Your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following
options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.htmI[?id=<ID> Replace <ID> with an
available ID: [e3fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-
€00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2del-laaa-4c25-a9b9-
6612e8f29a38 , 819elfbf-8b7e-4f6d-811f-693534916a8b , 837abl41-399e-4clf-9abc-

bace40296bac , a®a4f044-b040-410d-8ead-4de0446aec7e , d3588630-ad8e-49df-bbd7-

b

3167f7efb246 , zzz4f044-b040-410d-8ead-4deB446aecTe]

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with

an available tag: [magic , action, blue, brown, black, sport, formal, red,

green, skin, geek]

I

6. http://front-end.sock-shop.svc.cluster.local/basket.html

©" Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos
workflow.chaos-mesh.org '"chaos-experiment-20241127-030328" deleted
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
workflownode.chaos-mesh.org "fault-injection-overlapped-workflows-8cphh'" de
workflownode.chaos-mesh.org "fault-injection-parallel-workflow-ml42w" delet:
workflownode.chaos-mesh.org "fault-injection-phase-1db59" deleted

ey e e e e Y L PRI, [S |

>

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

workflownode.
workflownode.
workflownode.
workflownode.

workflownode

workflownode.
workflownode.
workflownode.
workflownode.

workflownode

workflownode.
workflownode.
workflownode.
workflownode.

workflownode

chaos-mesh.org
chaos—-mesh.org
chaos—-mesh.org
chaos-mesh.org

.chaos-mesh.org

chaos-mesh.org
chaos—-mesh.org
chaos—-mesh.org
chaos-mesh.org

.chaos-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos—-mesh.org
chaos—-mesh.org

.chaos-mesh.org

delete:
delet
deleted
delete:
de’

deleted

deleted
deletes
deleted
deleted
del

deleted

deleted
deleted

$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:

No resources

found

$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat

No resources

found

S kubectl delete services --all --context kind-chaos-eater-cluster -n chaos

No resources

found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1

pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

pod

pod

pod

pod

pod

pod

service
service
service
service
service
service
service
service
service
service
service
service
service
service

...orders

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

deleted

deleted

orders-db

payment

queue-master

rabbitmq

session-db

shipping

user

user-db
carts-db-5dbddbcc7b
carts-db-675ccbf456
catalogue-6846f4b58b
catalogue-777c8c5d5d
catalogue-db-6b77cc59d7
catalogue-db-6bf8chb6699
front- -68fdbdcf95
front- ~7bc6bf685f
orders-7cbdc444f9
orders-86b9477587
orders-db-746f657687
orders-db-784f55785f
payment-86496f594f
payment-8f48c77b9
queue-master-6697989c86
queue-master-95d8c645d
rabbitmgq-6c98597b69
rabbitmq-6f6869fbdf

session-db-665b767949
session-db-8bf47db5c
shipping-5df49fcfb7
shipping-6b7f5fcfcf
user-545cf57c87
user-7d5dd98cdc
user-db-6db75dbc8f
user-db-876ff477" deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Namespace
metadata:

name: sock-shop

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts
labels:
name: carts
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: carts
template:
metadata:
labels:
name: carts
spec:
containers:
- name: carts
image: weaveworksdemos/carts:0.4.8
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d
resources:

limits:

Ccpu: 300m
memory: 500Mi
requests:
cpu: 100m
memory: 200Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts
annotations:
prometheus.io/scrape:
labels:
name: carts
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: carts

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: carts-db
template:
metadata:

labels:
name: carts-db

spec:

containers:

- name: carts-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: carts-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue
labels:
name: catalogue
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue
template:
metadata:

labels:
name: catalogue

spec:

containers:

- name: catalogue
image: weaveworksdemos/catalogue:0.3.5
command: []
args:

- —port=80
resources:
limits:
Cpu: 200m
memory: 200Mi
requests:
cpu: 100m

memory: 10OMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue
annotations:
prometheus.io/scrape:
labels:
name: catalogue
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: catalogue

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue-db
template:
metadata:
labels:
name: catalogue-db
spec:
containers:
- name: catalogue-db
image: weaveworksdemos/catalogue-db:0.3.0
env:
- name: MYSQL_ROOT_PASSWORD
value: fake_password
- name: MYSQL_DATABASE
value: socksdb
ports:
- name: mysql
containerPort: 3306
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 3306

targetPort: 3306
selector:

name: catalogue-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 1
selector:
matchLabels:
name: front-end
template:
metadata:
labels:
name: front-end
spec:
containers:
- name: front-end
image: weaveworksdemos/front-end:0.3.12

resources:
limits:
cpu: 300m
memory: 10QO0Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value:
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /

port: 8079

initialDelaySeconds:

periodSeconds: 3
readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds:

periodSeconds: 3

nodeSelector:

beta.kubernetes.io/os:

apiVersion: vl
kind: Service
metadata:

name: front-end

annotations:

prometheus.io/scrape:
labels:
name: front-end
namespace: sock-shop
spec:

type: NodePort

ports:

- port: 80
targetPort: 8079
nodePort: 30001

selector:

name: front-end

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders
labels:
name: orders
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:

1010

30

Tinux

name: orders
template:
metadata:
labels:
name: orders
spec:
containers:
- name: orders
image: weaveworksdemos/orders:0.4.7
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 500m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl

kind: Service

metadata:
name: orders

annotations:
prometheus.io/scrape:
labels:
name: orders
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: orders

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders-db
template:
metadata:

labels:
name: orders-db

spec:

containers:

- name: orders-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
— CHOWN
- SETGID
- SETUID

readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:

name: orders-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: payment
labels:
name: payment
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: payment
template:
metadata:
labels:

name: payment
spec:
containers:
- name: payment
image: weaveworksdemos/payment:0.4.3
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 99m
memory: 10OMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: payment
annotations:

prometheus.io/scrape:

labels:
name: payment
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: payment

apiVersion: apps/vl
kind: Deployment
metadata:
name: queue-master
labels:
name: queue-master
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: queue-master
template:
metadata:

labels:
name: queue-master

spec:

containers:

- name: queue-master
image: weaveworksdemos/queue-master:0.3.1
env:

- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:

- containerPort: 80

nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: queue-master
annotations:
prometheus.io/scrape:
labels:
name: queue-master
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:
name: queue-master

apiVersion: apps/vl
kind: Deployment
metadata:
name: rabbitmq
labels:
name: rabbitmqg
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: rabbitmg
template:
metadata:
labels:
name: rabbitmqg
annotations:
prometheus.io/scrape:
spec:
containers:

- name: rabbitmqg

image: rabbitmqg:3.6.8-management
ports:
- containerPort: 15672
name: management
- containerPort: 5672
name: rabbitmqg
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
SETGID
SETUID
DAC_OVERRIDE
readOnlyRootFilesystem: true

- name: rabbitmg-exporter
image: kbudde/rabbitmg-exporter
ports:
- containerPort: 9090
name: exporter
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: rabbitmg
annotations:
prometheus.io/scrape:
prometheus.io/port:
labels:
name: rabbitmqg
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 5672
name: rabbitmqg
targetPort: 5672
- port: 9090
name: exporter
targetPort: exporter
protocol: TCP

selector:

name: rabbitmqg

apiVersion: apps/vl
kind: Deployment
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: session-db
template:
metadata:

labels:
name: session-db

annotations:
prometheus.io.scrape:

spec:

containers:

- name: session-db
image: redis:alpine
ports:

- name: redis
containerPort: 6379
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 6379
targetPort: 6379
selector:

name: session-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: shipping
labels:
name: shipping
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: shipping
template:
metadata:
labels:
name: shipping
spec:
containers:
- name: shipping
image: weaveworksdemos/shipping:0.4.8
env:
- name: ZIPKIN
value: zipkin.jaeger.svc.cluster.local
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d
resources:
limits:
cpu: 300m
memory: 500Mi

requests:
cpu: 100m
memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: shipping
annotations:
prometheus.io/scrape:
labels:
name: shipping
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:
name: shipping

apiVersion: apps/vl
kind: Deployment
metadata:
name: user
labels:
name: user
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user
template:
metadata:
labels:
name: user
spec:
containers:
- name: user

image: weaveworksdemos/user:0.4.7

resources:
limits:
cpu: 300m
memory: 200Mi
requests:
cpu: 100m

memory: 1OOMi
ports:
- containerPort: 80
env:
- name: mongo
value: user-db:27017
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user
annotations:
prometheus.io/scrape:
labels:
name: user
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: user

apiVersion: apps/vl
kind: Deployment
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user-db
template:
metadata:
labels:

name: user-db
spec:
containers:
- name: user-db

image: weaveworksdemos/user-db:0.3.0

ports:
- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: user-db

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat

No tags generated

Starting test...

Starting deploy...

Loading images into kind cluster nodes...

Images loaded 1in 180ns

- namespace/sock-shop unchanged

Warning:

deploymen
service/c
deploymen
service/c
deploymen
service/c
deploymen
service/c
deploymen
service/f
deploymen
service/o
deploymen
service/o
deploymen
service/p
deploymen
service/q
deploymen
service/r
deploymen
service/s
deploymen
service/s
deploymen
service/u
deploymen

service/u

Waiting

sock-shop

sock-shop:
sock-shop:
sock-shop:
sock-shop:

sock-shop

sock-shop:

spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
t.apps/carts created

arts created

t.apps/carts-db created

arts-db created

t.apps/catalogue created

atalogue created

t.apps/catalogue-db created

atalogue-db created

t.apps/front- created

ront- created

t.apps/orders created

rders created

t.apps/orders-db created

rders-db created

t.apps/payment created

ayment created

t.apps/queue-master created

ueue-master created

t.apps/rabbitmg created

abbitmg created

t.apps/session-db created

ession-db created

t.apps/shipping created

hipping created

t.apps/user created

ser created

t.apps/user-db created

ser-db created

deployments to stabilize...

:deployment/carts-db is ready. [13/14 deployment(s) still pendil
deployment/carts is ready. [12/14 deployment(s) still pending]
deployment/catalogue: waiting rollout to finish: @ of 2 ups
deployme...ew replicas have been updated...
deployment/shipping is ready. [11/14 deployment(s) still pendl
:deployment/orders is ready. [10/14 deployment(s) still pending
deployment/queue-master is ready. [9/14 deployment(s) still pe

- sock-shop:deployment/session-db: creating container session-db

- sock-shop:pod/session-db-9b5549676-7299r: creating container session-—

- sock-shop:pod/session-db-9b5549676-897wm: creating container session-—
- sock-shop:deployment/user: creating container user

- sock-shop:pod/user-54ff895f96-651z9: creating container user

rollout to finish: @ out of 2
[8/14 deployment(s) still pending
[7/14 deployment(s) still pend
deployment/catalogue-db 1is ready. [6/14 deployment(s) still pe
[5/14 deployment(s) still pendil
[4/14 deployment(s) still pendin
[3/14 deployment(s) still pendil
[2/14 deployment(s) still pending]
[1/14 deployment(s) still pending
deployment/catalogue is ready.

- sock-shop:deployment/user-db: waiting

- sock-shop:deployment/user-db 1is ready.
- sock-shop:deployment/session-db is ready.
- sock-shop:
- sock-shop:deployment/orders-db 1is ready.
- sock-shop:deployment/rabbitmg is ready.

- sock-shop:deployment/front- is ready.

- sock-shop:deployment/user is ready.
- sock-shop:deployment/payment 1is ready.

- sock-shop:

Deployments stabilized in 3 minutes 3.918 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS
sock-shop pod/carts-79c6987788-4wv7g 1/1 Running 0]
sock-shop pod/carts-79c6987788-xpk6r 1/1 Running 0]
sock-shop pod/carts-db-67b78d4596-fc921 1/1 Running 0]
sock-shop pod/carts-db-67b78d4596-xffsr 1/1 Running 0]
sock-shop pod/catalogue-577d9b8cf5-pjgmx 1/1 Running 0
sock-shop pod/catalogue-577d9b8cf5-vcfnw 1/1 Running ©
sock-shop pod/catalogue-db-7959d46454-jzn2j 1/1 Running 0]
sock-shop pod/catalogue-db-7959d46454-vwpmf 1/1 Running 0]
sock-shop pod/front- -8586bf9c4-w7t5h 1/1 Running 0]
sock-shop pod/orders-9f8b7999b-qltbh4 1/1 Running 0
sock-shop pod/orders-9f8b7999b-skbrl 1/1 Running 0]
sock-shop pod/orders-db-75d675689d-6gz97 1/1 Running 0]
sock-shop pod/orders-db-75d675689d-jqw8d 1/1 Running 0
sock-shop pod/payment-58d65c596-p82cq 1/1 Running 0
sock-shop pod/payment-58d65c596-sgchd 1/1 Running 0
sock-shop pod/queue-master-7748c89c8f-4m852 1/1 Running 0
sock-shop pod/queue-master-7748c89c8f-xzsjz 1/1 Running 0]
sock-shop pod/rabbitm... 2 2 3m7s

sock-shop deployment.apps/user 2/2

sock-shop deployment.apps/user-db 2/2

NAMESPACE NAME DESIRED CURRENT Rl
sock-shop replicaset.apps/carts-79c6987788 2 2 2

sock-shop replicaset.apps/carts-db-67b78d4596 2 2 2
sock-shop replicaset.apps/catalogue-577d9b8cf5 2 2 2
sock-shop replicaset.apps/catalogue-db-7959d46454 2 2 2
sock-shop replicaset.apps/front- -8586bf9c4 1 1 1
sock-shop replicaset.apps/orders-9f8b7999b 2 2 2
sock-shop replicaset.apps/orders-db-75d675689d 2 2 2
sock-shop replicaset.apps/payment-58d65c596 2 2 2
sock-shop replicaset.apps/queue-master-7748c89c8f 2 2 2
sock-shop replicaset.apps/rabbitmg-697c5dc766 2 2 2
sock-shop replicaset.apps/session-db-9b5549676 2 2 2
sock-shop replicaset.apps/shipping-5dd9bfb676 2 2 2
sock-shop replicaset.apps/user-54ff895f96 2 2 2
sock-shop replicaset.apps/user-db-549c4bbb9b 2 2 2

Summary of each manifest:

¢ This manifest defines a Kubernetes Namespace.

e The Namespace is named 'sock-shop".

e Namespaces are used to organize and manage resources in a Kubernetes cluster.

¢ This manifest defines a Deployment in Kubernetes.

e The Deploymentis named 'carts' and is located in the 'sock-shop' namespace.
o It specifies that there should be 2 replicas of the 'carts' application running.

e The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8".

e Environment variables are set for Java options to optimize memory usage and disable certain

features.

e Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,

and a minimum of 100m CPU and 200Mi memory.

e The application listens on port 80 within the container.

e Security context is configured to run the container as a non-root user with specific
capabilities.

e Theroot filesystem is set to be read-only for security purposes.

e Atemporary volume is mounted at '/tmp' using an in-memory empty directory.

e The Deploymentis scheduled to run on nodes with the Linux operating system.

e Thisis a Kubernetes Service manifest.

e The Serviceis named 'carts'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: carts".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: carts' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db'.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security settings are applied to drop all capabilities and add only CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'carts-db".

Itis labeled with 'name: carts-db'.

The Service is created in the 'sock-shop' namespace.

It exposes port 27017 and directs traffic to the same port on the target pods.

The Service selects pods with the label 'name: carts-db' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'catalogue' application running.
The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5".

The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and
100Mi memory.

The container runs as a non-root user with user ID 10001 and has a read-only root filesystem.

Security settings drop all capabilities except 'NET_BIND_SERVICE".

A liveness probe checks the '/health' endpoint on port 80, starting after 300 seconds and

repeating every 3 seconds.

A readiness probe also checks the '/health' endpoint on port 80, starting after 180 seconds

and repeating every 3 seconds.

The Deployment is scheduled to run on nodes with the label 'beta.kubernetes.io/os: linux'.

This is a Kubernetes Service manifest.

The service is named 'catalogue’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: catalogue'.

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: catalogue’.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'catalogue-db' pod running.

The pods are selected based on the label 'name: catalogue-db'.

Each pod runs a single container using the image 'weaveworksdemos/catalogue-db:0.3.0".

The container is configured with environment variables for 'MYSQL_ROOT_PASSWORD' and
'MYSQL_DATABASE".
The container exposes port 3306, which is typically used for MySQL databases.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'catalogue-db'.

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 3306.

It targets the same port (3306) on the pods it selects.

The Service uses a selector to match pods with the label 'name: catalogue-db'.

This setup is typically used to provide a stable endpoint for accessing a database running in

the cluster.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.
It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a selector to match pods with the label 'name: front-end".
The pod template includes a single container named 'front-end".

The container uses the image 'weaveworksdemos/front-end:0.3.12".

Resource limits are set for the container: 300m CPU and 1000Mi memory.

Resource requests are set for the container: 100m CPU and 300Mi memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true'.

Security context is configured to run the container as a non-root user with user 1D 10001.
All Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the '/' path on port 8079, with an initial delay of 300
seconds and a period of 3 seconds.

A readiness probe is also configured to check the '/' path on port 8079, with an initial delay of
30 seconds and a period of 3 seconds.

The node selector ensures the pod runs on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.

The Service is named 'front-end".

Itis located in the 'sock-shop' namespace.

The Service type is 'NodePort', which exposes the service on each Node's IP at a static port.
It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, which is the port on each node where the service can be
accessed externally.

The Service is configured to be scraped by Prometheus for monitoring, as indicated by the
annotation 'prometheus.io/scrape: true'.

It uses a selector to target pods with the label 'name: front-end".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'orders' application running.
The Deployment uses the Docker image 'weaveworksdemos/orders:0.4.7".

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.
The application listens on port 80 within the container.

Security context is configured to run the container as a non-root user with specific

capabilities and a read-only root filesystem.
A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'orders".

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: orders".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the target pods.

It uses a selector to match pods with the label 'name: orders".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'orders-db' pod running.

The pods are selected based on the label 'name: orders-db'.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security settings are applied to drop all capabilities and add specific ones like CHOWN,
SETGID, and SETUID.

The root filesystem of the container is set to be read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.
The Service is named 'orders-db".

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.
It targets the same port (27017) on the pods.

The Service selects pods with the label 'name: orders-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'payment’ application running.

The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3".

Resource limits are set for the containers: 200m CPU and 200Mi memory.

Resource requests are set for the containers: 99m CPU and 100Mi memory.

The container exposes port 80.

Security context is configured to run the container as a non-root user with user ID 10001.

All capabilities are dropped except 'NET_BIND_SERVICE', and the root filesystem is set to

read-only.

A liveness probe is configured to check the '/health' endpoint on port 80, starting after 300

seconds and checking every 3 seconds.

A readiness probe is also configured to check the '/health' endpoint on port 80, starting after
180 seconds and checking every 3 seconds.

The Deployment is scheduled to run on nodes with the operating system labeled as Linux.

This is a Kubernetes Service manifest.

The service is named 'payment’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: payment'.

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: payment’.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'queue-master' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'queue-master' pod running.

The pods are selected based on the label 'name: queue-master’.

Each pod runs a single container using the image 'weaveworksdemos/queue-master:0.3.1".
The container is configured with specific Java options through environment variables.

Resource limits are set for the container, with a maximum of 300m CPU and 500Mi memory,

and requests for 100m CPU and 300Mi memory.
The container exposes port 80.

The pods are scheduled on nodes with the operating system labeled as 'linux".

This manifest defines a Kubernetes Service.

The Service is named 'queue-master".

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: queue-master’.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: queue-master' to route traffic to.

This manifest defines a Deployment for RabbitMQ in Kubernetes.

The Deployment is named 'rabbitmq' and is located in the 'sock-shop' namespace.

It specifies 2 replicas, meaning there will be 2 instances of RabbitMQ running.

The Deployment uses a label 'name: rabbitmq' to manage its pods.

The RabbitMQ container uses the image 'rabbitmq:3.6.8-management’.

It exposes two ports: 15672 for management and 5672 for RabbitMQ communication.

Security settings drop all capabilities but add CHOWN, SETGID, SETUID, and DAC_OVERRIDE,
and the root filesystem is set to read-only.

An additional container, 'rabbitmg-exporter, is included for monitoring purposes, using the

'kbudde/rabbitmg-exporter' image and exposing port 9090.

The Deployment is configured to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'rabbitmq’.

It is annotated for Prometheus scraping on port 9090.

The Service is located in the 'sock-shop' namespace.

It exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.
The Service uses TCP protocol for communication.

It selects pods with the label 'name: rabbitmq' to route traffic to.

This manifest defines a Deployment in Kubernetes.
The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'session-db' pod running.

The pods are selected based on the label 'name: session-db".

Each pod runs a single container using the 'redis
"image.
The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.

The Service is named 'session-db".

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 6379.

It targets the same port (6379) on the selected pods.

The Service uses a selector to match pods with the label 'name: session-db'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the 'shipping' application to be run.

The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8".
Environment variables are set for the application, including 'ZIPKIN' and 'JAVA_OPTS.

Resource limits and requests are defined, with CPU limits at 300m and memory limits at
500Mi, and requests at 100m CPU and 300Mi memory.

The application listens on port 80 within the container.

Security context is configured to run the container as a non-root user with user ID 10001, and
it drops all capabilities except 'NET_BIND_SERVICE".

The root filesystem is set to be read-only.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The Deployment is scheduled to run on nodes with the label 'beta.kubernetes.io/os: linux'.

This is a Kubernetes Service manifest.

The service is named 'shipping’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.
The service is labeled with 'name: shipping".

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: shipping' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'user' application running.
The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7".

Resource limits are set for the container: 300m CPU and 200Mi memory, with requests for
100m CPU and 100Mi memory.

The container listens on port 80.
An environment variable 'mongo’ is set with the value 'user-db:27017".
Security context is configured to run the container as a non-root user with user 1D 10001.

The container has a read-only root filesystem and drops all capabilities except
'NET_BIND_SERVICE".

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,

with initial delays of 300 and 180 seconds, respectively.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'user".

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: user".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: user".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user-db' pod running.

The pods are labeled with 'name: user-db' for identification and selection.

Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0".
The container exposes port 27017, which is typically used by MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

e Theroot filesystem of the container is set to be read-only for security purposes.
e Atemporary volume is mounted at'/tmp' using an in-memory emptyDir volume.

e The pods are scheduled to run on nodes with the operating system labeled as Linux.

e This manifest defines a Kubernetes Service.

e The Service is named 'user-db'.

e ltislocated in the 'sock-shop' namespace.

e The Service is configured to expose port 27017.

o |ttargetsthe same port (27017) on the pods it selects.

e The Service uses a selector to match pods with the label 'name: user-db'.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Port Configuration

o details: The service does not specify the port it should serve on, which can lead to

connectivity issues.

¢ manifests having the issues: ['sock-shop-2/manifests/02-carts-svc.yaml', 'sock-shop-
2/manifests/04-carts-db-svc.yaml', 'sock-shop-2/manifests/06-catalogue-svc.yaml', 'sock-
shop-2/manifests/08-catalogue-db-svc.yaml, 'sock-shop-2/manifests/12-orders-svc.yaml',
'sock-shop-2/manifests/14-orders-db-svc.yaml, 'sock-shop-2/manifests/16-payment-
svc.yaml', 'sock-shop-2/manifests/18-queue-master-svc.yaml', 'sock-shop-2/manifests/22-
session-db-svc.yaml', 'sock-shop-2/manifests/24-shipping-svc.yaml, 'sock-shop-
2/manifests/26-user-svc.yaml', 'sock-shop-2/manifests/28-user-db-svc.yaml']

e problematic config: The 'ports' field in the Service spec is missing the 'port' configuration.
Issue #1: Single Replica Deployment

e details: Having a single replica for a deployment can lead to downtime if the pod fails.
¢ manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

o problematic config: The 'replicas’ field is set to 1.
Issue #2: High Initial Delay for Liveness Probe

e details: A high initial delay for the liveness probe can delay the detection of a non-responsive
application.

e manifests having the issues: ['sock-shop-2/manifests/05-catalogue-dep.yaml’, 'sock-shop-
2/manifests/09-front-end-dep.yaml’, 'sock-shop-2/manifests/15-payment-dep.yaml’, 'sock-
shop-2/manifests/25-user-dep.yaml']

e problematic config: The 'initialDelaySeconds' for the liveness probe is set to 300.

Issue #3: High Initial Delay for Readiness Probe

e details: A high initial delay for the readiness probe can delay the application from being
marked as ready, affecting service availability.

¢ manifests having the issues: ['sock-shop-2/manifests/05-catalogue-dep.yaml', 'sock-shop-
2/manifests/15-payment-dep.yaml’, 'sock-shop-2/manifests/25-user-dep.yaml']

e problematic config: The 'initialDelaySeconds' for the readiness probe is set to 180.

Application of the manifests:

Thoughts:

The manifests provided are part of a well-known microservices demo application called 'Sock
Shop'. This application is designed to demonstrate the use of microservices architecture and
Kubernetes orchestration. The file names, labels, and images used in the manifests (e.g.,
'weaveworksdemos') are indicative of the Sock Shop application, which simulates an e-
commerce website for selling socks. The application includes various services such as carts,
catalogue, orders, payment, and user management, each with its own database and service
components, reflecting a typical e-commerce platform's architecture.

Assumed application:

Sock Shop is an e-commerce application that simulates an online sock store. It offers users the
ability to browse a catalogue of socks, add items to a cart, place orders, and manage user
accounts. The application is composed of multiple microservices, each responsible for a specific
function within the e-commerce workflow, such as handling orders, managing user sessions, and

processing payments.
Summary of your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID> Replace <ID> with an

available ID: [!

))
))
))

)]
4. http://front-end.sock-shop.svc.cluster.local/category/

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with an

available tag: [A A , , , , , , ,
)]
6. http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: CartsServiceEndpointsAvailable ~

4 Description

The first issue to address is the 'Missing Port Configuration' in the Service manifests.
This issue is likely to cause connectivity problems, making it a critical aspect to verify.
Among the manifests with this issue, 'sock-shop-2/manifests/02-carts-svc.yaml' is
selected as it is the first in the list. The steady state will ensure that the Service is
functioning correctly by checking the number of endpoints available for the 'carts'
service, which should match the number of replicas in the corresponding Deployment.

@, Current state inspection

To inspect the 'CartsServiceEndpointsAvailable' state, | need to verify the number of
endpoints available for the 'carts' service in the 'sock-shop' namespace. This requires
checking the endpoints associated with the 'carts' service and ensuring they match the
number of replicas specified in the 'carts' deployment. The Kubernetes APl is suitable
for this task as it allows direct inspection of the service endpoints and deployment
replicas.

tool: duration:

Inspection script (Python)

0s
time
argparse
kubernetes client, config

Load Kubernetes configuration based on the environment
os.getenv():

config.load_incluster_config()

config.load_kube_config()

http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

vl = client.CoreV1Api()
apps_vl = client.AppsV1Api ()

namespace =
service_name =

deployment_name =

Function to get the number of endpoints
():
endpoints = vl.read_namespaced_endpoints(service_name, namespace

len(endpoints.subsets[0].addresses) endpoints.subsets

Function to get the number of replicas
():
deployment = apps_vl.read_namespaced_deployment(deployment_name.
deployment.status.replicas

Main function to check the state
__hame__ ==
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=

args = parser.parse_args()

duration = args.duration
range (duration):
endpoints_count = get_endpoints_count()
replicas_count = get_replicas_count()
({endpoints_count}
time.sleep(1l)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Endpoints available: 2, Expected replicas:

Endpoints available: 2, Expected replicas:

Endpoints available: 2, Expected replicas:

N NN NN

2
2
Endpoints available: 2, Expected replicas:
2
2

Endpoints available: 2, Expected replicas:

Check completed.

> Threshold

The steady state to be verified is the availability of endpoints for the 'carts' service,
which should match the number of replicas specified in the corresponding Deployment.
The Deployment for 'carts' specifies 2 replicas, and the current state shows that there
are 2 endpoints available consistently over a period of 5 seconds. This indicates that the
system is currently in a healthy state. To account for potential fluctuations and ensure
the system remains resilient, a reasonable threshold should allow for a small tolerance.
Given the redundancy with 2 replicas, the threshold can be set to require at least 1
endpoint to be available at all times, but ideally, both should be available. Additionally,
the threshold should specify that this condition must be met for at least 95% of the time
during the 1-minute chaos experiment, allowing for brief disruptions without failing the

steady state check.

At least 1 endpoint must be available for the 'carts' service 95% of the time during a 1-
minute period, with a target of 2 endpoints available.

B Unit test to validate the steady state

To verify the steady state of the 'carts' service, | will implement a unit test that checks
the availability of endpoints against the number of replicas in the deployment. The test
will run for a specified duration, checking every second, and will ensure that at least 1
endpoint is available 95% of the time. This will be done by counting the number of
successful checks and comparing it to the total number of checks at the end of the
duration. The threshold is set to require at least 1 endpoint to be available 95% of the
time, with a target of 2 endpoints available.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self):
super () .__init__()
self.namespace =
self.service_name =

self.deployment_name =

(self):
endpoints = self.vl.read_namespaced_endpoints(self.service_r

len(endpoints.subsets[0] .addresses) endpoints.subs

def get_replicas_count(self):

deployment = self.vl.read_namespaced_deployment(self.deployn
return deployment.status.replicas

def test_endpoints_availability(self, duration):

success_count = 0

total_checks = duration

for _ in range(duration):

endpoints_count = self.get_endpoints_count()
replicas_count = self.get_replicas_count()

print(f'Endpoints available: {endpoints_count}, Expectec
Check if at least 1 endpoint is available
if endpoints_count >= 1:

success_count += 1

time.sleep(1)

Calculate the success rate

success_rate = (success_count / total_checks) * 100

print(f'Success rate: {success_ratel}%')

Assert that the success rate is at least 95%

assert success_rate >= 95, f'Success rate {success_rate}% 1i:

def main():

parser

parser

args =

test

= argparse.ArgumentParser (description='Test Carts Service
.add_argument('--duration', type=int, default=60, help="'DL
parser.parse_args()

TestCartsServiceEndpoints()

test.test_endpoints_availability(args.duration)

it __name__

IERI®)

== '__main__":

Pod unittestcartsservi ceendpointsavailablemod®-pod has failed.

Traceback (most recent call last):

File "/chaos-eater/sandbox/cycle_20241127_030827/hypothesis/unitte

ERIN®)

File "/chaos-eater/sandbox/cycle_20241127_030827/hypothesis/unitte

test.test_endpoints_availability(args.duration)

File
replicas_count = self.get_replicas_count()
File
deployment = self.vl.read_namespaced_deployment(self.deployment_
AttributeError: object has no attribute
The error occurs because the object does not have a method
. This method belongs to the class. To fix this, |
will ensure that the is used to read the deployment information. This will
involve initializing the in the class and usingitin the

method. The rest of the logic remains unchanged, and the test will
still check the availability of endpoints against the number of replicas for the specified

duration.
os
time
argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self):
super () .__init__()
self.apps_vl = client.AppsV1Api() # Initialize AppsVIiApi
self.namespace =
self.service_name =

self.deployment_name =

(self):
endpoints = self.vl.read_namespaced_endpoints(self.service_r
len(endpoints.subsets[0].addresses) endpoints.subs
(self):

deployment = self.apps_vl.read_namespaced_deployment(self.de
deployment.status.replicas

(self, duration):
success_count = 0

total_checks = duration

range (duration):
endpoints_count = self.get_endpoints_count()
replicas_count = self.get_replicas_count()

({endpoints_count}

Check if at least 1 endpoint is available
endpoints_count >= 1:

success_count += 1

time.sleep(1)

Calculate the success rate
success_rate = (success_count / total_checks) * 100

¢ {success_rate}%")

Assert that the success rate is at least 95%

success_rate >= 95, {success_rate}

():
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=60, help=
args = parser.parse_args()

test = TestCartsServiceEndpoints()

test.test_endpoints_availability(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Endpoints available: 2, Expected replicas:

Endpoints available: 2, Expected replicas:

Endpoints available: 2, Expected replicas:

N NN NN

2
2
Endpoints available: 2, Expected replicas:
2
2

Endpoints available: 2, Expected replicas:

Success rate: 100.0%

¥ Steady state #2: FrontEndLivenessProbeSuccess

® Description

The next issue to address is the 'Single Replica Deployment' in the 'sock-shop-
2/manifests/09-front-end-dep.yaml' This issue is critical because having only one
replica can lead to downtime if the pod fails. To ensure the system's resilience, we need
to verify that the single replica of the 'front-end' deployment is always available. The
steady state will check the availability of the 'front-end' pod by ensuring that the
liveness probe is successful 95% of the time during a 1-minute period. This will help us
confirm that the single replica is stable and responsive, even though it lacks
redundancy.

Current state inspection

To inspect the 'FrontEndLivenessProbeSuccess', we need to ensure that the liveness
probe of the 'front-end' deployment is successful 95% of the time during a 1-minute
period. Since this involves checking the liveness probe status of a Kubernetes pod, the
K8s APl is the appropriate tool to use. We will write a Python script using the Kubernetes
client library to monitor the liveness probe status of the 'front-end' pod in the 'sock-
shop' namespace. The script will check the pod's status every second for a duration of
60 seconds and calculate the success rate of the liveness probe.

tool: duration:

Inspection script (Python)

0s
time
argparse
kubernetes client, config

(namespace, duration):
Load Kubernetes configuration based on the environment
os.getenv():

config.load_incluster_config()
config.load_kube_config()

vl = client.CoreV1Api()
success_count = 0
total_checks = 0

range (duration):
pods = vl1.list_namespaced_pod(namespace=namespace, label_sel
pods:
pod = pods[0]
pod.status.conditions:
condition pod.status.conditions:

condition.type == condition.statt

success_count += 1

total_checks += 1
time.sleep(1l)

success_rate = (success_count / total_checks) * 100
¢ {success_rate}%")
success_rate

():
parser = argparse.ArgumentParser (description=

parser.add_argument(, type=int, default=60, help=
args = parser.parse_args()

namespace =
success_rate = check_frontend_liveness(namespace, args.duration)
success_rate >= 95:

()

__hame__ ==

ERIN®)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Liveness Probe Success Rate: 100.0%

Liveness probe 1is successful 95% of the time.

> Threshold

The steady state to be verified is the availability of the 'front-end' pod, specifically
ensuring that the liveness probe is successful 95% of the time during a 1-minute period.
The current state shows a 100% success rate, which is above the required 95%. To
account for fluctuations and ensure the system remains stable, we can set a threshold
that allows for some tolerance. Given that the current success rate is 100%, setting the
threshold at 95% is reasonable and ensures that the system is considered stable even if
there are minor fluctuations. This threshold is also aligned with the requirement to
complete the Chaos-Engineering experiment within 1 minute, as it allows for quick

verification of the system's stability.

The liveness probe for the 'front-end' pod must be successful at least 95% of the time

during a 1-minute monitoring period.

B Unit test to validate the steady state

To verify the steady state of the 'front-end' pod's liveness probe, | will write a Python
unit test that checks if the liveness probe is successful at least 95% of the time during a
specified duration. The test will use the Kubernetes Python API to monitor the pod's
status and calculate the success rate. The threshold of 95% is explicitly defined and will
be used in the assertion to ensure the system's stability. The test will include a for-loop
to check the status every second for the specified duration, and argparse will be used to
allow users to specify the duration. The test will output a summary at the end,
indicating whether the threshold was met.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :

(self, namespace, duration):
success_count = 0
total_checks = 0

_ range (duration):
List pods with the label 'name=front-end' in the speci
pods = self.vl.list_namespaced_pod(namespace=namespace,
pods:
pod = pods[0]
pod.status.conditions:
condition pod.status.conditions:
condition.type == condition.:s
success_count += 1

total_checks += 1
time.sleep(1)

Calculate the success rate of the liveness probe
success_rate = (success_count / total_checks) * 100

¢ {success_rate}%")
success_rate

(self, namespace=

Check the liveness probe success rate

success_rate = self.check_frontend_1liveness(namespace, durat
Assert that the success rate is at least 95%

success_rate >= 95,

0):
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=60, help=
args = parser.parse_args()

Create an instance of the test class

test_instance = TestFrontEndLivenessProbe()

Run the test with the specified duration
test_dinstance.test_liveness_probe_success_rate(duration=args.dur

__nhame__ ==

ERIN®)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Liveness Probe Success Rate: 100.0%

Fault definition

® Scenario: Black Friday Sale

4 Description

During a Black Friday sale, the system is expected to handle a significant increase in
traffic and load. This event will test the system's ability to maintain steady states under
high demand. The 'CartsServiceEndpointsAvailable' steady state is crucial as it ensures
the availability of the carts service, which is essential for users to add items to their cart.
The 'FrontEndLivenessProbeSuccess' steady state is also critical as it ensures the front-
end is responsive, allowing users to browse and make purchases. The system's
weaknesses include missing port configurations, a single replica deployment for the
front-end, and high initial delays for probes. To simulate the Black Friday event, we will
first inject a 'StressChaos' fault to simulate high CPU usage on the 'carts' and 'front-end'
pods, testing their ability to handle increased load. Next, we will inject a

'NetworkChaos' fault to simulate network latency, testing the system's resilience to

network issues during high traffic. Finally, we will inject a 'PodChaos' fault to kill the
single replica of the 'front-end' pod, testing the system's ability to recover from pod
failures without redundancy.

Fault-injection sequence

({'namespace': 'sock-shop’, 'label': 'name=carts'}),
({'namespace': 'sock-shop’, 'label': 'name=front-end'}) = ({'"namespace":
'sock-shop), 'label': 'name=front-end'}) = ({'namespace': 'sock-shop’, 'label':

'name=front-end'})

£ Detailed fault parameters
Detailed parameters of ({'namespace': 'sock-shop’, 'label': 'name=carts'})

v {
"mode" : "all"

”Value" . ll2l|

Y "stressors" : {

v "cpu" . {
"workers" : 2

"load" : 100

}

Y "containerNames" : [

O : "carts"

]

v n

selector" : {

v n

namespaces" : [

0 : "sock-shop"

]
¥ "labelSelectors" : {
"name" : "carts"
}
}

}
Detailed parameters of ({'namespace': 'sock-shop', 'label': 'name=front-
end'})

v {

"mode" : "all"
Y "stressors" : {
v "cpu" . {
"workers" : 2

"load" : 80

}
Y "containerNames" : [

0 : "front-end"

1
Y "selector" : {
Y "namespaces" : [
0 : "sock-shop"
]
¥ "labelSelectors" : {

"name" : "front-end"

Detailed parameters of networkchaos ({'namespace': 'sock-shop’, 'label': 'name=front-

end'})

v {
"action" : "delay"
"mode" : "all"

Y U'selector" : {
Y "namespaces" : [

0 : "sock-shop"

1
Y "labelSelectors" : {

"name" : "front-end"

}

"direction" : "to"
"device" : "etho"

Y "delay" : {
"latency" : "100ms"

"jitter" : "10ms"

"correlation" : "50"

}

Detailed parameters of ({'namespace': 'sock-shop), 'label': 'name=front-end'})

v {
"action" : "pod-kill"
"mode" : "one"

v n

selector" : {

v n

namespaces" : [

0 : "sock-shop"
1

Y "labelSelectors" : {

"name" : "front-end"

}

”Va-l.ue" 0 lllll

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

To design a Chaos Engineering experiment for the Sock Shop application, we need to
ensure that the system can maintain its steady states during fault injection. The
experiment will be divided into three phases: pre-validation, fault-injection, and post-
validation. The total duration of the experiment is constrained to 1 minute, so we need

to allocate time efficiently across these phases.

1. Pre-validation Phase: This phase ensures that the system is in a steady state before
injecting any faults. Given the constraints, we will allocate 15 seconds for this
phase. During this time, we will verify the two steady states:
'CartsServiceEndpointsAvailable' and 'FrontEndLivenessProbeSuccess'. This
involves checking the availability of endpoints for the 'carts' service and the

success rate of the liveness probe for the 'front-end' pod.

2. Fault-injection Phase: This phase involves injecting faults to simulate the Black
Friday sale scenario. We will allocate 30 seconds for this phase. The faults to be

injected include:

o 'StressChaos' to simulate high CPU usage on the 'carts' and 'front-end' pods.
o 'NetworkChaos' to simulate network latency on the 'front-end' pod.

o 'PodChaos' to kill the single replica of the 'front-end' pod. These faults will test
the system's ability to handle increased load, network issues, and pod failures.
3. Post-validation Phase: This phase ensures that the system returns to its steady
states after fault injection. We will allocate 15 seconds for this phase. We will re-

check the two steady states to confirm that the system has recovered and is
functioning as expected.

The total time for the experiment is 1 minute, with 15 seconds for pre-validation, 30
seconds for fault injection, and 15 seconds for post-validation. This allocation allows us
to efficiently test the system's resilience while adhering to the time constraint.

Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in a steady state
before we proceed with fault injection. Given the constraints, we have 15 seconds to
perform this validation. We will execute two unit tests to verify the steady states:
'CartsServiceEndpointsAvailable' and 'FrontEndLivenessProbeSuccess'. These tests will
be executed simultaneously to maximize the use of the available time. The
'CartsServiceEndpointsAvailable' test will check if the 'carts' service has at least one
endpoint available, which is crucial for the system's functionality. The
'FrontEndLivenessProbeSuccess' test will verify that the 'front-end' pod is responsive,
ensuring that the user interface is operational. Both tests will run for the entire 15
seconds, with no grace period, to ensure that the system is stable before proceeding to
the fault injection phase. This approach allows us to quickly confirm the system's

readiness for the chaos experiment.

o Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:

o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

The fault-injection phase is designed to simulate a Black Friday sale scenario, where the
system experiences high load and network issues. The goal is to observe how the
system handles these conditions and whether it can maintain its steady states. Given
the 30-second time constraint, the faults will be injected in a staggered manner to
maximize the observation of their effects. The first set of faults will be StressChaos,
targeting the 'carts' and 'front-end' pods to simulate high CPU usage. This will start
immediately at the beginning of the phase and last for 10 seconds. The second fault,
NetworkChaos, will introduce network latency to the 'front-end' pod, starting at the 10-
second mark and lasting for 10 seconds. Finally, PodChaos will be injected at the 20-
second mark, targeting the 'front-end' pod to simulate a pod failure, lasting for 10
seconds. This staggered approach allows us to observe the system's behavior under
each fault condition separately and in combination, providing insights into its resilience
and recovery capabilities.

Verified Steady State #0:
o Workflow Name:

o Grace Period:

o Duration:

e \Verified Steady State #1:
o Workflow Name:

o Grace Period:

o Duration:

e Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #2:

o Workflow Name:

o Grace Period:
o Duration:
e Injected Faults #3:
o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the constraints of a 15-second total time for
this phase, we will focus on quickly verifying the two defined steady states:
'CartsServiceEndpointsAvailable' and 'FrontEndLivenessProbeSuccess'. The approach is
to execute both unit tests simultaneously to maximize the use of the limited time
available. This simultaneous execution is feasible because the tests are independent
and can run in parallel without interference. The 'CartsServiceEndpointsAvailable' test
will verify that the 'carts' service has the expected number of endpoints available, while
the 'FrontEndLivenessProbeSuccess' test will check that the liveness probe for the
'front-end' pod is successful. Both tests will have a grace period of 0s, starting
immediately, and will run for the full 15s duration to ensure a thorough check within the
time limit. This approach ensures that we can quickly confirm the system's return to its

steady states after the chaos experiment.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The Chaos Engineering experiment for the Sock Shop application is structured into
three distinct phases: pre-validation, fault-injection, and post-validation, all within a

total duration of one minute.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are executed

simultaneously to ensure the system is in a steady state before any faults are

introduced. The 'CartsServiceEndpointsAvailable' test, with the workflow name 'pre-
unittest-cartsserviceendpointsavailable', and the 'FrontEndLivenessProbeSuccess' test,
with the workflow name 'pre-unittest-frontendlivenessprobesuccess', both start
immediately with no delay and run for the entire 15 seconds. These tests check the
availability of the 'carts' service endpoints and the responsiveness of the 'front-end'

pod, respectively.

The fault-injection phase spans 30 seconds and involves a staggered introduction of
faults to simulate a high-load scenario akin to a Black Friday sale. Initially, two
'StressChaos' faults are injected simultaneously at the start of the phase, targeting the
‘carts' and 'front-end' pods to simulate high CPU usage. These have workflow names
'fault-stresschaos' and 'fault-stresschaos2', each lasting for 10 seconds. At the 10-
second mark, 'NetworkChaos' is introduced to the 'front-end' pod to simulate network
latency, with the workflow name 'fault-networkchaos', also lasting for 10 seconds.
Finally, at the 20-second mark, 'PodChaos' is injected to simulate a pod failure on the
'front-end' pod, with the workflow name 'fault-podchaos!, lasting for the remaining 10
seconds. Throughout this phase, the steady states 'CartsServiceEndpointsAvailable'
and 'FrontEndLivenessProbeSuccess' are continuously verified with workflows 'fault-
unittest-cartsserviceendpointsavailable' and 'fault-unittest-
frontendlivenessprobesuccess', each running for the full 30 seconds.

In the post-validation phase, lasting 15 seconds, the system's return to steady states is
verified. The same two unit tests from the pre-validation phase are executed
simultaneously again. The 'CartsServiceEndpointsAvailable' test, with the workflow
name 'post-unittest-cartsserviceendpointsavailable’, and the
'FrontEndLivenessProbeSuccess' test, with the workflow name 'post-unittest-
frontendlivenessprobesuccess', both start immediately with no delay and run for the
entire 15 seconds. This ensures the system has recovered and is functioning as expected

after the fault injections.

Completed the chaos experiment!

Phase 3: Analysis

The Chaos Engineering experiment results indicate that the 'FrontEndLivenessProbeSuccess' test
failed during both the fault-injection and post-validation phases, while the
'CartsServiceEndpointsAvailable' test passed throughout the experiment. This analysis will focus
on understanding why the 'FrontEndLivenessProbeSuccess' test failed and provide insights for

improvement.

1. Pre-Validation Phase Success: Both the 'CartsServiceEndpointsAvailable' and
'FrontEndLivenessProbeSuccess' tests passed during the pre-validation phase, indicating
that the system was in a steady state before the fault injection. This confirms that the initial
configuration of the system was functioning as expected.

2. Fault-Phase Failure of Front-End Liveness Probe: During the fault-injection phase, the
'FrontEndLivenessProbeSuccess' test failed with a liveness probe success rate of 60%. This
failure can be attributed to the combination of 'StressChaos' and 'NetworkChaos' faults
applied to the 'front-end' pod. The 'StressChaos' fault increased CPU load to 80%, which
likely caused resource contention and degraded performance. Additionally, the
'NetworkChaos' fault introduced network latency, further impacting the responsiveness of
the 'front-end' pod. The combination of high CPU load and network latency likely led to the

liveness probe failures, as the pod could not respond in a timely manner.

3. Post-Validation Phase Failure: The 'FrontEndLivenessProbeSuccess' test continued to fail in
the post-validation phase, with a success rate dropping to 13.33%. This suggests that the
system did not recover quickly after the 'PodChaos' fault, which killed the single replica of
the 'front-end' pod. The lack of redundancy (only one replica) meant that there was no
backup pod to take over, leading to prolonged downtime until the pod was recreated and

became ready.
4. Insights and Recommendations:

o Increase Replicas for Front-End: The single replica configuration for the 'front-end’
deployment is a critical weakness. Increasing the number of replicas would provide
redundancy, allowing the system to maintain availability even if one pod fails. This
change would mitigate the impact of the 'PodChaos' fault and improve resilience.

o Optimize Resource Requests and Limits: The 'front-end' pod's resource requests and
limits should be reviewed and potentially increased to handle high CPU loads more
effectively. This could involve increasing the CPU and memory requests to ensure the
pod has sufficient resources during peak loads.

o Adjust Liveness Probe Configuration: The liveness probe's initial delay and period
settings should be optimized to detect failures more quickly and allow for faster
recovery. Reducing the initial delay and period could help identify issues sooner and
trigger restarts if necessary.

o Implement Horizontal Pod Autoscaling: Consider implementing horizontal pod
autoscaling for the 'front-end' deployment to automatically adjust the number of
replicas based on CPU utilization or other metrics. This would allow the system to
dynamically scale in response to increased load, improving resilience during high-
demand scenarios like a Black Friday sale.

By addressing these areas, the system can be better prepared to handle similar fault scenarios in
the future, maintaining steady states and improving overall resilience.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the 'front-end' deployment and avoid failures during high load
scenarios, | will increase the number of replicas from 1 to 3. This change will provide
redundancy, allowing the system to maintain availability even if one pod fails. Additionally, |
will adjust the liveness probe's initial delay to detect failures more quickly. These changes
should help the system better handle the injected faults and maintain the steady state.

Modification_type: replace

File name: sock-shop-2/manifests/09-front-end-dep.yaml

Increase the number of replicas from 1 to 3 to provide redundancy and improve availability.
Adjust the liveness probe's initial delay to detect failures more quickly.

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 3
selector:
matchlLabels:
name: front-end
template:
metadata:

labels:
name: front-end

spec:

containers:

- name: front-end
image: weaveworksdemos/front-end:0.3.12
resources:

limits:
cpu: 300m
memory: 1000Mi
requests:
cpu: 100m
memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value: "true"
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 60

periodSeconds: 3

readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 30
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:

No tags generated

Starting test...

Starting deploy...

Loading images into kind cluster nodes...

Images loaded 1in 60ns

namespace/sock-shop unchanged

Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]:

deployment.apps/carts configured
service/carts configured
deployment.apps/carts-db configured
service/carts-db configured
deployment.apps/catalogue configured
service/catalogue configured
deployment.apps/catalogue-db configured
service/catalogue-db configured
deployment.apps/front- configured
service/front- configured
deployment.apps/orders configured
service/orders configured
deployment.apps/orders-db configured
service/orders-db configured
deployment.apps/payment configured
service/payment configured
deployment.apps/queue-master configured
service/queue-master configured
deployment.apps/rabbitmg configured
service/rabbitmg configured
deployment.apps/session-db configured
service/session-db configured
deployment.apps/shipping configured
service/shipping configured
deployment.apps/user configured

depreca

- service/user configured

- deployment.apps/user-db configured
- service/user-db configured
Waiting deployments to stabilize...
rollout to finish: 1 out of 2 ne
- sock-shop:deployment/carts-db: creating container carts-db

- sock-shop:pod/carts-db-c7...t/user: waiting rollout to finish: 1 «

[9/14 deployment(s) still pending]
[8/14 deployment(s) still pending]
- sock-shop:deployment/catalogue-db is ready. [7/14 deployment(s) still pe
[6/14 deployment(s) still pendin
[5/14 deployment(s) still pendin
[4/14 deployment(s) still pendin

- sock-shop:deployment/carts: waiting

- sock-shop:deployment/carts 1is ready.
- sock-shop:deployment/orders is ready.

- sock-shop:deployment/shipping is ready.
- sock-shop:deployment/carts-db is ready.
- sock-shop:deployment/rabbitmg is ready.

- sock-shop:deployment/front- : waiting rollout to finish: 2 out of :
— sock-shop:deployment/front- ¢ waiting rollout to finish: 1 old rep
— sock-shop:deployment/front- is ready. [3/14 deployment(s) still pendil

- sock-shop:deployment/catalogue: creating container catalogue
- sock-shop:pod/catalogue-99c98647c-m2zhx: creating container catalogue
rollout to finish: 1 old repli:
rollout to finish: 1 old replicas
[2/14 deployment(s) still pending]
[1/14 deployment(s) still pendil

- sock-shop:deployment/payment: waiting
- sock-shop:deployment/user: waiting
- sock-shop:deployment/user is ready.
- sock-shop:deployment/catalogue is ready.
- sock-shop:deployment/payment 1is ready.
Deployments stabilized in 6 minutes 7.025 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTAI
sock-shop pod/carts-5676d7d974-1zptl 1/1 Running 0
sock-shop pod/carts-5676d7d974-z7rmh 1/1 Running 0
sock-shop pod/carts-db-c7bd57998-px2gf 1/1 Running 0
sock-shop pod/carts-db-c7bd57998-s4v58 1/1 Running 0]
sock-shop pod/catalogue-79d486cd94-rfom9 0/1 Terminating 0]
sock-shop pod/catalogue-99c98647c-jws22 1/1 Running 0
sock-shop pod/catalogue-99c98647c-m2zhx 1/1 Running 0
sock-shop pod/catalogue-db-5744764b6d-j4dx5 1/1 Running 0
sock-shop pod/catalogue-db-5744764b6d—-gkhbc 1/1 Running 0
sock-shop pod/front- -b865c56¢cc-42x2r 1/1 Running 0]
sock-shop pod/front- -b865c56cc-7n8bc 1/1 Running 0]
sock-shop pod/front- -b865c56cc—nn718 1/1 Running 0]
sock-shop pod/orders-5dd6b6754-7b4v] 1/1 Running 0
sock-shop pod/orders-5dd6b6754-qcc7w 1/1 Running 0
sock-shop pod/orders-db-8656c6496d-qtr77 1/1 Running 0

sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop

pod/orders-
pod/payment-56dfebdf57-. ..
replicaset.
replicaset.

replicaset

replicaset.
replicaset.

replicaset.

replicaset

replicaset

replicaset.
replicaset.
replicaset.
replicaset.

replicaset

replicaset.
replicaset.
replicaset.
replicaset.

db-8656c6496d-w48ft 1/1
9m20s
apps/orders-5dd6b6754
apps/orders-db-65cf887467

.apps/orders-db-8656c6496d

apps/payment-56dfebdf57
apps/payment-65f797fb54
apps/queue-master-695697f594

.apps/queue-master-769fbch58c
.apps/rabbitmg-6bffd8d78f

apps/rabbitmg-7c59684
apps/session-db-597498bcd
apps/session-db-f47bb8f6f
apps/shipping-cd6éccc55f

.apps/shipping-f64c765f4

apps/user-5bf78479c9
apps/user-675d464c9d
apps/user-db-54dfdb79fc
apps/user-db-8f6d4946

The fault-scope adjustment Completed!

Current fault injection settings:

Injected Faults #0:

o Workflow Name:

o Grace Period:

o Duration:

T {

v

Next fault injection scope:

namespaces" : [

0 : "sock-shop"

resilience to a single pod failure within a multi-replica setup.

N © N © N © © N N O N O N O N ON

Running

N © N © N © © N N O N O N O N O N

Parameters {{"mode": "all", "value": "2", "stressors": {{"cpu": {{"workers": 2, "load": 100}}}},

"containerNames": ["carts"], "selector": {{"namespaces": ["sock-shop"], "labelSelectors":
{"name": "carts"}}}}}

The current Kubernetes manifests show that the 'front-end' deployment now has 3 replicas

instead of 1. This change affects the 'PodChaos' fault injection, which was originally designed to

action should be adjusted to target one of the replicas instead of the only replica. This ensures
that the fault injection aligns with the current state of the deployment and tests the system's

N © N © N © © M N O N O N ON ONBN

kill the single replica of the 'front-end' pod. Since there are now multiple replicas, the 'PodChaos'

1
Y "labelSelectors" : {

"name" : "front-end"

}

Current fault injection settings:

¢ Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"mode": "all", "stressors": {{"cpu": {{"workers": 2, "load": 80}}}}, "containerNames":
["front-end"], "selector": {{"namespaces": ["sock-shop"], "labelSelectors": {{"name": "front-

end"}}1H}

The current K8s manifests show that the 'front-end' deployment now has 3 replicas instead of 1.
The original fault injection targeted all pods with the label 'name: front-end' in the 'sock-shop'
namespace. Since the number of replicas has changed, we need to ensure that the fault injection
still targets all 'front-end' pods to maintain the original goal of the chaos experiment, which is to
test the system's resilience under stress conditions. Therefore, the selector remains the same,

targeting all pods with the label 'name: front-end' in the 'sock-shop' namespace.
Next fault injection scope:

T {

namespaces" : [

0 : "sock-shop"

1
Y "labelSelectors" : {

"name" : "front-end"

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "delay", "mode": "all", "selector": {{"namespaces": ["sock-shop"],

"labelSelectors": {{"name": "front-end"}}}}, "direction": "to", "device": "eth0", "delay": {{"latency":

"100ms", "jitter": "10ms", "correlation": "50"}}}}

The current Kubernetes manifests show that the 'front-end' deployment now has 3 replicas
instead of 1. This change affects the 'PodChaos' fault injection, which was originally designed to
kill the single replica of the 'front-end' pod. Since there are now multiple replicas, the 'PodChaos'
action should be adjusted to target one of the replicas instead of the entire deployment to
maintain the original goal of the chaos experiment, which is to simulate a pod failure without

taking down the entire service.
Next fault injection scope:

MR
Y "namespaces" : [
0 : "sock-shop"
]
Y "labelSelectors" : {

"name" : "front-end"

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["sock-shop"],
"labelSelectors": {{"name": "front-end"}}}}, "value": "1"}}

The current Kubernetes manifests show that the 'front-end' deployment now has 3 replicas
instead of 1. The original chaos experiment targeted the 'front-end' pod with a 'PodChaos' fault to
simulate a pod failure. Since the number of replicas has increased, the 'mode' parameter in the
fault injection should be adjusted to 'one' to ensure that only one pod is killed, maintaining the
original goal of the experiment to test the system's resilience to a single pod failure.

Next fault injection scope:

MR
Y "namespaces" : [
0 : "sock-shop"
]
Y "labelSelectors" : {

"name" : "front-end"

Adjusted unittest

The unit test is focused on the 'carts' service and its associated deployment. Upon reviewing the
reconfigured manifests, there are no changes to the 'carts' deployment or service. The number of
replicas remains the same, and there are no modifications to the configuration that would affect
the endpoints or the availability of the service. Therefore, the unit test does not require any

adjustments as the reconfigured manifests do not impact the 'carts' service or deployment.
Adjusted unittest

The unit test is focused on the front-end deployment, specifically checking the liveness probe
success rate. In the reconfigured manifests, the only change to the front-end deployment is the
increase in the number of replicas from 1 to 3. This change does not affect the logic of the unit
test, which checks the liveness probe success rate of the front-end pods. The test already iterates
over all pods with the label 'name=front-end' and checks their readiness condition, so it will
naturally account for the increased number of replicas. Therefore, the unit test does not require

any modification to accommodate the changes in the reconfigured manifests.

Completed the chaos experiment!

Search Choose namespace

= Q All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml 2

The Chaos Engineering cycle for the Sock Shop application involved a detailed process to
test the system's resilience under simulated fault conditions. The system is composed of
various Kubernetes manifests that define different components of the Sock Shop
application, such as deployments and services for carts, catalogue, orders, payment, and
user management, among others. The application is a microservices-based e-commerce

platform designed to demonstrate Kubernetes orchestration.

The cycle began with an understanding of the user inputs, which included a detailed
analysis of the Kubernetes manifests. Each manifest was summarized to highlight its
purpose, such as defining a namespace, deployment, or service, and specifying
configurations like replicas, resource limits, and security contexts.

The system's resiliency issues were identified, including missing port configurations in
service manifests, single replica deployments, and high initial delays for liveness and
readiness probes. These issues were considered potential weaknesses that could affect the

system's ability to maintain steady states during fault scenarios.

The Chaos Engineering experiment was designed to test the hypothesis that the system's
steady states would be maintained even when faults were injected. Two steady states were
defined: 'CartsServiceEndpointsAvailable' and 'FrontEndLivenessProbeSuccess'. The
experiment was structured into three phases: pre-validation, fault-injection, and post-

validation, each with specific tasks and time allocations.

During the pre-validation phase, the system's initial steady state was verified by running unit
tests to check the availability of the 'carts' service endpoints and the responsiveness of the
'front-end' pod. The fault-injection phase involved simulating a Black Friday sale scenario
with 'StressChaos', 'NetworkChaos', and 'PodChaos' faults to test the system's resilience
under high load and network issues. The post-validation phase re-verified the steady states
to ensure the system recovered after the faults.

The first experiment attempt revealed failures in the 'FrontEndLivenessProbeSuccess' test
during the fault-injection and post-validation phases, indicating issues with the single
replica configuration and resource constraints. Based on the analysis, improvements were
made by increasing the number of replicas for the 'front-end' deployment and adjusting the
liveness probe configuration.

The second experiment attempt, with the improved configuration, successfully passed all
unit tests, confirming that the system maintained its steady states under the simulated fault
conditions. This cycle demonstrated the importance of redundancy, resource optimization,

and probe configuration in enhancing system resilience.

Download output (.zip)

