
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-pod" deleted
service "example-service" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:
 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service
spec:
 selector:

Input instructions for your Chaos Engineering

ChaosEater demo

Live Q&A

Settings

Model

google/gemini-1.5-pro-latest

Token

Hugging Face token

Cluster selection

kind-chaos-eater-cluster

Clean the cluster

Clean the cluster before run

Clean the cluster after run

New deployment

Max # steady states

3

Max retries

3

Seed (GPTs only)

42

Usage:

Total billing: $0.02

Total tokens: 3.404k
Input tokens: 2.859k

Ouput tokens: 0.545k

Command history

kubectl apply -f
sandbox/cycle_20241128_082317/hyp

othesis/k8s_nginxPodCount_pod.yaml
--context kind-chaos-eater-cluster -n

chaos-eater

kubectl logs k8snginxpodcount-pod --

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 70ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.09 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.151.45 <none>

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod named example-pod .

A Pod is the smallest deployable unit in Kubernetes, like a container for your application.

This Pod uses the nginx:1.17.1 image, which is a popular web server.

The Pod exposes port 80, which is the standard port for HTTP traffic.

The restartPolicy: Never means that if the container inside the pod fails, it won't be
automatically restarted.

nginx/service.yaml

This manifest defines a Kubernetes Service named "example-service".

A Kubernetes Service acts as a load balancer and provides a stable IP address for accessing
Pods.

This service targets Pods with the label "app: example".

It exposes port 80 on the service, which maps to port 80 on the target Pods.

This allows external traffic to access the application running on the Pods with the label "app:
example" on port 80.

Resiliency issuses/weaknesses in the manifests:

Issue #0: No Redundancy for Pod

details: If the pod crashes or the node it's running on fails, the application becomes

unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: restartPolicy: Never, absence of a Deployment or StatefulSet managing

the pod.

Issue #1: No Health Checks

details: The service has no way to determine the health of the pod. It might route traffic to an

unhealthy pod, leading to application downtime or errors.

manifests having the issues: ['nginx/service.yaml', 'nginx/pod.yaml']

problematic config: Absence of livenessProbe or readinessProbe in the pod spec and no

health checks configured in the service.

Application of the manifests:

Thoughts:

The filenames (nginx/pod.yaml and nginx/service.yaml) and the use of the nginx image strongly
suggest that this application is a web server. The service exposes port 80, further reinforcing this

assumption. The pod and service work together to deploy and expose a basic nginx web server.

Assumed application:

This application provides a basic web server using nginx. It can serve static web content or act as

a reverse proxy to other services.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute. (This instruction
should be considered in the experiment phase.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: nginxPodCount

💬 Description

The pod's restart policy is set to "Never", which means if the pod crashes, it won't be

restarted automatically. This is the most obvious point of failure. Thus, we should first

monitor the number of available pods with the label "app: example" to ensure that the
pod continues running during the chaos experiment. We will define the steady state

related to the number of pods.

🔍 Current state inspection

The application is deployed with a Kubernetes Pod and Service. The Pod has the label

'app: example'. To check the number of pods with this label, I will use the Kubernetes

Python API. I will set the duration to 5 seconds to check the pod status every second for
a short period.

tool: k8s duration: 5

Inspection script (Python) k8s_nginxPodCount.py :

Check the number of pods with the label 'app: example'
import kubernetes
import os
import time
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--duration', type=int, default=5, help='Duratio
args = parser.parse_args()

Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
else:
 config.load_kube_config()

Initialize the Kubernetes API client
v1 = kubernetes.client.CoreV1Api()

start_time = time.time()
results = []

while time.time() - start_time < args.duration:
 try:
 # Get pods with the label 'app: example'
 pods = v1.list_namespaced_pod("default", label_selector="app
 pod_count = len(pods.items)
 results.append(pod_count)
 print(f"Number of pods with label 'app: example': {pod_count
 time.sleep(1)
 except Exception as e:
 print(f"Error: {e}")
 time.sleep(1)

Summarize the results
print("\nSummary:")
for i, count in enumerate(results):
 print(f"Second {i+1}: {count} pods")

Pod k8snginxpodcount-pod has failed.

Traceback (most recent call last):
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/k8s_ng
 config.load_incluster_config()
NameError: name 'config' is not defined

The error "NameError: name 'config' is not defined" occurs because the

kubernetes.config module is not imported. To fix this, I will add 'from kubernetes

import config' at the beginning of the script.
tool: k8s duration: 5

Inspection script (Python) k8s_nginxPodCount_mod1.py :

from kubernetes import config
import kubernetes
import os
import time
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--duration', type=int, default=5, help='Duratio
args = parser.parse_args()

Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
else:
 config.load_kube_config()

Initialize the Kubernetes API client
v1 = kubernetes.client.CoreV1Api()

start_time = time.time()
results = []

while time.time() - start_time < args.duration:
 try:
 # Get pods with the label 'app: example'
 pods = v1.list_namespaced_pod("default", label_selector="app
 pod_count = len(pods.items)
 results.append(pod_count)
 print(f"Number of pods with label 'app: example': {pod_count
 time.sleep(1)
 except Exception as e:
 print(f"Error: {e}")
 time.sleep(1)

Summarize the results
print("\nSummary:")
for i, count in enumerate(results):
 print(f"Second {i+1}: {count} pods")

Pod k8snginxpodcountmod1-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Summary:

🚩 Threshold

The current state shows that there is 1 pod with the label 'app: example' running. Since
the restart policy is 'Never', the threshold should ensure that at least one pod is running.

To account for potential transient errors in the Kubernetes API or very short downtime,
I'll add a small tolerance by requiring the pod count to be at least 1 for at least 90% of

the monitoring period.

The number of pods with the label 'app: example' should be at least 1 for at least 90% of
the monitoring period.

📄 Unit test to validate the steady state

To add the threshold assertion, I calculated the percentage of time the pod count was at
least 1 during the monitoring period. This percentage is then compared against the

threshold (90%). The test passes if the percentage meets or exceeds the threshold, and

fails otherwise. I used the Kubernetes Python API to interact with the cluster and

retrieve pod information. The argparse module allows users to specify the duration of

the test.

from unittest_base import K8sAPIBase
import os
import time
import argparse
from kubernetes import client, config

class K8sAPIBase:
 def __init__(self):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 # Create a Kubernetes API client
 self.v1 = client.CoreV1Api()

class PodCountCheck(K8sAPIBase):
 def test_pod_count(self, duration):
 # Define the threshold percentage
 threshold_percentage = 0.9

 # Initialize variables for tracking pod counts
 results = []
 start_time = time.time()

 # Loop for the specified duration
 while time.time() - start_time < duration:
 try:
 # Get pods with the label 'app: example'
 pods = self.v1.list_namespaced_pod("default", label_
 pod_count = len(pods.items)
 results.append(pod_count)
 print(f"Number of pods with label 'app: example': {p
 time.sleep(1)
 except Exception as e:
 print(f"Error: {e}")
 time.sleep(1)

 # Calculate the percentage of time the pod count was at leas
 successful_counts = sum(1 for count in results if count >= 1
 percentage = successful_counts / len(results) if results els

 # Summarize the results
 print("\nSummary:")
 for i, count in enumerate(results):
 print(f"Second {i+1}: {count} pods")

 print(f"Percentage of time with at least 1 pod: {percentage

 # Assert that the percentage meets the threshold
 assert percentage >= threshold_percentage, f"Pod count was n
 print("Test passed!")

def main():
 parser = argparse.ArgumentParser()

 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()

 test = PodCountCheck()
 test.test_pod_count(args.duration)

if __name__ == '__main__':
 main()

Pod unittestnginxpodcountmod0-pod has failed.

Summary:
Percentage of time with at least 1 pod: 0.00%
Traceback (most recent call last):
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 main()
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 test.test_pod_count(args.duration)
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 assert percentage >= threshold_percentage, f"Pod count was not a
AssertionError: Pod count was not at least 1 for at least 90% of the

The error "Pod count was not at least 1 for at least 90% of the time. Actual percentage:

0.00%" indicates that the pod with the label 'app: example' was not found during the
test execution. This could be due to a few reasons:

1. The pod might not exist or might not have been deployed yet.

2. The pod might have been deployed in a different namespace than "default".

3. The label selector might be incorrect.

To fix this, I've added a check to ensure that the pod exists before starting the

monitoring loop. If the pod is not found, the test will fail immediately with a descriptive
message. This helps to pinpoint the issue early on. Additionally, I've included the

namespace as an argument to allow for more flexibility in testing.

from unittest_base import K8sAPIBase
import os
import time
import argparse
from kubernetes import client, config

class K8sAPIBase:
 def __init__(self):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 # Create a Kubernetes API client
 self.v1 = client.CoreV1Api()

class PodCountCheck(K8sAPIBase):
 def test_pod_count(self, duration, namespace="default"): # Added
 # Define the threshold percentage
 threshold_percentage = 0.9

 # Check if the pod exists before starting the loop
 try:
 pods = self.v1.list_namespaced_pod(namespace, label_sele
 if not pods.items:
 raise AssertionError("No pods found with label 'app:
 except client.ApiException as e:
 if e.status == 404:
 raise AssertionError("Namespace '" + namespace + "'
 else:
 raise

 # Initialize variables for tracking pod counts
 results = []
 start_time = time.time()

 # Loop for the specified duration
 while time.time() - start_time < duration:
 try:
 # Get pods with the label 'app: example'
 pods = self.v1.list_namespaced_pod(namespace, label_
 pod_count = len(pods.items)
 results.append(pod_count)
 print(f"Number of pods with label 'app: example': {p
 time.sleep(1)
 except Exception as e:
 print(f"Error: {e}")
 time.sleep(1)

 # Calculate the percentage of time the pod count was at leas
 successful_counts = sum(1 for count in results if count >= 1
 percentage = successful_counts / len(results) if results els

 # Summarize the results
 print("\nSummary:")
 for i, count in enumerate(results):
 print(f"Second {i+1}: {count} pods")

 print(f"Percentage of time with at least 1 pod: {percentage

 # Assert that the percentage meets the threshold
 assert percentage >= threshold_percentage, f"Pod count was n
 print("Test passed!")

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Dur
 parser.add_argument('--namespace', type=str, default='default',
 args = parser.parse_args()

 test = PodCountCheck()
 test.test_pod_count(args.duration, args.namespace) # Pass namesp

if __name__ == '__main__':
 main()

Pod unittestnginxpodcountmod1-pod has failed.

Traceback (most recent call last):
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte

Summary:
 main()
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 test.test_pod_count(args.duration, args.namespace) # Pass namesp
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 assert percentage >= threshold_percentage, f"Pod count was not a
AssertionError: Pod count was not at least 1 for at least 90% of the
Percentage of time with at least 1 pod: 0.00%

The previous error, "Pod count was not at least 1 for at least 90% of the time. Actual
percentage: 0.00%", even after confirming the pod's existence, suggests a timing issue.

The pod might be starting up slowly, or there might be a delay in the Kubernetes API
reflecting the pod's status. To address this, I've added a short initial delay before the

monitoring loop begins. This gives the pod some time to become ready. Additionally,
I've improved the error reporting within the loop to provide more context in case of

failures, including the current time and the specific exception encountered.

from unittest_base import K8sAPIBase
import os
import time
import argparse
from kubernetes import client, config

class K8sAPIBase:
 def __init__(self):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 # Create a Kubernetes API client
 self.v1 = client.CoreV1Api()

class PodCountCheck(K8sAPIBase):
 def test_pod_count(self, duration, namespace="default"):
 # Define the threshold percentage
 threshold_percentage = 0.9

 # Check if the pod exists before starting the loop
 try:
 pods = self.v1.list_namespaced_pod(namespace, label_sele
 if not pods.items:
 raise AssertionError("No pods found with label 'app:
 except client.ApiException as e:
 if e.status == 404:
 raise AssertionError("Namespace '" + namespace + "'
 else:
 raise

 # Add an initial delay to allow the pod to become ready
 print("Waiting for the pod to become ready...")
 time.sleep(5) # Wait for 5 seconds

 # Initialize variables for tracking pod counts
 results = []
 start_time = time.time()

 # Loop for the specified duration
 while time.time() - start_time < duration:
 try:
 # Get pods with the label 'app: example'
 pods = self.v1.list_namespaced_pod(namespace, label_
 pod_count = len(pods.items)
 results.append(pod_count)
 print(f"Number of pods with label 'app: example': {p
 time.sleep(1)
 except Exception as e:
 print(f"Error at {time.ctime()}: {e}") # Improved er
 time.sleep(1)

 # Calculate the percentage of time the pod count was at leas
 successful_counts = sum(1 for count in results if count >= 1
 percentage = successful_counts / len(results) if results els

 # Summarize the results
 print("\nSummary:")
 for i, count in enumerate(results):
 print(f"Second {i+1}: {count} pods")

 print(f"Percentage of time with at least 1 pod: {percentage

 # Assert that the percentage meets the threshold
 assert percentage >= threshold_percentage, f"Pod count was n
 print("Test passed!")

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Dur
 parser.add_argument('--namespace', type=str, default='default',
 args = parser.parse_args()

 test = PodCountCheck()
 test.test_pod_count(args.duration, args.namespace)

if __name__ == '__main__':
 main()

Pod unittestnginxpodcountmod2-pod has failed.

Traceback (most recent call last):
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
Waiting for the pod to become ready...

Summary:
Percentage of time with at least 1 pod: 0.00%
 main()
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 test.test_pod_count(args.duration, args.namespace)
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 assert percentage >= threshold_percentage, f"Pod count was not a
AssertionError: Pod count was not at least 1 for at least 90% of the

Despite adding an initial delay, the pod count might still be 0 if the pod is not running or
is taking an unusually long time to start. The error "Pod count was not at least 1 for at

least 90% of the time. Actual percentage: 0.00%" indicates that no pods with the

specified label were found throughout the duration of the test. To address this, I will
implement a retry mechanism within the loop. Instead of immediately failing if no pods

are found, the code will retry the pod listing operation multiple times with a short delay
between each attempt. This will increase the robustness of the test and handle cases

where the pod takes longer to appear in the API.

from unittest_base import K8sAPIBase
import os
import time
import argparse
from kubernetes import client, config

class K8sAPIBase:
 def __init__(self):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 # Create a Kubernetes API client
 self.v1 = client.CoreV1Api()

class PodCountCheck(K8sAPIBase):
 def test_pod_count(self, duration, namespace="default"):
 # Define the threshold percentage
 threshold_percentage = 0.9

 # Initialize variables for tracking pod counts
 results = []
 start_time = time.time()

 # Loop for the specified duration
 while time.time() - start_time < duration:
 try:
 # Retry mechanism to handle cases where the pod take
 retries = 3
 for i in range(retries):
 pods = self.v1.list_namespaced_pod(namespace, la
 if pods.items:
 break # Pod found, exit retry loop
 else:
 if i < retries -1:
 print(f"No pods found, retrying ({i+1}/{
 time.sleep(2) # Wait before retrying
 else:
 raise AssertionError(f"No pods found wit

 pod_count = len(pods.items)
 results.append(pod_count)
 print(f"Number of pods with label 'app: example': {p
 time.sleep(1)
 except Exception as e:
 print(f"Error at {time.ctime()}: {e}")
 time.sleep(1)

 # Calculate the percentage of time the pod count was at leas
 successful_counts = sum(1 for count in results if count >= 1

 percentage = successful_counts / len(results) if results els

 # Summarize the results
 print("\nSummary:")
 for i, count in enumerate(results):
 print(f"Second {i+1}: {count} pods")

 print(f"Percentage of time with at least 1 pod: {percentage

 # Assert that the percentage meets the threshold
 assert percentage >= threshold_percentage, f"Pod count was n
 print("Test passed!")

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Dur
 parser.add_argument('--namespace', type=str, default='default',
 args = parser.parse_args()

 test = PodCountCheck()
 test.test_pod_count(args.duration, args.namespace)

if __name__ == '__main__':
 main()

Pod unittestnginxpodcountmod3-pod has failed.

Summary:
Percentage of time with at least 1 pod: 0.00%
Traceback (most recent call last):
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 main()
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 test.test_pod_count(args.duration, args.namespace)
 File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
 assert percentage >= threshold_percentage, f"Pod count was not a
AssertionError: Pod count was not at least 1 for at least 90% of the

AssertionError: MAX_MOD_COUNT_EXCEEDED: 3

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
 exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
 main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
 output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
 hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
 steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
 unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/llm_agents/st
 assert mod_count < max_mod_loop, f"MAX_MOD_COUNT_EXCEEDED: {max_mod_loop}"

