

Figure 8: A trained recurrent neural network learns multiple modules of grid cells. (a) The architecture of the recurrent neural network used. Inputs are 2D Cartesian velocities $v_t \in \mathbb{R}^2$ and the non-linearity is Norm-ReLU. No positional readout exists. (b) Input trajectory velocities are drawn i.i.d. from a uniform distribution, then randomly permuted to create a batch; 3 trajectories shown.

417 A Experimental Details

418 Architecture and training data + augmentations

⁴¹⁹ Our code was implemented in PyTorch [39] and PyTorch Lightning [18]. Hyperparameters for our ⁴²⁰ experiments are listed in Table 1. Our code will be made publicly available upon publication.

Hyperparameters	Values		
Batch size	130		
Trajectory length	60		
Velocity sampling distribution	$\boldsymbol{v}_t \in \mathbb{R}^2 \sim_{i.i.d.} \text{Uniform}^2(-0.15, 0.15) \text{ meters}$		
RNN nonlinearity	$Norm(ReLU(\cdot))$		
Number of RNN units	128		
Number of MLP layers	3		
Spatial length scale σ_x	0.05 meters		
Neural length scale σ_g	0.4		
Separation loss coefficient λ_{Sep}	1.0		
Invariance loss coefficient λ_{Inv}	0.1		
Capacity loss coefficient λ_{Cap}	0.5		
Optimizer	AdamW [32]		
Optimizer scheduler	Reduce Learning Rate on Plateau		
Learning rate	2e-5		
Gradient clip value	0.1		
Weight decay	None		
Accumulate gradient batches	2		
Number of gradient descent steps	2e6		

Table 1: Hyperparameters used for training the networks.

a 📷 📑		1 112 - 112	11 12 ***	в н •	15
					•
					· · · ·
b					
	· · · · · · · · ·	• •	° ° °	• •	

Figure 9: All 128 ratemaps evaluated on trajectories inside a 2m box. (a) Ratemaps from the corresponding to Fig. 4 (b) Ratemaps corresponding to the run in Fig.6

B All Ratemaps

Figure 10: (a) 2 Example cells from 2 modules, with preferred phase 0 and π . (b) Visualizing the state space defined by $\{\phi^1, \phi^2\}$ as a torus (left) and on a square with periodic boundary conditions (right), which an equivalent construction of a torus.

422 C Construction of the grid code

- ⁴²³ To explain the structure of the grid code, we consider idealized tuning curves in 1d.
- Each cell *i* is defined by its periodicity $\lambda^{\alpha} \in \mathcal{R}$ and preferred phase $\phi_i \in S^1$. All cells in the same
- module α have the same periodicity and uniformly tile all allowed phases. For position $x \in \mathcal{R}$,

$$r_i^{\alpha}(x) = R_{\max} \text{ReLU}\left[\cos\left(\frac{2\pi}{\lambda_{\alpha}}x + \phi_i\right)\right]$$
(11)

- ⁴²⁶ The tuning curves corresponding to this module can be seen in Fig. 10a.
- For this module, we can define $\phi^{\alpha}(x) = \frac{2\pi}{\lambda_{\alpha}}x \mod 2\pi$. Here $\phi^{\alpha} \in S^1$. So the firing rate can now be written as

$$r_i^{\alpha}(x) = R_{\max} \operatorname{ReLU}\left[\cos\left(\phi^{\alpha}(x) + \phi_i\right)\right]$$
(12)

- All information about the current state of the module is encoded in the single variable ϕ^{α} . Thus the set of phases $\{\phi^{\alpha}\}_{\alpha} \in S^1 \times ... \times S^1$ uniquely define the coding states of the set of grid modules.
- 431 For 2 modules, defined by $\{\phi^1, \phi^2\}$, these states can be visualized as being on a torus $S^1 \times S^1$,
- 432 Fig.10b.