Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

® Phase 0: Preprocessing

Cleaning the cluster

$ kubectl delete
.chaos—-mesh.org

... Done

-—-all —-context kind-chaos-eater-cluster —-n chaos

S kubectl delete workflownode —--all --context kind-chaos-eater-cluster -n cl

workflownode.chaos-mesh.org

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.

workflownode.

chaos-mesh.org
chaos-mesh.org
chaos—-mesh.org

chaos—-mesh.org

.chaos-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos-mesh.org

chaos—-mesh.org

.chaos—-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos-mesh.org

chaos—-mesh.org

.chaos—-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos-mesh.org

chaos-mesh.org

.chaos—-mesh.org

chaos-mesh.org

chaos-mesh.org

deleted
de’
delet:
dele
deleted
deleted
delete:
deleted
deleted
de’
deleted
deleted
delete:
delet:
deleted
delet:
deleted

deleted

$ kubectl delete services —-all --context kind-chaos-eater-cluster -n chaos

No resources found

S kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1
pod deleted

service deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Pod
metadata:

name: example-pod

labels:
app: example

spec:

restartPolicy: Never

containers:

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl
kind: Service
metadata:
name: example-service
spec:
selector:

app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 141ns
- pod/example-pod created
- service/example-service created
Waiting deployments to stabilize...
- pods is ready.
Deployments stabilized in 3.095 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 7s

NAMESPACE NAME CLUSTER-IP EXTERNAL-TII
default service/example-service ClusterIP 10.96.77.132 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod.

e ThePodis named 'example-pod".

e Itincludes metadata with a label 'app: example'.

e The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.
e The Pod contains a single container named 'example-container".

e The container uses the 'nginx:1.17.1" image.

e The container exposes port 80, which is typically used for HTTP traffic.

e This manifest defines a Kubernetes Service.

e The Service is named 'example-service'.

e ltusesaselector to target pods with the label 'app: example'.
e The Service listens on port 80 using the TCP protocol.

e It forwards traffic to the target port 80 on the selected pods.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Pod Restart Policy

e details: The Pod will not restart automatically if it fails, which can lead to downtime.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never
Issue #1: Single Pod Deployment

e details: Using a single Pod without a controller like Deployment or ReplicaSet can lead to lack

of redundancy and no automatic recovery if the Pod is deleted or fails.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: kind: Pod
Application of the manifests:
Thoughts:

The manifests provided are for a Pod and a Service in Kubernetes, both of which are associated
with the label 'app: example'. The Pod runs an Nginx container, which is a popular web server and
reverse proxy server. The Service is configured to expose the Pod on port 80, which is the default
port for HTTP traffic. Given these details, it is logical to assume that the application is a simple
web server or a static website hosted using Nginx. The use of Nginx and the exposure of port 80

strongly suggest that the application is intended to serve web content.
Assumed application:

Web server hosting a static website using Nginx.

Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: PodRunningStatusNginxPodYaml o

4 Description

The first issue to address is the Pod's restart policy set to 'Never'. This is a critical issue
because if the Pod fails, it will not restart automatically, leading to potential downtime.
Therefore, the steady state should verify that the Pod is running and not in a failed state.

This can be measured by checking the Pod's status to ensure it is 'Running’. This steady

state is specific to the 'nginx/pod.yaml' manifest, which defines the Pod with the
problematic restart policy.

@

Current state inspection

To inspect the Pod's running status, | will use the K8s API. This is because the task
requires checking the status of a specific Kubernetes resource, which is best done using
the Kubernetes client libraries. The Pod is defined in the 'nginx/pod.yaml' manifest and
is deployed in the 'default' namespace since no namespace is specified. The script will
check the Pod's status every second for a duration of 5 seconds to ensure it is in the
'Running' state. This approach is suitable for verifying the Pod's status within the given
time constraints of the Chaos Engineering experiment.

tool: duration:

Inspection script (Python)

0os
time

kubernetes client, config

(namespace, pod_name, duration):
Load Kubernetes configuration based on the environment
os.getenv()

config.load_incluster_config()
config.load_kube_config()

vl = client.CoreV1Api()
running_count = 0

range (duration):

pod = vl.read_namespaced_pod(name=pod_name, namespace=n:
pod.status.phase ==
running_count += 1
¢ {pod.status.phase}")

client.exceptions.ApiException e:

¢
time.sleep(1l)

¢ {running_count} {duration}

__hame__ ==
argparse
parser = argparse.ArgumentParser (description=

parser.add_argument (, type=int, default=5, help=

args = parser.parse_args()
check_pod_status (namespace= , pod_name= , du

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod was running 5 out of 5 seconds.

> Threshold

The steady state we are considering is the Pod's running status. The current state shows
that the Pod was running for 5 out of 5 seconds, which is 100% of the time. Given that
the Pod's restart policy is set to 'Never', it is crucial to ensure that the Pod remains in the
'Running' state to avoid downtime. However, to account for minor fluctuations or
delays in status updates, a reasonable threshold would be to expect the Pod to be in the
'Running' state for at least 90% of the time during the observation period. This allows
for some tolerance while still ensuring that the Pod is generally stable and operational.

The Pod should be in the 'Running’ state for at least 90% of the time during the

observation period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will calculate the
percentage of time the Pod is in the 'Running' state during the specified duration. The
threshold is set to 90%, meaning the Pod should be running at least 90% of the time. |
will implement a for-loop to check the Pod's status every second for the given duration
and count how many times it is in the 'Running' state. At the end of the loop, I will
calculate the percentage of time the Pod was running and assert that this percentage is
greater than or equal to 90%. This ensures that the Pod meets the steady state
threshold requirement.

oS
time

argparse

from kubernetes import client, config

from unittest_base import K8sAPIBase

class TestPodRunningStatus (K8sAPIBase):

if

def __1dnit__(self, namespace, pod_name, duration):
super () .__init__()
self.namespace = namespace

self.pod_name = pod_name

self.duration = duration

def test_pod_running_status(self):
running_count = 0
Loop for the specified duration
for _ in range(self.duration):
try:
Read the Pod status
pod = self.vl.read_namespaced_pod(name=self.pod_name
Check if the Pod is in 'Running' state
it pod.status.phase == 'Running':
running_count += 1
print(f"Pod status: {pod.status.phase}')
except client.exceptions.ApiException as e:
print(f"Exception when calling CoreV1Api->read_names
time.sleep(1)
Calculate the percentage of time the Pod was running
running_percentage = (running_count / self.duration) * 100
print(f"Pod was running {running_count} out of {self.duratic
Assert that the Pod was running at least 90% of the time
assert running_percentage >= 90, "Pod did not meet the 90%

__name__ == ' main__':

parser = argparse.ArgumentParser (description='Test the running ¢
parser.add_argument('--duration', type=int, default=5, help='Dur
args = parser.parse_args()

Create an instance of the test class

test = TestPodRunningStatus(namespace='default', pod_name='exam
Run the test

test.test_pod_running_status()

Pod unittestpodrunningstatusnginxpodyamlmode-pod has Completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status: Running

Pod status: Running

Pod status: Running

Pod status: Running
Pod status: Running

Pod was running 5 out of 5 seconds, which is 100.0% of the time.

M Steady state #2: ServiceAvailabilityNginxServiceYaml

4 Description

The next issue to address is the lack of redundancy due to the use of a single Pod
without a controller like Deployment or ReplicaSet. This can lead to a lack of automatic
recovery if the Pod is deleted or fails. To verify the system's resilience, we should define
a steady state that measures the availability of the web service provided by the Pod.
Since the Service is responsible for exposing the Pod, we can measure the HTTP
response rate or availability of the service. This steady state will ensure that the Service
is consistently able to route traffic to the Pod, even if the Pod encounters issues. This is
specific to the 'nginx/service.yaml' manifest, which defines the Service that selects the
Pod.

%, Current state inspection

To inspect the availability of the web service provided by the Pod, we need to measure
the HTTP response rate or availability of the service. Since the Service is responsible for
exposing the Pod, using k6 is appropriate to simulate traffic and check the service's
response. This will help us verify if the Service can consistently route traffic to the Pod,
even if the Pod encounters issues. We'll use k6 to send HTTP requests to the service and
check for successful responses.

tool: Vus: duration:

Inspection script (Javascript)

http ;
{ check } ;

options = {
: 10,

s
O {

res = http. (
(res, {

(r) => r.status === 200,
1)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

v status is 200

checks.........................: 100.00% 81085 out of 81085
data_received..................: 69 MB 14 MB/s
data_sent......................: 8.9 MB 1.8 MB/s
http_req_blocked...............: avg=8.67us min=1.2us med=3.49,
http_req_connecting............: avg=1.88us min=0s med=0s
http_req_duration..............: avg=488.76us min=96.52us med=440.¢
{ expected_response:true }...: avg=488.76us min=96.52us med=440.¢
http_req_failed................: 0.00% ®@ out of 81085
http_req_receiving.............: avg=56.19us min=10.68us med=38.8¢
http_req_sending...............: avg=16.21ys min=3.57us med=10.5}
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=416.35us min=60.66us med=387.(
http_regs......................: 81085 16210.604071/s
iteration_duration.............: avg=601.02us min=155.09us med=526."
iterations.....................: 81085 16210.604071/s
VUS . ¢ttt e e e eoee o aeeeoneeeensens ¢ 10 min=10 max=10
VUS_MAX .+ ¢ e e vveeeeeeeeenannaeeeeas 10 min=10 max=10

> Threshold

The steady state we are considering is the availability of the web service provided by the
Nginx Pod, as measured by the HTTP response rate. The k6 test results show that 100%
of the requests received a 200 status code, indicating that the service is fully available.
To account for potential fluctuations and ensure the threshold is reasonable, we should
allow for a small margin of error. A typical approach is to set the threshold slightly
below 100% to accommodate minor network issues or transient errors that might occur
in a real-world scenario. Given the current state shows perfect availability, a threshold
of 99.5% would be reasonable, allowing for some tolerance while still ensuring high

availability.

HTTP response rate should be >=99.5% with status code 200.

B Unit test to validate the steady state

To add the threshold check to the k6 script, | will include a 'thresholds' property in the
'options' section. This property will specify that the HTTP response rate with a status
code of 200 should be at least 99.5%. This ensures that the test will fail if the availability

of the service drops below this threshold, thus verifying the steady state of the system.

http R
{ check } ;

options = {

10,
{
[1, // Allowing for a 0.5% failut
[1, // Optional: 95% of requests
Ty
b
0 |
res = http. ¢
(res, {
(r) => r.status === 200,
1)
}
Pod has completed
sucessfully.

The inspection script's results (current states) are as follows:

v status is 200

checks..............ccoveee...: 100.00% 77358 out of 77358
data_received..................: 66 MB 13 MB/s
data_sent......................: 8.5 MB 1.7 MB/s
http_req_blocked...............: avg=9.56us min=1.16us med=3.¢
http_req_connecting............: avg=2.08us min=0s med=0s
v http_req_duration..............: avg=499.15us min=112.5us med=45:
{ expected_response:true }...: avg=499.15us min=112.5us med=45:
v http_req_failed................: 0.00% O out of 77358
http_req_receiving.............: avg=63.92us min=12.24pus med=44.
http_req_sending...............: avg=19.31uys min=3.46us med=12.
http_req_tls_handshaking.......: avg=0s min=0s med=0s

http_req_waiting...............: avg=415.91pys min=59.78us med=39:

http_regs......................: 77358 15470.030934/s

iteration_duration.............: avg=628.21ys min=188.75us med=54¢

iterations.....................: 77358 15470.030934/s

VUS . ¢ ottt eeeeneeeeneeeeneennaaas 10 min=10 max=1¢

VUS_MAX . e e v veeeeeeeennnaeeeeeaas 10 min=10 max=1¢
Fault definition

¥ Scenario: Cyber Attack

& Description

In a cyber attack scenario, the attacker might target the single point of failure in the
system, which is the single Pod running the Nginx server. The Pod's restart policy is set
to 'Never', meaning if it fails, it won't restart automatically, leading to downtime.
Additionally, the lack of redundancy due to the single Pod deployment without a
controller like Deployment or ReplicaSet makes the system vulnerable to attacks that
can take down the Pod. To simulate this, we can inject a PodChaos fault to kill the Pod,
testing the system's ability to maintain the steady state of service availability. This will
directly test the system's weakness in handling Pod failures and its impact on the steady
state of service availability. Following this, we can simulate a network partition using
NetworkChaos to test if the service can still route traffic effectively, even if the Pod is
isolated from the network. This sequence simulates a cyber attack where the attacker
first takes down the Pod and then attempts to disrupt network communication.

Fault-injection sequence

({'namespace': 'default’, 'pod_name': 'example-pod'}) =

({'namespace': 'default’, 'pod_name': 'example-pod'})

& Detailed fault parameters

Detailed parameters of ({'namespace': 'default’, 'pod_name': 'example-pod'})

v {
"action" : "pod-kill"
"mode" : "one"
Y "selector" : {

v n

namespaces" : [

O : "default"
1

Y "labelSelectors" : {

"app" : "example"
}
}
}
Detailed parameters of ({'namespace': 'default’, 'pod_name': 'example-
pod'})
MR
"action" : "partition"
"mode" : "one"
Y "selector" : {
Y "namespaces" : [
0 : "default"
]
Y "labelSelectors" : {
"app" : "example"
}
}
"direction" : "both"
}

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints and the nature of the system, we need to design a Chaos
Engineering experiment that fits within a 1-minute timeframe. The experiment will be
divided into three phases: pre-validation, fault-injection, and post-validation.

1. Pre-validation Phase: This phase ensures that the system is in a steady state before
we introduce any faults. We need to verify that the Pod is running and the service is

available. Since the steady state checks are relatively quick (5 seconds for Pod

status and 5 seconds for service availability), we can allocate 10 seconds for this
phase.

2. Fault Injection Phase: This is the core of the experiment where we introduce faults
to observe the system's behavior. We have two faults to inject: PodChaos to kill the
Pod and NetworkChaos to partition the network. Given the time constraint, we will
inject these faults sequentially but quickly. We can allocate 30 seconds for this
phase, allowing 15 seconds for each fault to take effect and observe the immediate
impact.

3. Post-validation Phase: After the faults are removed, we need to ensure that the
system returns to its steady state. Similar to the pre-validation phase, we will check
the Pod's running status and the service's availability. We can allocate 20 seconds
for this phase to ensure the system stabilizes and meets the steady state
thresholds.

The total time for the experiment is 60 seconds, which is within the 1-minute limit. This
allocation allows us to thoroughly test the system's resilience while adhering to the

time constraint.

Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (10s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
state before we proceed with fault injection. Given the constraints, we have 10 seconds
to perform these checks. We have two steady states to verify: the Pod's running status
and the Service's availability. Since both checks are critical to ensure the system's
readiness, they will be executed simultaneously to maximize the use of the available
time. The Pod's running status will be checked continuously for 5 seconds, while the
Service's availability will be tested using a k6 script for the same duration. This
approach ensures that both steady states are verified within the 10-second window,

allowing us to confidently proceed to the fault injection phase.

o \Verified Steady State #0:
o Workflow Name:
o Grace Period:

o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack scenario by injecting two
types of faults: PodChaos and NetworkChaos. The total duration for this phase is 30
seconds, so we need to carefully schedule the fault injections and unit tests to fit within

this timeframe.

First, we will inject the PodChaos fault to simulate a pod failure. This will test the
system's ability to maintain the steady state of service availability when the pod is
killed. We will start this fault injection immediately at the beginning of the phase (grace
period of 0s) and let it run for 10 seconds.

Simultaneously, we will run the unit test for the first steady state,
'PodRunningStatusNginxPodYaml), to verify if the pod remains in the 'Running' state for
at least 90% of the time. This test will also start at 0s and run for 10 seconds, aligning
with the PodChaos fault duration.

Next, we will inject the NetworkChaos fault to simulate a network partition. This will
test the system's ability to maintain service availability despite network disruptions. We
will start this fault injection at 10 seconds (grace period of 10s) and let it run for another

10 seconds.

During the NetworkChaos fault, we will run the unit test for the second steady state,
'ServiceAvailabilityNginxServiceYaml, to verify if the HTTP response rate remains at or
above 99.5%. This test will start at 10 seconds and run for 10 seconds, aligning with the
NetworkChaos fault duration.

By staggering the fault injections and aligning them with the unit tests, we can
effectively observe the system's behavior under each fault condition and ensure that

the steady states are verified during the fault-injection phase.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o Verified Steady State #1:

o Workflow Name:

o Grace Period:

o Duration:

e Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:
o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (20s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the constraints of a 20-second total time for
this phase, we will conduct unit tests to verify each steady state. The tests will be
executed sequentially due to the short time frame, ensuring that each steady state is
verified independently. The first test will check the Pod's running status, as this is
critical to ensure that the Pod has recovered from the PodChaos fault. The second test
will verify the service availability, ensuring that the network partition did not cause
lasting disruption. Each test will have a short grace period to allow the system to
stabilize after the fault injection, followed by a brief duration to perform the checks.
This approach ensures that we can quickly verify the system's recovery while adhering

to the time constraints.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The Chaos Engineering experiment is structured into three phases within a 1-minute
timeframe: pre-validation, fault-injection, and post-validation.

In the pre-validation phase, which lasts for 10 seconds, two unit tests are executed
simultaneously to ensure the system is in a steady state. The first test,
'PodRunningStatusNginxPodYaml', checks the Pod's running status with a workflow
named 'pre-unittest-podrunningstatusnginxpodyaml'. It starts immediately and runs for
5 seconds. Concurrently, the second test, 'ServiceAvailabilityNginxServiceYaml', verifies
the service's availability using a k6 script, with a workflow named 'pre-unittest-
serviceavailabilitynginxserviceyaml'. This test also starts immediately and runs for 5
seconds.

The fault-injection phase spans 30 seconds and involves two sequential fault injections.
Initially, the 'PodChaos’ fault is injected to simulate a pod failure, starting at the
beginning of the phase and lasting for 10 seconds. This is managed by the 'fault-
podchaos' workflow. Simultaneously, the unit test 'PodRunningStatusNginxPodYaml' is
conducted to verify the pod's running status, starting at 0 seconds and running for 10
seconds, with the workflow 'fault-unittest-podrunningstatusnginxpodyaml'. Following
this, the 'NetworkChaos' fault is injected to simulate a network partition, starting at 10
seconds and lasting for 10 seconds, managed by the 'fault-networkchaos' workflow.
Concurrently, the unit test 'ServiceAvailabilityNginxServiceYaml' is executed to verify
service availability, starting at 10 seconds and running for 10 seconds, with the

workflow 'fault-unittest-serviceavailabilitynginxserviceyaml'.

In the post-validation phase, which lasts for 20 seconds, two unit tests are executed
sequentially to ensure the system has returned to its steady state. The first test,
'PodRunningStatusNginxPodYaml', checks the Pod's running status, starting after a 2-
second grace period and running for 8 seconds, with the workflow 'post-unittest-
podrunningstatusnginxpodyaml'. The second test,
'ServiceAvailabilityNginxServiceYaml', verifies service availability, also starting after a 2-
second grace period and running for 8 seconds, with the workflow 'post-unittest-
serviceavailabilitynginxserviceyaml'. This sequential execution ensures each steady

state is independently verified within the 20-second timeframe.

Completed the chaos experiment!

Choose namespace]

All

Phase 3: Analysis

The Chaos Engineering experiment results indicate a failure in maintaining the steady states
during and after the fault injection phase. Let's analyze the reasons for these failures step by step:

1. Pre-Validation Phase Success: Both pre-validation tests passed, indicating that the system
was initially in a steady state. The Pod was running, and the service was available, confirming

that the system was correctly set up before the fault injection.
2. Fault Injection Phase Failures:

o PodChaos Fault: The 'PodChaos' fault was injected to kill the Pod. The test 'fault-
unittest-podrunningstatusnginxpodyaml' failed because the Pod was not found (HTTP
404 error). This is expected behavior given the Pod's restart policy is set to 'Never’,
meaning it does not automatically restart after being killed. This confirms the identified
resiliency issue #0 (Pod Restart Policy) and issue #1 (Single Pod Deployment) in the
system configuration.

o NetworkChaos Fault: The 'NetworkChaos' fault was injected to simulate a network
partition. The test 'fault-unittest-serviceavailabilitynginxserviceyaml' failed because the

service was unable to connect to the Pod (connection refused errors). This failure is a

https://chaos-mesh.org/docs

direct consequence of the Pod being unavailable due to the PodChaos fault, highlighting

the lack of redundancy and automatic recovery mechanisms in the system.

3. Post-Validation Phase Failures:

o Pod Running Status: The 'post-unittest-podrunningstatusnginxpodyaml' test failed
because the Pod was still not found. This indicates that the system did not recover from
the PodChaos fault, as expected due to the 'Never' restart policy.

o Service Availability: The 'post-unittest-serviceavailabilitynginxserviceyaml' test also
failed, with continued connection refused errors. This further confirms that the service
could not route traffic because the Pod was not running, emphasizing the impact of the

single Pod deployment without redundancy.
Insights and Recommendations:

¢ Pod Restart Policy: Change the Pod's restart policy from 'Never' to 'Always' or 'OnFailure' to
ensure automatic recovery in case of failures.

¢ Redundancy and Scalability: Deploy the Pod using a Deployment or ReplicaSet to manage
multiple replicas, providing redundancy and automatic recovery. This will mitigate the single
point of failure issue and improve the system's resilience against Pod failures.

e Service Resilience: Ensure that the Service can handle Pod failures by having multiple Pods

behind it. This can be achieved by scaling the Deployment to have more replicas.

By addressing these issues, the system will be better equipped to maintain its steady states even

when faults are injected, thus improving its overall resilience.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the system, | will replace the Pod manifest with a Deployment
manifest. This will allow for multiple replicas of the Pod, providing redundancy and
automatic recovery in case of failures. Additionally, | will set the restart policy to 'Always' to
ensure that Pods are automatically restarted if they fail.

Modification_type: replace
File name: nginx/pod.yaml

Replace the Pod manifest with a Deployment manifest to provide redundancy and
automatic recovery. The Deployment will manage multiple replicas of the Pod, ensuring that
the application remains available even if one Pod fails. The restart policy is set to 'Always' to

ensure Pods are restarted automatically if they fail.

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
labels:
app: example
spec:
replicas: 3
selector:
matchlLabels:
app: example
template:
metadata:

labels:
app: example

spec:

containers:

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

restartPolicy: Always

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 260ns
- deployment.apps/example-deployment configured
- service/example-service configured
Waiting deployments to stabilize...
- deployment/example-deployment is ready.
Deployments stabilized in 3.109 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel
NAMESPACE NAME READY STATUS REST

default pod/example-deployment-f849656¢cf-bmc42 1/1 Running 0

default pod/example-deployment-f849656¢cf-fth87 1/1 Running 0]
default pod/example-deployment-f849656¢cf-zzqqq 1/1 Running 0
NAMESPACE NAME CLUSTER-IP EXTERNAL-TI
default service/example-service ClusterIP 10.96.194.25 <none>
NAMESPACE NAME READY UP-TO-DATE AVAIL,
default deployment.apps/example-deployment 3/3 3 3
NAMESPACE NAME DESIRED CURREN
default replicaset.apps/example-deployment-dff474déed 0 0
default replicaset.apps/example-deployment-f849656¢cf 3 3

The fault-scope adjustment Completed!

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],
"labelSelectors": {"app": "example"}}}}}}

The previous K8s manifests targeted a single Pod with the label 'app: example' for the PodChaos
fault injection. In the current manifests, the system has been updated to use a Deployment with 3
replicas, all of which have the same label 'app: example'. The original goal of the chaos
experiment was to test the system's resilience by killing one of the Pods. Since the Deployment
now manages multiple Pods, the scope of the fault injection should be adjusted to reflect this
change. However, the 'mode: one' parameter in the PodChaos configuration already ensures that
only one Pod will be targeted, which aligns with the original experiment's goal. Therefore, the
selector remains the same, targeting Pods with the label 'app: example' in the 'default’

namespace.
Next fault injection scope:

MR
Y "namespaces" : [
0 : "default"
]
Y "labelSelectors" : {

"app" : "example"

}

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "partition", "mode": "one", "selector": {{"namespaces": ["default"],
"labelSelectors": {{"app": "example"}}}}, "direction": "both"}}

The previous manifests targeted a single Pod with the label 'app: example' in the 'default’
namespace. The current manifests have changed from a single Pod to a Deployment with 3
replicas, but the label 'app: example' remains the same. Therefore, the scope of the fault injection
should still target Pods with the label 'app: example' in the 'default' namespace. The change from
a Pod to a Deployment does not affect the label-based targeting, so the selector remains

appropriate for the current setup.
Next fault injection scope:

M
Y "namespaces" : [
0 : "default"
]
Y "labelSelectors" : {

"app" : "example"

}

Adjusted unittest

The previous unit test targets a Pod resource, specifically checking the running status of a Pod
named 'example-pod". In the reconfigured manifests, the Pod has been replaced by a Deployment
named 'example-deployment' with 3 replicas. This change means that the unit test should now
target the Deployment instead of a single Pod. The test should verify that at least one of the Pods
managed by the Deployment is running at least 90% of the time, as the redundancy is intended to
ensure availability. Therefore, the unit test needs to be updated to check the status of Pods
created by the Deployment, rather than a single Pod.

0s
time

argparse

kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, deployment_name, duration):
super () .__init__()
self.namespace = namespace
self.deployment_name = deployment_name
self.duration = duration

(self):
running_count = 0
Loop for the specified duration

range (self.duration):

List the Pods with the label selector matching the Deployi
pods = self.vl.list_namespaced_pod(namespace=self.namespace

Check if at least one Pod is in 'Running' state

any (pod.status.phase == pod pods.items)
running_count += 1
¢ {sum(pod.status.phase ==
client.exceptions.ApiException e:

(
time.sleep(1)
Calculate the percentage of time at least one Pod was running
running_percentage = (running_count / self.duration) * 100
¢ {running_count} {self.d
Assert that at least one Pod was running at least 90% of the time

running_percentage >= 90,

name ==
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()
Create an instance of the test class
test = TestDeploymentRunningStatus(namespace= , deployment_name
Run the test
test.test_deployment_running_status()

Adjusted unittest

The target of the unit test is the service 'example-service', which remains unchanged in the
reconfigured manifests. The service still points to the pods labeled with 'app: example', and the
service configuration itself has not changed. The reconfiguration involves changing the pod to a
deployment with 3 replicas, which is intended to ensure redundancy and maintain the steady

state. However, the unit test is designed to test the service's availability and response time, not

the individual pod configuration. Therefore, the unit test does not require any modification, as it

will still verify the service's ability to handle requests and meet the specified thresholds.

Completed the chaos experiment!

Choose namespace]

All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml 2

The Chaos Engineering cycle described involves a systematic approach to testing the
resilience of a Kubernetes-based system running an Nginx web server. The cycle begins with
understanding the user inputs, which include Kubernetes manifests for a Pod and a Service.
The Pod manifest specifies a single Nginx container with a restart policy of 'Never', while the
Service manifest exposes this Pod on port 80. Two main resiliency issues are identified: the

Pod's restart policy and the lack of redundancy due to a single Pod deployment.

The hypothesis for the experiment is that the system should maintain its steady states even

when faults are injected. Two steady states are defined: the Pod should be running at least

90% of the time, and the Service should have an HTTP response rate of at least 99.5% with

status code 200. These are tested using Python scripts and K6 JavaScript, respectively.

The fault scenario simulates a cyber attack using Chaos Mesh, injecting PodChaos to kill the
Pod and NetworkChaos to partition the network. The experiment is divided into three
phases: pre-validation, fault-injection, and post-validation, all within a 1-minute timeframe.
Pre-validation ensures the system is in a steady state, fault-injection tests the system's

resilience under attack, and post-validation checks if the system returns to its steady state.

The first experiment attempt fails during the fault-injection and post-validation phases, as
the Pod does not restart due to its '"Never' restart policy, and the Service cannot connect to
the Pod. The analysis suggests changing the Pod's restart policy and deploying it using a

Deployment for redundancy.

After modifying the Pod manifest to a Deployment with three replicas and a restart policy of
'Always', the second experiment attempt passes all unit tests, confirming the system's
improved resilience. This cycle demonstrates the importance of redundancy and automatic
recovery in maintaining system stability under fault conditions.

Download output (.zip)

