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Abstract

From CNNs to attention mechanisms, encoding inductive biases into neural net-
works has been a fruitful source of improvement in machine learning. Adding
auxiliary losses to the main objective function is a general way of encoding biases
that can help networks learn better representations. However, since auxiliary losses
are minimized only on training data, they suffer from the same generalization gap
as regular task losses. Moreover, by adding a term to the loss function, the model
optimizes a different objective than the one we care about. In this work we address
both problems: first, we take inspiration from transductive learning and note that af-
ter receiving an input but before making a prediction, we can fine-tune our networks
on any unsupervised loss. We call this process tailoring, because we customize the
model to each input to ensure our prediction satisfies the inductive bias. Second,
we formulate meta-tailoring, a nested optimization similar to that in meta-learning,
and train our models to perform well on the task objective after adapting them
using an unsupervised loss. The advantages of tailoring and meta-tailoring are
discussed theoretically and demonstrated empirically on a diverse set of examples.

1 Introduction

The key to successful generalization in machine learning is the encoding of useful inductive biases.
A variety of mechanisms, from parameter tying to data augmentation, have proven useful to improve
the performance of models. Among these, auxiliary losses can encode a wide variety of biases,
constraints, and objectives; helping networks learn better representations and generalize more broadly.
Auxiliary losses add an extra term to the task loss that is minimized over the training data.

However, they have two major problems:

1. Auxiliary losses are only minimized at training time, but not for the query points. This leads
to a generalization gap between training and testing, in addition to that of the task loss.

2. By minimizing the sum of the task loss plus the auxiliary loss, we are optimizing a different
objective than the one we care about (only the task loss).

In this work we propose a solution to each problem:

1. We use ideas from transductive learning to minimize unsupervised auxiliary losses at each
query, thus eliminating their generalization gap. Because these losses are unsupervised, we
can optimize them at any time inside the prediction function. We call this process tailoring,
since we customize the model to each query.

2. We use ideas from meta-learning to learn a model that performs well on the task loss after
being tailored with the unsupervised auxiliary loss; i.e. meta-tailoring. This effectively
trains the model to leverage the unsupervised tailoring loss in order to minimize the task loss.
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Figure 1: Comparison of several learning settings with offline computation in the orange boxes
and online computation in the green boxes, with tailoring in blue. For meta-tailoring training,
τ(θ,Ltailor, x) = argminθ′≈θ Ltailor(x, θ′) represents the tailoring process resulting in θx.

Illustrative example Imagine you want to use a neural network to predict the motion of a planetary
system: given the positions and velocities of each planet, the network predicts their future positions
and velocities. Additionally, we could encode energy and momentum conservation by adding an
auxiliary loss encouraging the neural network to conserve energy and momentum for the training
examples. However, this does not guarantee that the network will conserve them for test queries.
Alternatively, we can exploit that evaluating these conservations requires comparing only the input
with the prediction without needing access to the true target. Therefore, we can enforce these
conservations by optimizing an unsupervised objective within the prediction function. In doing so,
we tailor the model to each individual query to ensure it satisfies energy and momentum conservation.
Taking into account this prediction-time adaptation during training leads to a two-layer optimization,
where we train to make accurate predictions after encouraging the physical conservations.

Tailoring a predictor Traditionally, supervised learning is approached within the inductive learning
framework, shown in the second row of Figure 1. There, an algorithm consumes a training dataset
of input-output pairs, ((xi, yi))

n
i=1, and produces a set of parameters θ̂ by minimizing a supervised

loss
∑n
i=1 Lsup(fθ(xi), yi) and, optionally, an unsupervised auxiliary loss

∑n
i=1 Lunsup(θ, xi). These

parameters specify a hypothesis fθ̂(·) that, given a new input x, generates an output ŷ = fθ̂(x). This
problem setting misses a substantial opportunity: before the learning algorithm sees the query point
x, it has distilled the data down to the parameters θ̂, which are frozen during inference, and so it
cannot use new information about the particular x that it will be asked to make a prediction for.

Vapnik recognized an opportunity to make more accurate predictions when the query point is known,
in a framework that is now known as transductive learning [50, 11], illustrated in the top row of
Figure 1. In transductive learning, a single algorithm consumes both labeled data, ((xi, yi))

n
i=1, and

a set of input queries for which predictions are desired, (x(j))j , and produces predictions (ŷ(j))j for
each query. In general, however, we do not know queries a priori, and instead, we want an inductive
function that makes predictions online, as queries arrive. To obtain such an online prediction function
from a transductive system, we would need to take the training data and the single unlabeled query
and encapsulate the entire transductive learning procedure inside the prediction function itself.
This strategy would achieve our objective of taking x into account at prediction time but would be
computationally much too slow [12].

This approach for combining induction and transduction would reuse the same training data and ob-
jective for each prediction, only changing the single unlabeled query. Consequently, it would perform
extremely similar computations for each prediction. Therefore, we propose to effectively reuse the
shared computations and find a “meta-hypothesis” that can then be efficiently adapted to each query.
As shown in the third row of Figure 1, we propose to first run regular supervised learning to obtain
parameters θ̂. Then, given a query input x, we fine-tune θ̂ on an unsupervised loss Ltailor to obtain cus-
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Algorithm 1 MAMmoTh: Model-Agnostic Meta-Tailoring
Subroutine Training(f , Lsup, λsup, Ltailor, λtailor, Dtrain ,b)

randomly initialize θ
while not done do

Sample batch of samples (xi, yi) ∼ Dtrain

forall (xi, yi) do
θxi = θ − λtailor∇θLtailor(θ, xi) // Inner step with tailor loss

θ = θ − λsup∇θ
∑

(xi,yi)
Lsup

(
fθxi (xi), yi

)
// Outer step with supervised loss

return θ

tomized parameters θx and use them to make the final prediction: fθx(x). We call this process tailor-
ing, because we adapt the model to each particular input for a customized fit. Notice that tailoring opti-
mizes the loss at the query input, eliminating the generalization gap on the unsupervised auxiliary loss.

Meta-tailoring Since we will be applying tailoring at prediction time, it is natural to incorporate
this adaptation during training, resulting in a two-layer optimization similar to those used in meta-
learning. Because of this similarity, we call this process meta-tailoring, illustrated in the bottom row
of Figure 1. Now, rather than letting θ̂ be the direct minimizer of the supervised loss, we set it to

θ̂ ∈ arg min
θ

n∑
i=1

Lsup(fτ(θ,Ltailor,xi)(xi), yi).

Here, the inner loop optimizes the unsupervised tailoring loss Ltailor and the outer loop optimizes
the supervised task loss Lsup. Notice that now the outer process optimizes the only objective we
care, Lsup, instead of a proxy combination of Lsup and Lunsup. At the same time, we learn to leverage
Ltailor in the inner loop to affect the model before making the final prediction, both during training
and evaluation. Adaptation is especially clear in the case of a single gradient step, as in MAML [19].
We show its translation, MAMmoTh (Model-Agnostic Meta-Tailoring), in algorithm 1.

In many settings, we want to make predictions for a large number of queries in a (mini-)batch. While
MAMmoTh adapts to every input separately, it can only be run efficiently in parallel in some deep
learning frameworks, such as JAX [10]. Inspired by conditional normalization (CN) [18] we propose
CNGRAD, which adds element-wise affine transformations to our model and only adapts the added
parameters in the inner loop. This allows us to independently tailor the model for multiple inputs
in parallel. We prove theoretically, in Sec. 4, and provide experimental evidence, in Sec. 5.1, that
optimizing these parameters alone has enough capacity to minimize a large class of tailoring losses.

Relation between (meta-)tailoring, fine-tuning transfer, and meta-learning Fine-tuning pre-
trained networks is a fruitful method of transferring knowledge from large corpora to smaller related
datasets [17]. This allows us to reuse features on related tasks or for different distributions of the same
task. When the data we want to adapt to is unlabeled, we must use unsupervised losses. This can be
useful to adapt to changes of task [16], from simulated to real data [52], or to new distributions [46].

Tailoring performs unsupervised fine-tuning and is, in this sense, similar to test-time train-
ing(TTT) [46] for a single sample, which adapts to distribution shifts. However, tailoring is applied
to a single query; not to a data set that captures distribution shift, where batched TTT sees most of
its benefits. Thus, whereas regular fine-tuning benefits from more adaptation data, tailoring would
be hindered by adapting simultaneously to more data. This is because tailoring aims at building a
custom model for each query to ensure the network satisfies a particular inductive bias. Customizing
the model to multiple samples makes it harder, not easier. We show this in Figure 2, where TTT with
6400 samples performs worse than tailoring with a single sample. Furthermore, tailoring adapts to
each query one by one, not globally from training data to test data. Therefore, it also makes sense to
do tailoring on training queries (i.e., meta-tailoring).

Meta-tailoring has the same two-layer optimization structure as meta-learning. More concretely, it
can be understood as the extreme case of meta-learning where each single-query prediction is its
own task. However, whereas meta-learning tasks use one loss and different examples for the inner
and outer loop, meta-tailoring tasks use one example and different losses for each loop (Ltailor,Lsup).
We emphasize that meta-tailoring does not operate in the typical multi-task meta-learning setting.
Instead, we are leveraging techniques from meta-learning for the classical single-task setting.
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Contributions In summary, our contributions are:
1. Introducing tailoring, a new framework for encoding inductive biases by minimizing unsuper-

vised losses at prediction time, with theoretical guarantees and broad potential applications.

2. Formulating meta-tailoring, which adjusts the outer objective to optimize only the task loss,
and developing a new algorithm, CNGRAD, for efficient meta-tailoring.

3. Demonstrating meta-tailoring in 3 domains: encoding hard and soft conservation laws in
physics prediction problems (Sec. 5.1 and Sec. 5.2), enhancing resistance to adversarial
examples by increasing local smoothness at prediction time (Sec. 5.4), and improving
prediction quality both theoretically (Sec. 3.1) and empirically (Sec. 5.3) by tailoring with
a contrastive loss.

2 Related work
Tailoring is inspired by transductive learning. However, transductive methods, because they operate
on a batch of unlabeled queries, are allowed to make use of the underlying distributional properties
of those queries, as in semi-supervised learning [12]. In contrast, tailoring does the bulk of the
computations before receiving any query; vastly increasing efficiency. Similar to tailoring, local
learning [9] also has input-dependent parameters. However, it uses similarity in raw input space to
select a few labeled data points and builds a local model instead of reusing the global prior learned
across the whole data. Finally, some methods [21, 33] in meta-learning propagate predictions along
the test samples in a semi-supervised transductive fashion.

Similar to tailoring, there are other learning frameworks that perform optimization at prediction time
for very different purposes. Among those, energy-based models do generative modeling [2, 27, 32]
by optimizing the hidden activations of neural networks, and other models [4, 49] learn to solve
optimization problems by embedding optimization layers in neural networks. In contrast, tailoring
optimizes the parameters of the model, not the hidden activations or the output.

As discussed in the introduction, unsupervised fine-tuning methods have been proposed to adapt
to different types of variations between training and testing. Sun et al. [46] propose to adapt to a
change of distribution with few samples by unsupervised fine-tuning at test-time, applying it with
a loss of predicting whether the input has been rotated. Zhang et al. [54] build on it to adapt to
group distribution shifts with a learned loss. Other methods in the few-shot meta-learning setting
exploit test samples of a new task by minimizing either entropy [16] or a learned loss [5] in the inner
optimization. Finally, Wang et al. [51] use entropy in the inner optimization to adapt to large-scale
variations in image segmentation. In contrast, we propose (meta-)tailoring as a general effective way
to impose inductive biases in the classic machine learning setting. Whereas in the aforementioned
methods, adaptation happens from training to testing, we independently adapt to every single query.

Meta-learning [44, 7, 48, 28] has the same two-level optimization structure as meta-tailoring but
focuses on multiple prediction tasks. As shown in Alg. 1 for MAML [19], most optimization-based
meta-learning algorithms can be converted to meta-tailoring. Similar to CNGRAD, there are other
meta-learning methods whose adaptations can be batched [40, 3]. Among these, [55, 41] train FiLM
networks [39] to predict custom conditional normalization (CN) layers for each task. By optimizing
the CN layers directly, CNGRAD is simpler, while remaining provably expressive (section 4). CNGrad
can also start from a trained model by initializing the CN layers to the identity function.

3 Theoretical motivations of meta-tailoring
In this section, we study the potential advantages of meta-tailoring from the theoretical viewpoint,
formalizing the intuitions conveyed in the introduction. By acting symmetrically during training and
prediction time, meta-tailoring allows us to closely relate its training and expected losses, whereas
tailoring alone does not have the same guarantees. First, we analyze the particular case of a contrastive
tailoring loss. Then, we will generalize the guarantees to other types of tailoring losses.

3.1 Meta-tailoring with a contrastive tailoring loss
Contrastive learning [24] has seen significant successes in problems of semi-supervised learning [37,
26, 13]. The main idea is to create multiple versions of each training image and learn a representation
in which variations of the same image are close while variations of different images are far apart. Typ-
ical augmentations involve cropping, color distortions, and rotation. We show theoretically that, under
reasonable conditions, meta-tailoring using a particular contrastive lossLcont asLtailor = Lcont helps us
improve generalization errors in expectation compared with performing classical inductive learning.
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When using meta-tailoring, we define θx,S to be the θx obtained with a training dataset
S = ((xi, yi))

n
i=1 and tailored with the contrastive loss at the prediction point x. Theorem 1

provides an upper bound on the expected supervised loss Ex,y[Lsup(fθx,S (x), y)] in terms of the
expected contrastive loss Ex[Lcont(x, θx,S)] (analyzed in App. B), the empirical supervised loss
1
n

∑n
i=1 Lsup(fθxi,S (xi), yi) of meta-tailoring, and its uniform stability ζ. Theorem 6 (App. C)

provides a similar bound with the Rademacher complexity [6] Rn(Lsup ◦ F) of the set Lsup ◦ F ,
instead of using the uniform stability ζ. Proofs of all results in this paper are deferred to App. C.

Definition 1. Let S = ((xi, yi))
n
i=1 and S′ = ((x′i, y

′
i))

n
i=1 be any two training datasets that

differ by a single point. Then, a meta-tailoring algorithm S 7→ fθx,S (x) is uniformly ζ-stable if
∀(x, y) ∈ X × Y, |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ ζ

n .

Theorem 1. Let S 7→ fθx,S (x) be a uniformly ζ-stable meta-tailoring algorithm. Then, for any
δ > 0, with probability at least 1 − δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1,

the following holds: for any κ ∈ [0, 1], Ex,y[Lsup(fθx,S (x), y)] ≤ κEx
[
Lcont(x, θx,S)

]
+ (1− κ)J ,

where J = 1
n

∑n
i=1 Lsup(fθxi,S

(xi), yi) + ζ
n + (2ζ + c)

√
(ln(1/δ))/(2n), and c is the upper bound

on the per-sample loss as Lsup(fθ(x), y) ≤ c.

In the case of regular inductive learning, we get a bound of the exact same form, except that
we have a single θ instead of a θx tailored to each input x. This theorem illustrates the effect
of meta-tailoring on contrastive learning, with its potential reduction of the expected contrastive
loss Ex[Lcont(x, θx,S)]. In classic induction, we may aim to minimize the empirical contrastive
loss 1

n̄

∑n̄
i=1 Lcont(xi, θ) with n̄ potentially unlabeled training samples, which incurs the additional

generalization error of Ex[Lcont(x, θx,S)]− 1
n̄

∑n̄
i=1 Lcont(xi, θ). In contrast, meta-tailoring can avoid

this extra generalization error by directly minimizing a custom θx on each x: Ex[Lcont(x, θx,S)].

In the case where Ex[Lcont(x, θx,S)] is left large (e.g., due to large computational cost), Theorem 1
still illustrates competitive generalization bounds of meta-tailoring with small κ. For example, with
κ = 0, it provides generalization bounds with the uniform stability for meta-tailoring algorithms.
Even then, the bounds are not equivalent to those of classic induction, and there are potential benefits
of meta-tailoring, which are discussed in the following section with a more general setting.

3.2 Meta-tailoring with general tailoring losses
The benefits of meta-tailoring go beyond contrastive learning: below we provide guarantees for
meta-tailoring with arbitrary pairs of tailoring loss Ltailor(x, θ) and supervised loss Lsup(fθ(x), y).

Remark 1. For any function ϕ such that Ex,y[Lsup(fθ(x), y)] ≤ Ex[ϕ(Ltailor(x, θ))], Theorems 1
and 6 hold with the map Lcont being replaced by the function ϕ ◦ Ltailor.

This remark shows the benefits of meta-tailoring through its effects on three factors: the expected
unlabeled loss Ex[ϕ(Ltailor(x, θx,S))], uniform stability ζ , and the Rademacher complexityRn(Lsup ◦
F). It is important to note that meta-tailoring can directly minimize the expected unlabeled loss
Ex[ϕ(Ltailor(x, θx,S))], whereas classic induction can only minimize its empirical version, which
results in the additional generalization error on the difference between the expected unlabeled loss and
its empirical version. For example, if ϕ is monotonically increasing and Ltailor(x, θ) represents the
physical constraints at each input x (as in the application in section 5.1), then classic induction requires
a neural network trained to conserve energy at the training points to generalize to also conserve it at
unseen (e.g., testing) points. Meta-tailoring avoids this requirement by directly minimizing violations
of energy conservation at each point at prediction time.

Meta-tailoring can also improve the parameter stability ζθ defined such that ∀(x, y) ∈ X×Y, ‖θx,S−
θx,S′‖ ≤ ζθ

n , for all S, S′ differing by a single point. When θx,S = θ̂S − λ∇Ltailor(x, θ̂S),
we obtain an improvement on the parameter stability ζθ if ∇Ltailor(x, θ̂S) can pull θ̂S and θ̂S′

closer so that ‖θx,S − θx,S′‖ < ‖θ̂S − θ̂S′‖, which is ensured, for example, if ‖ · ‖ = ‖ · ‖2
and cos_dist(v1, v2)‖v1‖‖v2‖ >

1
2 where cos_dist(v1, v2) is the cosine similarity of v1 and v2, with

v1 = θ̂S − θ̂S′ , v2 = λ(∇Ltailor(x, θ̂S) −∇Ltailor(x, θ̂S′)) and v2 6= 0. Here, the uniform stability
ζ and the parameter stability ζθ are closely related as ζ ≤ Cζθ, where C is the upper bound on the
Lipschitz constants of the maps θ 7→ Lsup(fθ(x), y) over all (x, y) ∈ X × Y under the norm ‖ · ‖,
since |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ C‖θx,S − θx,S′‖ ≤ Cζθ

n .
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Algorithm 2 CNGRAD for meta-tailoring
Subroutine Training(f , Lsup, λsup, Ltailor, λtailor, steps,Dtrain ,b) // Only in meta-tailoring

randomly initialize w // All parameters except γ, β; trained in outer loop
while not done do

X,Y ∼b Dtrain ; gradw = 0 // Sample batch; initialize outer gradient
γ0 = 1b,

∑
lml

;β0 = 0b,
∑
lml

// Initialize CN layers to the identity
for 1 ≤ s ≤ steps do

γs = γs−1 − λtailor∇γLtailor(w, γs−1, βs−1, X) // Inner step w.r.t. γ

βs = βs−1 − λtailor∇βLtailor(w, γs−1, βs−1, X) // Inner step w.r.t. β
γs, βs = γs.detach(), βs.detach() // Only in 1st order CNGrad
gradw = gradw +∇wLsup (fw,γs,βs(X), Y ) // Outer gradient w.r.t. w

w = w − λsupgradw // Apply outer step after all inner steps
return w

Subroutine Prediction(f , w, Ltailor, λ, steps, X) // Both in meta-tailoring & tailoring
γ0 = 1X.shape[0],

∑
lml

;β0 = 0X.shape[0],
∑
lml

for 1 ≤ s ≤ steps do
γs = γs−1 − λ∇γLtailor(w, γs−1, βs−1, X)
βs = βs−1 − λ∇βLtailor(w, γs−1, βs−1, X)

return fw,γsteps,βsteps(X)

4 CNGRAD: a simple algorithm for expressive, efficient (meta-)tailoring
In this section, we address the issue of using (meta-)tailoring for efficient GPU computations.
Although possible in JAX [10], efficiently parallelizing MAMmoTh across inputs is not possible
in other frameworks. To overcome this issue, building on CAVIA [55] and WarpGrad [20], we
propose CNGRAD which adapts only conditional normalization parameters and enables efficient
GPU computations for (meta-)tailoring. CNGRAD can also be used in meta-learning, providing a
parallelizable alternative to MAML (see App. D).

As done in batch-norm [30] after element-wise normalization, we can implement an element-wise
affine transformation with parameters (γ, β), scaling and shifting the output h(l)

k (x) of each k-th neu-
ron at the l-th hidden layer independently: γ(l)

k h
(l)
k (x)+β

(l)
k . In conditional normalization, Dumoulin

et al. [18] train a collection of (γ, β) in a multi-task fashion to learn different tasks with a single
network. CNGRAD brings this concept to the meta-learning and (meta-)tailoring settings and adapts
the affine parameters (γ, β) to each query. For meta-tailoring, the inner loop minimizes the tailoring
loss at an input x by adjusting the affine parameters and the outer optimization adapts the rest of the
network. Similar to MAML [19], we implement a first-order version, which does not backpropagate
through the optimization, and a second-order version, which does. CNGRAD efficiently parallelizes
computations of multiple tailored models because the adapted parameters only require element-wise
multiplications and additions. See Alg. 2 for the pseudo-code.

CNGRAD is widely applicable since the adaptable affine parameters can be added to any hidden
layer and only represent a tiny portion of the network (empirically, around 1%). Moreover, we
can see that, under realistic assumptions, we can minimize the inner tailoring loss using only the
affine parameters. To analyze properties of these adaptable affine parameters, let us decompose
θ into θ = (w, γ, β), where w contains all the weight parameters (including bias terms), and the
(γ, β) contains all the affine parameters. Given an arbitrary function (fθ(x), x) 7→ `tailor(fθ(x), x), let
Ltailor(x, θ) =

∑ng
i=1 `tailor(fθ(g

(i)(x)), x), where g(1):(ng) are arbitrary input augmentation functions
at prediction time.

Corollary 1 states that for any given ŵ, if we add any non-degenerate Gaussian noise δ as ŵ + δ with
zero mean and any variance on δ, the global minimum value of Ltailor w.r.t. all parameters (w, γ, β)
can be achieved by optimizing only the affine parameters (γ, β), with probability one. In other words,
the CN parameters (γ, β) have enough capacity to optimize optimize the inner tailoring loss.

Corollary 1. Under the assumptions of Theorem 2, for any ŵ ∈ Rd, with probability one over
randomly sampled δ ∈ Rd accordingly to any non-degenerate Gaussian distribution, the following
holds: infw,γ,β Ltailor(x,w, γ, β) = infγ,β Ltailor(x, ŵ + δ, γ, β) for any x ∈ X .

The assumption and condition in theorem 2 are satisfied in practice (see App. A). Therefore,
CNGRAD is a practical and computationally efficient method to implement (meta-)tailoring.
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Method loss relative

Inductive learning .041 -
Opt. output(50 st.) .041 (0.7 ± 0.1)%
6400-s. TTT(50 st.) .040 (3.6 ± 0.2)%

Tailoring(1 step) .040 (1.9 ± 0.2)%
Tailoring(5 steps) .039 (6.3 ± 0.3)%
Tailoring(10 st.) .038 (7.5 ± 0.1)%
Meta-tailoring(0 st.) .030 (26.3 ± 3.3)%
Meta-tailoring(1 st.) .029 (29.9 ± 3.0)%
Meta-tailoring(5 st.) .027 (35.3 ± 2.6)%
Meta-tailoring(10 s.) .026 (36.0 ± 2.6)%

Table 1: Test MSE loss for different methods; the
second column shows the relative improvement
over basic inductive supervised learning. The test-
time training (TTT) baseline uses a full batch of
6400 test samples to adapt, not allowed in regular
SL. With a few gradient steps, tailoring signifi-
cantly over-performs all baselines. Meta-tailoring
improves even further, with 35% improvement.

Figure 2: Optimization at prediction time on
the planet data; each path going from right to
left as we minimize the physics tailoring loss.
We use a small step size to illustrate the path.
Tailoring and the two baselines only differ in their
test-time computations, thus sharing their starts.
Meta-tailoring has a lower starting loss, faster
optimization, and no overfitting during tailoring.

5 Experiments

5.1 Tailoring to impose symmetries and constraints at prediction time

Exploiting invariances and symmetries is an established strategy for increasing performance in ML.
During training, we can regularize networks to satisfy specific criteria; but this does not guarantee
they will be satisfied outside the training dataset [45]. (Meta-)tailoring provides a general solution to
this problem by adapting the model to satisfy the criteria at prediction time. We demonstrate the use
of tailoring to enforce physical conservation laws for predicting the evolution of a 5-body planetary
system. This prediction problem is challenging, as m-body systems become chaotic for m > 2. We
generate a dataset with positions, velocities, and masses of all 5 bodies as inputs and the changes
in position and velocity as targets. App. E further describes the dataset.

Our model is a 3-layer feed-forward network. We tailor it by taking the original predictions and adapt-
ing the model using the tailoring loss given by the L1 loss between the whole system’s initial and final
energy and momentum. Note that ensuring this conservation does not guarantee better performance:
predicting the input as the output conserves energy and momentum perfectly, but it is not correct.

While tailoring adapts some parameters in the network to improve the tailoring loss, an alternative for
enforcing conservation would be to adapt the output y value directly. Table 1 compares the predictive
accuracy of inductive learning, direct output optimization, and both tailoring and meta-tailoring,
using varying numbers of gradient steps. Tailoring is more effective than adapting the output, as
the parameters provide a prior on what changes are more natural. For meta-tailoring, we try both
first-order and second-order versions of CNGRAD. The first-order gave slightly better results,
possibly because it was trained with a higher tailor learning rate (10−3) with which the second-order
version was unstable (we thus used 10−4). More details can be found in App. E.

Finally, meta-tailoring without any query-time tailoring steps already performs much better than
the original model, even though both have almost the same number of parameters and can overfit
the dataset. We conjecture meta-tailoring training adds an inductive bias that guides optimization
towards learning a more generalizable model. Fig. 2 shows prediction-time optimization paths.

5.2 Tailoring to softly encourage inductive biases

A popular way of encoding inductive biases is with clever network design to make predictions
translation equivariant (CNNs), permutation equivariant (GNNs), or conserve energy [23]. However,
if an inductive bias is only partially satisfied, such approaches overly constrain the function class.
Instead, tailoring can softly impose this bias by only fine-tuning the tailoring loss for a few steps.
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Figure 3: By softly encouraging energy conser-
vation, meta-tailoring improves over models that
don’t and models that fully impose it.

We showcase this in the real pendulum
experiment used by Hamiltonian Neural
Networks (HNNs) [23]. HNNs have energy
conservation built-in and easily improve a
vanilla MLP. We meta-tailor this vanilla MLP
with energy conservation without changing
its architecture. Meta-tailoring significantly
improves over the baseline and HNNs, since it
can encode the imperfect energy conservation of
real systems. We compare results in Fig. 3 and
provide extra details in App. F. Note that, with
inexact losses, fully enforcing them provides
sub-optimal results. Thus, we pick the tailoring learning rate that results in the lowest long-term
prediction loss during training.

5.3 Tailoring with a contrastive loss for image classification

Figure 4: Meta-tailoring the linear layer
with the contrastive loss results in con-
sistent accuracy gains between 0.5% and
0.8%. This is approximately the same
gain as that of doubling the amount of la-
beled data (note the logarithmic x-axis).

Following the setting described in section 3.2, we provide
experiments on the CIFAR-10 dataset [31] by building
on SimCLR [13]. SimCLR trains a ResNet-50 [25] fθ(·)
coupled to a small MLP g(·) such that the outputs of two
augmentations of the same image xi, xj ∼ T (x) agree; i.e.
g(fθ(xi)) ≈ g(fθ(xj)). This is done by training g(f(·))
to recognize one augmentation from the other among a
big batch of candidates with the cross-entropy loss. To
show that the unsupervised training of fθ provides a useful
representation, SimCLR trains a single linear layer on top
of it, φ(fθ(·)), achieving good classification results.

We now observe that we can tailor fθ at prediction-time
by optimizing g(fθx(x)), which quantifies the agreement
between different augmentations of the same input; thus
’learning’ about its particularities. To make the image
classification prediction, we feed the final tailored rep-
resentation to the linear layer: φ(fθx(x)). To match the
evaluation from SimCLR, we do not redo SimCLR’s un-
supervised learning, which provides θ. The meta-tailoring outer loop trains φ to take the tailored
representations fθx(x) instead of the original fθ(x). Thus, θ is unsupervisedly fine-tuned in the
prediction function leading to θx, but never supervisedly trained as this would break the evaluation
protocol (in meta-tailoring’s favor). We also implement a TTT [46] baseline with their original
rotation-prediction loss. Moreover, TTT modifies θx at test time, but does not take this adaptation
into account when training φ (see App. G for more details). TTT worsened base SimCLR despite
significant hyper-parameter tuning. We conjecture this is because TTT was designed for OOD
generalization, not in-distribution. In contrast, as shown in Fig. 4, we observe that meta-tailoring
provides improvements over base SimCLR equivalent to doubling the amount of labeled data.

5.4 Tailoring for robustness against adversarial examples

Neural networks are susceptible to adversarial examples [8, 47]: targeted small perturbations of
an input can cause the network to misclassify it. One approach is to make the prediction function
smooth via adversarial training [34]; however, this only ensures smoothness in the training points.
Constraining the model to be smooth everywhere makes it lose capacity. Instead, (meta-)tailoring
asks for smoothness a posteriori, only on a specific query.

We apply meta-tailoring to robustly classifying CIFAR-10 [31] and ImageNet [15] images, tailoring
predictions so that they are locally smooth. This is similar to VAT [36] but instead optimizes the loss
within the prediction function, not as an auxiliary loss. Inspired by the notion of adversarial examples
being caused by predictive, but non-robust, features [29], we meta-tailor our model by enforcing
smoothness on the vector of features of the penultimate layer (denoted gθ(x)):

Ltailor(x, θ) = E[cos_dist(gθ(x), gθ(x+ δ))], δ ∼ N(0, ν2),
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σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25 (Inductive) Randomized Smoothing 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Meta-tailored Randomized Smoothing 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50 (Inductive) Randomized Smoothing 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Meta-tailored Randomized Smoothing 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00 (Inductive) Randomized Smoothing 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Meta-tailored Randomized Smoothing 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Table 2: Fraction of points with certificate above different radii for ImageNet. Meta-tailoring
improves average certification radius (ACR) of different models by 5.1%, 13.8%, 19.6%. Results
for Randomized Smoothing come from [53].

We build on Cohen et al. [14], who developed a method for certifying the robustness of a model
via randomized smoothing (RS). RS samples points from a Gaussian N(x, σ2) around the query
and, if there is enough agreement in classification, it provides a certificate that a small perturbation
cannot adversarially modify the query to have a different class. We show that meta-tailoring
improves the original RS method, testing for σ = 0.25, 0.5, 1.0. We use ν = 0.1 for all experiments.
We initialized with the weights of Cohen et al. [14] by leveraging that CNGRAD can start
from a pre-trained model by initializing the extra affine layers to the identity. Finally, we use
σ′ =

√
σ2 − ν2 ≈ 0.23, 0.49, 0.995 so that the points used in our tailoring loss come from N(x, σ2).

Table 7 shows our results on CIFAR-10 where we improve the average certification radius (ARC)
by 8.6%, 10.4%, 19.2% respectively. In table 2, we show results on Imagenet where we improve
the ARC by 5.1%, 13.8%, 19.6% respectively. We chose to meta-tailor the RS method because
it represents a strong standard in certified adversarial defenses, but we note that there have been
advances on RS that sometimes achieve better results than those presented here [53, 43], see App. I.
However, it is likely that meta-tailoring could also improve these methods.

These experiments only scratch the surface of what tailoring allows for adversarial defenses: usually,
the adversary looks at the model and gets to pick a particularly bad perturbation x+ δ. With tailoring,
the model responds, by changing to weights θx+δ. This leads to a game, where both weights and
inputs are perturbed, similar to max|δ|<εx min|∆|<εθ Lsup (fθ+∆(x+ δ), y). However, since we
don’t get to observe y; we optimize the weight perturbation by minimizing Ltailor instead.

6 Discussion
6.1 Broader Impact

Improving adversarial robustness: having more robust and secure ML systems is mostly a positive
change. However, improving adversarial defenses could also go against privacy preservation, like the
use of adversarial patches to gain anonymity from facial recognition. Encoding desirable properties:
By optimizing an unsupervised loss for the particular query we care about, it is easier to have
guarantees on the prediction. In particular, there could be potential applications for fairness, where
the unsupervised objective could enforce specific criteria at the query or related inputs. More research
needs to be done to make this assertion formal and practical. Potential effect on privacy: tailoring
specializes the model to each input. This could have an impact on privacy. Intuitively, the untailored
model can be less specialized to each input, lowering the individual information from each training
point contained in the model. However, tailored predictions extract more information about the
queries, from which more personal information could be leaked.

6.2 Limitations
Tailoring provides a framework for encoding a wide array of inductive biases, but these need to
be specified as a formula by the user. For instance, it would be hard to programatically describe
tailoring losses in raw pixel data, such as mass conservation in pixel space. Tailoring also incurs an
extra time cost at prediction time, since we make an inner optimization inside the prediction function.
However, as shown in Table 1, meta-tailoring often achieves better results than inductive learning
even without adaptation at test-time, enabling better predictions at regular speed during test-time.
This is due to meta-tailoring leading to better training. Moreover, optimization can be sped up by
only tailoring the last layers, as discussed in App. D. Finally, to the best of our knowledge using
MAMmoTh for meta-tailoring would be hard to parallelize in PyTorch [38] and Tensorflow [1]; we
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proposed CNGRAD to make it easy and efficient. JAX[10], which handles per-example weights,
makes parallelizing tailoring effortless.

Theory in Sec. 3 applies only to meta-tailoring. Unlike tailoring (and test-time training), meta-
tailoring performs the same computations at training and testing time, which allows us to prove the
results. Theorem 2 proves that optimizing the CN layers in CNGRAD has the same expressive power
as optimizing all the layers for the inner (not outer) loss. However, it does not guarantee that gradient
descent will find the appropriate optima. The study of such guarantee is left for future work.

6.3 Conclusion

We have presented tailoring, a simple way of embedding a powerful class of inductive biases
into models, by minimizing unsupervised objectives at prediction time. Tailoring leverages the
generality of auxiliary losses and improves them in two ways: first, it eliminates the generalization
gap on the auxiliary loss by optimizing it on the query point; second, tailoring only minimizes
task loss in the outer optimization and the tailoring loss in the inner optimization. This results in
the model optimizing the only objective we care about in the outer loop, instead of a proxy loss.
Beyond inductive biases, tailoring shows that model adaptation is useful even when test queries
comes from the same distribution as the training data. This suggests one can improve models by
performing prediction-time optimization, trading off large offline data&compute efforts with small
online computations.

Tailoring is broadly applicable, as one can vary the model, the unsupervised loss, and the task loss. We
show its applicability in three diverse domains: physics prediction time-series, contrastive learning,
and adversarial robustness. We also provide a simple algorithm, CNGRAD, to make meta-tailoring
practical with little additional code. Currently, most unsupervised or self-supervised objectives are
optimized in task-agnostic ways; without taking into account the supervised downstream task. Instead,
meta-tailoring provides a generic way to make these objectives especially useful for each application.
It does so by learning how to best leverage the unsupervised loss to perform well on the final task we
care about.
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A Theorem 2, Corollary 1 and interpretation of their conditions

Assumption 1. (Common activation) The activation function σ(x) is real analytic, monotonically
increasing, and the limits exist as: limx→−∞ σ(x) = σ− > −∞ and limx→+∞ σ(x) = σ+ ≤ +∞.

Theorem 2. For any x ∈ X that satisfies ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j), and for
any fully-connected neural network with a single output unit, at least ng neurons per hidden layer,
and activation functions that satisfy Assumption 1, the following holds: infw,γ,β Ltailor(x,w, γ, β) =
infγ,β Ltailor(x, w̄, γ, β) for any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is zero.

Assumption 1 is satisfied by using common activation functions such as sigmoid and hyperbolic
tangent, as well as softplus, which is defined as σα(x) = ln(1+exp(αx))/α and satisfies Assumption
1 with any hyperparameter α ∈ R>0. The softplus activation function can approximate the ReLU
function to any desired accuracy: i.e., σα(x)→ relu(x) as α→∞, where relu represents the ReLU
function.

In Theorem 2 and Corollary 1, the condition ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j) can be
easily satisfied, for example, by choosing g(1), . . . , g(ng) to produce normalized and distinguishable
argumented inputs for each prediction point x at prediction time. To see this, with normalization
‖g(i)(x)‖22 = ‖g(j)(x)‖22, the condition is satisfied if ‖g(i)(x) − g(j)(x)‖22 > 0 for i 6= j since
1
2‖g

(i)(x)− g(j)(x)‖22 = ‖g(i)(x)‖22 − g(i)(x)>g(j)(x).

In general, the normalization is not necessary for the condition to hold; e.g., orthogonality on g(i)(x)
and g(j)(x) along with g(i)(x) 6= 0 satisfies it without the normalization.

B Understanding the expected meta-tailoring contrastive loss

To analyze meta-tailoring for contrastive learning, we focus on the binary classification loss of the
form Lsup(fθ(x), y) = `cont(fθ(x)y − fθ(x)y′=¬y) where `cont is convex and `cont(0) = 1. With this,
the objective function θ 7→ Lsup(fθ(x), y) is still non-convex in general. For example, the standard
hinge loss `cont(z) = max{0, 1− z} and the logistic loss `cont(z) = s log2(1 + exp(z)) satisfy this
condition.

We first define the meta-tailoring contrastive loss Lcont(x, θ) in detail. In meta-tailoring contrastive
learning, we choose the probability measure of positive example x+ ∼ µx+(x) and the probability
measure of negative example x−, y− ∼ µx−,y−(x), both of which are tailored for each input point
x at prediction time. These choices induce the marginal distributions for the negative examples
y− ∼ µy−(x) and x− ∼ µx−(x), as well as the unknown probability of y− = y defined by
ρy(µy−(x)) = Ey−∼µy− (x)(1{y− = y}). Define the lower and upper bound on the probability of
y− = y as ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Then, the first pre-meta-tailoring contrastive loss can be defined by

Lx
+,x−

cont (x, θ) = Ex+∼µx+ (x),

x−∼µx− (x)

[`cont(hθ (x)>(hθ (x+)− hθ (x−)))],

where hθ (x) ∈ RmH+1 represents the output of the last hidden layer, including a constant neuron
corresponding the bias term of the last output layer (if there is no bias term, hθ (x) ∈ RmH ). For
every z ∈ R2×(mH+1), define ψx,y,y−(z) = `cont((zy − zy−)hθ (x)), where zy ∈ R1×mH is the y-th
row vector of z. We define the second pre-meta-tailoring contrastive loss by

Lx
+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)],

where u+
h = Ex+∼µx+ (x)[hθ (x+)] and u−h = Ex−∼µx− (x)[hθ (x−)]. Here, we decompose θ as θ =

(θ(1:H), θ(H+1)), where θ(H+1) = [W (H+1), b(H+1)] ∈ Rmy×(mH+1) represents the parameters at
the last output layer, and θ(1:H) represents all others.

Then, the meta-tailoring contrastive loss is defined by

Lcont(x, θ) =
1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)
.
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Theorem 3 states that for any θ(1:H), the convex optimization of Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)

over θ(H+1) can achieve the value of Lx
+,x−

cont (x, θ) without the value of Lx
+,x−,y−

cont (x, θ), allowing
us to focus on the first term Lx

+,x−

cont (x, θ), for some choice of µx−,y−(x) and µx+(x).

Theorem 3. For any θ(1:H), µx−,y−(x) and µx+(x), the function θ(H+1) 7→ Lx
+,x−

cont (x, θ) +

Lx
+,x−,y−

cont (x, θ) is convex. Moreover, there exists µx−,y−(x) and µx+(x) such that, for any θ(1:H)

and any θ̄(H+1),

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ) ≤ Lx
+,x−

cont (x, θ(1:H), θ̄(H+1)).

C Proofs

In order to have concise proofs, we introduce additional notations while keeping track of dependent
variables more explicitly. Since hθ only depends on θ(1:H), let us write hθ(1:H) = hθ. Similarly,
Lcont(x, θ

(1:H)) = Lcont(x, θ). Let θ(x) = θx and θ(x, S) = θx,S . Define L = Lsup.

C.1 Proof of Theorem 2

Proof of Theorem 2. The output of fully-connected neural networks for an input x with a parameter
vector θ = (w, γ, β) can be represented by fθ(x) = W (H+1)h(H)(x) + b(H+1) where W (H+1) ∈
R1×mH and b(H+1) ∈ R are the weight matrix and the bias term respectively at the last layer, and
h(H)(x) ∈ RmH represents the output of the last hidden layer. Here, ml represents the number of
neurons at the l-th layer, and h(l)(x) = γ(l)(σ(W (l)h(l−1)(x)+b(l)))−β(l) ∈ Rml for l = 1, . . . ,H ,
with trainable parameters γ(l), β(l) ∈ Rml , where h(0)(x) = x. Let z(l)(x) = σ(W (l)h(l−1)(x) +
b(l)).

Then, by rearranging the definition of the output of the neural networks,

fθ(x) = W (H+1)h(H)(x) + b(H+1)

=

(
mH∑
k=1

W
(H+1)
k γ

(H)
k z(H)(x)k +W

(H+1)
k β

(H)
k

)
+ b(H+1)

= [W (H+1) ◦ z(H)(x)>,W (H+1)]

[
γ(H)

β(H)

]
+ b(H+1).

Thus, we can write  fθ(g
(1)(x))
...

fθ(g
(ng)(x))

 = Mw

[
γ(H)

β(H)

]
+ b(H+1)1ng ∈ Rng , (1)

where

Mw =

W
(H+1) ◦ z(H)(g(1)(x))>,W (H+1)

...
W (H+1) ◦ z(H)(g(ng)(x))>,W (H+1)

 ∈ Rng×2mH ,

and 1ng = [1, 1, . . . , 1]> ∈ Rng .

Using the above equality, we show an exitance of a (γ, β) such that Ltailor(x, w̄, γ, β) =
infw,γ,β Ltailor(x, θ) for any x ∈ X ⊆ Rmx and any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is
zero. To do so, we first fix γ(l)

k = 1 and β(l)
k = 0 for l = 1, . . . ,H − 1, with which h(l)(x) = z(l)(x)

for l = 1, . . . ,H − 1.

Define ϕ(w) = det(MwM
>
w ), which is analytic since σ is analytic. Furthermore, we have that

{w ∈ Rd : Mw has rank less than ng} = {w ∈ Rd : ϕ(w) = 0}, since the rank of Mw and the rank
of the Gram matrix are equal. Since ϕ is analytic, if ϕ is not identically zero (ϕ 6= 0), the Lebesgue
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measure of its zero set {w ∈ Rd : ϕ(w) = 0} is zero [35]. Therefore, if ϕ(w) 6= 0 for some w ∈ Rd,
the Lebesgue measure of the set {w ∈ Rd : Mw has rank less than ng} is zero.

Accordingly, we now constructs a w ∈ Rd such that ϕ(w) 6= 0. Set W (H+1) = 1>mH . Then,

Mw = [M̄w,1ng,mH ] ∈ Rng×mH .

where

M̄w =

 z(H)(g(1)(x))>

...
z(H)(g(ng)(x)(x))>

 ∈ Rng×mH

and 1ng,mH ∈ Rng×mH with (1ng,mH )ij = 1 for all i, j. For l = 1, . . . ,H , define

G(l) =

 z
(l)(g(1)(x))>

...
z(l)(g(ng)(x))>

 ∈ Rng×ml .

Then, for l = 1, . . . ,H ,
G(l) = σ(G(l−1)(W (l))> + 1ng (b(l))>),

where σ is applied element-wise (by overloading of the notation σ), and

(M̄w)ik = (G(H))ik.

From the assumption g(x), there exists c > 0 such that ‖g(i)(x)‖22 − 〈g(i)(x), g(j)(x)〉 > c for
all i 6= j. From Assumption 1, there exists c′ such that σ+ − σ− > c′. Using these constants,
set W (1)

i = α(1)g(i)(x)> and b(1)
i = cα(1)/2 − α(1)‖g(i)(x)‖22 for i = 1, . . . , ng, where W (1)

i

represents the i-th row of W (1). Moreover, set W (l)
1:ng,1:ng

= α(l)Ing and b(l)k = c′α(l)/2− α(l)σ+

for all k and l = 2, . . . ,H , where W (l)
1:ng,1:ng

is the fist ng × ng block matrix of W (1) and Ing is the
ng × ng identity matrix. Set all other weights and bias to be zero. Then, for any i ∈ {1, . . . , ng},

(G(1))ii = σ(cα(1)/2),

and for any k ∈ {1, . . . , ng} with k 6= i,

(G(1))ik = σ(α(1)(〈g(i)(x), g(k)(x)〉 − ‖g(k)(x)‖22 + c/2)) ≤ σ(−cα(1)/2).

Since σ(cα(1)/2)→ σ+ and σ(−cα(1)/2)→ σ− as α(1) →∞, with α(1) sufficiently large, we have
that σ(cα(1)/2)− σ+ + c′/2 ≥ c(2)

1 and σ(−cα(1)/2)− σ+ + c′/2 ≤ −c(2)
2 for some c(2)

1 , c
(2)
2 > 0.

Note that c(2)
1 and c(2)

2 depends only on α(1) and does not depend on any of α(2), . . . , α(H). Therefore,
with α(1) sufficiently large,

(G(2))ii = σ(α(2)(σ(cα(1)/2)− σ+ + c′/2)) ≥ σ(α(2)c
(2)
1 ),

and
(G(2))ik ≤ σ(α(2)(σ(−cα(1)/2)− σ+ + c′/2)) ≤ σ(−α(2)c

(2)
2 ).

Repeating this process with Assumption 1, we have that with α(1), . . . , α(H−1) sufficiently large,

(G(H))ii ≥ σ(α(H)c
(H)
1 ),

and
(G(H))ik ≤ σ(−α(H)c

(H)
2 ).

Here, (G(H))ii → σ+ and (G(H))ik → σ− as α(H) → ∞. Therefore, with α(1), . . . , α(H) suffi-
ciently large, for any i ∈ {1, . . . , ng},∣∣(M̄w)ii − σ−

∣∣ >∑
k 6=i

∣∣(M̄w)ik − σ−
∣∣ . (2)

The inequality (2) means that the matrix M̄ ′w = [(M̄w)ij − σ−]1≤i,j≤ng ∈ Rng×ng is strictly
diagonally dominant and hence is nonsingular with rank ng . This implies that the matrix [M̄ ′w,1ng ] ∈
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Rng×(ng+1) has rank ng. This then implies that the matrix M̃w = [[(M̄w)ij ]1≤i,j≤ng ,1ng ] ∈
Rng×(ng+1) has rank ng, since the elementary matrix operations preserve the matrix rank. Since
the set of all columns of Mw contains all columns of M̃w, this implies that Mw has rank ng and
ϕ(w) 6= 0 for this constructed particular w.

Therefore, the Lebesgue measure of the set W = {w ∈ Rd : ϕ(w) = 0} is zero. If w /∈ W ,
{(fw̄,γ̄,β̄(g(1)(x)), . . . , fw̄,γ̄,β̄(g(ng)(x)) ∈ Rng : γ̄(l), β̄(l) ∈ Rml} = Rng , since Mw has rank ng
in (1) for some γ̄(l), β̄(l) for l = 1, . . . ,H − 1 as shown above. Thus, for any w̄ /∈ W and for any
(w, γ, β), there exists (γ̄, β̄) such that

(fw,γ,β(g(1)(x)), . . . , fw,γ,β(g(ng)(x)) = (fw̄,γ̄,β̄(g(1)(x)), . . . , fw̄,γ̄,β̄(g(ng)(x))

which implies the desired statement.

C.2 Proof of Corollary 1

Proof of Corollary 1. Since non-degenerate Gaussian measure with any mean and variance is ab-
solutely continuous with respect to Lebesgue measure, Theorem 2 implies the statement of this
corollary.

C.3 Proof of Theorem 1

The following lemma provides an upper bound on the expected loss via expected meta-tailoring
contrastive loss.
Lemma 4. For every θ,

Ex,y[L(fθ(x), y)] ≤ Ex
[

1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)]

Proof of Lemma 4. Using the notation ρ = ρy(µy−(x)),
Ex,y[L(fθ(x), y)]

= Ex,y
[

1

1− ρ
((1− ρ)L(fθ(x), y)± ρ)

]
= Ex,y

[
1

1− ρ
(
(1− ρ)`cont(fθ(x)y − fθ(x)y− 6=y) + ρ`cont(fθ(x)y − fθ(x)y−=y)− ρ

)]
= Ex,y

[
1

1− ρ

(
Ey−∼µy− (x)[`cont(fθ(x)y − fθ(x)y−)]− ρ

)]
= Ex,y

[
1

1− ρ

(
Ey−∼µy− (x)[ψx,y,y−(θ(H+1))]− ρ

)]
≤ Ex,y

[
1

1− ρ

(
ψx,1,2([u+

h , u
−
h ]>) + Lx

+,x−,y−

cont (x, θ)− ρ
)]

≤ Ex,y
[

1

1− ρ

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ
)]

where the third line follows from the definition of L(fθ(x), y) and `cont(fθ(x)y − fθ(x)y′=y) =
`cont(0) = 1, the forth line follows from the definition of ρ and the expectation Ey−∼µy− (x), the

fifth line follows from fθ(x)y = θ
(H+1)
y hθ(1:H)(x) and fθ(x)y− = θ

(H+1)
y− hθ(1:H)(x), the sixth line

follows from the definition of Lx
+,x−,y−

cont . The last line follows from the convexity of `cont and
Jensen’s inequality: i.e.,

ψx,1,2([u+
h , u

−
h ]>)

= `cont(Ex+∼µx+ (x)Ex−∼µx− (x)[(hθ(1:H)(x+)− hθ(1:H)(x−))>hθ(1:H)(x)])

≤ Ex+∼µx+ (x)Ex−∼µx− (x)`cont((hθ(1:H)(x+)− hθ(1:H)(x−))>hθ(1:H)(x)).
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Therefore,

Ex,y[L(fθ(x), y)]

≤ Ex,y
[

1

1− ρy(µy−(x))

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρy(µy−(x))
)]

≤ Ex
[

1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)]

where we used ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Lemma 5. Let S 7→ fθ(x,S)(x) be an uniformly ζ-stable tailoring algorithm. Then, for any δ > 0,
with probability at least 1− δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1, the following

holds:

Ex,y[L(fθ(x,S)(x), y)] ≤ 1

n

n∑
i=1

L(fθ(xi,S)(xi), yi) +
ζ

n
+ (2ζ + c)

√
ln(1/δ)

2n
.

Proof of Lemma 5. Define ϕ1(S) = Ex,y[L(fθ(x,S)(x), y)] and ϕ2(S) =
1
n

∑n
i=1 L(fθ(xi,S)(xi), yi), and ϕ(S) = ϕ1(S) − ϕ2(S). To apply McDiarmid’s inequality

to ϕ(S), we compute an upper bound on |ϕ(S) − ϕ(S′)| where S and S′ be two training datasets
differing by exactly one point of an arbitrary index i0; i.e., Si = S′i for all i 6= i0 and Si0 6= S′i0 ,
where S′ = ((x′i, y

′
i))

n
i=1. Let ζ̃ = ζ

n Then,

|ϕ(S)− ϕ(S′)| ≤ |ϕ1(S)− ϕ1(S′)|+ |ϕ2(S)− ϕ2(S′)|.

For the first term, using the ζ-stability,

|ϕ1(S)− ϕ1(S′)| ≤ Ex,y[|L(fθ(x,S)(x), y)− L(fθ(x,S′)(x), y)|]
≤ ζ̃.

For the second term, using ζ-stability and the upper bound c on per-sample loss,

|ϕ2(S)− ϕ2(S′)| ≤ 1

n

∑
i6=i0

|L(fθ(xi,S)(xi), yi)− L(fθ(xi,S′)(xi), yi)|+
c

n

≤ (n− 1)ζ̃

n
+
c

n
≤ ζ̃ +

c

n
.

Therefore, |ϕ(S)− ϕ(S′)| ≤ 2ζ̃ + c
n . By McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] + (2ζ + c)

√
ln(1/δ)

2n
.

The reset of the proof bounds the first term ES [ϕ(S)]. By the linearity of expectation,

ES [ϕ(S)] = ES [ϕ1(S)]− ES [ϕ1(S)].

For the first term,
ES [ϕ1(S)] = ES,x,y[L(fθ(x,S)(x), y)].

For the second term, using the linearity of expectation,

ES [ϕ2(S)] = ES

[
1

n

n∑
i=1

L(fθ(xi,S)(xi), yi)

]

=
1

n

n∑
i=1

ES [L(fθ(xi,S)(xi), yi)]

=
1

n

n∑
i=1

ES,x,y[L(fθ(x,Six,y)(x), y)],
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where Si is a sample of n points such that (Six,y)j = Sj for j 6= i and (Six,y)i = (x, y). By
combining these, using the linearity of expectation and ζ-stability,

ES [ϕ(S)] =
1

n

n∑
i=1

ES,x,y[L(fθ(x,S)(x), y)− L(fθ(x,Six,y)(x), y)]

≤ 1

n

n∑
i=1

ES,x,y[|L(fθ(x,S)(x), y)− L(fθ(x,Six,y)(x), y)|]

≤ 1

n

n∑
i=1

ζ̃ = ζ̃.

Therefore, ES [ϕ(S)] ≤ ζ̃.

Proof of Theorem 1. For any θ and κ ∈ [0, 1],

Ex,y[L(fθ(x), y)] = κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 4 for the first term and Lemma 5 yields the desired statement.

C.4 Statement and proof of Theorem 6

Theorem 6. Let F be an arbitrary set of maps x 7→ fθx(x). Then, for any δ > 0, with probability at
least 1−δ over an i.i.d. draw of n i.i.d. samples ((xi, yi))

n
i=1, the following holds: for all maps (x 7→

fθx(x)) ∈ F and any κ ∈ [0, 1], we have that Ex,y[Lsup(fθx(x), y)] ≤ κEx [Lcont(x, θx)]+(1−κ)J ′,
where J ′ = 1

n

∑n
i=1 Lsup(fθxi (xi), yi) + 2Rn(Lsup ◦ F) + c

√
(ln(1/δ))/(2n).

The following lemma is used along with Lemma 4 to prove the statement of this theorem.

Lemma 7. Let F be an arbitrary set of maps x 7→ fθx(x). For any δ > 0, with probability at
least 1 − δ over an i.i.d. draw of n i.i.d. samples ((xi, yi))

n
i=1, the following holds: for all maps

(x 7→ fθx(x)) ∈ F ,

Ex,y[L(fθx(x), y)] ≤ 1

n

n∑
i=1

L(fθxi (xi), yi) + 2Rn(L ◦ F) + c

√
ln(1/δ)

2n
.

Proof of Lemma 7. Let S = ((xi, yi))
n
i=1 and S′ = ((x′i, y

′
i))

n
i=1. Define

ϕ(S) = sup
(x 7→fθx (x))∈F

Ex,y[L(fθx(x), y)]− 1

n

n∑
i=1

L(fθxi (xi), yi).

To apply McDiarmid’s inequality to ϕ(S), we compute an upper bound on |ϕ(S)− ϕ(S′)| where S
and S′ be two training datasets differing by exactly one point of an arbitrary index i0; i.e., Si = S′i
for all i 6= i0 and Si0 6= S′i0 . Then,

ϕ(S′)− ϕ(S) ≤ sup
(x 7→fθx (x))∈F

L(fθ(xi0 )(xi0), yi0)− L(fθ(x′i0 )(x
′
i0

), y′i0)

n
≤ c

n
.

Similarly, ϕ(S)− ϕ(S′) ≤ c
n . Thus, by McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] + c

√
ln(1/δ)

2n
.
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Moreover, with f(x) = fθx(x),

ES [ϕ(S)] = ES

[
sup
f∈F

ES′
[

1

n

n∑
i=1

L(fθ(x′i)(x
′
i), y

′
i)

]
− 1

n

n∑
i=1

L(fθxi (xi), yi)

]

≤ ES,S′
[

sup
f∈F

1

n

n∑
i=1

(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi)

]

≤ Eξ,S,S′
[

sup
f∈F

1

n

n∑
i=1

ξi(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi))

]

≤ 2Eξ,S

[
sup
f∈F

1

n

n∑
i=1

ξiL(fθxi (xi), yi))

]
where the fist line follows the definitions of each term, the second line uses the Jensen’s in-
equality and the convexity of the supremum, and the third line follows that for each ξi ∈
{−1,+1}, the distribution of each term ξi(L(fθ(x′i)(x

′
i), y

′
i)− L(fθxi (xi), yi)) is the distribution of

(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi)) since S̄ and S̄′ are drawn iid with the same distribution. The

forth line uses the subadditivity of supremum.

Proof of Theorem 6. For any θ and κ ∈ [0, 1],
Ex,y[L(fθ(x), y)] = κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 4 for the first term and Lemma 7 yields the desired statement.

C.5 Proof of Theorem 3

Proof of Theorem 3. Let θ(1:H) be fixed. We first prove the first statement for the convexity. The func-
tion θ(H+1) 7→ ψx,y,y−(θ(H+1)) is convex, since it is a composition of a convex function `cont and a
affine function z 7→ (zy−zy−)hθ(1:H)(x)). The function θ(H+1) 7→ Ey−∼µy− (x)[ψx,y,y−(θ(H+1))−
ψx,1,2([u+

h , u
−
h ]>)] is convex since the expectation and affine translation preserves the convexity.

Finally, θ(H+1) 7→ Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1)) is convex since it is the piecewise maximum of the
convex functions

θ(H+1) 7→ Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)]

for each y.

We now prove the second statement of the theorem for the inequality. Let us write µx+ = µx|y and
µx− = µx|y− . Let U = [u1, u2]> ∈ Rmy×(mH+1) where uy = Ex∼µx|y [hθ(1:H)(x)] for y ∈ {1, 2}.
Then,

u+
h = Ex+∼µx+ (x)[hθ(1:H)(x+)] = Ex+∼µx|y [hθ(1:H)(x+)] = uy,

and
u−h = Ex−∼µx− (x)[hθ(1:H)(x−)] = Ex−∼µx|y− [hθ(1:H)(x−)] = uy− .

Therefore,
ψx,1,2([u+

h , u
−
h ]>) = ψx,y,y−(U),

with which
Lx

+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,y,y−(U)].

Since U and θ(1:H) do not contain θ(H+1), for any U, θ̄(1:H), there exists θ(H+1) = U for which
ψx,y,y−(θ(H+1))− ψx,y,y−(U) = 0 and hence Lx

+,x−,y−

cont (x, θ) = 0. Therefore,

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1))

= Lx
+,x−

cont (x, θ(1:H)) + inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1))

≤ Lx
+,x−

cont (x, θ(1:H)).
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C.6 Proof of Remark 1

Proof of Remark 1. For any θ,

Ex,y[L(fθ(x), y)] = inf
κ∈[0,1]

κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 5 for Theorem 1 (and Lemma 7 for Theorem 6) to the second term and the
assumption Ex,y[L(fθ(x), y)] ≤ Ex[Lun(fθ(x))] to the first term yields the desired statement.
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D Details and description of CNGRAD

In this section we describe CNGRAD in greater detail: its implementation, different variants and
run-time costs. Note that, although this section is written from the perspective of meta-tailoring, CN-
GRAD is also applicable to meta-learning, we provide pseudo-code in algorithm 4. The main idea
behind CNGRAD is to optimize only conditional normalization (CN) parameters γ(l), β(l) in the
inner loop and optimize all the other weights w in the outer loop. To simplify notation for imple-
mentation, in this subsection only, we overload notations to make them work over a mini-batch
as follows. Let b be a (mini-)batch size. Given X ∈ Rb×m0 , γ ∈ Rb×

∑
lml and β ∈ Rb×

∑
lml ,

let (fw,γ,β(X))i = fw,γi,βi(Xi) where Xi, γi, and βi are the transposes of the i-th row vectors of
X , γ and β, respectively. Similarly, Lsup and Ltailor are used over a mini-batch. We also refer to
θ = (w, γ, β).

Initialization of γ, β In the inner loop we always initialize γ = 1b,
∑
lml

, β = 0b,
∑
lml

. More
complex methods where the initialization of these parameters is meta-trained are also possible.
However, we note two things:

1. By initializing to the identity function, we can pick an architecture trained with regular
inductive learning, add CN layers without changing predictions and perform tailoring. In
this manner, the prediction algorithm is the same regardless of whether we trained with
meta-tailoring or without the CN parameters.

2. We can add a previous normalization layer with weights γ′(l), β′(l) that are trained in the
outer loop, having a similar effect than meta-learning an initialization. However, we do not
do it in our experiments.

First and second order versions of CNGRAD: w affect Lsup in two ways: first, they directly
affect the evaluation fw,γs,βs(X) by being weights of the neural network; second, they affect
∇βLtailor,∇γLtailor which affects γs, βs which in turn affect Lsup. Similar to MAML [19], we can
implement two versions: in the first order version we only take into account the first effect, while
in the second order version we take into account both effects. The first order version has three
advantages:

1. It is very easy to code: the optimization of the inner parameters and the outer parameters are
detached and we simply need to back-propagate Ltailor with respect to β, γ and Lsup with
respect to w. This version is easier to implement than most meta-learning algorithms, since
the parameters in the inner and outer loop are different.

2. It is faster: because we do not back-propagate through the optimization, the overall compu-
tation graph is smaller.

3. It is more stable to train: second-order gradients can be a bit unstable to train; this required
us to lower the inner tailoring learning rate in experiments of section 5.1 for the second-order
version.

The second-order version has one big advantage: it optimizes the true objective, taking into account
how Ltailor will affect the update of the network. This is critical to linking the unsupervised loss to
best serve the supervised loss by performing informative updates to the CN parameters.

WarpGrad-inspired stopping of gradients and subsequent reduction in memory cost: Warp-
Grad [20] was an inspiration to CNGRAD suggesting to interleave layers that are adapted in the inner
loop with layers only adapted in the outer loop. In contrast to WarpGrad, we can evaluate inputs (in
meta-tailoring) or tasks (in meta-learning) in parallel, which speeds up training and inference. This
also simplifies the code because we do not have to manually perform batches of tasks by iterating
through them.

WarpGrad also proposes to stop the gradients between inner steps; we include this idea as an optional
operation in CNGRAD, as shown in line 12 of 3. The advantage of adding it is that it decreases the
memory cost when performing multiple inner steps, as we now only have to keep in memory the
computation graph of the last step instead of all the steps, key when the networks are very deep like
in the experiments of section 5.4. Another advantage is that it makes training more stable, reducing
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Algorithm 3 CNGRAD for meta-tailoring
Subroutine Training(f , Lsup, λsup, Ltailor, λtailor, steps,((xi, yi))ni=1)

randomly initialize w // All parameters except γ, β; trained in outer loop
while not done do

for 0 ≤ i ≤ n/b do // b batch size
X,Y = xib:i(b+1), yib:i(b+1) γ0 = 1b,

∑
lml

β0 = 0b,
∑
lml

for 1 ≤ s ≤ steps do
γs = γs−1 − λtailor∇γLtailor(w, γs−1, βs−1, X) // Inner step w.r.t. γ

βs = βs−1 − λtailor∇βLtailor(w, γs−1, βs−1, X) // Inner step w.r.t. β
γs, βs = γs.detach(), βs.detach() // Optional operation, only in 1st

order CNGrad: WarpGrad detach to avoid back-proping through
multiple steps; reducing memory, and increasing stability, but
adding bias.
w = w − λsup∇wLsup (fw,γs,βs(X), Y )) // Outer step

return w
Subroutine Prediction(f , w, Ltailor, λ, steps, X) // For meta-tailoring & tailoring

// X contains multiple inputs, with independent tailoring processes
b = X.shape[0] // number of inputs
γ0 = 1b,

∑
lml

β0 = 0b,
∑
lml

for 1 ≤ s ≤ steps do
γs = γs−1 − λ∇γLtailor(w, γs−1, βs−1, X)
βs = βs−1 − λ∇βLtailor(w, γs−1, βs−1, X)

return fw,γsteps,βsteps(X)

variance, as back-propagating through the optimization is often very noisy for many steps. At the
same time it adds bias, because it makes the greedy assumption that locally minimizing the decrease
in outer loss at every step will lead to low overall loss after multiple steps.

Computational cost: in CNGRAD we perform multiple forward and backward passes, compared
to a single forward pass in the usual setting. In particular, if we perform s tailoring steps, we execute
(s + 1) forward steps and s backward steps, which usually take the same amount of time as the
forward steps. Therefore, in its naive implementation, this method takes about 2s+ 1 times more
than executing the regular network without tailoring.

However, it is well-known that we can often only adapt the higher layers of a network, while keeping
the lower layers constant. Moreover, our proof about the capacity of CNGRAD to optimize a broad
range of inner losses only required us to adapt the very last CN layer γ(H), β(H). This implies we
can put the CN layers only on the top layer(s). In the case of only having one CN layer at the last
network layer, we only require one initial full forward pass (as we do without tailoring). Then, we
have s backward-forward steps that affect only the last layer, thus costing 1

H in case of layers of
equivalent cost. This leads to a factor of 1 + 2s

H in cost, which for s small and H large (typical for
deep networks), is a very small overcost. Moreover, for tailoring and meta-tailoring, we are likely to
get the same performance with smaller networks, which may compensate the increase in cost.

Meta-learning version: CNGRAD can also be used in meta-learning, with the advantage of being
provably expressive, very efficient in terms of parameters and compute, and being able to parallelize
across tasks. We show the pseudo-code for few-shot supervised learning in algorithm 4. There are
two changes to handle the meta-learning setting: first, in the inner loop, instead of the unsupervised
tailoring loss we optimize a supervised loss on the training (support) set. Second, we want to share
the same inner parameters γ, β for different samples of the same task. To do so we add the operation
"repeat_interlave" (PyTorch notation), which makes k contiguous copies of each parameter γ, β,
before feeding them to the network evaluation. In doing so, gradients coming from different samples
of the same task get pooled together. At test time we do the same for the k′ queries (k′ can be
different than k). Note that, in practice, this pooling is also used in meta-tailoring when we have
more than one data augmentation within Ltailor.
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Algorithm 4 CNGRAD for meta-learning
Subroutine Meta-training(f , Lsup, λinner, λouter, steps,T )

randomly initialize w // All parameters except γ, β; trained in outer loop
while not done do

for 0 ≤ i ≤ n/b do // b batch size
Xtrain, Ytrain = [ ], [ ] Xtest, Ytest = [ ], [ ] for ib ≤ j ≤ i(b+ 1) do

(inp, out) ∼k Tj // Take k samples from each task for training
X.append (inp) ;Y.append (out) (query, target) ∼′k Tj // Take k′ samples
from each task for testing
X.append (query) ;Y.append (target)

// We can now batch evaluations of multiple tasks
Xtrain, Ytrain = concat (Xtrain, dim = 0) , concat (Ytrain, dim = 0)
Xtest, Ytest = concat (Xtest, dim = 0) , concat (Ytest, dim = 0) γ0 = 1b,

∑
lml

β0 = 0b,
∑
lml

for 1 ≤ s ≤ steps do
// We now repeat the CN parameters k times so that samples from
the same task share the same CN parameters
γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

γtests , βtests = γs.repeat_interleave(k′, 1), βs.repeat_interleave(k′, 1)
w = w − λouter∇wLsup

(
fw,γtests ,βtests

(Xtest), Ytest)
)

βs, γs = βs.detach(), γs.detach() // WarpGrad detach to not backprop
through multiple steps

return w
Subroutine Meta-test(f , w, Lsup, λinner,steps,Xtrain, Ytrain, Xtest)

// Assuming a single task, although we could evaluate multiple tasks in
parallel as in meta-training.
γ0 = 11,

∑
lml

// single γ, β because we only have one task
β0 = 01,

∑
lml

for 1 ≤ s ≤ steps do
γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

γteststeps, β
test
steps = γsteps.repeat_interleave(k′, 1), βsteps.repeat_interleave(k′, 1) return

fw,γteststeps,β
test
steps

(Xtest)
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E Experimental details of physics experiments

Dataset generation As mentioned in the main text, 5-body systems are chaotic and most random
configurations are unstable. To generate our dataset we used Finite Differences to optimize 5-body
dynamical systems that were stable for 200 steps (no planet collisions and no planet outside a
predetermined grid) and then picked the first 100 steps of their trajectories, to ensure dynamical
stability. To generate each trajectory, we randomly initialized 5 planets within a 2D grid of size
w = 600, h = 300, with a uniform probability of being anywhere in the central grid of size w/2, h/2,
each with a mass sampled from a uniform between [0.15, 0.25] (arbitrary units) and with random
starting velocity initialized with a Gaussian distribution. We then use a 4th order Runge-Kutta
integrator to accurately simulate the ODE of the dynamical system until we either reach 200 steps,
two planets get within a certain critical distance from each other or a planet gets outside the pre-
configured grid. If the trajectory reached 200 steps, we added it to the dataset; otherwise we made
a small random perturbation to the initial configuration of the planets and tried again. If the new
perturbation did not reach 200 steps, but lasted longer we kept the perturbation as the new origin
for future initialization perturbations, otherwise we kept our current initialization. Once all the
datasets were generated we picked those below a threshold mean mass and partitioned them randomly
into train and test. Finally, we normalize each of the 25 dimensions (5 planets and for each planet
x,y,vx,vy,m) to have mean zero and standard deviation one. For inputs, we use each state and as
target we use the next state; therefore, each trajectory gives us 100 pairs.

For more details, we attach the code that generated the dataset.

Implementation of tailoring, meta-tailoring and CNGRAD All of our code is implemented in
PyTorch [38], using the higher library [22](https://github.com/facebookresearch/higher)
to implement the second-order version of CNGRAD. We implemented a 3-layer feedforward neural
network, with a conditional normalization layer after each layer except the final regression layer.
The result of the network was added to the input, thus effectively predicting the delta between the
current state and the next state. For both the first-order and second-order versions of CNGRAD,
we used the detachment of WarpGrad (line 12 in algorithm 3). For more details, we also attach the
implementation of the method.

Compute and hyper-parameter search To keep the evaluation as strict as possible, we searched
all the hyper-parameters affecting the inductive baseline and our tailoring versions with the baseline
and simply copied these values for tailoring and meta-tailoring. For the latter two, we also had to
search for λtailor.

The number of epochs was 1000, selected with the inductive baseline, although more epochs did
not substantially affect performance in either direction. We note that meta-tailoring performance
plateaued earlier in terms of epochs, but we left it the same for consistency. Interestingly, we found
that regularizing the physics loss (energy and momentum conservation) helped the inductive baseline,
even though the training data already has 0 physics loss. We searched over [10−4, 3 · 10−4, 10−3, 3 ·
10−3, 10−2] for the weight assigned to the physics loss and chose 2 · 10−3 for best performance in the
inductive baseline. To balance between energy and momentum losses we multiplied the momentum
loss by 10 to roughly balance their magnitudes before adding them into a single physics loss, this
weighting was not searched. We copied these settings for meta-tailoring.

In terms of the neural network architecture, we chose a simple model with 3 hidden layers of the same
size and tried [128, 256, 512] on the inductive baseline, choosing 512 and deciding not to go higher
for compute reasons and because we were already able to get much lower training loss than test loss.
We copied these settings for the meta-tailoring setup. We note that since there are approximately
O(m2

h) weight parameters, yet only O(mh) affine parameters used for tailoring, adding tailoring
and meta-tailoring increase parameters roughly by a fraction O(1/mh), or about 0.2%. Also in the
inductive baseline, we tried adding Batch Normalization [30], since it didn’t affect performance we
decided not to add it.

We chose the tailoring step size parameter by trying [10−5, 10−4, 10−3, 10−2], finding 10−3 worked
well while requiring less steps than using a smaller step size. We therefore used this step for meta-
tailoring as well, which worked well for first-order CNGRAD, but not for second-order CNGRAD,
whose training diverged. We thus lowered the tailoring step size to 10−4 for the second-order version,
which worked well. We also tried clipping the inner gradients to increase the stability of the second-
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order method; since gains on preliminary experiments were small, we decided to keep it out for
simplicity.

For meta-tailoring we only tried 2 and 5 tailoring steps (we wanted more than one step to show the
algorithm capability, but few tailoring steps to keep inference time competitive). Since they worked
similarly well, we chose 2 steps to have a faster model. For the second-order version we also used
2 steps, which performed much better than the inductive baseline and tailoring, but worse than the
first-order version reported in the main text(about 20% improvement of the second-order version vs.
7% of tailoring and 35% improvement of the first-order version).

For the baseline of optimizing the output we tried a step size of 10−4, 10−3, 10−2, 10−1. Except for
a step size of 10−1, results optimized the physics loss and always achieved a very small improvement,
without overfitting to the physics loss. We thus chose a big learning rate and high number of steps to
report the biggest improvement, of 0.7%.

Runs, compute and statistical confidence: we ran each method 2 times and averaged the results.
Note that the baseline of optimizing the output and tailoring start from the inductive learning baseline,
as they are meant to be methods executed after regular inductive training. This is why both curves
start at the same point in Figure 2. For those methods, we report the standard deviation of the mean
estimate of the improvement, since they are executed on the same run. Note that the standard deviation
of the runs would be higher, but less appropriate. For meta-tailoring, we do use the standard deviation
of the mean estimate of both runs, since they are independent from the inductive baseline.

All experiments were performed on a GTX 2080 Ti with 4 CPU cores.

F Experimental details on real pendulum

We modify the real pendulum of Hamiltonian Neural Networks [23]. In particular we pick the
energy of the system and use it as a tailoring loss. Greydanus et al. [23] train a vanilla MLP
and show that its non-conservation of energy results in poor generalization from train to test for
long-term predictions. With HNNs that automatically discover an energy function and encode
hamiltonian dynamics into the network architecture, the system conserves this proxy energy even
in long predictions, resulting in better generalization. We meta-tailor the vanilla MLP, with no
change in its architecture, beyond adding CN layers to efficiently perform tailoring. We try different
inner learning rates (1e− 3, 1e− 2, 1e− 1, 1e0) as well as number of steps (1, 2, 3) and evaluate on
long-term training loss. Since training is 4 times as long as test, we divide training into 4 equally-big
trajectories and choose the configuration with the best loss: 3 steps and 1e− 1 inner learning rate.
It is worth noting that these long term predictions use scipy’s ODE integrator, which is also used
for the vanilla MLP as well as for HNNs. We see that, by not fully enforcing energy conservation,
meta-tailoring improves over both an inductive baseline of the same architecture and HNNs.

Experiments were performed with a Volta V-100 and 10 CPU cores, taking a couple of hours to run
in total.

G Experimental details on contrastive learning

We take the implementation of SimCLR [13] from https://github.com/leftthomas/SimCLR
evaluating on CIFAR-10 [31].

As detailed in the main text we train the vanilla SimCLR to get an unsupervised representation. We
than train only the linear layer with different amounts of training data, from 50 to 5000 points per class.
Vanilla SimCLR follows regular inductive learning with supervised labels for the linear layer. Meta-
tailoring uses the same augmentations provided by SimCLR and minimizes the SimCLR loss on each
particular input before feeding the tailored representations to the linear layer. The linear layer is trained
to take these adapted representations. We tried different hyper-parameters: [4, 8, 16] augmentations,
1, 2, inner optimization steps, inner learning rate of [1e−1, 3e−1, 1e0, 3e0, 1e1, 3e1] and whether to
tailor the CN layers of the CNN representation or tailor the representations h directly. We found very
consistent results where all stable inner optimizations improved over vanilla SimCLR, and longer
optimizations with larger learning rates and more augmentations gave bigger improvements. Tailoring
the CN layers or the representations directly didn’t make a big effect, the latter being slightly more
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Figure 5: Test-time training (TTT) with its original rotation-prediction auxiliary task performs worse
than vanilla SimCLR. Performance degrades as we increase the inner learning rate, thus increasing
its power.

stable, and providing somewhat larger results. It is also much faster as we do not need to back-prop
back through the CNN. We thus chose 3 steps 1e1 learning rate, 16 augmentations and tailoring the
representations directly. For TTT we kept the 3 steps and tried 0, 1e−4, 1e−3, 1e−2, 1e−1, 1e0, 1e1
learning rates. We noticed that all these inner optimizations were stable, yet performance degraded
with learning rate. Thus the best learning rate was 0, equivalent to not doing TTT.

For all methods we follow the code-base and keep the best validation. Keeping running averages or
choosing concrete epochs gave very similar results because of the stability of training a linear layer.
We averaged over 5 different trainings of the linear layer, all using the same SimCLR base. The TTT
baseline uses the best SimCLR epoch for each of these 5 runs, so that using TTT with lr=0 gives
exactly the same results as the baseline.

For TTT we trained on the rotation prediction task proposed in the original paper. To minimize
differences, we use the same architecture as the MLP from SimCLR, except with 4 output logits, one
per rotation. It achieves 80.5% test accuracy on rotation prediction. TTT proposes to back-propagate
this rotation prediction loss back at test-time, but does not take this procedure into account at training
time. We consistently find that TTT worsens the performance, with the gap becoming worse as we
increase the learning rate. We think the reason why this loss is helpful in a very similar dataset and
architecture in Sun et al. [46], yet hurts performance in this case is due to two factors. First, it can
be observed in the original paper that rotation-prediction provides consistent, but small gains, in the
1-sample case, with much larger gains in its online multi-sample version. Second, Sun et al. [46]
focus on out-of-distribution generalization, where weights are trained on a different data distribution
and are thus sub-optimal. The linear layer receiving OOD inputs in this same-distribution case hurts
performance, but in their OOD application, even the unmodified inputs were already OOD. Meta-
tailoring takes the adaptation into account, thus the inputs of the linear layer are always in-distribution,
thus being able to help performance.

Experiments were performed with a set of Volta V-100 and 10 CPU cores. SimCLR takes around a
day to train. All other experiments training the linear layer from different initializations and for all
data quantities take a few hours for a single set of hyper-parameters.

H Toy adversarial examples experiment

We illustrate the tailoring process with a simple illuminating example using the data from Ilyas et al.
[29]. They use discriminant analysis on the data in Figure 6 and obtain the purple linear separator. It
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has the property that, under assumptions about Gaussian distribution of the data, points above the line
are more likely to have come from the blue class, and those below, from the red class. This separator
is not very adversarially robust, in the sense that, for many points, a perturbation with a small δ would
change the assigned class. We improve the robustness of this classifier by tailoring it using the loss

Ltailor(x, θ) = KL(φ(fθ(x)) || φ(fθ(x+ argmax|δ|<ε
∑
j e
fθ(x+δ)j ))), where KL represents the KL

divergence, φ is the logistic function, and φ(fθ(x)i) is the probability of x being in class i, so that
φ(fθ(x)) represents the entire class distribution.

With this loss, we can adjust our parameters θ so that the KL divergence between our prediction at
x is closer to the prediction at perturbed point x + δ, over all perturbations in radius ε. Note that
we initialized the models with the weights of Cohen et al. [14] to speed up training in all ImageNet
experiments and to avoid training divergence for CIFAR-10 with σ = 1 (this divergence was already
noted by Zhai et al. [53]). Each of the curves in Figure 3 corresponds to a decision boundary induced
by tailoring the original separator with a different value for the maximum perturbation ε. Note that
the resulting separators are non-linear, even though we are tailoring a linear separator, because the
tailoring is local to the prediction point. We also have the advantage of being able to choose different
values of ε at prediction time.

Hyper-parameters the model does not have any hyper-parameters, as we use the model from Ilyas
et al. [29], which is based on the mean µ and standard deviation σ of the Gaussians. For tailoring, we
used a 5× 5 grid to initialize the inner optimization to find the point of highest probability within the
ε-ball. Using a single starting point did not work as gradient descent found a local optima. Using
more (10 × 10) did not improve results further, while increasing compute. We also experimented
between doing a weighted average of the predictions by their energy to compute the tailoring loss
or picking the element with the biggest energy. Results did not seem to differ much (likely because
likelihood distributions are very peaked), so we picked the simplest option of imitating the element
of highest probability. Doing a single tailoring step already worked well (we tried step sizes of
10−1, 1, 10, 30 with 10 working best), so we kept that for simplicity and faster predictions.

Regarding compute, this experiment can be generated in a few minutes using a single GTX 2080 Ti.

Figure 6: Decision boundary of our model at multiple levels of robustness on an example from Ilyas
et al. [29].

I Experimental details of adversarial experiments

Results for CIFAR-10 and ImageNet experiments comparing to state-of-the-art methods can be found
in tables 7, 8, and 9. Table 7 only includes results for Randomized Smoothing (RS).

Hyper-parameters and other details of the experiments there are just three hyper-parameters to
tweak for these experiments, as we try to remain as close as possible to the experiments from Cohen
et al. [14]. In particular, we tried different added noises ν ∈ [0.05, 0.1, 0.2] and tailoring inner steps
λ ∈ [10−3, 10−2, 10−1, 100] for σ = 0.5. To minimize compute, we tried these settings by tailoring
(not meta-tailoring) the original model and seeing its effects on the smoothness and stability of
optimization, choosing ν = 0.1, λ = 0.1 (the fact that they’re the same is a coincidence). We chose
to only do a single tailoring step to reduce the computational burden, since robustness certification is
very expensive, as each example requires 100k evaluations (see below). For simplicity and to avoid
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σ Method 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.00 2.25 ACR

0.25 (Inductive) RS 0.75 0.60 0.43 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.416
Meta-tailor RS 0.80 0.66 0.48 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.452

0.50 (Inductive) RS 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.00 0.00 0.491
Meta-tailor RS 0.68 0.57 0.45 0.33 0.23 0.15 0.08 0.04 0.00 0.00 0.542

1.00 (Inductive) RS 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.03 0.458
Meta-tailor RS 0.50 0.43 0.36 0.30 0.24 0.19 0.14 0.10 0.07 0.05 0.546

Figure 7: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the CIFAR-10 dataset. Meta-tailoring improves the Average Certification Radius by
8.6%, 10.4%, 19.2% respectively. Results for Cohen et al. [14] are taken from Zhai et al. [53] because
they add more measures than the original work, with similar results.

σ Method 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.00 2.25 ACR

0.25

RandSmooth 0.75 0.60 0.43 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.416
Salman 0.74 0.67 0.57 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.538
MACER 0.81 0.71 0.59 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.556
Meta-tailored 0.80 0.66 0.48 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.452

0.50

RandSmooth 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.00 0.00 0.491
Salman 0.50 0.46 0.44 0.40 0.38 0.33 0.29 0.23 0.00 0.00 0.709
MACER 0.66 0.60 0.53 0.46 0.38 0.29 0.19 0.12 0.00 0.00 0.726
Meta-tailored 0.68 0.57 0.45 0.33 0.23 0.15 0.08 0.04 0.00 0.00 0.542

1.00

RandSmooth 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.03 0.458
Salman 0.45 0.41 0.38 0.35 0.32 0.28 0.25 0.22 0.19 0.17 0.787
MACER 0.45 0.41 0.38 0.35 0.32 0.29 0.25 0.22 0.18 0.16 0.792
Meta-tailored 0.50 0.43 0.36 0.30 0.24 0.19 0.14 0.10 0.07 0.05 0.546

Figure 8: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the CIFAR-10 dataset, comparing with SOA methods. In contrast to pretty competitive
results in ImageNet, meta-tailoring improves randomized smoothing, but not enough to reach SOA.
It is worth noting that the SOA algorithms could also likely be improved via meta-tailoring.

σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25

RandSmooth 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Salman 0.65 0.56 0.00 0.00 0.00 0.00 0.00 0.528
MACER 0.68 0.57 0.00 0.00 0.00 0.00 0.00 0.544
Meta-tailored RS 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50

RandSmooth 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Salman 0.54 0.49 0.43 0.37 0.00 0.00 0.00 0.815
MACER 0.64 0.53 0.43 0.31 0.00 0.00 0.00 0.831
Meta-tailored RS 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00

RandSmooth 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Salman 0.40 0.38 0.33 0.30 0.27 0.25 0.20 1.003
MACER 0.48 0.37 0.34 0.30 0.25 0.18 0.14 1.008
Meta-tailored RS 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Figure 9: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the ImageNet dataset, including other SOA methods. Randomized smoothing with
meta-tailoring are very competitive with other SOA methods, including having the biggest ACR for
σ = 1.
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excessive tuning, we chose the hyper-parameters for σ = 0.5 and copied them for σ = 0.25 and
σ = 1. As mentioned in the main text, σ = 1 required initializing our model with that of Cohen et al.
[14] (training wasn’t stable otherwise), which is easy to do using CNGRAD.

In terms of implementation, we use the codebase of Cohen et al. [14](https://github.com/
locuslab/smoothing) extensively, modifying it only in a few places, most notably in the architec-
ture to include tailoring in its forward method. It is also worth noting that we had to deactivate their
disabling of gradients during certification, because tailoring requires gradients. We chose to use the
first-order version of CNGRAD which made it much easier to keep our implementation very close to
the original. It is likely that doing more tailoring steps would result in better performance.

We note that other works focused on adversarial examples, such as Zhai et al. [53], Salman et al.
[43], improve on Cohen et al. [14] by bigger margins. However, tailoring and meta-tailoring can
also improve a broad range of algorithms in applications outside of adversarial examples. Moreover,
they could also improve these new algorithms further, as these algorithms can also be tailored and
meta-tailored.

Compute requirements For the CIFAR-10 experiments building on Cohen et al. [14], each training
of the meta-tailored method was done in a single GTX 2080 Ti for 6 hours. Certification was much
more expensive (10k examples with 100k predictions each for a total of 109 predictions). Since
certifications of different images can be done in parallel, we used a cluster consisting of 8 GTX 2080
Ti, 16 Tesla V-100, and 40 K80s (which are about 5 times slower), during 36 hours.

For the ImageNet experiments, we fine-tuned the original models for 5 epochs; each took 18 hours
on 1 Tesla V-100. We then used 30 Tesla V-100 for 20 hours for certification.
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