
Under review as a conference paper at ICLR 2024

ONE STEP OF GRADIENT DESCENT IS PROVABLY THE
OPTIMAL IN-CONTEXT LEARNER WITH ONE LAYER
OF LINEAR SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works have empirically analyzed in-context learning and shown that
transformers trained on synthetic linear regression tasks can learn to implement
ridge regression, which is the Bayes-optimal predictor, given sufficient capacity
(Akyürek et al., 2023), while one-layer transformers with linear self-attention and
no MLP layer will learn to implement one step of gradient descent (GD) on a
least-squares linear regression objective (von Oswald et al., 2022). However, the
theory behind these observations remains poorly understood. We theoretically
study transformers with a single layer of linear self-attention, trained on synthetic
noisy linear regression data. First, we mathematically show that when the covari-
ates are drawn from a standard Gaussian distribution, the one-layer transformer
which minimizes the pre-training loss will implement a single step of GD on the
least-squares linear regression objective. Then, we find that changing the distribu-
tion of the covariates and weight vector to a non-isotropic Gaussian distribution
has a strong impact on the learned algorithm: the global minimizer of the pre-
training loss now implements a single step of pre-conditioned GD. However, if
only the distribution of the responses is changed, then this does not have a large
effect on the learned algorithm: even when the response comes from a more gen-
eral family of nonlinear functions, the global minimizer of the pre-training loss
still implements a single step of GD on a least-squares linear regression objective.

1 INTRODUCTION

Large language models (LLMs) demonstrate the surprising ability of in-context learning, where an
LLM “learns” to solve a task by conditioning on a prompt containing input-output exemplars (Brown
et al., 2020; Lieber et al., 2021; Radford et al., 2019; Wang & Komatsuzaki, 2021). Recent works
have advanced the understanding of in-context learning via empirical analysis (Min et al., 2022; Wei
et al., 2023; Akyürek et al., 2023; von Oswald et al., 2022; Dai et al., 2023), but theoretical analysis
remains limited (Xie et al., 2022).

A recent line of work (Garg et al., 2022; Akyürek et al., 2023; von Oswald et al., 2022; Dai et al.,
2023) empirically finds that transformers can be trained to implement algorithms that solve linear
regression problems in-context. Specifically, in each input sequence the transformer is given a set
of in-context examples (xi, yi), where yi = w⊤xi + ϵi with a shared and hidden random coefficient
vector w and random noise ϵi, and a test example x.1 The transformer is then trained to predict
y = w⊤x+ ϵ, where ϵ denotes random noise from the same distribution as ϵi. These works find that
the transformer outputs a prediction ŷ which is similar to the predictions of existing, interpretable
linear regression algorithms, such as gradient descent (GD) or ordinary least squares, applied to the
dataset consisting of the pairs (xi, yi). In particular, von Oswald et al. (2022) empirically show that
a one-layer transformer with linear self-attention and no MLP layer will implement a single step of
gradient descent when trained on such a distribution.

Several works (e.g. Akyürek et al. (2023); Liu et al. (2023); Giannou et al. (2023)) theoretically
study the expressive power of transformers. In the context of linear regression tasks, Akyürek et al.

1In some settings in these works, the noise is set to 0.

1

Under review as a conference paper at ICLR 2024

(2023) describe how transformers can represent gradient descent, or Sherman-Morrison updates, and
Giannou et al. (2023) describe how transformers can represent Newton’s algorithm for matrix inver-
sion. However, in addition to the expressive power of transformers, it is also of interest to understand
the behavior of transformers trained with gradient-based algorithms. Furthermore, it is still useful
to understand the behavior of models with restricted capacity—though practical LLMs are very ex-
pressive, they need to perform many tasks simultaneously, and therefore the capacity per problem
may still be relatively limited. Thus, motivated by von Oswald et al. (2022), we theoretically study
the global minima of the pre-training loss for one-layer transformers with linear self-attention on the
linear regression data distribution described above.

Contributions. In this paper, we study transformers with one linear self-attention layer, and mathe-
matically investigate which algorithms the transformers implement for synthetically generated linear
regression datasets. We prove that the transformer which implements a single step of gradient de-
scent on a least squares linear regression objective is the global minimizer of the pre-training loss.
This exactly matches the empirical findings of von Oswald et al. (2022).

Concretely, we consider a setup similar to von Oswald et al. (2022); Akyürek et al. (2023). The
model we study is a transformer with one linear single-head self-attention layer, which is the
same model as the one empirically studied by von Oswald et al. (2022). The training data for
this transformer consist of sequences of the form (x1, y1, . . . , xn, yn), where the xi are sampled
from N (0, Id×d) and yi = w⊤xi + ϵi, where w is sampled from N (0, Id×d) once per sequence,
and the ϵi are i.i.d. Gaussian noise with variance σ2. The pre-training loss is the expected error
that the transformer achieves when predicting y = w⊤x given the test example x and the context
(x1, y1, . . . , xn, yn), i.e. the pre-training loss is L = E(x1,y1,...,xn,yn),x,y[(y − ŷ)2], where ŷ is the
output of the transformer given (x1, y1, . . . , xn, yn) and x as input.

We show in Section 3 that the transformer which is the global minimizer of the pre-training loss L
implements one step of gradient descent on a linear regression objective with the dataset consisting
of the (xi, yi). More concretely, the transformer implements the prediction algorithm

ŷ = η

n∑
i=1

yix
⊤
i x . (1)

where η is a learning rate independent of the xi, the yi and x. However, one step of GD is also
preferred in part due to the distribution of the xi. In particular, if the covariance of xi is no longer
the identity matrix, we show (Section 4) that the global minimum of the pre-training loss corresponds
to one step of GD, but with pre-conditioning.

Interestingly, our theory also suggests that the distribution of yi|xi does not play such a significant
role in the algorithm learned by the transformer. In Section 5, we study a setting where yi|xi is
nonlinear, but satisfies some mild assumptions, such as invariance to rotations of the distribution of
the xi. As a concrete special case, the target function can be a neural network with any depth/width
and i.i.d. random Gaussian weights. We show in Section 5 that a one-layer transformer with linear
self-attention, which minimizes the pre-training loss, still implements one step of GD on a linear
regression objective. Intuitively, this is likely because of the constraint imposed by the architecture,
which prevents the transformer from making use of any more complex structure in the yi.

Concurrent Works. We discuss the closely related works of Ahn et al. (2023) and Zhang et al.
(2023) which are concurrent with and independent with our work and were posted prior to our work
on arXiv. Ahn et al. (2023) give theoretical results very similar to ours. They study one-layer
transformers with linear self-attention with the same parameterization as von Oswald et al. (2022),
and show that with isotropic xi, the global minimizer of the pre-training loss corresponds to one step
of gradient descent on a linear model. They also show that for more general covariance matrices,
the global minimizer of the pre-training loss corresponds to one step of pre-conditioned gradient
descent, where the pre-conditioner matrix can be computed in terms of the covariance of xi.2

Different from our work, Ahn et al. (2023) also show additional results for multi-layer transformers
(with linear self-attention) with residual connections trained on linear regression data. First, they
study a restricted parameterization where in each layer, the product of the projection and value

2This result is not exactly the same as our result in Section 4, since we assume w ∼ N (0,Σ−1) while they
assume w ∼ N (0, Id×d).

2

Under review as a conference paper at ICLR 2024

matrices has only one nonzero entry. In this setting, for two-layer transformers with linear self-
attention, they show that the global minimizer corresponds to two steps of pre-conditioned GD with
diagonal pre-conditioner matrices, when the data is isotropic. For linear transformers with k layers,
they show that k steps of pre-conditioned GD corresponds to a critical point of the pre-training
loss,3 where the pre-conditioner matrix is the inverse of the covariance matrix of the xi.4 Next,
they study a less restrictive parameterization where the product of the projection and value matrices
can be almost fully dense, and show that a certain critical point of the pre-training loss for k-layer
linear transformers corresponds to k steps of a generalized version of the GD++ algorithm, which
was empirically observed by von Oswald et al. (2022) to be the algorithm learned by k-layer linear
transformers.

Zhang et al. (2023) also theoretically study a setting similar to ours. They not only show that the
global minimizer of the pre-training loss implements one step of GD (the same result as ours), but
also show that a one-layer linear transformer trained with gradient flow will converge to a global
minimizer. They also show that the transformer implements a step of pre-conditioned GD when
the xi are non-isotropic. They also characterize how the training prompt lengths and test prompt
length affect the test-time prediction error of the trained transformer. Additionally, they consider the
behavior of the trained transformer under distribution shifts, as well as the training dynamics when
the covariance matrices of the xi in different training prompts can be different.

One additional contribution of our work is that we also consider the case where the target function
in the pre-training data is not a linear function (Section 5). This suggests that, compared to the
distribution of the covariates, the distribution of the responses at training time does not have as
strong of an effect on the algorithm learned by the transformer. We note that our proof in this setting
is not too different from our proof in Section 3. Zhang et al. (2023) consider the case where the yi’s
in the test time prompt are obtained from a nonlinear target function, and consider the performance
on this prompt of the transformer trained on prompts with a linear target function — this is different
from our setting in Section 5 since we consider the case where the training prompts themselves are
obtained with a nonlinear target function. We discuss additional related works in Appendix A.

2 SETUP

Our setup is similar to von Oswald et al. (2022).

One-Layer Transformer with Linear Self-Attention. A linear self-attention layer with width s
consists of the following parameters: a key matrix WK ∈ Rs×s, a query matrix WQ ∈ Rs×s, and
a value matrix WV ∈ Rs×s. Given a sequence of T > 1 tokens (v1, v2, . . . , vT), the output of the
linear self-attention layer is defined to be (v̂1, v̂2, . . . , v̂T), where for i ∈ [T] with i > 1,

v̂i =

i−1∑
j=1

(WV vj)(v
⊤
j W

⊤
KWQvi) , (2)

and v̂1 = 0. In particular, the output on the T th token is

v̂T =

T−1∑
j=1

(WV vj)(v
⊤
j W

⊤
KWQvT) . (3)

As in the theoretical construction of von Oswald et al. (2022), we do not consider the attention score
between a token vi and itself. Our overall transformer is then defined to be a linear self-attention
layer with key matrix WK , query matrix WQ, and value matrix WV , together with a linear head
h ∈ Rs which is applied to the last token. Thus, the final output of the transformer is h⊤v̂T . We will
later instantiate this one-layer transformer with s = d+1, where d is the dimension of the inputs xi.
We note that this corresponds to a single head of linear self-attention, while one could also consider
multi-head self-attention.

3One technical point is that they show there exist transformers representing this form of pre-conditioned GD
having arbitrarily small gradient, but not that there exists a transformer with gradient exactly 0 which represents
this form of pre-conditioned GD.

4Here, they assume that xi ∼ N (0,Σ) and w ∼ N (0,Σ−1), which is the same assumption as our result in
Section 4 but different from their result for one-layer transformers where xi ∼ N (0,Σ).

3

Under review as a conference paper at ICLR 2024

Linear Regression Data Distribution. The pretraining data distribution consists of sequences
D = (x1, y1, . . . , xn+1, yn+1). Here, the exemplars xi are sampled i.i.d. from N (0, Id×d). Then,
a weight vector w ∈ Rd is sampled from N (0, Id×d), freshly for each sequence. Finally, yi is
computed as yi = w⊤xi + ϵi where ϵi ∼ N (0, σ2) for some σ > 0. We consider the vector

vi =

[
xi

yi

]
∈ Rd+1 to be a token — in other words, the sequence (x1, y1, . . . , xn+1, yn+1) is

considered to have n+ 1 tokens (rather than 2(n+ 1) tokens). We use T to denote the distribution
of sequences defined in this way.

At both training and test time, (x1, y1, . . . , xn, yn, xn+1, yn+1) is generated according to the pre-
training distribution T , i.e. the xi are sampled i.i.d. from N (0, Id×d), a new weight vector w ∈ Rd

is also sampled from N (0, Id×d), and yi = w⊤xi+ϵi where the ϵi are sampled i.i.d. from N (0, σ2).
Then, the in-context learner is presented with x1, y1, . . . , xn, yn, xn+1, and must predict yn+1. We
refer to x1, . . . , xn as the support exemplars and xn+1 as the query exemplar. Here, v1, . . . , vn are

defined as above, but vn+1 =

[
xn+1

0

]
, following the notation of von Oswald et al. (2022).5 We

note that this is not significantly different from the standard in-context learning setting, since even
though the final token vn+1 has 0 as an extra coordinate, it does not provide the transformer with
any additional information about yn+1.

Loss Function. Given a one-layer transformer with linear self-attention and width d + 1, with
key matrix WK ∈ R(d+1)×(d+1), query matrix WQ ∈ R(d+1)×(d+1), and value matrix WV ∈
R(d+1)×(d+1), and with a head h ∈ Rd+1, the loss of this transformer on our linear regression data
distribution is formally defined as

L(WK ,WQ,WV , h) = ED∼T [(h
⊤v̂n+1 − yn+1)

2] , (4)

where as defined above, v̂n+1 is the output of the linear self-attention layer on the (n + 1)th token,

which in this case is
[

xn+1

0

]
.

We now rewrite the loss function and one-layer transformer in a more convenient form. As a
convenient shorthand, for any test-time sequence D = (x1, y1, . . . , xn+1, 0), we write D̃ =
(x1, y1, . . . , xn, yn), i.e. the prefix of D that does not include xn+1 and yn+1. We also define

GD̃ =

n∑
i=1

[
xi

yi

] [
xi

yi

]⊤
. (5)

With this notation, we can write the prediction obtained from the transformer on the final token as

ŷn+1 = h⊤WV GD̃W⊤
KWQvn+1 . (6)

where vn+1 =

[
xn+1

0

]
. Additionally, we also define the matrix X ∈ Rn×d as the matrix whose

ith row is the row vector x⊤
i , i.e.

X =


· · · x⊤

1 · · ·
· · · x⊤

2 · · ·
...

...
...

· · · x⊤
n · · ·

 , (7)

and we define the vector y⃗ ∈ Rn as the vector whose ith entry is yi, i.e.

y⃗ =


y1
y2
...
yn

 . (8)

5If we were to treat xi and yi as separate tokens, then we would need to deal with attention scores between
yi and yj for i ̸= j, as well as attention scores between yi and xj for i ̸= j. Our current setup simplifies the
analysis.

4

Under review as a conference paper at ICLR 2024

Finally, it is worth noting that we can write the loss function as

L(WK ,WQ,WV , h) = ED∼T [(h
⊤WV GD̃W⊤

KWQvn+1 − yn+1)
2] . (9)

Thus, for w ∈ Rd+1 and M ∈ R(d+1)×(d+1), if we define

L(w,M) = ED∼T [(w
⊤GD̃Mvn+1 − yn+1)

2] , (10)

then L(W⊤
V h,W⊤

KWQ) = L(WK ,WQ,WV , h). Note that we have a slight abuse of notation, and
L has two different meanings depending on the number of arguments. Finally, with the change
of variables M = W⊤

KWQ and w = W⊤
V h, we can write the prediction of the transformer

as w⊤GD̃Mvn+1. Thus, the output of the transformer only depends on the parameters through
w⊤GD̃M .

Additional Notation. For a matrix A ∈ Rd×d, we write Ai:j,: to denote the sub-matrix of A that
contains the rows of A with indices between i and j (inclusive). Similarly, we write A:,i:j to denote
the sub-matrix of A that contains the columns of A with indices between i and j (inclusive). We
write Ai:j,k:l to denote the sub-matrix of A containing the entries with row indices between i and j
(inclusive) and column indices between k and l (inclusive).

3 MAIN RESULT FOR LINEAR MODELS

Theorem 1 (Global Minimum for Linear Regression Data). Suppose (W ∗
K ,W ∗

Q,W
∗
V , h

∗) is a
global minimizer of the loss L. Then, the corresponding one-layer transformer with linear self-
attention implements one step of gradient descent on a linear model with some learning rate

η > 0. More concretely, given a query token vn+1 =

[
xn+1

0

]
, the transformer outputs

η
∑n

i=1 yix
⊤
i xn+1, where η =

E
D̃∼T [ŵ⊤

D̃
X⊤y⃗]

E
D̃∼T [y⃗⊤XX⊤y⃗]

. Here given a prefix D̃ of a test-time data sequence

D, we let ŵD̃ denote the solution to ridge regression on X and y⃗ with regularization strength σ2.

The minimizer (W ∗
K ,W ∗

Q,W
∗
V , h

∗) is not unique, though the linear predictor implemented by the
minimizer is unique — see the discussion after Lemma 2. One such construction is as follows. von
Oswald et al. (2022) describe essentially the same construction, but our result shows that it is a
global minimum of the loss function, while von Oswald et al. (2022) do not theoretically study the
construction aside from showing that it is equivalent to one step of gradient descent. We define

W ∗
K =

(
Id×d 0
0 0

)
,W ∗

Q =

(
Id×d 0
0 0

)
,W ∗

V =

(
0 0
0 η

)
, h∗ =

[
0
1

]
. (11)

Here, the unique value of η which makes this construction a global minimum is η =
E
D̃∼T [ŵ⊤

D̃
X⊤y⃗]

E
D̃∼T [y⃗⊤XX⊤y⃗]

.
To see why this construction implements a single step of gradient descent on a linear model, note

that given test time inputs x1, y1, . . . , xn, yn, xn+1, if we write vi =

[
xi

yi

]
for i ≤ n and vn+1 =[

xn+1

0

]
, then the output of the corresponding transformer would be

(h∗)⊤
n∑

i=1

(W ∗
V vi)(v

⊤
i (W

∗
K)⊤W ∗

Qvn+1) = η

n∑
i=1

yix
⊤
i xn+1 . (12)

On the other hand, consider linear regression with total squared error as the loss function, using the
xi and yi. Here, the loss function would be L(w) = 1

2

∑n
i=1(w

⊤xi−yi)
2, meaning that the gradient

is ∇wL(w) =
∑n

i=1(w
⊤xi − yi)xi. In particular, if we initialize gradient descent at w0 = 0, then

after one step of gradient descent with learning rate η, the iterate would be at w1 = η
∑n

i=1 yixi —
observe that the final expression in Equation (12) is exactly w⊤

1 xn+1.

Now, we give an overview of the proof of Theorem 1. By the discussion in Section 2, it suffices to
show that L((W ∗

V)
⊤h∗, (W ∗

K)⊤W ∗
Q) is the global minimum of L(w,M). The first step of the proof

is to rewrite the loss in a more convenient form, getting rid of the expectation over xn+1 and yn+1:

5

Under review as a conference paper at ICLR 2024

Lemma 1. Let ŵD̃ be the solution to ridge regression with regularization strength σ2 on the ex-
emplars (x1, y1), . . . , (xn, yn) given in a context D̃. Then, there exists a constant C ≥ 0, which is
independent of w,M , such that L(w,M) = C + ED∼T ∥M⊤

:,1:dGD̃w − ŵD̃∥22.

As discussed towards the end of Section 2, the prediction can be written as w⊤GD̃Mvn+1 where

vn+1 =

[
xn+1

0

]
, meaning that the effective linear predictor implemented by the transformer is

the linear function from Rd to R with weight vector M⊤
:,1:dGD̃w. Thus, we can interpret Lemma 1

as saying that the loss function encourages the effective linear predictor to match the Bayes-optimal
predictor ŵD̃. Note that it is not possible for the effective linear predictor of the transformer to
match ŵD̃ exactly, since the transformer can only implement a linear or quadratic function of the
xi, while representing ŵD̃ requires computing (X⊤X + σ2I)−1, and this is a much more complex
function of the xi. We prove Lemma 1 using the fact that ED̃,xn+1

[yn+1] = ŵ⊤
D̃
xn+1 and standard

manipulations of random variables — we give a detailed proof in Appendix C.

Next, the key step is to replace ŵD̃ in the above lemma by ηX⊤y⃗.

Lemma 2. There exists a constant C1 ≥ 0 which is independent of w,M , such that

L(w,M) = C1 + ED̃∼T ∥M
⊤
:,1:dGD̃w − ηX⊤y⃗∥22 . (13)

Lemma 2 says that the loss depends entirely on how far the effective linear predictor is from ηX⊤y⃗.
It immediately follows from this lemma that (WK ,WQ,WV , h) is a global minimizer of the loss if
and only if the effective linear predictor of the corresponding transformer is ηX⊤y⃗. Thus, Theorem 1
follows almost directly from Lemma 2, and in the rest of this section, we give an outline of the proof
of Lemma 2 — the detailed proofs of Theorem 1 and Lemma 2 are in Appendix C.

Proof Strategy for Lemma 2. Our overall proof strategy is to show that the gradients of L(w,M)
and L′(w,M), defined as

L(w,M) := ED̃∼T ∥M
⊤
:,1:dGD̃w − ŵD̃∥22 , L′(w,M) := ED̃∼T ∥M

⊤
:,1:dGD̃w − ηX⊤y⃗∥22 , (14)

are equal at every w,M , from which Lemma 2 immediately follows.6 For simplicity, we write
A = M⊤

:,1:d, so without loss of generality, we can instead show that the gradients of the loss functions
J1(A,w) and J2(A,w) are identical, where J1 and J2 are defined as

J1(A,w) := ED̃∼T ∥AGD̃w − ŵD̃∥22 , J2(A,w) := ED̃∼T ∥AGD̃w − ηX⊤y⃗∥22 . (15)

In this section, we discuss the gradients with respect to w — we use the same proof ideas to show
that the gradients with respect to A are the same. We have

∇wJ1(A,w) = 2ED̃∼T GD̃A⊤(AGD̃w − ŵD̃) (16)

and

∇wJ2(A,w) = 2ED̃∼T GD̃A⊤(AGD̃w − ηX⊤y⃗) . (17)

Thus, showing that these two gradients are equal for all A,w reduces to showing that for all A, we
have

ED̃∼T GD̃A⊤ŵD̃ = ηED̃∼T GD̃A⊤X⊤y⃗ . (18)

Recall that GD̃ is defined as GD̃ =

n∑
i=1

[
xix

⊤
i yixi

yix
⊤
i y2i

]
. Our first key observation is that for any

i ∈ [n] and any odd positive integer k, E[yki | X] = 0, since yi = w⊤xi + ϵi, and both w⊤xi and ϵi
have distributions which are symmetric around 0. This observation also extends to any odd-degree

6This is because L and L′ are defined everywhere on Rd+1 ×R(d+1)×(d+1), and for any two differentiable
functions f, g defined on an open connected subset S ⊂ Rk, if the gradients of f and g are identical on S,
then f and g are equal on S up to an additive constant. This can be shown using the fundamental theorem of
calculus.

6

Under review as a conference paper at ICLR 2024

monomial of the yi. Using this observation, we can simplify the left-hand side of Equation (18) as
follows. We can first write it as

ED̃∼T GD̃A⊤ŵD̃ = ED̃∼T

n∑
i=1

[
xix

⊤
i (A

⊤)1:d,:ŵD̃ + yixi(A
⊤)d+1,:ŵD̃

yix
⊤
i (A

⊤)1:d,:ŵD̃ + y2i (A
⊤)d+1,:ŵD̃

]
. (19)

Then, since ŵD̃ = (X⊤X + σ2I)−1X⊤y⃗, each entry of ŵD̃ has an odd degree in the yi, mean-
ing the terms xix

⊤
i (A

⊤)1:d,:ŵD̃ and y2i (A
⊤)d+1,:ŵD̃ in the above equation vanish after taking the

expectation. Thus, we obtain

ED̃∼T GD̃A⊤ŵD̃ = ED̃∼T

n∑
i=1

[
yixiA

⊤
:,d+1ŵD̃

yix
⊤
i A

⊤
:,1:dŵD̃

]
= ED̃∼T

[
X⊤y⃗A⊤

:,d+1ŵD̃

y⃗⊤XA⊤
:,1:dŵD̃

]
. (20)

Since each entry of ηX⊤y⃗ has an odd degree in the yi, in order to simplify the right-hand side of
Equation (18), we can apply the same argument but with ŵD̃ replaced by ηX⊤y⃗, obtaining

ηED̃∼T GD̃A⊤X⊤y⃗ = ηED̃∼T

[
X⊤y⃗A⊤

:,d+1X
⊤y⃗

y⃗⊤XA⊤
:,1:dX

⊤y⃗

]
. (21)

Thus, showing Equation (18) reduces to showing that

ED̃∼T

[
X⊤y⃗A⊤

:,d+1ŵD̃

y⃗⊤XA⊤
:,1:dŵD̃

]
= ηED̃∼T

[
X⊤y⃗A⊤

:,d+1X
⊤y⃗

y⃗⊤XA⊤
:,1:dX

⊤y⃗

]
. (22)

To show Equation (22), our key tool is Lemma 4, which follows from Lemma 3.
Lemma 3. There exists a scalar c1 such that ED̃∼T [X

⊤y⃗y⃗⊤X] = c1Id×d, and there exists a scalar
c2 such that ED̃∼T [X

⊤y⃗ŵ⊤
D̃
] = c2Id×d.

Lemma 4. If η =
E
D̃∼T [ŵ⊤

D̃
X⊤y⃗]

E
D̃∼T [y⃗⊤XX⊤y⃗]

, then ED̃∼T [ηX
⊤y⃗y⃗⊤X −X⊤y⃗ŵ⊤

D̃
] = 0.

Overview of Proof of Lemma 3 and Lemma 4. We give an overview of how we prove Lemma 3
and Lemma 4 here, and defer the full proofs to Appendix C. To show that ED̃∼T [X

⊤y⃗y⃗⊤X] is
a scalar multiple of the identity, we first use the fact that even when all of the xi are rotated by a
rotation matrix R, the distribution of y⃗|X remains the same, since the weight vector w is drawn from
N (0, Id×d) which is a rotationally invariant distribution. Thus, if we define M(X) = E[y⃗y⃗⊤ | X]
as a function of X ∈ Rn×d, then for any rotation matrix R ∈ Rd×d, we have

M(XR⊤) = E[y⃗y⃗⊤ | XR⊤] = E[y⃗y⃗⊤ | X] = M(X) , (23)

where the second equality is because multiplying X on the right by R⊤ corresponds to rotating
each of the xi by R. Additionally, if we rotate the xi by R, then ED̃∼T [X

⊤y⃗y⃗⊤X] remains the
same — this is because the distribution of the xi is unchanged due to the rotational invariance of the
Gaussian distribution, and the conditional distribution yi | xi is unchanged when we rotate xi by R.
This implies that

E[X⊤y⃗y⃗⊤X] = E[X⊤M(X)X] = E[(XR⊤)⊤M(XR⊤)XR⊤] , (24)

where the second equality is because, as we observed above, ED̃∼T [X
⊤y⃗y⃗⊤X] remains the same

when we rotate each of the xi by R. Since M(XR⊤) = M(X), we have

E[(XR⊤)⊤M(XR⊤)XR⊤] = RE[X⊤M(X)X]R⊤ , (25)

which implies that E[X⊤y⃗y⃗⊤X] = RE[X⊤y⃗y⃗⊤X]R⊤ for any rotation matrix R, and therefore
E[X⊤y⃗y⃗⊤X] is a scalar multiple of the identity matrix. To finish the proof of Lemma 3, we show
that ED̃∼T [X

⊤y⃗ŵ⊤
D̃
] is a scalar multiple of the identity using essentially the same argument. To

show Lemma 4, we simply take the trace of ED̃∼T [ηX
⊤y⃗y⃗⊤X−X⊤y⃗ŵ⊤

D̃
], and select η so that this

trace is equal to 0.

Finishing the Proof of Lemma 2. Recall that, to show that the gradients of J1 and J2 (defined in
Equation (15)) with respect to w are equal, it suffices to show Equation (22). However, this is a
direct consequence of Lemma 4. This is because we can rewrite Equation (22) as

ED̃∼T

[
X⊤y⃗ŵD̃A:,d+1

tr(ŵD̃y⃗⊤XA⊤
:,1:d)

]
= ED̃∼T

[
X⊤y⃗y⃗⊤XA:,d+1

tr(X⊤y⃗y⃗⊤XA⊤
:,1:d)

]
. (26)

7

Under review as a conference paper at ICLR 2024

This shows that the gradients of J1 and J2 with respect to w are equal, and we use similar arguments
to show that the gradients of J1 and J2 with respect to A are equal. As mentioned above, this implies
that ED̃∼T ∥M

⊤
:,1:dGD̃w− ŵD̃∥22−ED̃∼T ∥M

⊤
:,1:dGD̃w− ηX⊤y⃗∥22 is a constant that is independent

of M and w, as desired.

4 RESULTS FOR DIFFERENT DATA COVARIANCE MATRICES

In this section, we consider the setting where the xi’s have a covariance that is different from the
identity matrix, and we show that the loss is minimized when the one-layer transformer implements
one step of gradient descent with preconditioning. This suggests that the distribution of the xi’s has
a significant effect on the algorithm that the transformer implements.

Data Distribution. Concretely, the data distribution is the same as before, but the xi are sampled
from N (0,Σ), where Σ ∈ Rd×d is a positive semi-definite (PSD) matrix. The outputs are generated
according to yi = w⊤xi + ϵi, where w ∼ N (0,Σ−1). This can equivalently be written as xi =
Σ1/2ui, where ui ∼ N (0, Id×d), and yi = (w′)⊤ui + ϵi, where w′ ∼ N (0, Id×d). We keep all
other definitions, such as the loss function, the same as before.

Theorem 2 (Global Minimum for 1-Layer 1-Head Linear Self-Attention with Skewed Covari-
ance). Suppose (W ∗

K ,W ∗
Q,W

∗
V , h

∗) is a global minimizer of the loss L when the data is gen-
erated according to the distribution given in this section. Then, the corresponding one-layer
transformer implements one step of preconditioned gradient descent, on the least-squares lin-
ear regression objective, with preconditioner Σ−1, for some learning rate η > 0. Specifically,

given a query token vn+1 =

[
xn+1

0

]
, the transformer outputs η

∑n
i=1 yi(Σ

−1xi)
⊤xn+1, where

η =
E
D̃∼T [y⃗⊤X(X⊤X+σ2Σ)−1X⊤y⃗]

E
D̃∼T [y⃗⊤XΣ−1X⊤y⃗]

.

To prove this result, we essentially perform a change of variables to reduce this problem to the
setting of the previous section — then, we directly apply Theorem 1. The detailed proof is given in
Appendix D.

5 RESULTS FOR NONLINEAR TARGET FUNCTIONS

In this section, we extend to a setting where the target function is nonlinear — our conditions on
the target function are mild, and for instance allow the target function to be a fully-connected neural
network with arbitrary depth/width. However, we keep the model class the same (i.e. 1-layer trans-
former with linear self-attention). We find that the transformer which minimizes the pre-training loss
still implements one step of GD on the linear regression objective (Theorem 3), even though the tar-
get function is nonlinear. This suggests that the distribution of yi|xi does not affect the algorithm
learned by the transformer as much as the distribution of xi.

Data Distribution. In this section, we consider the same setup as Section 3, but we change the
distribution of the yi’s. We now assume yi = f(xi) + ϵi, where ϵi ∼ N (0, σ2) as before, but f is
drawn from a family of nonlinear functions satisfying the following assumption:

Assumption 1. We assume that the target function f is drawn from a family F , with a probability
measure P on F , such that the following conditions hold: (1) for any fixed rotation matrix R ∈ Rd×d,
the distribution of functions f is the same as the distribution of f ◦ R (where ◦ denotes function
composition). Moreover, the distribution of f is symmetric under negation. In other words, if E ⊂ F
is measurable under P, then P(E) = P(−E), where −E = {−f | f ∈ E}.

For example, Assumption 1 is satisfied when f(x) is a fully connected neural network, with arbitrary
depth and width, where the first and last layers have i.i.d. N (0, 1) entries — see Appendix B for
further discussion. Under this assumption, we prove the following result:

Theorem 3 (Global Minimum for 1-Layer 1-Head Linear Self-Attention with Nonlinear Target
Function). Suppose Assumption 1 holds, and let (W ∗

K ,W ∗
Q,W

∗
V , h

∗) be a global minimizer of the
pre-training loss. Then, the corresponding one-layer transformer implements one step of gradi-
ent descent on the least-squares linear regression objective, given (x1, y1, . . . , xn, yn). More con-

8

Under review as a conference paper at ICLR 2024

cretely, given a query token vn+1 =

[
xn+1

0

]
, the transformer outputs η

∑n
i=1 yix

⊤
i xn+1, where

η =
ED[u⊤

D̃
X⊤y⃗]

ED[y⃗⊤XX⊤y⃗]
, uD̃ = argminuExn+1,yn+1

[(u ·xn+1−yn+1)
2 | D̃], and D, D̃ are as in Section 2.

The result is essentially the same as that of Theorem 1 — note that the learning rate is potentially dif-
ferent, as it may depend on the function family F . The proof is analogous to the proof of Theorem 1.
First we prove the analogue of Lemma 1, defining L(w,M) as in Section 2:
Lemma 5. There exists a constant C ≥ 0 such that L(w,M) = C + ED̃∼T ∥M

⊤
:,1:dGD̃w − uD̃∥22,

where uD̃ = argminuExn+1,yn+1
[(u · xn+1 − yn+1)

2 | D̃].

Next, in the proof of Lemma 2, we used the fact that odd-degree polynomials of the yi have expec-
tation 0 — the corresponding lemma in our current setting is as follows:
Lemma 6. For even integers k and for i ∈ [n], E[yki uD̃ | X] = 0. This also holds with yki
replaced by an even-degree monomial of the yi. Additionally, for odd integers k and for i ∈ [n],
E[yki | X] = 0. This also holds with yki replaced by an odd-degree monomial of the yi.

Proof of Lemma 6. This follows from Assumption 1. This is because for each outcome (i.e.
choice of f and ϵ1, . . . , ϵn) which leads to (x1, y1, . . . , xn, yn), the corresponding outcome
−f,−ϵ1, . . . ,−ϵn which leads to (x1,−y1, . . . , xn,−yn) is equally likely. The uD̃ which is ob-
tained from the second outcome is the negative of the uD̃ which is obtained from the first outcome.
If k is even, then yki is the same under both outcomes since k is even, and the average of yki uD̃ under
these two outcomes is 0. Additionally, if k is odd, then yki under the second outcome is the negative
of yki under the first outcome, and the average of yki under these two outcomes is 0. This completes
the proof of the lemma.

Next, we show the analogue of Lemma 3.
Lemma 7. ED̃∼T [X

⊤y⃗y⃗⊤X] and ED̃∼T [X
⊤y⃗u⊤

D̃
] are scalar multiples of the identity. Thus,

ED̃∼T [X
⊤y⃗u⊤

D̃
] = ηED̃∼T [X

⊤y⃗y⃗⊤X], where η =
ED[u⊤

D̃
X⊤y⃗]

ED[y⃗⊤XX⊤y⃗]
.

The proof of Lemma 7 is nearly identical to that of Lemma 3, with Assumption 1 used where
appropriate. We include the proof in Appendix E. We now state the analogue of Lemma 2:
Lemma 8. There exists a constant C1 ≥ 0 which is independent of w,M , such that L(w,M) =

C + ED̃∼T ∥M
⊤
:,1:dGD̃w − ηX⊤y⃗∥22, where η =

ED[u⊤
D̃
X⊤y⃗]

ED[y⃗⊤XX⊤y⃗]
.

Theorem 3 now follows from Lemma 8 because M⊤
:,1:dGD̃w is the weight vector for the effective

linear predictor implemented by the transformer. All missing proofs are in Appendix E.

6 CONCLUSION

We theoretically study one-layer transformers with linear self-attention trained on noisy linear re-
gression tasks with randomly generated data. We confirm the empirical finding of von Oswald et al.
(2022) by mathematically showing that the global minimum of the pre-training loss for one-layer
transformers with linear self-attention corresponds to one step of GD on a least-squares linear re-
gression objective, when the covariates are from an isotropic Gaussian distribution. We find that
when the covariates are not from an isotropic Gaussian distribution, the global minimum of the
pre-training loss instead corresponds to pre-conditioned GD, while if the covariates are from an
isotropic Gaussian distribution and the response is obtained from a nonlinear target function, then
the global minimum of the pre-training loss will still correspond to one step of GD on a least-squares
linear regression objective. We study single-head linear self-attention layers — it is an interesting
direction for future work to study the global minima of the pre-training loss for a multi-head linear
self-attention layer. Another interesting direction is to study the algorithms learned by multi-layer
transformers when the response is obtained from a nonlinear target function. We note that Ahn et al.
(2023) have studied the case of multi-layer transformers when the target function is linear. They
show that for certain restricted parameterizations of multi-layer linear transformers, the global min-
ima or critical points of the pre-training loss correspond to interpretable gradient-based algorithms.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers, 2023.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can trans-
formers learn in-context? A case study of simple function classes. In NeurIPS,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers, 2023.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions, 2023.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evalua-
tion. Technical report, AI21 Labs, 2021.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=De4FYqjFueZ.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical report, OpenAI, 2019.

Shokichi Takakura and Taiji Suzuki. Approximation and estimation ability of transformers for
sequence-to-sequence functions with infinite dimensional input, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism, 2023.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent, 2022.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model,
2021.

10

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://arxiv.org/abs/2005.14165
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
https://openreview.net/pdf?id=De4FYqjFueZ

Under review as a conference paper at ICLR 2024

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-
context, 2023.

A ADDITIONAL RELATED WORK

The work of Takakura & Suzuki (2023) theoretically shows that transformers can achieve low ap-
proximation error when the target function is shift-equivariant on sequences of infinite length, sub-
ject to certain regularity conditions. Bai et al. (2023) propose various constructions through which
transformers can solve problems such as Bayesian linear regression and generalized linear models,
achieving low test error - they also show that transformers can represent a form of model selec-
tion. Guo et al. (2023) similarly provide constructions of transformers which can represent certain
algorithms. Compared to these works which give approximation-theoretic constructions, we show
that one step of gradient descent is the best predictor that can be implemented by 1 layer of linear
self-attention.

Another concurrent work by Tarzanagh et al. (2023) analyzes the global minima and training dy-
namics of transformer layers with general data. They show that the global minimum corresponds
with a type of max-margin solution, and give conditions under which the training dynamics converge
to this global minimum.

B DISCUSSION OF ASSUMPTION 1

Assumption 1 holds in the case where f is a fully connected neural network, where the first and
last layers have i.i.d. N (0, 1) entries. For simplicity, we show this in the case of two-layer neural
networks. We let our function family F be {x 7→ W2σ(W1x) | W1,W2 have i.i.d. N (0, 1) entries}.
Let f(x) = W2σ(W1x) be a two-layer neural network drawn randomly from F . Let R be a fixed
rotation matrix. Then, (f ◦ R)(x) = W2σ(W1Rx). Since R is a fixed rotation matrix, and W1 has
i.i.d. N (0, 1) entries, W1R has the same distribution as W1. Thus, f ◦ R has the same distribution
as f .

C MISSING PROOFS FROM SECTION 3

Proof of Lemma 1. We can write

L(w,M) = ED∼T [(yn+1 − w⊤GD̃Mvn+1)
2] (27)

= ED̃,xn+1

[
Eyn+1

[(yn+1 − w⊤GD̃Mvn+1)
2 | xn+1, D̃]

]
. (28)

Let us simplify the inner expectation. For convenience, fix D̃ and xn+1, and consider the function
g : Rd → R given by

g(u) = Eyn+1 [(u · xn+1 − yn+1)
2 | D̃, xn+1] . (29)

It is a well-known fact that the minimizer of g(u) is given by ŵD̃ where ŵD̃ = (X⊤X+σ2I)−1X⊤y⃗

is the solution to ridge regression on X and y⃗ with regularization strength σ2. (See e.g. equation
(19) of Akyürek et al. (2023).) Furthermore,

0 = ∇ug(ŵD̃) = Eyn+1
[2(ŵD̃ · xn+1 − yn+1)xn+1 | D̃, xn+1] , (30)

11

https://openreview.net/forum?id=RdJVFCHjUMI

Under review as a conference paper at ICLR 2024

and in particular, taking the dot product of both sides with u− ŵD̃ (for any vector u ∈ Rd) gives
Eyn+1 [(ŵD̃ · xn+1 − yn+1) · (u · xn+1 − ŵD̃ · xn+1)] = 0 . (31)

Thus, letting u = w⊤GD̃M:,1:d, we can simplify the inner expectation in Equation (28):

Eyn+1
[(yn+1 − w⊤GD̃M:,1:dxn+1)

2 | xn+1, D̃] (32)

= Eyn+1
[(yn+1 − ŵ⊤

D̃
xn+1 + ŵ⊤

D̃
xn+1 − w⊤GD̃M:,1:dxn+1)

2 | xn+1, D̃] (33)

= Eyn+1 [(yn+1 − ŵ⊤
D̃
xn+1)

2 | xn+1, D̃] + (ŵ⊤
D̃
xn+1 − w⊤GD̃M:,1:dxn+1)

2 (34)

+ 2 · Eyn+1
[(yn+1 − ŵ⊤

D̃
xn+1)(ŵ

⊤
D̃
xn+1 − w⊤GD̃M:,1:dxn+1) | xn+1, D̃] (35)

= Eyn+1 [(yn+1 − ŵ⊤
D̃
xn+1)

2 | xn+1, D̃] + (ŵ⊤
D̃
xn+1 − w⊤GD̃M:,1:dxn+1)

2 .

(By Equation (31))

We can further write the final expression as Cxn+1,D̃
+ (ŵ⊤

D̃
xn+1 − w⊤GD̃M:,1:dxn+1)

2, where

Cxn+1,D̃
is a constant that depends on xn+1 and D̃ but is independent of w and M . Thus, we have

L(w,M) = ED̃,xn+1
[Cxn+1,D̃

] + ED̃,xn+1
[(ŵ⊤

D̃
xn+1 − w⊤GD̃M:,1:dxn+1)

2] (36)

= C + ED̃∥ŵD̃ −M⊤
:,1:dGD̃w∥22 , (B.c. xn+1 ∼ N (0, Id×d))

where C is a constant which is independent of w and M .

Proof of Lemma 3. For convenience let M(X) = ED̃∼T [y⃗y⃗
⊤ | X] — we use this notation to make

the dependence on X clear. Then, the (i, j)-th entry of M(X) is E[(w · xi + ϵi)(w · xj + ϵj) | X]
and this is equal to E[(w · xi)(w · xj) | X] for i ̸= j, and E[(w · xi)(w · xj) | X] + σ2 for i = j.
If we perform the change of variables xi 7→ Rxi for a fixed rotation matrix R and all i ∈ [n], then
Ew[(w ·Rxi)(w ·Rxj) | X] = Ew[(w · xi)(w · xj) | X] because w ∼ N (0, Id×d) and N (0, Id×d)
is a rotationally invariant distribution. In other words, we have M(XR⊤) = M(X). Thus, for any
rotation matrix R,

EX [X⊤M(X)X] = EX [(XR)⊤M(XR⊤)(XR⊤)] (By rotational invariance of dist. of xi)

= R⊤EX [X⊤M(XR⊤)X]R⊤ (37)

= R⊤EX [X⊤M(X)X]R . (Because M(XR⊤) = M(X))

This implies that EX [X⊤M(X)X] = ED̃∼T [X
⊤y⃗y⃗⊤X] is a scalar multiple of the identity matrix.

Next, we consider ED̃∼T [y⃗ŵ
⊤
D̃

| X], which we write for convenience as J(X). Similarly to the
above proof, we use the observation that if we make the change of variables xi → Rxi, then the
joint distribution of y1, . . . , yn, yn+1 is unchanged due to the rotational invariance of w. Addi-
tionally, if we write ŵD̃ as ŵD̃(x1, y1, . . . , xn, yn) to emphasize the fact that it is a function of
x1, y1, . . . , xn, yn, then

ŵD̃(Rx1, y1, Rx2, y2, . . . , Rxn, yn) = RŵD̃(x1, y1, x2, y2, . . . , xn, yn) (38)

because ŵD̃ is the minimizer of F (w) = ∥w⊤X − y⃗∥22 + σ2∥w∥22, and if all the xi are rotated by
R, then the minimizer of F will also be rotated by R. Thus,

J(XR⊤) = ED̃∼T [y⃗ŵ
⊤
D̃

| XR⊤] = ED̃∼T [y⃗ŵ
⊤
D̃
R⊤ | X] = J(X)R⊤ . (39)

We can use this to show that ED̃∼T [X
⊤y⃗ŵ⊤

D̃
] is a scalar multiple of the identity. Letting R be a

rotation matrix, we obtain
ED̃∼T [X

⊤y⃗ŵ⊤
D̃
] = ED̃∼T E[X

⊤y⃗ŵ⊤
D̃

| X] (40)

= ED̃∼T [X
⊤E[y⃗ŵ⊤

D̃
| X]] (41)

= EX [X⊤J(X)] (42)

= EX [(XR⊤)⊤J(XR⊤)] (By rotational invariance of dist. of xi)

= EX [RX⊤J(X)R⊤] (B.c. J(XR⊤) = J(X)R⊤)

= REX [X⊤J(X)]R⊤ (43)

= RED̃∼T [X
⊤y⃗ŵ⊤

D̃
]R⊤ . (By Equation (42))

This implies that ED̃∼T [X
⊤y⃗ŵ⊤

D̃
] is a scalar multiple of the identity.

12

Under review as a conference paper at ICLR 2024

Proof of Lemma 4. By Lemma 3, we have ED̃∼T [X
⊤y⃗y⃗⊤X] = c1I and ED̃∼T [X

⊤y⃗ŵ⊤
D̃
] = c2I

for some scalars c1, c2. Taking the traces of both matrices gives us

c1d = tr(ED̃∼T [X
⊤y⃗y⃗⊤X]) = ED̃∼T [tr(X

⊤y⃗y⃗⊤X)] = ED̃∼T [y⃗
⊤XX⊤y⃗] , (44)

and similarly,

c2d = tr(ED̃∼T [X
⊤y⃗ŵ⊤

D̃
]) = ED̃∼T [tr(X

⊤y⃗ŵ⊤
D̃
)] = ED̃∼T [ŵ

⊤
D̃
X⊤y⃗] . (45)

By the definition of η as
E
D̃∼T [ŵ⊤

D̃
X⊤y⃗]

E
D̃∼T [y⃗⊤XX⊤y⃗]

, we have

ηED̃∼T [X
⊤y⃗y⃗⊤X]− ED̃∼T [X

⊤y⃗ŵ⊤
D̃
] = ηc1I − c2I (46)

= η ·
ED̃∼T [y⃗

⊤XX⊤y⃗]

d
I −

ED̃∼T [ŵ
⊤
D̃
X⊤y⃗]

d
I (47)

=
ED̃∼T [ŵ

⊤
D̃
X⊤y⃗]

d
I −

ED̃∼T [ŵ
⊤
D̃
X⊤y⃗]

d
I (48)

= 0 , (49)

completing the proof of the lemma.

Proof of Lemma 2. For convenience, we write A := M⊤
:,1:d. Then, we wish to show that for all

A ∈ Rd×(d+1) and w ∈ Rd+1, we have

ED̃∼T ∥AGD̃w − ŵD̃∥22 = C + ED̃∼T ∥AGD̃w − ηX⊤y⃗∥22 (50)

for some constant C independent of A and w. Define

J1(A,w) = ED̃∼T ∥AGD̃w − ŵD̃∥22 (51)

and

J2(A,w) = ED̃∼T ∥AGD̃w − ηX⊤y⃗∥22 . (52)

To show that J1(A,w) and J2(A,w) are equal up to a constant, it suffices to show that their gra-
dients are identical, since J1 and J2 are defined everywhere on Rd+1 × R(d+1)×(d+1) and by the
fundamental theorem of calculus.

Gradients With Respect to w. First, we analyze the gradients with respect to w. We have

∇wJ1(A,w) = 2ED̃∼T GD̃A⊤(AGD̃w − ŵD̃) (53)

and

∇wJ2(A,w) = 2ED̃∼T GD̃A⊤(AGD̃w − ηX⊤y⃗) (54)

where we use the convention that the gradient with respect to w has the same shape as w. To show
that ∇wJ1(A,w) = ∇wJ2(A,w), it suffices to show that ED̃∼T GD̃A⊤ŵD̃ = ηED̃∼T GD̃A⊤X⊤y⃗.
Observe that we can write GD̃ as

GD̃ =

n∑
i=1

[
xi

yi

] [
xi

yi

]⊤
=

n∑
i=1

[
xix

⊤
i yixi

yix
⊤
i y2i

]
. (55)

Given X , the expected value of any odd monomial of the yi is equal to 0, since w and ϵi are
independent of X and have mean 0. Thus, we can ignore the blocks corresponding to xix

⊤
i and y2i ,

since the entries of ŵD̃ and X⊤y⃗ contain odd monomials of the yi once X is fixed.

We now proceed in two steps. First, we deal with the terms corresponding to the lower left block of
GD̃ and show that their respective contributions to ED̃∼T GD̃A⊤ŵD̃ and ηED̃∼T GD̃A⊤X⊤y⃗ are
equal. For ED̃∼T GD̃A⊤ŵD̃, these terms contribute:

ED̃∼T

n∑
i=1

yix
⊤
i (A

⊤)1:d,:ŵD̃ = ED̃∼T y⃗
⊤XA⊤

:,1:dŵD̃ (56)

= ED̃∼T tr(ŵD̃y⃗⊤XA⊤
:,1:d) (57)

= tr(ED̃∼T [ŵD̃y⃗⊤X]A⊤
:,1:d) , (58)

13

Under review as a conference paper at ICLR 2024

while for ηED̃∼T GD̃A⊤X⊤y⃗, these terms contribute:

ηED̃∼T

n∑
i=1

yix
⊤
i A

⊤
:,1:dX

⊤y⃗ = ηED̃∼T y⃗
⊤XA⊤

:,1:dX
⊤y⃗ (59)

= ηED̃∼T tr(X⊤y⃗y⃗⊤XA⊤
:,1:d) (60)

= tr(ED̃∼T [ηX
⊤y⃗y⃗⊤X]A⊤

:,1:d) , (61)

and since ED̃∼T [ŵD̃y⃗⊤X] = ED̃∼T [ηX
⊤y⃗y⃗⊤X] by Lemma 4, these two contributions are equal.

Second, we deal with the terms corresponding to the upper right block of GD̃. For ED̃∼T GD̃A⊤ŵD̃
these terms contribute

ED̃∼T

n∑
i=1

yixi(A
⊤)(d+1),:ŵD̃ = ED̃∼T X

⊤y⃗A⊤
:,(d+1)ŵD̃ (62)

= ED̃∼T X
⊤y⃗ŵ⊤

D̃
A:,(d+1) ,

(B.c. dot product A⊤
:,(d+1)ŵD̃ is commutative)

while for ηED̃∼T GD̃A⊤X⊤y⃗, these terms contribute

ηED̃∼T

n∑
i=1

yixi(A
⊤)(d+1),:X

⊤y⃗ = ηED̃∼T X
⊤y⃗A⊤

:,(d+1)X
⊤y⃗ (63)

= ηED̃∼T X
⊤y⃗y⃗⊤XA:,(d+1) ,

(B.c. dot product A⊤
:,(d+1)X

⊤y⃗ is commutative)

and again these contributions are equal by Lemma 4. In summary, we have shown that for
ED̃∼T GD̃A⊤ŵD̃ and ηED̃∼T GD̃A⊤X⊤y⃗, the contributions corresponding to the lower left and
upper right blocks of GD̃ are equal, meaning that ED̃∼T GD̃A⊤ŵD̃ and ηED̃∼T GD̃A⊤X⊤y⃗ are
equal. This shows that ∇wJ1(A,w) and ∇wJ2(A,w) are equal.

Gradients With Respect to A. We can compute the gradient of J1 with respect to A as follows:

∇AJ1(A,w) = ED̃∼T ∇A∥AGD̃w − ŵD̃∥22 (64)

= ED̃∼T ∇A(AGD̃w − ŵD̃)⊤(AGD̃w − ŵD̃) (65)

= 2ED̃∼T (AGD̃w − ŵD̃)(GD̃w)⊤ , (66)

and we can similarly compute

∇AJ2(A,w) = ED̃∼T ∇A∥AGD̃w − ηX⊤y⃗∥22 (67)

= ED̃∼T ∇A(AGD̃w − ηX⊤y⃗)⊤(AGD̃w − ηX⊤y⃗) (68)

= 2ED̃∼T (AGD̃w − ηX⊤y⃗)(GD̃w)⊤ . (69)

Thus, to show that the gradients with respect to A are equal, it suffices to show that

ED̃∼T ŵD̃w⊤GD̃ = ηED̃∼T X
⊤y⃗w⊤GD̃ (70)

for all w.

As before, we only need to consider the lower left and upper right blocks of GD̃, since the entries
of the other blocks have even powers of the yi. First let us consider the lower left block. The
contribution of the lower left block to ED̃∼T ŵD̃w⊤GD̃ is

ED̃∼T ŵD̃w(d+1)

n∑
i=1

yix
⊤
i = ED̃∼T ŵD̃w(d+1)y⃗

⊤X = w(d+1)ED̃∼T ŵD̃y⃗⊤X , (71)

while the contribution of the lower left block to ηED̃∼T X
⊤y⃗w⊤GD̃ is

ED̃∼T ηX
⊤y⃗w(d+1)

n∑
i=1

yix
⊤
i = ηw(d+1)ED̃∼T X

⊤y⃗y⃗⊤X , (72)

14

Under review as a conference paper at ICLR 2024

and these two are equal by Lemma 4. The contribution of the upper right block to ED̃∼T ŵD̃w⊤GD̃
is

ED̃∼T ŵD̃w⊤
1:d

n∑
i=1

yixi = ED̃∼T ŵD̃w⊤
1:dX

⊤y⃗ = (ED̃∼T ŵD̃y⃗⊤X)w1:d , (73)

by the commutativity of the dot product w⊤
1:dX

⊤y⃗, while similarly, the contribution of the upper
right block to ηED̃∼T X

⊤y⃗w⊤GD̃ is

ED̃∼T ηX
⊤y⃗w⊤

1:d

n∑
i=1

yixi = (ηED̃∼T X
⊤y⃗y⃗⊤X)w1:d , (74)

and these two quantities are equal by Lemma 4. Thus, we have shown that ∇AJ1(A,w) =
∇AJ2(A,w).

Summary. We have shown that ∇wJ1(A,w) = ∇wJ2(A,w), and ∇AJ1(A,w) = ∇AJ2(A,w).
This completes the proof of the lemma.

Proof of Theorem 1. This theorem follows from Lemma 1 and Lemma 2. To see why, recall from
Section 2 that the output of the transformer on the last token vn+1 can be written as w⊤GD̃Mvn+1,
where M = W⊤

KWQ and w = W⊤
V h. By Lemma 2, the pre-training loss is minimized when

M⊤
:,1:dGD̃w = ηX⊤y⃗ almost surely (over the randomness of X and y⃗), and when this holds, the

output of the transformer on the last token is

w⊤GD̃Mvn+1 = w⊤GD̃M:,1:dxn+1 = (ηX⊤y⃗)⊤xn+1 = η

n∑
i=1

yix
⊤
i xn+1 , (75)

as desired.

D MISSING PROOFS FOR SECTION 4

Proof of Theorem 2. As discussed in Section 4, we can write xi = Σ1/2ui, where ui ∼ N (0, Id×d).
Furthermore, we can let U ∈ Rn×d be the matrix whose ith row is u⊤

i . Note that X = UΣ1/2,
since Σ is a symmetric positive-definite matrix. Given D̃ = (x1, y1, . . . , xn, yn), we can define
ŵD̃,Σ = (U⊤U + σ2I)−1U⊤y⃗ — this would be the solution to ridge regression if we were given
the ui and yi. Using X = UΣ1/2 which implies U = XΣ−1/2, we obtain

ŵD̃,Σ = (Σ−1/2X⊤XΣ−1/2 + σ2I)−1Σ−1/2X⊤y⃗ (76)

= (Σ1/2Σ−1/2X⊤XΣ−1/2 + σ2Σ1/2)−1X⊤y⃗ (77)

= (X⊤XΣ−1/2 + σ2Σ1/2)−1X⊤y⃗ (78)

= Σ1/2(X⊤X + σ2Σ)−1X⊤y⃗ . (79)
We now change variables in order to reduce Theorem 2 to Theorem 1, using the fact that ui and yi
together are from the same distribution as the data studied in Theorem 1. We can write the loss as

L(WK ,WQ,WV , h) = ED∼T [(yn+1 − h⊤v̂n+1)
2] (80)

= ED̃,xn+1

[
Eyn+1

[(yn+1 − h⊤v̂n+1)
2 | xn+1,D]

]
. (81)

The solution to ridge regression given the ui and yi is ŵD̃,Σ, meaning E[yn+1 | un+1, D̃] =

ŵ⊤
D̃,Σ

un+1 and therefore E[yn+1 | xn+1, D̃] = ŵ⊤
D̃,Σ

un+1, since un+1 = Σ−1/2xn+1, which is
an invertible function of xn+1. Thus,

Eyn+1
[(yn+1−h⊤v̂n+1)

2 | xn+1, D̃] (82)

= Eyn+1
[(yn+1 − ŵ⊤

D̃,Σ
un+1)

2 | xn+1, D̃] (83)

+ Eyn+1
[(ŵ⊤

D̃,Σ
un+1 − h⊤v̂n+1)

2 | xn+1, D̃] (84)

+ 2Eyn+1 [(yn+1 − ŵ⊤
D̃,Σ

un+1)(ŵ
⊤
D̃,Σ

un+1 − h⊤vn+1) | xn+1, D̃] . (85)

15

Under review as a conference paper at ICLR 2024

Now, note that Eyn+1
[(yn+1 − ŵ⊤

D̃,Σ
un+1)(ŵ

⊤
D̃,Σ

un+1 − h⊤vn+1) | xn+1, D̃] = 0 since

ŵ⊤
D̃,Σ

un+1−h⊤v̂n+1 is fully determined by xn+1 and D̃, and E[yn+1− ŵ⊤
D̃,Σ

un+1 | xn+1, D̃] = 0

as mentioned above. Additionally, we can write Eyn+1
[(yn+1−ŵ⊤

D̃,Σ
un+1)

2 | xn+1, D̃] as Cxn+1,D̃

(denoting a constant that depends only on xn+1 and D̃) since it is independent of the parameters
WK ,WQ,WV , h. Thus, taking the expectation over xn+1 and D̃, for some constant C which is
independent of WK ,WQ,WV , h, we have

L(WK ,WQ,WV , h) = C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − h⊤v̂n+1)

2 (86)

= C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − h⊤WV GD̃W⊤

KWQvn+1)
2 (87)

= C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − h⊤WV GD̃W⊤

KWQ:,1:dxn+1)
2 (88)

= C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − h⊤WV GD̃W⊤

KWQ:,1:dΣ
1/2un+1)

2 . (89)

To finish the proof, observe that we can write

GD̃ =
n∑

i=1

[
xi

yi

] [
xi

yi

]⊤
(90)

=

(
Σ1/2 0
0 1

) n∑
i=1

[
ui

yi

] [
ui

yi

]⊤ (
Σ1/2 0
0 1

)
(91)

= HGD̃
′H⊤ , (92)

where we have defined H =

(
Σ1/2 0
0 1

)
and

GD̃
′ =

n∑
i=1

[
ui

yi

] [
ui

yi

]⊤
. (93)

Now, let us make the change of variables h = h′, WV = W ′
V H

−1, WK = W ′
KH−1 and WQ =

W ′
QH

−1. Then, we obtain

L(WK ,WQ,WV , h) (94)

= C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − h⊤WV GD̃W⊤

KWQ:,1:dΣ
1/2un+1)

2 (95)

= C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − (h′)⊤W ′

V H
−1HGD̃

′H (96)

H−1(W ′
K)⊤W ′

Q:,1:d
Σ−1/2Σ1/2un+1)

2 (97)

= C + ED̃,xn+1
(ŵ⊤

D̃,Σ
un+1 − (h′)⊤W ′

V GD̃
′(W ′

K)⊤W ′
Q:,1:d

un+1)
2 . (98)

In other words, this is equal to the loss obtained by the transformer corresponding to
h′,W ′

V ,W
′
K ,W ′

Q when the data is from the distribution studied in Section 3. The above proof
also shows that the transformer corresponding to h,WV ,WK ,WQ has the same output on xn+1, as
the transformer corresponding to h′,W ′

V ,W
′
K ,W ′

Q does on un+1. By Theorem 1, the output of the
latter transformer on un+1 is

(ηU⊤y⃗)⊤un+1 = ηy⃗⊤Uun+1 (99)

= η

n∑
i=1

yiu
⊤
i un+1 (100)

= η

n∑
i=1

yi(Σ
−1/2xi)

⊤Σ−1/2xn+1 (101)

= η

n∑
i=1

yix
⊤
i Σ

−1xn+1 , (102)

16

Under review as a conference paper at ICLR 2024

where the learning rate is

η =
ED̃∼T [ŵ

⊤
D̃,Σ

U⊤y⃗]

ED̃∼T [y⃗
⊤UU⊤y⃗]

(103)

=
ED̃∼T [y⃗

⊤X(X⊤X + σ2Σ)−1Σ1/2U⊤y⃗]

ED̃∼T [y⃗
⊤UU⊤y⃗]

(By definition of ŵD̃,Σ)

=
ED̃∼T [y⃗

⊤X(X⊤X + σ2Σ)−1Σ1/2Σ−1/2X⊤y⃗]

ED̃∼T [y⃗
⊤XΣ−1/2Σ−1/2X⊤y⃗]

(B.c. U = XΣ−1/2)

=
ED̃∼T [y⃗

⊤X(X⊤X + σ2Σ)−1X⊤y⃗]

ED̃∼T [y⃗
⊤XΣ−1X⊤y⃗]

. (104)

This completes the proof.

E MISSING PROOFS FROM SECTION 5

Proof of Lemma 5. We proceed similarly to the proof of Lemma 1. For convenience, fix D̃ and
consider the function

g(u) = Exn+1,yn+1 [(u · xn+1 − yn+1)
2 | D̃] . (105)

Then, we have

∇ug(u) = Exn+1,yn+1
[2(u · xn+1 − yn+1)xn+1 | D̃] . (106)

Therefore, if uD̃ is the minimizer of g(u) (note that uD̃ depends on D̃ but not on xn+1 and yn+1),
then for any u ∈ Rd, we have

Exn+1,yn+1 [(uD̃ · xn+1 − yn+1)(u · xn+1 − uD̃ · xn+1) | D̃] = (u− uD̃) · ∇ug(uD̃) = 0 ,
(107)

meaning that for any u ∈ Rd, and some CD̃ which only depends on D̃ and is independent of u,

Exn+1,yn+1 [(u · xn+1 − yn+1)
2 | D̃] (108)

= Exn+1,yn+1
[(u · xn+1 − uD̃ · xn+1 + uD̃ · xn+1 − yn+1)

2 | D̃] (109)

= Exn+1,yn+1 [(u · xn+1 − uD̃ · xn+1)
2 | D̃] (110)

+ Exn+1,yn+1
[(uD̃ · xn+1 − yn+1)

2 | D̃] (111)

+ 2Exn+1,yn+1
[(u · xn+1 − uD̃ · xn+1)(uD̃ · xn+1 − yn+1) | D̃] (112)

= Exn+1,yn+1 [(u · xn+1 − uD̃ · xn+1)
2 | D̃] (113)

+ Exn+1,yn+1
[(uD̃ · xn+1 − yn+1)

2 | D̃] (By Equation (107))

= ∥u− uD̃∥22 + CD̃ . (114)

Here the last equality is because xn+1 ∼ N (0, Id×d), and because Exn+1,yn+1
[(uD̃ ·xn+1−yn+1)

2 |
D̃] is a constant that depends on D̃ but not on u. We can apply this manipulation to the loss function:

L(w,M) = ED̃∼T

[
Exn+1,yn+1

[(yn+1 − ŷn+1)
2 | D̃]

]
(115)

= ED̃∼T

[
Exn+1,yn+1

[(yn+1 − w⊤GD̃Mvn+1)
2 | D̃]

]
(116)

= ED̃∼T

[
Exn+1,yn+1

[(yn+1 − w⊤GD̃M:,1:dxn+1)
2 | D̃]

]
(117)

= ED̃∼T

[
∥uD̃ −M⊤

:,1:dGD̃w∥22 + CD̃

]
(By Equation (114))

= ED̃∼T [∥uD̃ −M⊤
:,1:dGD̃w∥22] + C . (118)

Here, C is a constant independent of w and M . This completes the proof of the lemma.

17

Under review as a conference paper at ICLR 2024

Proof of Lemma 7. We prove this using Assumption 1, imitating the proof of Lemma 3. For con-
venience, let M(X) = E[y⃗y⃗⊤ | X]. Then, the (i, j)-th entry of M(X) is Ef [f(xi)f(xj)] + σ2 if
i = j and Ef [f(xi)f(xj)] if i ̸= j, since E[ϵi] = 0 and the ϵi are i.i.d. and independent of X . If
we perform the change of variables xi → Rxi for a fixed rotation matrix R and all i ∈ [n], then by
Assumption 1, Ef [f(Rxi)f(Rxj)] = Ef [f(xi)f(xj)], meaning that for any rotation matrix R,

EX [X⊤M(X)X] = EX [(XR⊤)⊤M(XR⊤)(XR⊤)] (119)

= REX [X⊤M(XR⊤)X]R⊤ (120)

= REX [X⊤M(X)X]R⊤ (121)

by the rotational invariance of the xi. This implies that EX [X⊤M(X)X] = ED̃[X⊤y⃗y⃗⊤X] is a
scalar multiple of the identity matrix.

Next, we consider ED̃∼T [X
⊤y⃗u⊤

D̃
]. For convenience, let J(X) = ED̃∼T [y⃗u

⊤
D̃

| X]. If we make
the change of variables xi → Rxi, then the joint distribution of y1, . . . , yn, yn+1 does not change
by Assumption 1, meaning that uD̃ is replaced by RuD̃. Thus, we can conclude that J(X) is
equivariant to rotations of all the xi by R:

J(XR⊤) = E[y⃗u⊤
D̃

| XR⊤] = E[y⃗u⊤
D̃
R⊤ | X] = J(X)R⊤ . (122)

Thus,

ED̃∼T [X
⊤y⃗uD̃] = EX [X⊤J(X)] (123)

= EX [(XR⊤)⊤J(XR⊤)] (By rotational invariance of N (0, Id×d))

= REX [X⊤J(X)]R⊤ (By Equation (122))

= RED̃∼T [X
⊤y⃗u⊤

D̃
]R⊤ . (124)

Thus, ED̃∼T [X
⊤y⃗u⊤

D̃
] is a scalar multiple of the identity matrix. The final statement of the lemma

follows by taking the trace of the left and right hand sides.

Proof of Lemma 8. This follows by the same argument as Lemma 2 — here we use Lemma 6 in
order to show that we only need to consider the lower left and upper right blocks of GD̃, and the
rest of the proof follows from linear algebraic manipulations and applying Lemma 7 (in place of
Lemma 4 which was used in the proof of Lemma 2).

Proof of Theorem 3. This follows directly from Lemma 8, since the effective linear predictor being
ηX⊤y⃗ is a necessary and sufficient condition for minimizing the pre-training loss.

F LEARNING RATE SIMULATIONS

We follow a setup similar to von Oswald et al. (2022). Our goal is to verify that a trained linear self-
attention layer will implement a single step of gradient descent (GD), with a learning rate which
matches our theoretical prediction in Theorem 1. As in von Oswald et al. (2022), we compare the
predictions of our trained linear self-attention layer with 1 step of GD with learning rate η. One
important difference between our experiment and that of von Oswald, et al. is that we set η to be our
theoretical prediction from Theorem 1, rather than selecting η using line search. As in von Oswald
et al. (2022), we evaluate the trained linear self-attention layer and the GD baseline on inputs which
are scaled by a large amount compared to during training.

In our setting, the xi’s are 10 dimensional vectors chosen so that each entry is uniformly random in
[−1, 1] (we note that this is similar to the setting of von Oswald et al. (2022) but different from our
theoretical setting). The weight vectors w for each sequence are random Gaussian vectors, chosen
independently of the xi’s. (Thus, if we scale the xi’s by a certain α at evaluation time, then this
leaves the distribution of w unchanged, but the yi’s are also scaled by a factor of α at test time
compared to during training.) In both the training and the evaluation data, σ2 = 0.5.

We estimate the learning rate for the GD baseline as follows. We predict η =
E
D̃∼T [ŵ⊤

D̃
X⊤y⃗]

E
D̃∼T [y⃗⊤XX⊤y⃗]

as in
Theorem 1. We then sample 100,000 sequences in order to estimate the expectations in each of the
numerator and the denominator.

18

Under review as a conference paper at ICLR 2024

Figure 1: As the xi are scaled to be larger, the difference between the linear self-attention layer and
the ground truth increases much more than the difference between the linear self-attention layer and
the GD baseline.

Since the xi’s are 10-dimensional vectors,
[

xi

yi

]
will be an 11-dimensional vector. Thus, to match

our theoretical setting, the key and query dimensions of our linear self-attention are 11 as well. We
train the linear self-attention layer using Adam, with a learning rate of 1e-4. We use a batch size
of 2048 and train for 12000 steps. We also perform gradient clipping with a maximum norm of 10.

In all sequences (at both train and test time), there are 10 context vectors
[

xi

yi

]
, followed by one

query vector
[

x
0

]
.

See Figure 1 for the results. Our experiment shows that, as the inputs are scaled to be larger, the
trained linear self-attention layer becomes farther from the ground truth, while the difference be-
tween the linear self-attention layer and the GD baseline does not grow as quickly, which suggests
that the GD baseline with our predicted η matches the algorithm that the trained linear self-attention
layer learns. For instance, in the case where the scaling of the xi is 1, i.e. we do not rescale the
xi, the mean-squared error between the linear self-attention layer and the ground truth is about
2.6, while the difference between the linear self-attention layer and the GD baseline is about 0.14.
Additionally, Figure 2 shows that as σ2 increases (shown in the x-axis) the theoretically predicted
learning rate (shown in the y-axis) decreases.

19

Under review as a conference paper at ICLR 2024

Figure 2: Change in learning rate as we vary σ2.

20

	Introduction
	Setup
	Main Result for Linear Models
	Results for Different Data Covariance Matrices
	Results for Nonlinear Target Functions
	Conclusion
	Additional Related Work
	Discussion of assumption:rotationinvariant
	Missing Proofs from sec:mainresultlinear
	Missing Proofs for sec:differentcov
	Missing Proofs from sec:nonlinear
	Learning Rate Simulations

