417

418

419
420

a Architecture

Norm-ReLU

velocity inputs

Vi ()
Vy(t)

o start

X « end

self-supervised
SIC loss

/

/

b pataand Augmentations

L—

: |
—
—-_— —
X Vi Vo Va Ve Ve Ve Vr Vg Vo

|

Figure 8: A trained recurrent neural network learns multiple modules of grid cells. (a) The
architecture of the recurrent neural network used. Inputs are 2D Cartesian velocities v; € R? and the
non-linearity is Norm-ReLLU. No positional readout exists. (b) Input trajectory velocities are drawn
ii.d. from a uniform distribution, then randomly permuted to create a batch; 3 trajectories shown.

A Experimental Details

Architecture and training data + augmentations

Our code was implemented in PyTorch [39] and PyTorch Lightning [[18]. Hyperparameters for our
experiments are listed in Table[I} Our code will be made publicly available upon publication.

Hyperparameters \ Values

Batch size 130

Trajectory length 60

Velocity sampling distribution vy €ER% ~ysa Uniform2(70.15, 0.15) meters
RNN nonlinearity Norm(ReLU(+))
Number of RNN units 128

Number of MLP layers 3

Spatial length scale o, 0.05 meters

Neural length scale o 0.4

Separation loss coefficient Age)p 1.0

Invariance loss coefficient \j,,, 0.1

Capacity loss coefficient Acq 0.5

Optimizer AdamW [32]
Optimizer scheduler Reduce Learning Rate on Plateau
Learning rate 2e-5

Gradient clip value 0.1

Weight decay None

Accumulate gradient batches 2

Number of gradient descent steps 2e6

Table 1: Hyperparameters used for training the networks.

14


https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

Figure 9: All 128 ratemaps evaluated on trajectories inside a 2m box. (a) Ratemaps from the
corresponding to Fig. ] (b) Ratemaps corresponding to the run in Figlq]

21 B All Ratemaps

15



422

423

424
425

426

427

428

429
430

431
432

Figure 10: (a) 2 Example cells from 2 modules, with preferred phase 0 and 7. (b) Visualizing the
state space defined by {¢!, ¢?} as a torus (left) and on a square with periodic boundary conditions
(right), which an equivalent construction of a torus.

C Construction of the grid code

To explain the structure of the grid code, we consider idealized tuning curves in 1d.

Each cell i is defined by its periodicity A* € R and preferred phase ¢; € S*. All cells in the same
module « have the same periodicity and uniformly tile all allowed phases. For position x € R,

2
i () = RmaxReLU [cos (;Tx + ¢Z>} (1D
«
The tuning curves corresponding to this module can be seen in Fig. [T0h.

2
For this module, we can define ¢®(x) = /\lx modulo 27. Here ¢ € S

@
So the firing rate can now be written as

rf(x) = RmaxReLU [cos (¢%(x) + ¢;)] (12)

All information about the current state of the module is encoded in the single variable ¢“. Thus the
set of phases {¢*}, € S* x ... x S! uniquely define the coding states of the set of grid modules.

For 2 modules, defined by {¢!, ¢?}, these states can be visualized as being on a torus S' x S!,

Fig[TOp.

16



