
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
workflow.chaos-mesh.org "chaos-experiment-20241124-125548" deleted
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
workflownode.chaos-mesh.org "fault-injection-overlapped-workflows-s2j6j" del
workflownode.chaos-mesh.org "fault-injection-phase-9vmc2" deleted
workflownode.chaos-mesh.org "fault-injection-suspend-w7xxb" deleted
workflownode.chaos-mesh.org "fault-injection-suspend-workflow-j8bqs" deleted
workflownode.chaos-mesh.org "fault-injection-suspend-workflow2-mtg5k" delete
workflownode.chaos-mesh.org "fault-injection-suspend2-nrlb2" deleted
workflownode.chaos-mesh.org "fault-networkchaos-df9sz" deleted
workflownode.chaos-mesh.org "fault-podchaos-6njzf" deleted
workflownode.chaos-mesh.org "fault-unittest-example-pod-running-qcc98" delet
workflownode.chaos-mesh.org "fault-unittest-example-service-availability-985
workflownode.chaos-mesh.org "post-unittest-example-pod-running-zjd9m" delete
workflownode.chaos-mesh.org "post-unittest-example-service-availability-2dfs
workflownode.chaos-mesh.org "post-validation-overlapped-workflows-p4c4f" del
workflownode.chaos-mesh.org "post-validation-phase-qsjq5" deleted
workflownode.chaos-mesh.org "post-validation-suspend-sk8s2" deleted
workflownode.chaos-mesh.org "post-validation-suspend-workflow-5crck" deleted
workflownode.chaos-mesh.org "pre-unittest-example-pod-running-sgsb5" deleted
workflownode.chaos-mesh.org "pre-unittest-example-service-availability-hldj7
workflownode.chaos-mesh.org "pre-validation-parallel-workflows-6wd58" delete
workflownode.chaos-mesh.org "pre-validation-phase-4lgcj" deleted
workflownode.chaos-mesh.org "the-entry-g75nb" deleted
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found

Input instructions for your Chaos Engineering

$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-deployment-6977c97c99-7dcbd" deleted
pod "example-deployment-6977c97c99-gbxgz" deleted
pod "example-deployment-6977c97c99-mr5cc" deleted
service "example-service" deleted
deployment.apps "example-deployment" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:
 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service
spec:
 selector:
 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 281ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.088 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.107.80 <none>

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod.

The Pod is named 'example-pod'.

It includes metadata with a label 'app: example'.

The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.

The Pod contains one container named 'example-container'.

The container uses the 'nginx:1.17.1' image.

The container exposes port 80 for network traffic.

nginx/service.yaml

This manifest defines a Kubernetes Service.

The Service is named 'example-service'.

It uses the 'v1' API version.

The Service selects pods with the label 'app: example'.

It exposes the Service on port 80 using the TCP protocol.

The target port for the Service is also port 80, meaning it forwards traffic to port 80 on the
selected pods.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Pod Restart Policy

details: The Pod will not restart automatically if it fails, which can lead to downtime.

manifests having the issues: ['nginx/pod.yaml']

problematic config: restartPolicy: Never

Issue #1: Single Pod Deployment

details: Using a single Pod without replication can lead to a single point of failure.

manifests having the issues: ['nginx/pod.yaml']

problematic config: kind: Pod

Application of the manifests:

Thoughts:

The manifests provided are for a Kubernetes Pod and Service that utilize the Nginx web server.
The Pod manifest specifies a container running the Nginx image, which is a popular open-source

web server used for serving static content, reverse proxying, and load balancing. The Service

manifest is configured to expose this Pod on port 80, which is the default port for HTTP traffic.
Given the use of Nginx and the configuration of the Service, it is logical to assume that these

manifests are intended to deploy a simple web server application. The file names and the use of
Nginx further support this assumption.

Assumed application:

A simple web server application using Nginx to serve static web content or act as a reverse proxy.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

✅ Steady state #1: PodRunningState_nginx_pod

💬 Description

The first issue to address is the Pod's restart policy set to 'Never', which means the Pod

will not restart automatically if it fails. This is a critical issue because it can lead to
downtime if the Pod encounters any failure. Therefore, the steady state should ensure

that the Pod is running and available. A measurable output for this steady state is the
number of running Pods. Since there is only one Pod defined in the manifest, the steady

state should verify that this Pod is in the 'Running' state.

🔍 Current state inspection

To inspect the PodRunningState_nginx_pod, I will use the K8s API. The reason for
choosing the K8s API is that it allows us to directly check the status of the Pod within

the Kubernetes cluster. We need to verify that the Pod is in the 'Running' state, which is
a specific status of a Kubernetes resource. The K8s API provides the necessary

functionality to query the current state of the Pod and ensure it is running. The script

will check the Pod's status every second for a duration of 5 seconds, which is sufficient
to confirm the Pod's state within the 1-minute constraint of the Chaos Engineering

experiment.
tool: k8s duration: 5s

Inspection script (Python) k8s_PodRunningState_nginx_pod.py :

import os
import time
from kubernetes import client, config

def check_pod_status(namespace, pod_name, duration):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 v1 = client.CoreV1Api()
 running_count = 0

 for _ in range(duration):
 try:
 pod = v1.read_namespaced_pod(name=pod_name, namespace=na
 if pod.status.phase == 'Running':
 running_count += 1
 print(f"Pod {pod_name} status: {pod.status.phase}")
 except client.exceptions.ApiException as e:

 print(f"Exception when calling CoreV1Api->read_namespace
 time.sleep(1)

 print(f"Pod {pod_name} was running {running_count} out of {durat

if __name__ == "__main__":
 import argparse
 parser = argparse.ArgumentParser(description='Check the running
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 check_pod_status(namespace='default', pod_name='example-pod', du

Pod k8spodrunningstatenginxpod-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod was running 5 out of 5 seconds.

🚩 Threshold

The steady state we are considering is the 'PodRunningState_nginx_pod', which

requires the Pod to be in the 'Running' state. The current state shows that the Pod was

running 5 out of 5 seconds, which indicates a stable and consistent running state. To
define a reasonable threshold, we should consider a percentage of time the Pod should

be running within a given duration. Since the current state shows 100% uptime, we can
introduce a small tolerance to account for potential brief fluctuations or delays in status

updates. A reasonable threshold would be that the Pod should be running at least 90%
of the time during the observation period. This allows for some minor fluctuations

while still ensuring the Pod is generally stable and available.

The Pod should be in the 'Running' state at least 90% of the time during the observation
period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will calculate the
percentage of time the Pod is in the 'Running' state during the specified duration. The

threshold is defined as the Pod being in the 'Running' state at least 90% of the time.

Therefore, I will assert that the running percentage is greater than or equal to 90%. This
will ensure that the Pod meets the steady state requirement. The test will loop for the

specified duration, checking the Pod's status every second, and then calculate the
running percentage at the end to perform the assertion.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestPodRunningState(K8sAPIBase):
 def __init__(self, namespace, pod_name, duration):
 super().__init__()
 self.namespace = namespace
 self.pod_name = pod_name
 self.duration = duration

 def test_pod_running_state(self):
 running_count = 0

 # Loop for the specified duration, checking the Pod's status
 for _ in range(self.duration):
 try:
 pod = self.v1.read_namespaced_pod(name=self.pod_name
 if pod.status.phase == 'Running':
 running_count += 1
 print(f"Pod {self.pod_name} status: {pod.status.phas
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_names
 time.sleep(1)

 # Calculate the percentage of time the Pod was running
 running_percentage = (running_count / self.duration) * 100
 print(f"Pod {self.pod_name} was running {running_count} out

 # Assert that the Pod was running at least 90% of the time
 assert running_percentage >= 90, f"Pod {self.pod_name} was n

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='Test the running s
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()

 # Create an instance of the test class and run the test

 test = TestPodRunningState(namespace='default', pod_name='exampl
 test.test_pod_running_state()

Pod unittestpodrunningstatenginxpodmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod was running 5 out of 5 seconds.

✅ Steady state #2: ServiceRoutingState_nginx_service

💬 Description

The next issue to address is the 'Single Pod Deployment', which can lead to a single
point of failure. This is a critical issue because if the single Pod fails, the entire service

becomes unavailable. To ensure the system's resiliency, we need to verify that the

Service is able to route traffic to the Pod. A measurable output for this steady state is the
Service's ability to successfully forward requests to the Pod. Since the Service is

configured to expose the Pod on port 80, the steady state should verify that the Service
is able to handle HTTP requests and return a successful response (e.g., HTTP 200 status

code). This will ensure that the Service is functioning correctly and can route traffic to

the Pod, even if there is only one Pod available.

🔍 Current state inspection

To inspect the ServiceRoutingState_nginx_service, we need to verify that the Service is

able to route traffic to the Pod and return a successful HTTP response. Since this
involves checking the communication status and response from the service, k6 is the

appropriate tool to use. We will simulate HTTP requests to the service using k6 and

check for successful responses (HTTP 200 status code). The test will run for a short
duration with a few virtual users to ensure the service is functioning correctly.

tool: k6 vus: 1 duration: 5s

Inspection script (Javascript) k6_ServiceRoutingState_nginx_service.js :

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,
 duration: '5s',
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'is status 200': (r) => r.status === 200,
 });
}

Pod k6serviceroutingstatenginxservice-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

✓ is status 200

checks.........................: 100.00% 14157 out of 14157
data_received..................: 12 MB 2.4 MB/s
data_sent......................: 1.6 MB 311 kB/s
http_req_blocked...............: avg=8.02µs min=1.37µs med=4.22µ
http_req_connecting............: avg=2.2µs min=0s med=0s
http_req_duration..............: avg=231.14µs min=79.6µs med=233.0
 { expected_response:true }...: avg=231.14µs min=79.6µs med=233.0
http_req_failed................: 0.00% 0 out of 14157
http_req_receiving.............: avg=67.01µs min=17.18µs med=62.29
http_req_sending...............: avg=17.67µs min=3.9µs med=14.78
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=146.44µs min=54.61µs med=149.9
http_reqs......................: 14157 2831.146568/s
iteration_duration.............: avg=338.88µs min=127.81µs med=334.8
iterations.....................: 14157 2831.146568/s
vus............................: 1 min=1 max=1
vus_max........................: 1 min=1 max=1

🚩 Threshold

The steady state we are evaluating is the Service's ability to route traffic to the Pod and
return a successful HTTP response. The k6 test results show that 100% of the requests

received a 200 status code, indicating that the Service is currently functioning correctly.

To define a reasonable threshold, we should consider a success rate that accounts for
minor fluctuations while still ensuring the system is operating normally. Given the

current success rate is 100%, a threshold of 95% success rate for HTTP 200 responses
would be reasonable. This allows for some tolerance in case of transient issues, while

still maintaining a high standard for system availability.

HTTP 200 response success rate >= 95%

📄 Unit test to validate the steady state

To add the threshold check to the k6 script, I will include a 'thresholds' property in the

'options' section. This property will specify that the success rate of HTTP 200 responses
should be at least 95%. This is done by using the 'http_req_failed' metric, which tracks

the percentage of failed requests. By setting the threshold to 'http_req_failed:

['rate<0.05']', we ensure that the success rate is at least 95%, as the failure rate must be
less than 5%.

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,
 duration: '5s',
 thresholds: {
 // Ensure that the success rate for HTTP 200 responses is at lea
 'http_req_failed': ['rate<0.05'],
 },
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'is status 200': (r) => r.status === 200,
 });
}

Pod unittestserviceroutingstatenginxservicemod0-pod has completed
sucessfully.

The inspection script's results (current states) are as follows:

✓ is status 200

 checks.........................: 100.00% 14790 out of 14790
 data_received..................: 13 MB 2.5 MB/s
 data_sent......................: 1.6 MB 325 kB/s
 http_req_blocked...............: avg=8.42µs min=1.33µs med=4.2
 http_req_connecting............: avg=2.23µs min=0s med=0s
 http_req_duration..............: avg=213.2µs min=82.68µs med=205
 { expected_response:true }...: avg=213.2µs min=82.68µs med=205
✓ http_req_failed................: 0.00% 0 out of 14790
 http_req_receiving.............: avg=62.4µs min=13.08µs med=57.
 http_req_sending...............: avg=18.07µs min=3.71µs med=15.
 http_req_tls_handshaking.......: avg=0s min=0s med=0s
 http_req_waiting...............: avg=132.72µs min=55.45µs med=127
 http_reqs......................: 14790 2957.8035/s
 iteration_duration.............: avg=323.39µs min=124.44µs med=312
 iterations.....................: 14790 2957.8035/s
 vus............................: 1 min=1 max=1
 vus_max........................: 1 min=1 max=1

Fault definition

✅ Scenario: Cyber Attack Simulation

💬 Description

Given the system's weaknesses, a cyber attack targeting the availability of the web
server could be highly impactful. The Pod's restart policy set to 'Never' and the single

Pod deployment create vulnerabilities that could lead to downtime if the Pod fails. To
simulate a cyber attack, we can introduce network disruptions and resource exhaustion

to test the system's resilience. First, we will simulate network latency to see if the

Service can still route traffic effectively, which tests the
'ServiceRoutingState_nginx_service'. Then, we will introduce a Pod failure to test the

'PodRunningState_nginx_pod', checking if the system can recover from a Pod failure
without automatic restarts. This sequence simulates a cyber attack by first degrading

network performance and then causing a Pod failure, testing the system's ability to

maintain its steady states under stress.

🐞 Fault-injection sequence

NetworkChaos ({'namespace': 'default', 'service': 'example-service'}) ➡ PodChaos

({'namespace': 'default', 'pod': 'example-pod'})

⚙ Detailed fault parameters

Detailed parameters of NetworkChaos ({'namespace': 'default', 'service': 'example-

service'})

{

:

:

:

{

[

]

{

:

}

}

{

:

:

}

}

"action" "delay"

"direction" "to"

"mode" "all"

"selector" :

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

"delay" :

"latency" "100ms"

"jitter" "10ms"

Detailed parameters of PodChaos ({'namespace': 'default', 'pod': 'example-pod'})

{

:

:

{

[

]

{

:

}

}

}

"action" "pod-kill"

"mode" "one"

"selector" :

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints of the experiment needing to be completed within 1 minute, we

need to allocate time efficiently across the three phases: pre-validation, fault-injection,
and post-validation. The pre-validation phase is crucial to ensure that the system is in

its expected steady state before introducing any faults. Since we have two steady states
to validate, we should allocate a short but sufficient time to verify both the Pod's

running state and the Service's routing capability. A reasonable allocation would be 15

seconds for pre-validation. The fault-injection phase is where we introduce the chaos to
observe the system's behavior under stress. Since we have two types of faults to inject

(network delay and pod kill), we should allocate the majority of the time here to
observe the system's response. A 30-second duration for fault injection allows us to

introduce both faults and monitor their effects. Finally, the post-validation phase is

necessary to ensure that the system returns to its steady states after the faults are
removed. We should allocate 15 seconds for post-validation to verify that both the Pod

and Service have returned to their expected states. This allocation ensures that we have
a balanced approach to validating the system's resiliency within the 1-minute

constraint.

Total experiment time: 1m

Pre-validation Phase: 15s

Fault-injection Phase: 30s

Post-validation Phase: 15s

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in its expected steady

states before we proceed with fault injection. Given the two steady states defined, we
will conduct unit tests to verify each of them. The tests will be executed sequentially

within the 15-second time frame allocated for this phase. The first test will verify the
'PodRunningState_nginx_pod', ensuring that the Pod is running at least 90% of the

time. This test will be conducted first because it directly checks the availability of the

Pod, which is critical for the subsequent service routing test. The second test will verify
the 'ServiceRoutingState_nginx_service', ensuring that the Service can successfully

route HTTP requests with a 95% success rate for HTTP 200 responses. This test will

follow immediately after the first test. The sequential execution ensures that we first

confirm the Pod's availability before checking the Service's routing capability, as the
latter depends on the former. Each test is designed to run for a short duration to fit

within the 15-second limit, with a brief grace period to allow for any initial setup or
delays.

Verified Steady State #0: PodRunningState_nginx_pod

Workflow Name: pre-unittest-podrunningstatenginxpod

Grace Period: 0s

Duration: 7s

Verified Steady State #1: ServiceRoutingState_nginx_service

Workflow Name: pre-unittest-serviceroutingstatenginxservice

Grace Period: 7s

Duration: 8s

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack by introducing two types

of faults: network latency and pod failure. The total duration for this phase is 30
seconds, so we need to carefully schedule the fault injections and unit tests to fit within

this timeframe.

First, we will introduce a network delay using NetworkChaos to simulate network
latency. This will help us observe how the system handles degraded network

performance and affects the 'ServiceRoutingState_nginx_service'. We will start this fault
injection immediately at the beginning of the phase and let it run for 15 seconds.

Simultaneously, we will run the unit test for 'ServiceRoutingState_nginx_service' to

verify if the service can still route traffic effectively under network delay conditions. This
test will also start at the beginning and run for 15 seconds.

After the network delay fault injection and the corresponding unit test, we will
introduce a pod failure using PodChaos. This will help us observe the system's behavior

when the pod is killed, affecting the 'PodRunningState_nginx_pod'. We will start this

fault injection at the 15-second mark and let it run for 10 seconds.

Simultaneously, we will run the unit test for 'PodRunningState_nginx_pod' to verify if

the pod remains in the running state at least 90% of the time during the observation
period. This test will start at the 15-second mark and run for 10 seconds.

This staggered approach allows us to observe the system's behavior under each fault

condition separately while ensuring that both steady states are tested within the 30-

second limit.

Verified Steady State #0: ServiceRoutingState_nginx_service

Workflow Name: fault-unittest-serviceroutingstatenginxservice

Grace Period: 0s

Duration: 15s

Verified Steady State #1: PodRunningState_nginx_pod

Workflow Name: fault-unittest-podrunningstatenginxpod

Grace Period: 15s

Duration: 10s

Injected Faults #0: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 0s

Duration: 15s

Injected Faults #1: PodChaos

Workflow Name: fault-podchaos

Grace Period: 15s

Duration: 10s

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its

steady states after the fault injection. Given the 15-second time constraint, we will
conduct unit tests to verify each steady state. The tests will be executed sequentially

due to the short duration, ensuring that each steady state is verified independently. The

first test will check the 'PodRunningState_nginx_pod' to confirm that the Pod is running
and available. The second test will verify the 'ServiceRoutingState_nginx_service' to

ensure that the Service can successfully route traffic to the Pod. Each test will have a
brief grace period to allow the system to stabilize after the fault injection, followed by a

short duration to perform the verification. This approach ensures that both steady

states are validated within the available time, confirming the system's recovery.

Verified Steady State #0: PodRunningState_nginx_pod

Workflow Name: post-unittest-podrunningstatenginxpod

Grace Period: 2s

Duration: 6s

Verified Steady State #1: ServiceRoutingState_nginx_service

Workflow Name: post-unittest-serviceroutingstatenginxservice

Grace Period: 8s

Duration: 7s

Summary

The Chaos-Engineering-experiment plan is structured into three phases: pre-validation,

fault-injection, and post-validation, all to be completed within a 1-minute timeframe.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are executed
sequentially. The first test, 'PodRunningState_nginx_pod', is conducted with a workflow

named 'pre-unittest-podrunningstatenginxpod'. It starts immediately with no delay and
runs for 7 seconds to ensure the Pod is running at least 90% of the time. Following this,

the second test, 'ServiceRoutingState_nginx_service', is executed with the workflow

'pre-unittest-serviceroutingstatenginxservice'. It begins after a 7-second grace period
and runs for 8 seconds to verify that the Service can route HTTP requests with a 95%

success rate for HTTP 200 responses.

The fault-injection phase spans 30 seconds and involves two simultaneous fault

injections and unit tests. At the start of this phase, a network delay is introduced using

'NetworkChaos' with the workflow 'fault-networkchaos', running for 15 seconds.
Concurrently, the 'ServiceRoutingState_nginx_service' unit test is executed with the

workflow 'fault-unittest-serviceroutingstatenginxservice', also for 15 seconds, to assess
the service's routing capability under network delay conditions. At the 15-second mark,

a pod failure is introduced using 'PodChaos' with the workflow 'fault-podchaos',

running for 10 seconds. Simultaneously, the 'PodRunningState_nginx_pod' unit test is
conducted with the workflow 'fault-unittest-podrunningstatenginxpod', also for 10

seconds, to verify the pod's availability during the fault.

In the post-validation phase, lasting 15 seconds, two unit tests are executed

sequentially to confirm the system's recovery. The first test,

'PodRunningState_nginx_pod', is conducted with the workflow 'post-unittest-
podrunningstatenginxpod'. It starts after a 2-second grace period and runs for 6 seconds

to ensure the Pod is running and available. The second test,
'ServiceRoutingState_nginx_service', follows with the workflow 'post-unittest-

serviceroutingstatenginxservice'. It begins after an 8-second grace period and runs for 7
seconds to verify the Service's ability to route traffic to the Pod. This structured

approach ensures a comprehensive assessment of the system's resilience and recovery

within the 1-minute constraint.

Completed the chaos experiment!

All
Search Choose namespace





 





Phase 3: Analysis

The Chaos Engineering experiment results indicate several critical failures in the system's ability
to maintain its steady states under the simulated fault conditions. Here's a detailed analysis of the

failures:

1. Failed Test: fault-unittest-podrunningstatenginxpod

Observation: The test failed because the Pod 'example-pod' was not found during the
fault injection phase, resulting in a 404 error from the Kubernetes API.

Cause: This failure is directly linked to the 'PodChaos' fault, which involved killing the

Pod. Since the Pod's restart policy is set to 'Never', it did not automatically restart after
being killed, leading to its unavailability.

Insight: The 'restartPolicy: Never' configuration in the Pod manifest is a significant

vulnerability. In a production environment, this would lead to downtime whenever the
Pod fails, as there is no mechanism to bring it back online automatically.

Recommendation: Change the Pod's restart policy to 'Always' or 'OnFailure' to ensure it

restarts automatically after a failure, improving resilience against such disruptions.

2. Failed Test: post-unittest-podrunningstatenginxpod

Observation: Similar to the fault phase, the Pod was not found during the post-

validation phase, resulting in a 404 error.

Cause: The Pod did not recover after the 'PodChaos' fault due to the same restart policy

issue. Since the Pod was not restarted, it remained unavailable throughout the post-

validation phase.

Insight: This further emphasizes the critical nature of the restart policy configuration.

Without automatic recovery, the system cannot return to its steady state after a fault.

Recommendation: Implement a replication strategy using a Deployment or ReplicaSet
to ensure multiple instances of the Pod are running, providing redundancy and

automatic recovery.

3. Failed Test: post-unittest-serviceroutingstatenginxservice

Observation: The Service failed to route traffic, resulting in connection refused errors

during the post-validation phase.

Cause: The failure of the Pod meant there were no available endpoints for the Service to
route traffic to, leading to the connection errors.

Insight: The single Pod deployment is a single point of failure. When the Pod is

unavailable, the Service cannot function, highlighting the need for redundancy.

Recommendation: Use a Deployment with multiple replicas to ensure that the Service

always has available Pods to route traffic to, even if one or more Pods fail.

Overall, the experiment highlights the critical need for redundancy and automatic recovery
mechanisms in the system. Addressing the identified issues by adjusting the Pod's restart policy

and implementing a Deployment with multiple replicas will significantly enhance the system's
resilience against similar fault scenarios in the future.

Phase 4: Improvement

Reconfiguration

To improve the system's resiliency, I will replace the Pod manifest with a Deployment
manifest. This will allow for multiple replicas of the Pod, providing redundancy and

automatic recovery in case of failure. Additionally, I will set the restart policy to 'Always' to

ensure Pods are restarted automatically if they fail.

Modification_type: replace

File name: nginx/pod.yaml

Replace the Pod manifest with a Deployment manifest to provide redundancy and

automatic recovery. Set the restart policy to 'Always' to ensure Pods are restarted

automatically if they fail.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example-deployment
 labels:
 app: example
spec:
 replicas: 3
 selector:
 matchLabels:
 app: example
 template:
 metadata:
 labels:
 app: example
 spec:
 restartPolicy: Always
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 240ns
 - deployment.apps/example-deployment configured
 - service/example-service configured
Waiting for deployments to stabilize...
 - deployment/example-deployment is ready.
Deployments stabilized in 4.095 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTA

default pod/example-deployment-7658c5b56-gfpr9 1/1 Running 0
default pod/example-deployment-7658c5b56-kx6cr 1/1 Running 0
default pod/example-deployment-7658c5b56-rjxfq 1/1 Running 0

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-I
default service/example-service ClusterIP 10.96.223.211 <none>

NAMESPACE NAME READY UP-TO-DATE AVAILA
default deployment.apps/example-deployment 3/3 3 3

NAMESPACE NAME DESIRED CURREN
default replicaset.apps/example-deployment-6db6cbcf84 0 0
default replicaset.apps/example-deployment-7658c5b56 3 3

The fault-scope adjustment Completed!

Current fault injection settings:

Injected Faults #0: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 0s

Duration: 15s

Parameters {{"action": "delay", "direction": "to", "mode": "all", "selector": {{"namespaces":
["default"], "labelSelectors": {{"app": "example"}}}}, "delay": {{"latency": "100ms", "jitter":

"10ms"}}}}

The previous K8s manifests targeted a single Pod with the label 'app: example' for the
NetworkChaos fault injection. In the current manifests, the Pod has been replaced by a

Deployment with 3 replicas, but the label 'app: example' remains the same. Therefore, the scope
of the fault injection should still target all Pods with the label 'app: example' in the 'default'

namespace. The change from a single Pod to a Deployment with multiple replicas does not

require a change in the label selector, as the label remains consistent across all replicas. Thus, the
scope of the fault injection remains appropriate for the current setup.

Next fault injection scope:

{

[

]

{

:

}

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

}

Current fault injection settings:

Injected Faults #0: PodChaos

Workflow Name: fault-podchaos

Grace Period: 15s

Duration: 10s

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],

"labelSelectors": {{"app": "example"}}}}}}

The previous K8s manifests targeted a single Pod with the label 'app: example'. The current

manifests have changed to a Deployment with 3 replicas, but the label 'app: example' remains
the same. Therefore, the scope of the fault injection should still target Pods with the label 'app:

example' in the 'default' namespace. However, since there are now multiple replicas, the 'mode'

of the PodChaos should be adjusted to 'one' to ensure that only one Pod is affected at a time,
maintaining the original goal of the chaos experiment.

Next fault injection scope:

{

[

]

{

:

}

}

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

Adjusted unittest

The previous unit test targets a Pod resource, specifically checking the running state of a Pod

named 'example-pod'. In the reconfigured manifests, the Pod has been replaced by a Deployment
named 'example-deployment' with 3 replicas. This change means that the unit test should now

target the Deployment instead of a single Pod. The test should verify that all Pods created by the

Deployment are running, rather than just one Pod. Therefore, the unit test requires modification
to account for these changes. The test should iterate over all Pods created by the Deployment and

ensure that each is running at least 90% of the time during the specified duration.

import os
import time
import argparse
from kubernetes import client, config

from unittest_base import K8sAPIBase

class TestDeploymentRunningState(K8sAPIBase):
 def __init__(self, namespace, deployment_name, duration):
 super().__init__()
 self.namespace = namespace
 self.deployment_name = deployment_name
 self.duration = duration

 def test_deployment_running_state(self):
 running_count = 0

 # Loop for the specified duration, checking the Pods' status every s
 for _ in range(self.duration):
 try:
 # List all Pods with the label app=example
 pods = self.v1.list_namespaced_pod(namespace=self.namespace
 all_running = all(pod.status.phase == 'Running' for pod in p
 if all_running:
 running_count += 1
 print(f"Deployment {self.deployment_name} Pods status: {[pod
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->list_namespaced_po
 time.sleep(1)

 # Calculate the percentage of time all Pods were running
 running_percentage = (running_count / self.duration) * 100
 print(f"Deployment {self.deployment_name} Pods were all running {run

 # Assert that all Pods were running at least 90% of the time
 assert running_percentage >= 90, f"Deployment {self.deployment_name}

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='Test the running status of
 parser.add_argument('--duration', type=int, default=5, help='Duration to
 args = parser.parse_args()

 # Create an instance of the test class and run the test
 test = TestDeploymentRunningState(namespace='default', deployment_name=
 test.test_deployment_running_state()

Adjusted unittest

The target of the unit test is the HTTP service provided by the Kubernetes Service resource, which

remains unchanged in the reconfigured manifests. The Service still points to the same
application, and the endpoint URL used in the test remains valid. However, the underlying Pod

has been changed to a Deployment with 3 replicas, which introduces redundancy. This change is

intended to ensure higher availability and reliability of the service. Since the unit test is focused
on the service's HTTP response and not directly on the Pod or Deployment, the test itself does not

require modification. The threshold for the success rate of HTTP 200 responses remains
appropriate, as the redundancy should help maintain this threshold. Therefore, no changes are

needed for the unit test.

Completed the chaos experiment!

All
Search Choose namespace





 





Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml

The Chaos Engineering cycle described involves a systematic approach to testing the

resilience of a Kubernetes-based system running an Nginx web server. The cycle begins with
understanding the user inputs, which include Kubernetes manifests for a Pod and a Service.

The Pod manifest specifies a single Nginx container with a restart policy of 'Never', while the
Service manifest exposes this Pod on port 80. Two primary resiliency issues are identified:

the Pod's restart policy and the single Pod deployment, both of which pose risks of

downtime and single points of failure.

The hypothesis for the experiment is that the system's steady states will be maintained even

when faults are injected. Two steady states are defined: the Pod should be running at least
90% of the time, and the Service should successfully route HTTP requests with a 95%

success rate. These are tested using Python scripts and K6 JavaScript, respectively.

The fault scenario simulates a cyber attack using Chaos Mesh, introducing network delays
and Pod failures to test the system's resilience. The experiment is divided into three phases:

pre-validation, fault-injection, and post-validation, each with specific tasks and time
allocations to ensure the system's behavior is thoroughly assessed within a 1-minute

timeframe.

In the first experiment attempt, several tests fail, particularly those related to the Pod's
availability, due to the 'Never' restart policy and the single Pod deployment. The analysis

highlights the need for redundancy and automatic recovery mechanisms, recommending
changes to the Pod's restart policy and the use of a Deployment with multiple replicas.

After implementing these improvements, the second experiment attempt shows all tests

passing, indicating that the system can maintain its steady states under fault conditions. The
changes made include replacing the Pod manifest with a Deployment manifest, setting the

restart policy to 'Always', and increasing the number of replicas to ensure redundancy and
resilience.

Download output (.zip)

