [42]. The Gini impurity index is the central mechanism for choosing splits in random forests
[39]. In the case of regression, one can also closely relate mutual information to the explained
variance of a model. Indeed, with some assumptions, mutual information and R2 accuracy are related.
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If we assume the response and predictions are joint Gaussian and the predictions are unbiased [13],
we can approximate the mutual information between Y and F as:

I(Y ;F ) ≥ I(Y ; g(F )) = I(Y ; Ŷ ) = −1

2
log[1− ρ2(Y, Ŷ )] = −1

2
log[1−R2].

Machine learning evaluation functions and mutual information have been equated many times in49

the feature importance literature. Covert et al. [14] demonstrated equivalence when the Bayes50

classifier is known and cross entropy loss is used. In a simple example, Catav et al. [9] used mutual51

information directly as the evaluation function. The connection between machine learning evaluation52

functions and mutual information was further used by Sutera et al. [35] to relate random forest feature53

importance with Shapely values.54

B Additional information about marginal contribution feature importance55

(MCI)56

Two of the methods that are compared with MCI in Catav et al. [10] include ablation and bivariate57

association. Ablation methods determine feature importance based on the difference in accuracy58

between the full model and the full model without the feature of interest, i.e. Aν(xi) = ν(F ) −59

ν(F \ {xi}). Bivariate methods are among the most popular methods for genome-wide association60

studies [12, 17, 34]. In this case, the feature importance is given by the difference in the evaluation61

function of the model with just the feature of interest and the null model, i.e. Bν(xi) = ν(xi)− ν(∅).62

The three feature importance axioms proposed by Catav et al. [10] were partially motivated by the63

shortcomings of these two methods.64

1. Marginal contribution: Ablation methods may underestimate the importance of features65

when the correlation between features is high. In these scenarios, ν(F ) may be approxi-66

mately equal to ν(F \{xi}) even in cases where xi is highly related to the response. Because67

of this, the importance of a feature Iν(xi) should be at least as large as the importance given68

by ablation methods: Iν(xi) ≥ Aν(xi) = ν(F )− ν(F \ {xi}) ∀xi ∈ F69

2. Elimination: Bivariate methods may underestimate the importance of features in cases70

where interactions exist between features. Many high-order interactions may be present71

in the data, so eliminating features from the feature set could prevent the detection of an72

important interaction. Thus, eliminating features from F should only be able to decrease the73

feature importance of xi.74

3. Minimalism: Catav et al. [10] decided to impose the minimalism axiom so that MCI can75

be unique. If Iν(xi) satisfies the first two axioms, then multiplying Iν(xi) by any constant76

λ > 1 would not change this. The minimalism axiom helps disambiguate MCI from these77

trivial variations.78

We intentionally excluded some of the MCI axioms and properties included by Catav et al. [10] when79

proposing axioms for true-to-data feature importance methods in Section 2. Most importantly, the80

marginal contribution axiom is not included because it conflicts directly with the blood relation axiom.81

In the collider example presented by Harel et al. [21], they present the causal graph Y ← S → G←82

E, where S is unmeasured. Let F = {E,G} be used to predict Y . Then, the marginal contribution83

axiom requires that feature E is given importance. Indeed, if we know G, then feature E can help84

predict the response, and thus, Iν(E) ≥ Aν(E) = ν({E,G}) − ν({G}) > 0. However, as stated85

in Harel et al. [21], feature E has no relation to the response Y , so it would be more reasonable to86

give E zero importance. Indeed, E is given zero importance under the blood relation axiom, so the87

blood relation axiom is more reasonable and justified compared to the marginal contribution axiom.88

In contrast, G inherently contains information about Y via S, but this information is noised up by89

E. Therefore, although E can be used to denoise G and predict Y better, only G should be given90

importance when explaining the data, and indeed, G is blood related to Y . We note that UMFI obeys91

the blood relation axiom under some assumptions, and hence does not obey the marginal contribution92

axiom.93
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C Additional information about ultra-marginal feature importance (UMFI)94

Theorem C.1 (Existence of optimal preprocessing ŜF
xi

when all variables are jointly Gaussian). Let
xi ∈ F and suppose that all features in the random vector F are joint normally distributed with mean
0 and that the preprocessed matrix SF

xi
is obtained via multiple linear regression with the model:

F \ {xi} = βxi + ϵ,

where ϵ = SF
xi

, xi is a random variable in F , and β is the column vector of size |F |−1 that minimizes95

the least squares error. Then, SF
xi

is an optimal preprocessing.96

Proof. To show that SF
xi

is an optimal preprocessing (Definition 1), it suffices to show that SF
xi
⊥⊥ xi97

and that I(Y ;F ) = I(Y ;SF
xi
, xi), since SF

xi
is a function of F by construction.98

From the normal equations and the definition of covariance, we know that Cov(SF
xi
, xi) = 0, as99

shown in the proof of Theorem E.3. Since SF
xi

= F \ {xi} − βxi, and all features in F are joint100

normally distributed, it follows that (SF
xi
, xi) is joint normally distributed as well, since (SF

xi
, xi) can101

be obtained via the linear transformation AF = (SF
xi
, xi), where the main diagonal entries of A are102

1, the other |F | − 1 entries of the column corresponding to xi are given by the entries of −β, and all103

other entries are 0. Without loss of generality, we may reorder the columns of the matrix such that104

the last column is attributed to feature xi, and write105

A =


1 0 . . . . . . −β1

0 1 0 . . . −β2

...
. . .

0 0 . . . . . . 1

 A−1 =


1 0 . . . . . . β1

0 1 0 . . . β2

...
. . .

0 0 . . . . . . 1

 .

Hence, Cov(xi, S
F
xi
) = 0 =⇒ SF

xi
⊥⊥ xi from the properties of multivariate Gaussians.106

To prove the second claim I(Y ;F ) = I(Y ;SF
xi
, xi), by Theorem A.3, it suffices to show that the107

map h(F ) = (SF
xi
, xi) = AF is injective. This is immediate from the fact that the matrix A, defined108

above, is invertible and thus bijective (injective and surjective).109

110

For all subsequent proofs in this section, we assume that the evaluation function ν(S) = I(Y ;S).111

Theorem C.2 (Elimination axiom). Let xi ∈ F and xp+1 ̸∈ F . When preprocessing is performed112

using optimal transport with chaining, UF,Y
ν (xi) ≤ U

F∪{xp+1},Y
ν (xi).113

Proof. Let SF∪{xp+1}
xi be the preprocessed version of F ∪ {xp+1} relative to xi and let SF

xi
be the114

preprocessed version of F relative to xi. By optimal transport with chaining [23], we may assume115

that SF∪{xp+1}
xi obeys the form S

F∪{xp+1}
xi = SF

xi
∪ x̃ and that SF

xi
, xi, x̃ are mutually independent.116

It follows from supermodularity of mutual information under mutual independence (Theorem A.1)117

that118

UF∪{xp+1},Y
ν (xi) = I(Y ;SF∪{xp+1}

xi
, xi)− I(Y ;SF∪{xp+1}

xi
) = I(Y ;SF

xi
, x̃, xi)− I(Y ;SF

xi
, x̃)

≥ I(Y ;SF
xi
, xi)− I(Y ;SF

xi
) = UF,Y

ν (xi).

119

Theorem C.3 (Duplication invariance and symmetry axiom). Let xj ∈ F , x̂ ̸∈ F , and x̂ = xj .120

Suppose that for all xi ∈ F , the preprocessed feature sets ŜF
xi

and Ŝ
F∪{x̂}
xi are optimal preprocessings.121

Then, ∀xi ∈ F, UF,Y
ν (xi) = U

F∪{x̂},Y
ν (xi) and U

F∪{x̂},Y
ν (x̂) = U

F∪{x̂},Y
ν (xj).122

Proof. Recall that an optimal preprocessing relative to a feature set F and a feature of interest xi are123

defined in Definition 1. To prove the claims, we first show that all optimal preprocessings ŜF
xi

are124
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also optimal preprocessings for ŜF∪{x̂}
xi , and that all optimal preprocessings ŜF∪{x̂}

xi are also optimal125

preprocessings ŜF
xi

. We prove this for all xi ∈ F .126

The agreement of the first two properties in Definition 1 follows immediately from the fact that a127

function with repeated arguments can be defined to be equal to the same function without repeated128

arguments and the fact that both ŜF
xi

and Ŝ
F∪{x̂}
xi must be independent of xi by definition. Then,129

since mutual information is invariant under duplicate information and since ŜF
xi

and Ŝ
F∪{x̂}
xi are130

optimal, we know that131

I(Y ;F, x̂) = I(Y ; ŜF∪{x̂}
xi

, xi) = I(Y ;F ) = I(Y ; ŜF
xi
, xi)

Hence, we may assume that optimal preprocessings ŜF
xi

and Ŝ
F∪{x̂}
xi are interchangeable for all132

xi ∈ F , and it follows that133

UF,Y
ν (xi) = I(Y ; ŜF

xi
, xi)− I(Y ; ŜF

xi
) = I(Y ; ŜF∪{x̂}

xi
, xi)− I(Y ; ŜF∪{x̂}

xi
) = UF∪{x̂},Y

ν (xi).

Finally, since xj = x̂, we can see that ŜF∪{x̂}
xj and Ŝ

F∪{x̂}
x̂ are interchangeable, which proves the134

symmetry axiom135

UF∪{x̂},Y
ν (x̂) = UF∪{x̂},Y

ν (xj).

136

We note that this proof holds when the preprocessings SF
xi

and S
F∪{x̂}
xi , used to compute UMFI137

scores, are interchangeable. This fact does not require that the preprocessings must be optimal, and138

also holds when the removal of dependencies on a feature xi is done in a pairwise fashion (see139

Algorithm 2) or via optimal transport with chaining [23].140

Theorem C.4 (Blood relation axiom for Gaussian graphical model). Assuming the data is generated141

from a Gaussian graphical model obeying the global Markov property and faithfulness, and that142

the preprocessings ŜF
xi

are optimally obtained via linear regression, UF,Y
ν (xi) > 0 if and only if143

xi ∈ BR(Y ).144

Proof. To start, we know that UF,Y
ν (xi) = I(Y ; ŜF

xi
, xi)− I(Y ; ŜF

xi
) = I(Y ;xi|ŜF

xi
). And from the145

definition of conditional mutual information, we know UF,Y
ν (xi) = 0 ⇐⇒ I(Y ;xi|ŜF

xi
) = 0 ⇐⇒146

Y ⊥⊥ xi|ŜF
xi

. Since we have a Gaussian graphical model, the features and the response (Y, F ) are147

jointly normally distributed. Furthermore, because SF
xi

is obtained via linear regression, (Y, xi, S
F
xi
)148

is also jointly Gaussian, since it can be expressed as a linear transformation of (Y, F ), like as was149

shown in the proof of Theorem C.1. We may therefore write the conditional independence statement150

in terms of covariance block matrices [37, Prop. 2.3]151

Y ⊥⊥ xi|ŜF
xi
⇐⇒ Σxi,Y − Σxi,ŜF

xi

Σ−1
ŜF
xi

,ŜF
xi

ΣŜF
xi

,Y = 0. (1)

Since xi ⊥⊥ ŜF
xi

, (1) reduces to152

Y ⊥⊥ xi|ŜF
xi
⇐⇒ Σxi,Y = 0 ⇐⇒ xi ⊥⊥ Y, (2)

where this last equivalence is due to the fact that xi and Y are jointly Gaussian.153

All that is left to prove is xi ⊥⊥ Y ⇐⇒ xi ̸∈ BR(Y ). First, if xi ̸∈ BR(Y ), then xi ⊥⊥ Y follows154

from the global Markov property and the fact that xi and Y are d-separated by the empty set. Indeed,155

every path from xi to Y must have at least one collider. We consider two cases. (1) The edge coming156

out of Y is outgoing. Then since xi is not a descendent of Y , the path must reverse its orientation at157

some vertex before meeting xi. That vertex is a collider. (2) The edge connecting to Y points towards158

Y . Then the path must reverse its orientation at some point since xi is not an ancestor of Y . The path159

must then reverse another time because otherwise, xi would share a common ancestor with Y (the160

vertex of the first reversal). The vertex with the second reversal is a collider.161

Conversely, let xi ∈ BR(Y ). By the faithfulness assumption, it suffices to show that xi and Y are162

d-connected by the empty set. Since xi ∈ BR(Y ), there are two possible cases: either there is a163

directed path between xi and Y , or xi and Y share a common ancestor. In the first case, we simply164
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choose the directed path between xi and Y and observe that there cannot be a collider. Similarly, in165

the second case, we may pick the path beginning at Y and trace it up to the common ancestor and166

then travel to xi. There can be no colliders along the path since every vertex has at least one outgoing167

edge by construction. Also, the empty set cannot contain any non-colliders.168

169

Theorem C.5 (Blood relation axiom in the absence of interactions). Suppose that there is no170

synergistic information Isyn(Y ;SF
xi
, xi) about Y between xi and SF

xi
for all xi ∈ F , and that171

SF
xi
⊥⊥ xi. Then, if the graphical model obeys the global Markov property and faithfulness, UF,Y

ν > 0172

if and only if xi ∈ BR(Y ).173

Proof. As in the proof of Theorem C.4, it suffices to show that I(Y ;xi|SF
xi
) = 0 if and only if174

xi ̸∈ BR(Y ).175

We may further rewrite I(Y ;xi|SF
xi
) = 0 as I(Y ;SF

xi
, xi) = I(Y ;SF

xi
). Using partial information176

decomposition [38], and since SF
xi
⊥⊥ xi, we may decompose177

I(Y ;SF
xi
, f) = I(Y ;xi) + I(Y ;SF

xi
) + Isyn(Y ;SF

xi
, xi).

where we note that I(Y ;xi) = Iuniq(Y ;xi) and that I(Y ;SF
xi
) captures the unique information that178

SF
xi

shares with Y as well as synergistic information within the random vector SF
xi

that is shared with179

Y . As proven in Theorem C.4, I(Y ;xi) = 0 if xi ̸∈ BR(Y ) and I(Y ;xi) > 0 if xi ∈ BR(Y ) by180

the global Markov property and faithfulness. Since Isyn(Y ;SF
xi
, xi) = 0 by assumption, this gives181

us the desired statement I(Y ;SF
xi
, xi) = I(Y ;SF

xi
) if and only if xi ̸∈ BR(Y ).182

D Additional information about other feature importance methods183

Historically, feature importance methods were developed in the pursuit of scientific questions,184

but current research in this area typically focuses on model explainability or model optimization.185

Early forms of feature importance assessed the strength of the relationships between variables186

within animal biology or human psychology using methods such as the correlation coefficient [18],187

Spearman’s rank correlation coefficient [32], multiple linear regression [15], and partial correlation188

[40]. Although these methods are perfectly interpretable, they are inadequate for modelling and189

therefore explaining complex data, since they cannot quantify the unknown interactions between190

multiple features. To counteract this severe limitation, Breiman was instrumental with his introduction191

of variable importance within classification and regression trees [8]. At that time, Breiman seemed192

more concerned about the true strength of the relationships between the explanatory variables and193

the response, as he posited that a feature that is related to the response should be given some194

importance even if it does not appear in the final model [8]. However, starting with Breiman’s random195

forests, feature importance began to prioritize machine learning model explanation rather than data196

exploration. A good overview of the properties of some popular feature importance metrics is shown197

in Covert et al. [14].198

E Preprocessing methods for removing dependencies199

Finding information preserving independent representations of our data is the central step of UMFI.200

These representations were first considered for AI fairness and privacy algorithms in order to give201

unbiased predictions in the face of sensitive attributes. For example, if one wants to remove the202

influence of race on recidivism likelihood predictions, preprocessing methods can be used to alter the203

original dataset such that the set of predictors are independent of race. In the following subsections,204

we discuss how optimal transport and linear regression can be used for finding these representations.205

E.1 Optimal transport206

Most of the results and methods explained in this section can be found in Johndrow and Lum [23]. In207

this section, we denote features in the feature set F by Xj or Xi to emphasize that they are random208

variables, rather than the previously used xj and xi, where the former is used to denote observations209
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xj sampled from Xj instead. To obtain a preprocessing SF
Xi

, we may remove the dependencies of xi210

from each Xj ∈ F \ {Xi} with minimal information loss with respect to Xj . To do so using optimal211

transport, we consider the Monge problem:212

gc(Xj , X̃j) = inf
g:g(Xj)∼X̃j

E[c(Xj , g(Xj))] = inf
g:g(Xj)∼X̃j

∫
R
c(xj , g(xj))dµ(xj). (2.1.1)

The quantity gc(Xj , X̃j) represents the transportation cost of moving Xj to X̃j with respect to some213

cost function c, and in our case, we desire X̃j ⊥⊥ Xi. It is natural to use c(xj , x̃j) = dq(xj , x̃j),214

where d is the Euclidean norm. The transportation cost is also given by the Wasserstein-q distance,215

gc(Xj , X̃j) =Wq
q (Xj , X̃j), defined below for one-dimensional distributions.216

Wq(Xj , X̃j)
q =

∫ 1

0

|F←(p)− F̃←(p)|qdp,

where Fj and F̃j are the CDFs of Xj and X̃j , and F←j (p) = supxj∈R Fj(xj) ≤ p. It can be shown217

that given any continuous one dimensional distributions Xj and X̃j , the optimal transport map218

g : Xj → X̃j is given by g = F̃←j ◦ Fj .219

Theorem E.1. Let X be a r.v. with density f and CDF F . Let X̃ have CDF F̃ . Then g = F̃← ◦ F is220

the minimizer to (2.1.1). Hence, g optimally transports X to X̃ = F̃←(F (X)).221

Proof. We show E[|X − g(X)|q] =
∫ 1

0
|F←(p)− F̃←(p)|qdp for g = F̃← ◦ F222

E[|X − g(X)|q] =
∫ ∞
−∞
|x− F̃←(F (x))|qf(x)dx

=

∫ ∞
−∞
|F←(F (x))− F̃←(F (x))|qf(x)dx =

∫ 1

0

|F←(p)− F̃←(p)|qdp

223

Theorem E.2. Let Fj|xi
(x) = P (Xj ≤ xj |Xi = xi) denote the CDF of Xj |{Xi = xi} . Then224

g = F̃← ◦ Fj|xi
optimally transports Xj |{Xi = xi} to X̃j ⊥⊥ Xi for any CDF F̃225

Proof. We apply Theorem E.1 on the random variable Xj |{Xi = xi} and note that Xj |{Xi = xi}226

is independent of Xi. In particular, g(Xj |Xi = xi) ⊥⊥ Xi for any choice of F̃ .227

Theorem E.2 suggests an algorithm for transporting data (xj1, ..., xjn) sampled from Xj , to228

(x̃j1, ..., x̃jn) ⊥⊥ (xi1, ..., xin). Since xjk is taken jointly with xik, as they are attributes com-229

ing from the kth sample in the dataset, then xjk is a realization of the distribution Xj |{Xi = xik}.230

Consequently, for each k = 1, ..., n, we should transport xjk to x̃jk = F̃←(Fj|xik
(xjk)), where we231

may pick any CDF F̃ . This procedure can also adapted for features sampled from discrete r.v’s, as232

shown in Johndrow and Lum [23].233

Algorithm 1: Algorithm for removing dependencies of Xi from Xj

Require: Xj = [xj1, ..., xjn], Xi = [xi1, ..., xin], Xj |(Xi = xik) ∼ Fj|xik
, F̃ is a CDF

for k = 1, ..., n do
x̃jk = F̃←(Fj|xik

(xjk))
end for
return X̃j = [x̃j1, ..., x̃jn]

We denote the result of the algorithm by X̃j = F̃←(Fj|Xi
(Xj)) and would ideally pick F̃ such that234

it minimizes the transportation cost gc(Xj , X̃j) = gc(Xj , F̃
←(Fj|Xi

(Xj))) across all CDFs F̃ in235
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order to minimize information loss. However, in practice, the choice of F̃ does not matter much.236

In fact, as long as the support of F̃ is at least a large as the support of Fj , the cdf of Xj , then any237

rank-based prediction rule, e.g. random forest, will be invariant to the choice of F̃j [23]. A standard238

choice for F̃j is Fj so that we can recover the original quantiles of Xj .239

Furthermore, Fj|xik
is not usually known and must be estimated from the data. For example, this240

can be done by splitting Xi into N quantiles and using the empirical CDF P (Xj ≤ xj |Xi ∈241

xik’s quantile). The ability of this method to remove dependencies on Xi from Xj relies significantly242

on the accuracy of this estimate.243

We may iterate Algorithm 1 over each feature in F \ {Xi} to obtain pairwise independence between244

the transported variables X̃j and Xi. It is also possible to iterate Algorithm 1 via chaining to achieve245

mutual independence between the transformed variables X̃j and Xi [23, 2.4]. However, this is246

computationally expensive, and pairwise independence should suffice for an accurate UMFI score,247

as will be explored further in Section F. Step 2 of Algorithm 1 in the main paper can therefore be248

implemented with Algorithm 2.249

Algorithm 2: Algorithm for estimating SF
Xi

via pairwise optimal transport

Require: Xi = [xi1, ..., xin], Xj = [xj1, ..., xjn] for Xj in F \Xi

SF
Xi

= ∅
for Xj in F \ {Xi} do
X̃j = output of Algorithm 1 with Xj and Xi

add X̃j to SF
Z

end for
return SF

Xi

In other words, we may estimate SF
Xi

as:

SF
Xi

= {F←j (Fj|Xi
(Xj)) : Xj ∈ F \ {Xi}}.

E.2 Linear regression250

The most basic method for removing dependencies is linear regression. Even though it is quite simple,251

it can be shown to be optimal with a few assumptions (Theorem E.3). This preprocessing technique252

is implemented in the popular Python package fairlearn [6, 28].253

To reiterate, removing dependencies requires methods to make a feature or set of features S inde-254

pendent of a protected attribute xi, while keeping as much of the original information as possible.255

The overarching idea is that under the assumption that the residuals and the protected attribute are256

jointly Gaussian, we may show that the residuals can be utilized as a representation of S, which is257

independent of xi.258

Theorem E.3. Assuming no intercept term, if one specifies a linear regression model with
Y = βX + ϵ

and X and ϵ are joint normally distributed, then (1) ϵ ⊥⊥ X and (2) ϵ is correlated with Y unless Y259

can be completely predicted from X .260

Proof. (1) From the normal equations, the definition of covariance, and the fact that E[ϵ] = 0, it261

follows that262

Cov(X, ϵ) = E[XT ϵ]− E[ϵ]E[X] = E[XT ϵ] = E[XT (Y −Xβ)]

= E[XT (Y −X(XTX)−1XTY ))] = E[XTY −XTX(XTX)−1XTY ] = E[XTY −XTY ] = 0

Then, since X and ϵ are jointly normal, X ⊥⊥ ϵ.263

(2) From the definition of the response variable Y and the distributive property for covariances we
know

Cov(Y, ϵ) = Cov(Xβ + ϵ, ϵ) = βCov(X, ϵ) + Cov(ϵ, ϵ) = V ar(ϵ).

264
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Thus, in step 2 the algorithm for UMFI (Algorithm 1), we can estimate

SF
Xi

= {ϵj = Xj − β0,j − β1,jXi : Xj ∈ F \ {Xi}}

where β0,j is the intercept term of the linear regression model Xi = β0,j + β1,jXj + ϵj .265

F Experiments comparing linear regression and optimal transport266

In the following subsections, we compare the ability of linear regression and pairwise optimal267

transport to remove the information of a feature from data while distorting the original data as little268

as possible. It can be concluded that while linear regression works optimally when the data is jointly269

Gaussian, on real data, such as the BRCA dataset, pairwise optimal transport can find independent270

representations of the data, while linear regression fails (Section F.1).271

To implement UMFI paired with linear regression, we only remove dependencies when the regression272

slope coefficient is statistically significant (p-value < 0.01). To implement UMFI paired with pairwise273

optimal transport, when removing dependencies on the feature Xi from the dataset, we estimate274

Fj|xik
by breaking up Xi into quantiles of size 150 and running linear regression on each quantile.275

The new orthogonal predictors are then given by the values of the inverse empirical CDF of the276

residuals from the mentioned linear regression model.277

F.1 Removing dependencies278

It is crucial for our linear regression and optimal transport preprocessing methods to remove the279

information associated with the feature of interest, xi, from the rest of the dataset F \{xi}. Therefore,280

we would like the preprocessed dataset SF
xi

to share zero mutual information with xi. The mutual281

information I(xi;S
F
xi
) is difficult to calculate, but it is closely related to the optimal predictor of xi282

given SF
xi

[31]. For example, if I(xi;S
F
xi
) = 0, as is desired, then the optimal predictor of xi will283

have zero accuracy given SF
xi

. If the opposite is true and SF
xi

contains all of the information from xi,284

then an optimal predictor of xi should be able to perfectly predict xi from the given information in285

SF
xi

. In the following experiments, we assume that random forests can form the optimal predictor286

of xi given SF
xi

. We use the OOB-R2 value coming from the random forest model to give a relative287

measure of the mutual information between xi and the transformed dataset SF
xi

.288

We used the BRCA dataset with 50 features to test the ability of optimal transport and linear289

regression to remove dependencies [14, 9]. All 50 features are continuous and the response is290

categorical. For each individual feature, we first use random forest OOB-R2 to give a relative measure291

Irel(xi;F \ {xi}) of the mutual information I(xi;F \ {xi}) between the feature of interest xi and292

the other 49 features. We then consider the case where the 49 remaining features are preprocessed293

to have dependencies on xi removed via linear regression or pairwise optimal transport. Similarly,294

random forest’s OOB-R2 is used to give a relative measure Irel(xi;S
F
xi
)of I(xi;S

F
xi
).295

The results are plotted in Figure 5. It is clear that the raw data (black line) shares considerable296

information across features. Most features can be predicted from the other untransformed features297

with an accuracy of R2 > 0.2 and many can even be predicted with accuracies over 0.4. Since298

the data has extremely nonlinear dependencies between features, simple linear regression is unable299

to remove all the mutual information between the protected attributes and the rest of the features.300

Indeed, the data certainly cannot be approximated with multivariate Gaussians. Conversely, pairwise301

optimal transport can successfully remove most of the mutual information present in the data. For all302

50 features in the dataset, xi cannot be predicted successfully by random forest (OOB-R2 = 0) from303

the other features after F \ xi is transformed with pairwise optimal transport.304

F.2 Distortion305

Not only do we require that the transformed features are independent of the feature of interest, but we306

also require that as much of the information present in the original data is preserved in the transformed307

data. To measure the amount of distortion imposed on the original data, we measure the dependence308

between the original and perturbed data using the maximal information coefficient [24]. For each309

feature in the BRCA dataset with 50 features [14, 9], the information from the current feature is310

removed from all other features with either linear regression or pairwise optimal transport (Figure 6).311
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Figure 5: The relative mutual information Irel(xi;F \ {xi}) between the ith feature in the BRCA
dataset and all other features is plotted (black) for each i ∈ {1, 2, ...50}. The relative mutual
information Irel(xi;S

F
xi
) between the ith feature and all other features after preprocessing with linear

regression (red) and optimal transport (blue) is also plotted. Relative mutual information is measured
by random forest’s OOB-R2.

Figure 6: Cell (i, j) indicates how similar the jth variable in the BRCA dataset is compared to its
transformation via pairwise optimal transport or linear regression with respect to feature i. This is
measured with the maximal information coefficient, which is comparable to R2. To make the plots
more clear and accessible, only the first 15 features are shown.

Linear regression does not distort the transformed features in most cases. The dependence between312

the original and perturbed features usually remains near 1, though the dependence does go as low313

as 0.42 in one case (Figure 6). While linear regression transformed these features with minimal314

distortion, these results are moot since linear regression failed to remove the original dependencies in315

a significant way, which was the main goal of the method (Figure 5).316

Compared to linear regression, pairwise optimal transport has a much more sizable effect on the317

distorted features, though this may have been necessary to completely remove dependence. The318

dependence between original and perturbed features mostly ranges from 0.6-0.9, though some are as319
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low as 0.37 (Figure 6). While only the first 15 features are shown, the results are similar for the other320

35 features.321

G Further feature importance experiments322

This section is comprised of additional experiments performed on the simulated data introduced323

in Section 4.1, the BRCA dataset with permuted random genes, the original BRCA dataset with324

unpermuted random genes [36, 14, 10], and the CAMELS hydrology dataset [1]. MCI and UMFI325

used either random forests or extremely randomized trees [7, 19]. Both of these are implemented326

using the ranger R package [39]. Ablation, permutation importance, and conditional permutation327

importance used random forests. Ablation and permutation importance were implemented with328

the ranger R package [39], while conditional permutation importance was implemented with the329

randomForest and permimp packages [16, 26]. All experiments were run in Microsoft R Open330

Version 4.0.2 [29].331

G.1 Extra experiments on simulated data332

We repeat our previous experiments on simulated data from Section 4.1 to test how ablation, per-333

mutation importance (PI), and conditional permutation importance (CPI) behave in the presence334

of nonlinear interactions (Section G.1.1), correlated interactions (Section G.1.2), correlation (Sec-335

tion G.1.3), and blood and non-blood related features (Section G.1.4). Further, we test how using336

extremely randomized trees instead of random forests for MCI and UMFI changes the results of337

the same simulation experiments. Although other methods such as XGBoost [11] could have been338

implemented for these experiments, XGBoost requires greater care when optimizing hyperparameters,339

so we chose to use extremely randomized trees instead, which is faster than random forests and340

provides similarly good predictions [19]. Both random forests and extremely randomized trees are341

not sensitive to hyperparameters [30]. For these simulation studies, we also perturb the size of the342

quantiles used by UMFI_OT. We now use quantiles of size 30 instead of size 150. Quantiles of size343

30 worked better on the hydrology data used in later experiments, so we test to see if the simulation344

results were sensitive to this choice in quantile size for dependency removal via optimal transport.345

G.1.1 Nonlinear interactions346

The first experiment on simulated data handles the case where two variables, x1 and x2, interact347

in a nonlinear way in the response Y . As explained in Section 4.1.1, we should expect x1 and x2348

to contribute more than half of the total importance, while x3 and x4 should be important, but less349

important compared to x1 and x2. Figure 8a shows that ablation, PI, and CPI all provide accurate350

scores.351

When tested with extremely randomized trees, the nonlinear interactions simulation experiment352

results for MCI and UMFI, shown in Figure 8e, remain mostly unchanged compared to the results353

from the experiment with random forests given in Figure 1a.354

G.1.2 Correlated interactions355

The second experiment considers the case where two correlated variables, x1 and x2, interact together356

in the response Y . Thus, as explained in Section 4.1.2, we should expect x1 and x2 to have more357

importance compared to x3 and x4. Figure 8b shows that ablation, PI, and CPI all correctly weigh the358

importance of x1 and x2 higher relative to x3 and x4. The only notable difference is that the ablation359

method attributes an additional ∼ 3% importance to each of x1 and x2 compared to PI, CPI, MCI,360

and UMFI (Figure 8b).361

When tested with extremely randomized trees instead of random forests, the correlated interaction362

simulation experiment results (Figure 8f) for MCI and UMFI are similar to the earlier results shown363

in Figure 1b. MCI gave slightly more importance to x1 and x2 compared to x3 and x4, though the364

differences are seemingly insignificant. On the other hand, both UMFI methods gave significantly365

more importance to x1 and x2 compared to x3 and x4, as expected.366
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G.1.3 Correlation367

The third experiment tests how the metrics allocate importance to correlated features. As explained368

in Section 4.1.3, x1 and x2 should remain around the same relative importance, and x3 = x1 + ϵ,369

should have just slightly less importance compared to x1 and x2. Figure 8c indicates that CPI and370

ablation give near zero importance to the two heavily correlated features x1 and x3. This aligns with371

the discussion about true-to-model feature importance methods in Section A.2 since these methods372

base their scores on the importance of a feature conditioned on all other variables present in the373

model. Ablation performs similarly to CPI in this test, albeit with slightly less drastic results. Finally,374

we see that PI splits the importance detected from x1 and x3 proportionally across both features.375

This shows that PI can be viewed as in between the true-to-data and true-to-model approaches. The376

true-to-data approaches (MCI and UMFI) allocate all of the redundant information to the feature.377

The true-to-model approaches (CPI and ablation) allocate none of the redundant information to the378

feature. PI evenly splits the redundant information across the relevant correlated features.379

When tested with extremely randomized trees, the correlation simulation experiment results (Figure380

8g) for MCI and UMFI change slightly compared to the experiment with random forests in Figure381

1c. MCI works well, though it still gives some non-zero importance to x4. With random forests, the382

relative importance of x4 was usually above 5%, but with extremely randomized trees, the relative383

importance dropped below 5%. The performance of UMFI with linear regression got slightly worse384

as now the importance of x1 is slightly greater than that of x2 on average. The performance of385

UMFI with optimal transport changed for the better and now the importance of x1 and x2 are almost386

identical which was not true before. In this experiment, UMFI_OT performed the best.387

G.1.4 Blood relation388

For the last simulation experiment, we revisit the blood relation experiment performed in Section389

4.1.4 using data generated from the causal graph in Figure 7. The feature S is unobserved, so the only390

blood related features to Y in F are x3 and x4. x3 and x4 should therefore be given high importance391

while x1 and x2 should receive zero importance. When tested on ablation, CPI, and PI, we notice that392

all three metrics fail to capture the desired importance, since they each give significant importance to393

x2, which is not blood related to Y . We also note that this experiment provides an explicit example394

of UMFI not satisfying the marginal contribution axiom, which states that feature importance metrics395

should allocate at least as much importance as attributed by the ablation metric. Indeed, as shown in396

Figure 1d, UMFI gives 0 importance to non-blood related features x1 and x2, whereas ablation gives397

significant importance to x2.398

Sx1

x2

x3

Y

x4

Figure 7: Causal graph which generates the data for the blood relation simulation experiment.

When the experiment was re-tested on MCI and both implementations of UMFI using extremely399

randomized trees instead of random forest, we observe that UMFI_LR and UMFI_OT both continue400

to give positive importance to the blood related features x3 and x4, while giving near-zero importance401

to the two remaining observed features (Figure 8h). However, we note that x3 is given much402

more importance relative to x4 when implemented with extremely randomized trees compared403

to random forests (Figure 1d). On the other hand, MCI gives positive importance to x2 in this404

experiment. However, we note that it also correctly gave x1 almost zero importance while giving x3405

and x4 significantly more importance compared to the random forest implementation. Across most406

simulation studies, it appears MCI performs better using extremely randomized trees compared to407

random forests.408
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G.2 Extra BRCA experiments with known ground-truth feature importance409

The following experiments are performed on the BRCA dataset with 571 patients, each with one of410

four breast cancer subtypes, and 50 continuous predictor genes. The experiments use the same setting411

as in Section 4.2, where the 40 randomly chosen genes are also permuted so that the ground-truth412

feature importances are known. We observed that the overall classification accuracy of random forests413

for this dataset was 0.76.414

G.2.1 Running 5000 iterations of UMFI415

The original BRCA experiment conducted in Section 4.2 showed that UMFI_LR and UMFI_OT416

performed impressively on real data, providing significantly more accurate feature importance417

scores than MCI after 200 iterations of the experiment. Both UMFI_LR and UMFI_OT correctly418

gave high importance to the ten BRCA-associated genes, while giving zero median importance to419

about 80% of the unassociated genes. Additionally, in an overnight study spanning less than ten420

hours, UMFI_LR and UMFI_OT displayed ideal results after running 5000 iterations of the BRCA421

experiment. As shown in Figure 9, both implementations of UMFI achieve 100% overall accuracy by422

giving high importance to the ten BRCA-associated genes and zero median feature importance to all423

40 unassociated genes. These results indicate that UMFI’s relatively low computational cost can be424

leveraged via aggregation to achieve superior performance on complex data within a reasonable time425

budget.426

G.2.2 Ablation, PI, and CPI427

We also test the quality and robustness of other feature importance metrics including ablation, PI,428

and CPI, by running 200 iterations of the BRCA experiment from Section 4.2 for each method.429

Results are shown in Figure 10. Ablation importance scores are small and have large uncertainties430

compared to its median importance scores, which makes the scores impractical to interpret. Eight of431

the ten important genes are identified by ablation, but all other genes are given exactly zero median432

importance. All ten important genes are given non-zero importance by CPI, however, some randomly433

permuted genes are given more importance than some genes known to be important, such as CDK6.434

PI gave more reliable and stable results compared to ablation and CPI in this experiment, exhibiting435

similar performance to UMFI_LR and UMFI_OT from the analogous experiment shown in Figure436

2. We note that PI assigned zero importance to 29 of the 40 unassociated genes, making its TNR of437

0.725 slightly lower than UMFI in the analogous experiment from Section 4.2.438

G.3 Experiments on unpermuted BRCA data439

Additional BRCA experiments were performed on the original randomized genes, as done in Covert440

et al. [14] and Catav et al. [10]. The observed overall classification accuracy of random forests for441

this dataset was 0.79.442

Feature importance scores on this dataset were first computed with MCI, UMFI_LR, and UMFI_OT443

over 100 iterations, as shown in Figure 11. The ordering of the BRCA associated genes is fairly444

similar across MCI and both UMFI methods. BCL11A and SLC22A5 are always the top two features445

and TEX14 is always the least important BRCA associated gene. While there are clear similarities446

in the results of all methods, the glaring difference is the number of features given zero importance.447

While MCI gives non-zero median importance to all 50 features, 14 features are given zero median448

importance by UMFI with linear regression, and 10 features are given zero median importance by449

UMFI with pairwise optimal transport. It is unlikely that all 40 randomly selected genes, which have450

not shown any association with breast cancer in previous studies, share information about breast451

cancer, so in this respect, we conclude that UMFI performs better than MCI.452

Feature importance scores on the unpermuted BRCA dataset were also computed with ablation, CPI,453

and PI over 100 iterations, as shown in Figure 12. When also considering these results, we observe that454

MCI, UMFI, and PI give similar importance scores, while ablation and CPI performed significantly455

worse. Once again, ablation’s high relative variance hampers its interpretability. Meanwhile, CPI456

gave by far the highest importance to SLC25A1, which is not known to have any association with457

breast cancer. In the results of MCI, UMFI, and PI, BCL11A is the most important while CST9L is458

always among the most important non-BRCA associated genes. Contrary to this, ablation and CPI459
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give high importance to BRCA1, BRCA2, TEX14, EZH2, and IGF1R for BRCA associated genes,460

and SLC25A1 for non-BRCA associated genes.461

G.3.1 Computational complexity462

We compare the computational complexity of UMFI and MCI against the other feature importance463

methods that were explored in this section: ablation, PI, and CPI. To do so, we ran 10 iterations of the464

BRCA experiment, which has 50 features, each with 571 observations. We recorded the average time465

for each method to compute feature importance for 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 features.466

Figure 13 shows that PI is the fastest method, processing 50 features in 50 milliseconds on average,467

followed by ablation (50 features in 1.8 seconds), UMFI (50 features in 3 seconds when parallelized),468

CPI (50 features in 30 seconds), and finally MCI with soft 2-size submodularity (50 features in 205469

seconds).470

G.4 Experiments on hydrology data471

The final experiments for this study were conducted on a large-sample hydrology dataset called472

CAMELS [1]. This dataset records catchment averaged climate, soil, geology, topography, and land473

cover characteristics for 643 catchments across the contiguous United States. With these, there are 29474

continuous explanatory variables. The response variable is averaged yearly streamflow, which is also475

continuous. Extremely randomized trees were used in this experiment with an overall OOB-R2 of476

0.91.477

Figure 14, which is analogous to Figure 5 in Appendix F, shows that both preprocessing methods fail478

to completely remove dependencies from the CAMELS dataset. This can likely be attributed to the479

fact that each feature is extremely dependent on the other explanatory features (R2 ≥ 0.65).480

The feature importance scores indicated in Figure 15 show that mean precipitation and aridity index481

are the features with the strongest relationships with mean annual streamflow. Geology and soil482

attributes such as bedrock permeability and soil porosity are always among the least important features.483

These conclusions are in line with previous studies [2, 22], thus, even when dependencies can not be484

completely removed, UMFI can still provide reasonable measurements of feature importance.485
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(a) RF: Nonlinear interactions (b) RF: Correlated interactions

(c) RF: Correlation (d) RF: Blood relation

(e) ET: Nonlinear interactions (f) ET: Correlated interactions

(g) ET: Correlation (h) ET: Blood relation

Figure 8: Results for the experiments on simulated data from Subsection G.1. The results for ablation,
conditional permutation importance (CPI), and permutation importance (PI) were implemented with
random forest (RF), and are shown in Figures 8a, 8b, 8c, and 8d . The results for MCI, UMFI_LR,
and UMFI_OT were implemented with extremely randomized trees (ET), and are shown in Figures
8e, 8f, 8g, and 8h. Feature importance scores are shown as a percentage of the total for each of x1 to
x4 from 100 replications.
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Figure 9: Median feature importance scores provided by (a) UMFI with linear regression, and (b)
UMFI with pairwise optimal transport, for each gene in the permuted BRCA dataset after 5000
iterations. Genes colored in blue are known to be associated with breast cancer while genes colored
in grey are random permutations of randomly selected genes, which we assume to be unassociated
with breast cancer subtype. The first and third quantiles of the scores are visualized for each gene.
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Figure 10: Median feature importance scores provided by (a) ablation, (b) permutation importance,
and (c) conditional permutation importance, for each gene in the permuted BRCA dataset after 200
iterations. Genes colored in blue are known to be associated with breast cancer while genes colored
in grey are random permutations of randomly selected genes, which we assume to be unassociated
with breast cancer subtype. The first and third quantiles of the scores are visualized for each gene.
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Figure 11: Median feature importance scores provided by (a) MCI, (b) UMFI with linear regression,
and (c) UMFI with pairwise optimal transport, for each gene in the unpermuted BRCA dataset after
100 iterations. Genes colored in blue are associated with breast cancer while genes colored in grey
are randomly selected genes. The first and third quantiles of the scores are visualized for each gene.
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Figure 12: Median feature importance scores provided by (a) ablation, (b) permutation importance,
and (c) conditional permutation importance, for each gene in the unpermuted BRCA dataset after
100 iterations. Genes colored in blue are associated with breast cancer while genes colored in grey
are randomly selected genes. The first and third quantiles of the scores are visualized for each gene.
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Figure 13: The average computation time for each method to process p features over 10 iterations of
the original BRCA data is plotted for each p ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

Figure 14: The relative mutual information Irel(xi;F \{fi}) between the ith feature in the CAMELS
dataset and all other features is plotted (black) for each i ∈ {1, 2, ...30}. The relative mutual
information Irel(xi;S

F
fi
) between the ith feature and all other features after preprocessing with linear

regression (red) and optimal transport (blue) is also plotted. Relative mutual information is measured
by random forest’s OOB-R2.
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Figure 15: Median feature importance scores provided by (a) MCI, (b) UMFI with linear regression,
and (c) UMFI with pairwise optimal transport, for each explanatory variable in the CAMELS dataset,
taken after 100 iterations. The first and third quantiles of the scores are visualized for each feature.
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