
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-deployment-7bbcc69fbf-9v88z" deleted
pod "example-deployment-7bbcc69fbf-c7wrg" deleted
pod "example-deployment-7bbcc69fbf-p8zzf" deleted
service "example-service" deleted
deployment.apps "example-deployment" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:
 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service

Input instructions for your Chaos Engineering

ChaosEater demo

Live Q&A

Settings

Model

google/gemini-1.5-pro-latest

Token

Hugging Face token

Cluster selection

kind-chaos-eater-cluster

Clean the cluster

Clean the cluster before run

Clean the cluster after run

New deployment

Max # steady states

3

Max retries

3

Seed (GPTs only)

42

Usage:

Total billing: $0.02

Total tokens: 3.552k
Input tokens: 2.858k

Ouput tokens: 0.694k

Command history

kubectl apply -f
sandbox/cycle_20241128_081601/hyp

othesis/k8s_NumberOfRunningPods_e
xample_pod.yaml --context kind-

chaos-eater-cluster -n chaos-eater

kubectl logs

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

spec:
 selector:
 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 501ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 2.099 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod named example-pod .

A Pod is the smallest deployable unit in Kubernetes, like a container for your application.

This Pod uses the nginx:1.17.1 image, which is a popular web server.

The Pod exposes port 80, which is the standard port for HTTP traffic.

The restartPolicy: Never means that if the container inside the pod fails, it won't be
automatically restarted.

nginx/service.yaml

This manifest defines a Kubernetes Service named "example-service".

A Kubernetes Service acts as a load balancer and provides a stable IP address for accessing

Pods.

This service targets Pods with the label "app: example".

It exposes port 80 on the service, which maps to port 80 on the target Pods.

This allows external traffic to access the application running on the Pods with the label "app:

example" on port 80.

Resiliency issuses/weaknesses in the manifests:

Issue #0: No Redundancy for Pod

details: If the pod crashes or the node it's running on fails, the application becomes

unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: restartPolicy: Never

Issue #1: No Replica for Pod

details: The application is running as a single pod, which means a single point of failure. If the

pod crashes or the node it's running on fails, the application becomes unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: Absence of a Deployment or other controller managing multiple replicas

of the pod.

Issue #2: No Health Check

details: The service has no way to determine the health of the underlying pod. It might route

traffic to an unhealthy pod, leading to application downtime.

manifests having the issues: ['nginx/pod.yaml', 'nginx/service.yaml']

problematic config: Lack of livenessProbe or readinessProbe in the pod spec and no health

checks configured in the service.

Application of the manifests:

Thoughts:

The filenames (nginx/pod.yaml and nginx/service.yaml) and the container image (nginx:1.17.1)

clearly indicate that this application is intended to serve web content using the Nginx web server.
The service.yaml exposes port 80, further reinforcing this assumption.

Assumed application:

This application provides a basic web server using Nginx. It can serve static web content or act as

a reverse proxy to other services. The provided manifests create a single pod for the web server

and a service to expose it. This setup is suitable for simple web applications or testing
environments. For production, it would typically be extended with features like deployments for

managing multiple pods, ingress for external access, and configmaps for managing configuration.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute. (This instruction
should be considered in the experiment phase.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: NumberOfRunningPods_example

💬 Description

The pod's restart policy is set to "Never", which means if the pod's container crashes, it

won't be restarted automatically. This is the most likely point of failure. Thus, I'll define

the steady state of the number of pods running with the label "app: example". This
steady state is directly tied to the 'nginx/pod.yaml' manifest and will immediately

reflect any issues with the pod's availability.

🔍 Current state inspection

I'll use the Kubernetes API (Python) with the official Python client library to check the

number of running pods. This allows me to directly query the Kubernetes API server for
the current state of the pods. I'll use a loop to periodically check the pod count for a

specified duration, providing a summary at the end. This approach is suitable for
monitoring the state of Kubernetes resources over time.

tool: k8s duration: 5

Inspection script (Python) k8s_NumberOfRunningPods_example.py :

Check the number of running pods with label 'app=example'
import kubernetes
import time
import os
from kubernetes import client, config
import argparse

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()

 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 v1 = client.CoreV1Api()

 running_counts = []
 for i in range(args.duration):
 try:
 pods = v1.list_namespaced_pod("default", label_selector=
 running_pods = [pod for pod in pods.items if pod.status.
 running_count = len(running_pods)
 running_counts.append(running_count)
 print(f"Number of running pods at time {i+1}s: {running_
 time.sleep(1)
 except Exception as e:
 print(f"Error checking pod status: {e}")
 running_counts.append(-1) # Append -1 to indicate an err
 time.sleep(1)

 print("\nSummary:")
 for i, count in enumerate(running_counts):
 print(f"Time {i+1}s: {count if count != -1 else 'Error'}")

if __name__ == "__main__":
 main()

Pod k8snumberofrunningpodsexample-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Summary:

🚩 Threshold

The current setup has a single pod and no redundancy. The restart policy is "Never", so

a crash won't result in an automatic restart. Therefore, the number of running pods
should be 1. To account for momentary fluctuations in the pod status, I'll allow for a

short period where the pod count might be 0, but it should be 1 for at least 80% of the
monitoring duration (which is reasonable for a 1-minute experiment).

The number of running pods with the label 'app=example' should be equal to 1 for at

least 80% of the monitoring period.

📄 Unit test to validate the steady state

I added a threshold assertion to the provided Python script. The threshold is that the

number of running pods with the label 'app=example' should be equal to 1 for at least
80% of the monitoring period. I implemented this by calculating the percentage of time

the running pod count was 1 and asserting that this percentage is greater than or equal

to 80%. The script now takes a '--duration' argument to specify the monitoring
duration, and the assertion is performed at the end of the monitoring period. The script

also provides a summary of the pod counts at each time step.

TypeError: write() argument must be str, not None

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
 exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
 main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
 output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
 hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
 steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
 unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/llm_agents/st
 write_file(file_path, unittest["code"])

File "/workspace/app/projects/chaos-eater/chaos_eater/utils/functions.py", lin
 f.write(content)

