
Compressed Sensing with Approximate Priors via Conditional Resampling

Compressed Sensing - Introduction

• Goal: Estimate a signal 𝑥∗ ∈ ℝ𝑛 from a linear system

𝑦 = 𝐴𝑥∗ + 𝜂.

• Let 𝐴 ∈ ℝ𝑚×𝑛. How many measurements are needed? Naively 

𝑚 ≥ 𝑛, else underdetermined; multiple 𝑥 possible.

• But not all 𝑥 are plausible/natural:

• [Candes-Romberg-Tao ‘06]: Possible to recover 𝑥∗ if it is 

approximately sparse and 𝐴 is Gaussian.
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Our Goal

• 𝑥∗~ 𝑅, 𝑦 = 𝐴𝑥∗ + 𝜂, 𝐴 & 𝜂 are i.i.d. Gaussian.

• Have access to distribution 𝑃, such that 𝒲2 𝑃, 𝑅 ≤ 𝜀.

• Goal: estimate ො𝑥 such that with probability 0.97,

|| 𝑥∗ − ො𝑥 || ≾ ||𝜂|| ≈ 𝜀. (∗)

Qualitative Results: Inpainting

Quantitative Results: Compressed Sensing

Comparison of our algorithm with Asim et al’20. Left column is MSE, and right column is LPIPS scores between reconstruction and 

ground truth. LPIPS is a measure of how perceptually distant two images are. Our algorithm has no statistically significant difference in 

comparison to MAP, but produces perceptually closer images. 
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• [Bora-Jalal-Price-Dimakis ‘17]: When 𝐺:ℝ𝑘 → ℝ𝑛 is a 

𝑑 −layered neural network, 𝐴 is i.i.d. Gaussian with 𝑚 =

𝑂(𝑘𝑑 log 𝑛) rows, then gradient descent finds ො𝑥 satisfying

||𝑥∗ − ො𝑥|| ≾ min
𝑥∈range(𝐺)

||𝑥∗ − 𝑥|| + ||𝜂|| + 𝜀

• Small 𝑘 ⇒ error stops improving after some point because of 

limited model capacity.

• [Asim-Daniels-Leong-Ahmed-Hand ‘20]: Use bijective 

𝐻:ℝ𝑛 → ℝ𝑛, and use the distribution of the generative model.

• When 𝑘 = 𝑛, prior work doesn’t explain why compression is 

possible. Asim et al. analyze a Gaussian with eigenvalue decay.

Compressed Sensing + Generative Priors

Our Questions

• Question 1: For general distributions, how do we formalize the 

number of measurements needed to compress the distribution?

• Question 2: What algorithm can recover signals using this sample 

complexity?

Our Results
• New complexity measure:𝐵2(𝑥, 𝜀) is the 𝜀 −radius ℓ2 ball around 

𝑥, and 𝑅 is a probability distribution. Then:

Cov𝜀,𝛿 𝑅 ≔ min 𝑘 ∶ 𝑅 ራ

𝑖=1

𝑘

𝐵2(𝑥𝑖 , 𝜀) ≥ 1 − 𝛿, 𝑥𝑖 ∈ ℝ𝑛 .

• Upper bound: 𝑚 = 𝑂(log Cov𝜀,0.01 𝑅 ) suffices for (∗).

• Lower bound: 𝑚 = Ω(log Cov5𝜀,0.1 𝑅 ) is necessary for ∗ .

• Optimal algorithm:  Conditional resampling is optimal.

• Instance Optimality: Lower bound holds for any distribution 𝑅, 

and not just for particular hard distributions.

• Distributional robustness: Algorithm can tolerate mismatch 

between 𝑅 and 𝑃.

Our Algorithm

• Given measurements 𝑦, density 𝑝 over images, measurement 

likelihood 𝜋(𝑦|𝑥), estimate is ො𝑥, such that:  

𝑝 ො𝑥 𝑦 ∝ 𝑝 ො𝑥 𝜋 𝑦 ො𝑥 .

• Langevin dynamics:

ො𝑥𝑡+1 ← ො𝑥𝑡 + 𝛽𝑡𝛻ො𝑥𝑡log 𝑝 ො𝑥𝑡 𝑦) + 𝑁 0,2𝛽𝑡 .

• We use annealed Langevin dynamics [Song & Ermon].

MAP vs. Conditional Resampling

• MAP works for “nice’’ distributions.

• MAP picks narrow peak.

• Conditional resampling will pick 

wide peak.

MAP (Asim et al ‘20):

argmin𝑧∈ℝ𝑛 ||𝑦 − 𝐴𝐺 𝑧 ||2 + 𝛾||𝑧||2.

Langevin sampling:

𝑧𝑡+1 ← 𝑧𝑡 − 𝛽𝑡𝛻𝑧𝑡(||𝑦 − 𝐴𝐺 𝑧𝑡 ||
2/2𝜎𝑡

2 + ||𝑧𝑡||
2/2) + 𝑁 0,2𝛽𝑡 ,

ො𝑥 = 𝐺(𝑧𝑇)

MAP produces one image with small ||𝑧||, while Langevin produces 

diverse images with ||𝑧||2 ≈ 𝑛. Analogous to points close to origin 

having large density in a high dimensional Gaussian, yet atypical.
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