Your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.htmI[?id=<ID> Replace <ID> with an
available ID: [e3fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-
€00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2del-laaa-4c25-a9b9-
6612e8f29a38 , 819elfbf-8b7e-4f6d-811f-693534916a8b , 837abl41-399e-4clf-9abc-

d3588630-ad8e-49df-bbd7-

bace40296bac , a0a4f044-b040-410d-8ead-4de0@446aecTe

b)

3167f7efb246 , zzz4f044-b040-410d-8ead-4deB446aecTe]

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with

an available tag: [magic , action, blue, brown, black, sport, formal, red,

green, skin, geek]

I

6. http://front-end.sock-shop.svc.cluster.local/basket.html

© Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos
workflow.chaos-mesh.org '"chaos-experiment-20241127-041509" deleted

$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
workflownode.chaos-mesh.org "fault-injection-phase-7xktg" deleted
workflownode.chaos-mesh.org "fault-podchaos-7sc5f" deleted
workflownode.chaos-mesh.org "fault-stresschaos-257g4" deleted

T B = I P o R L o e B S N P B N P P B I VAL A PO P | |

>

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

workflownode.

workflownode

workflownode.
workflownode.

chaos—-mesh.

.chaos—-mesh.

chaos—-mesh.

org
org

org

delet:

chaos-mesh.org deleted
workflownode.chaos-mesh.org deleted

$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n chi
No resources found

$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat

pod deleted
pod deleted
pod deleted
pod deleted

$ kubectl delete services —-all --context kind-chaos-eater-cluster -n chaos
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1

pod deleted

pod deleted

pod deleted

pod deleted

pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted

pod deleted

pod deleted
pod deleted
pod deleted

pod deleted

pod deleted
pod deleted
pod deleted

pod deleted

pod deleted
pod deleted
pod deleted

pod deleted

pod deleted

pod deleted

pod deleted

pod deleted

service deleted

service
service
service
service
service
service
service
service
service
service
service
service

service

deployment.
deployment.
deployment.
deployment.
deployment.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.

replicaset.

apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps

deleted

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
delete...ployment.apps
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Namespace
metadata:

name: sock-shop

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts
labels:
name: carts
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: carts
template:
metadata:
labels:
name: carts
spec:
containers:
- name: carts
image: weaveworksdemos/carts:0.4.8
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 200Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001

capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts
annotations:
prometheus.io/scrape:
labels:
name: carts
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: carts

apiVersion: apps/vl
kind: Deployment
metadata:

name: carts-db

labels:

name: carts-db

namespace: sock-shop

spec:

replicas: 2
selector:
matchlLabels:

name: carts-db

template:
metadata:

labels:
name: carts-db

spec:

containers:

- name: carts-db
image: mongo
ports:

-~ name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on

- port: 27017
targetPort: 27017
selector:
name: carts-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue
labels:
name: catalogue
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue
template:
metadata:

labels:
name: catalogue

spec:

containers:

- name: catalogue
image: weaveworksdemos/catalogue:0.3.5
command: []
args:

- —port=80
resources:
limits:
Cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 10OOMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:

- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue
annotations:
prometheus.io/scrape:
labels:
name: catalogue
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: catalogue

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop

spec:
replicas: 2
selector:
matchLabels:
name: catalogue-db
template:
metadata:

labels:
name: catalogue-db

spec:

containers:

- name: catalogue-db
image: weaveworksdemos/catalogue-db:0.3.0
env:

- name: MYSQL_ROOT_PASSWORD
value: fake_password
- name: MYSQL_DATABASE
value: socksdb
ports:
- name: mysql
containerPort: 3306
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 3306
targetPort: 3306
selector:

name: catalogue-db

apiVersion: apps/vl
kind: Deployment

metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 1
selector:
matchLabels:
name: front-end
template:
metadata:
labels:
name: front-end
spec:
containers:
- name: front-end

image: weaveworksdemos/front-end:0.3.12

resources:
limits:
cpu: 300m
memory: 100OMi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value:
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /
port: 8079
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 30

periodSeconds: 3

nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:

name: front-end

annotations:

prometheus.io/scrape:
labels:
name: front-end
namespace: sock-shop
spec:

type: NodePort

ports:

- port: 80
targetPort: 8079
nodePort: 30001

selector:

name: front-end

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders
labels:
name: orders
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: orders
template:
metadata:
labels:
name: orders
spec:
containers:
- name: orders

image: weaveworksdemos/orders:0.4.7

env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 500m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders
annotations:
prometheus.io/scrape:
labels:
name: orders
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80

targetPort: 80
selector:

name: orders

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders-db
template:
metadata:

labels:
name: orders-db

spec:

containers:

- name: orders-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID

readOnlyRootFilesystem:

volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:

medium: Memory

true

nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: orders-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: payment
labels:
name: payment
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: payment
template:
metadata:

labels:
name: payment

spec:

containers:

- name: payment
image: weaveworksdemos/payment:0.4.3
resources:

limits:
Ccpu: 200m

memory: 200Mi
requests:
cpu: 99m
memory: 10OMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: payment
annotations:
prometheus.io/scrape:
labels:
name: payment
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80

selector:
name: payment

apiVersion: apps/vl
kind: Deployment
metadata:
name: queue-master
labels:
name: queue-master
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: queue-master
template:
metadata:

labels:
name: queue-master

spec:

containers:

- name: queue-master
image: weaveworksdemos/queue-master:0.3.1
env:

- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:

name: queue-master
annotations:
prometheus.io/scrape:

labels:

name: queue-master
namespace: sock-shop

spec:

ports:

the port that this service should serve on
- port: 80

targetPort: 80
selector:

name: queue-master

apiVersion: apps/vl
kind: Deployment
metadata:
name: rabbitmg
labels:
name: rabbitmqg
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: rabbitmg
template:
metadata:
labels:
name: rabbitmqg
annotations:
prometheus.io/scrape:
spec:
containers:
- name: rabbitmqg
image: rabbitmqg:3.6.8-management
ports:
- containerPort: 15672
name: management
- containerPort: 5672
name: rabbitmq
securityContext:
capabilities:
drop:

- all

- CHOWN
- SETGID
- SETUID
- DAC_OVERRIDE
readOnlyRootFilesystem: true
- name: rabbitmg-exporter
image: kbudde/rabbitmg-exporter
ports:
- containerPort: 9090
name: exporter
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: rabbitmqg
annotations:
prometheus.io/scrape:
prometheus.io/port:
labels:
name: rabbitmg
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 5672
name: rabbitmg
targetPort: 5672
- port: 9090
name: exporter
targetPort: exporter
protocol: TCP
selector:
name: rabbitmg

apiVersion: apps/vl
kind: Deployment
metadata:

name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: session-db
template:
metadata:

labels:
name: session-db

annotations:
prometheus.io.scrape:

spec:

containers:

- name: session-db
image: redis:alpine
ports:

- name: redis
containerPort: 6379
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on

- port: 6379
targetPort: 6379
selector:
name: session-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: shipping
labels:
name: shipping
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: shipping
template:
metadata:
labels:
name: shipping
spec:
containers:
- name: shipping
image: weaveworksdemos/shipping:0.4.8
env:
- name: ZIPKIN
value: zipkin.jaeger.svc.cluster.local
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:

- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: shipping
annotations:
prometheus.io/scrape:
labels:
name: shipping
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: shipping

apiVersion: apps/vl
kind: Deployment
metadata:

name: user

labels:

name: user

namespace: sock-shop
spec:

replicas: 2

selector:

matchLabels:

name: user
template:

metadata:

labels:
name: user

spec:
containers:
- name: user

image: weaveworksdemos/user:0.4.7

resources:
limits:
cpu: 300m
memory: 200Mi
requests:
cpu: 100m

memory: 10OMi
ports:
- containerPort: 80
env:
- name: mongo
value: user-db:27017
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user
annotations:
prometheus.io/scrape:
labels:
name: user
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: user

apiVersion: apps/vl
kind: Deployment
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user-db
template:
metadata:
labels:
name: user-db
spec:
containers:
- name: user-db

image: weaveworksdemos/user-db:0.3.0

ports:

- name: mongo
containerPort: 27017

securityContext:

capabilities:

drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: user-db

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 80ns
- namespace/sock-shop unchanged
- Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
- deployment.apps/carts created

service/carts created
deployment.apps/carts-db created
service/carts-db created
deployment.apps/catalogue created
service/catalogue created
deployment.apps/catalogue-db created
service/catalogue-db created
deployment.apps/front- created
service/front- created
deployment.apps/orders created
service/orders created
deployment.apps/orders-db created
service/orders-db created
deployment.apps/payment created
service/payment created
deployment.apps/queue-master created
service/queue-master created
deployment.apps/rabbitmg created
service/rabbitmg created
deployment.apps/session-db created
service/session-db created
deployment.apps/shipping created
service/shipping created
deployment.apps/user created
service/user created
deployment.apps/user-db created
service/user-db created

Waiting deployments to stabilize...

sock-shop:deployment/carts is ready. [13/14 deployment(s) still pending]
sock-shop:deployment/carts-db: creating container carts-db

- sock-shop:pod/carts-db-84dd74485f-jn289: creating container carts-db
- sock-shop:pod/carts-db-84dd74485f-pggts: creating container carts...p
sock-shop:deployment/orders: waiting rollout to finish: 1 of 2 updat
sock-shop:deployment/payment: creating container payment

- sock-shop:pod/payment-6b5cf84897-x5phb: creating container payment

- sock-shop:pod/payment-6b5cf84897-mn7d6: creating container payment
sock-shop:deployment/shipping: creating container shipping

- sock-shop:pod/shipping-6cc64f8975-cl4gl: creating container shipping
- sock-shop:pod/shipping-6cc64f8975-zz945: creating container shipping
sock-shop:deployment/user: creating container user

- sock-shop:pod/user-84fb6b864c-1ptjk: creating container user
sock-shop:deployment/orders is ready. [7/14 deployment(s) still pending]
sock-shop:deployment/rabbitmg is ready. [6/14 deployment(s) still pendin;
sock-shop:deployment/shipping is ready. [5/14 deployment(s) still pendin;
sock-shop:deployment/orders-db is ready. [4/14 deployment(s) still pendi
sock-shop:deployment/user: waiting rollout to finish: @ of 2 updated
sock-shop:deployment/front- is ready. [3/14 deployment(s) still pendl

- sock-shop:deployment/payment 1is ready.
- sock-shop:deployment/catalogue is ready.

- sock-shop:deployment/user is ready.

Deployments stabilized in 3 minutes 5.307 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

[2/14 deployment(s) still pending
[1/14 deployment(s) still pendil

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS
sock-shop pod/carts-56cc746557-d4jm9 1/1 Running 0
sock-shop pod/carts-56cc746557-dvqt5s 1/1 Running 0
sock-shop pod/carts-db-84dd74485f-jn289 1/1 Running 0]
sock-shop pod/carts-db-84dd74485f-pggts 1/1 Running 0
sock-shop pod/catalogue-8695b4dcfd-tldhj 1/1 Running 0
sock-shop pod/catalogue-8695b4dcfd-vbml7 1/1 Running ©
sock-shop pod/catalogue-db-68bb48f867-pbnwt 1/1 Running 0
sock-shop pod/catalogue-db-68bb48f867-rg594 1/1 Running 0
sock-shop pod/front- -c669bb67f-14fvb 1/1 Running 0]
sock-shop pod/orders-697c586dd7-952x5 1/1 Running 0]
sock-shop pod/orders-697c586dd7-npwkz 1/1 Running 0
sock-shop pod/orders-db-694d59df67-f972v 1/1 Running ©
sock-shop pod/orders-db-694d59df67-hc2tj 1/1 Running 0]
sock-shop pod/payment-6b5cf84897-mn7d6 1/1 Running 0]
sock-shop pod/payment-6b5cf84897-x5phb 1/1 Running 0
sock-shop pod/queue-master-85c79fbdf8-7hlbz 1/1 Running 0
sock-shop pod/queue-master-85c79fbdf8-pnlw8 1/1 Running 0
sock-shop pod/rabbitm... 2 2 3m8s

sock-shop deployment.apps/user 2/2

sock-shop deployment.apps/user-db 2/2

NAMESPACE NAME DESIRED CURRENT Rl
sock-shop replicaset.apps/carts-56cc746557 2 2 2
sock-shop replicaset.apps/carts-db-84dd74485f 2 2 2
sock-shop replicaset.apps/catalogue-8695b4dcfd 2 2 2
sock-shop replicaset.apps/catalogue-db-68bb48f867 2 2 2
sock-shop replicaset.apps/front- -c669bb67f 1 1 1
sock-shop replicaset.apps/orders-697c586dd7 2 2 2
sock-shop replicaset.apps/orders-db-694d59df67 2 2 2
sock-shop replicaset.apps/payment-6b5cf84897 2 2 2
sock-shop replicaset.apps/queue-master-85c79fbdf8 2 2 2
sock-shop replicaset.apps/rabbitmg-c5b8d94c7 2 2 2
sock-shop replicaset.apps/session-db-65c8df9f69 2 2 2
sock-shop replicaset.apps/shipping-6cc64f8975 2 2 2

sock-shop replicaset.apps/user-84fb6b864c
sock-shop replicaset.apps/user-db-745c77dd65

Summary of each manifest:

e This manifest defines a Kubernetes Namespace.
e The Namespace is named 'sock-shop".

e Namespaces are used to organize and manage resources within a Kubernetes cluster,

providing a way to divide cluster resources between multiple users or teams.

¢ This manifest defines a Deployment in Kubernetes.

¢ The Deploymentis named 'carts' and is located in the 'sock-shop' namespace.
e |tspecifies that there should be 2 replicas of the 'carts' application running.

e The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8".

e Environment variables are set for Java options to optimize memory usage and disable certain

features.

e Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,
and a minimum of 100m CPU and 200Mi memory.

e The application listens on port 80 within the container.

e Security settings ensure the container runs as a non-root user with specific capabilities and a
read-only root filesystem.

e Atemporary volume is mounted at '/tmp' using an in-memory empty directory.

¢ The Deploymentis scheduled to run on nodes with the Linux operating system.

e This manifest defines a Kubernetes Service.

e The Service is named 'carts".

e Itisannotated for Prometheus scraping with 'prometheus.io/scrape: true'.

e The Service is labeled with 'name: carts'.

e Itisdeployed in the 'sock-shop' namespace.

e The Service exposes port 80 and directs traffic to the same port on the target pods.

o It selects pods with the label 'name: carts' to route traffic to.

¢ This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db'.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux’.

This manifest defines a Kubernetes Service.

The Service is named 'carts-db".

Itis labeled with 'name: carts-db'.

The Service is created in the 'sock-shop' namespace.

It exposes port 27017 and directs traffic to the same port on the target pods.

The Service selects pods with the label 'name: carts-db' to route traffic to them.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is part of the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'catalogue' application running.
The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5".
The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and
100Mi memory.

The container is configured to run as a non-root user with user ID 10001.

Security settings include dropping all capabilities except 'NET_BIND_SERVICE' and using a
read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,

with initial delays of 300 and 180 seconds respectively.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'catalogue’.

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: catalogue'.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: catalogue' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db'.

Itis located in the 'sock-shop' namespace.

The Deployment will create 2 replicas of the pod.

Each pod will run a container from the image 'weaveworksdemos/catalogue-db:0.3.0".

The container is configured with environment variables for 'MYSQL_ROOT_PASSWORD' and
'MYSQL_DATABASE".

The container exposes port 3306, which is typically used for MySQL.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.
The Service is named 'catalogue-db".

Itis located in the 'sock-shop' namespace.
The Service is configured to expose port 3306.
It targets the same port (3306) on the pods.

The Service selects pods with the label 'name: catalogue-db'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.
It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a selector to match pods with the label 'name: front-end".
The pod template includes a single container named 'front-end".

The container uses the image 'weaveworksdemos/front-end:0.3.12".

Resource limits are set for the container: 300m CPU and 1000Mi memory.

Resource requests are set for the container: 100m CPU and 300Mi memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true'.

Security context is configured to run the container as a non-root user with user 1D 10001.

All additional Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the '/' path on port 8079, with an initial delay of 300
seconds and a period of 3 seconds.

A readiness probe is also configured to check the '/' path on port 8079, with an initial delay of

30 seconds and a period of 3 seconds.

The node selector ensures that the pod runs on nodes with the operating system labeled as

Linux.

This manifest defines a Kubernetes Service.

The Service is named 'front-end".

Itis located in the 'sock-shop' namespace.

The Service type is 'NodePort', which exposes the service on each Node's IP at a static port.
It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, which is the port on each node where the service can be

accessed externally.

The Service is configured to be scraped by Prometheus for monitoring, as indicated by the
annotation 'prometheus.io/scrape: true'.

It selects pods with the label 'name: front-end' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders' application running.

The Deployment uses the 'weaveworksdemos/orders:0.4.7' Docker image for the container.

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.
The container listens on port 80.

Security settings ensure the container runs as a non-root user with specific capabilities and a

read-only root filesystem.
A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'orders".

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: orders".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the target pods.

It uses a selector to match pods with the label 'name: orders'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders-db' pod running.

The pods are selected based on the label 'name: orders-db'.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security context is set to drop all capabilities and add only CHOWN, SETGID, and SETUID,

with a read-only root filesystem.
A volume named 'tmp-volume' is mounted at '/tmp' and uses an in-memory empty directory.

The pods are scheduled to run on nodes with the operating system labeled as 'linux’.

This manifest defines a Kubernetes Service.
The Service is named 'orders-db".

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.
It targets the same port (27017) on the pods.

The Service selects pods with the label 'name: orders-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'payment’ application running.

The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3".

Resource limits are set for the container, with a maximum of 200m CPU and 200Mi memory,
and requests for 99m CPU and 100Mi memory.

The container listens on port 80.

Security settings ensure the container runs as a non-root user with user ID 10001, and the

root filesystem is read-only.

The container has a liveness probe and a readiness probe, both checking the '/health’

endpoint on port 80, with initial delays of 300 and 180 seconds respectively.

The Deployment is configured to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'payment’.

It is annotated for Prometheus scraping, which means it is set up for monitoring.

The Service is labeled with 'name: payment'.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service selects pods with the label 'name: payment' to route traffic to them.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'queue-master' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'queue-master' application running.
The Deployment uses a container image 'weaveworksdemos/queue-master:0.3.1"

Environment variables are set for the container, including Java options for memory

management and garbage collection.

Resource limits and requests are defined, with a CPU limit of 300m and memory limit of
500Mi, and requests for 100m CPU and 300Mi memory.

The container exposes port 80.

The Deployment is configured to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.
The service is named 'queue-master’,

It is annotated for Prometheus scraping, which means it is set up to be monitored by

Prometheus.

The service is labeled with 'name: queue-master' for identification and selection purposes.
Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the target pods.

The service uses a selector to target pods with the label 'name: queue-master".

This manifest defines a Deployment for RabbitMQ in a Kubernetes cluster.

The Deployment is named 'rabbitmq' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the RabbitMQ pod running.
The Deployment uses a selector to match pods with the label 'name: rabbitmq"

The pod template includes two containers: one for RabbitMQ and another for RabbitMQ

Exporter.

The RabbitMQ container uses the image 'rabbitmq:3.6.8-management' and exposes two
ports: 15672 for management and 5672 for RabbitMQ.

The RabbitMQ container has a security context that drops all capabilities and adds specific
ones like CHOWN, SETGID, SETUID, and DAC_OVERRIDE, and it uses a read-only root
filesystem.

The RabbitMQ Exporter container uses the image 'kbudde/rabbitmqg-exporter' and exposes
port 9090.

The Deployment is configured to run on nodes with the label 'beta.kubernetes.io/os: linux..

Annotations are set to prevent Prometheus from scraping metrics from this pod.

This manifest defines a Kubernetes Service.

The Service is named 'rabbitmq’.

It is annotated for Prometheus scraping on port 9090.

The Service is labeled with 'name: rabbitmq".

Itis deployed in the 'sock-shop' namespace.

The Service exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.
The Service uses TCP protocol for communication.

It selects pods with the label 'name: rabbitmq' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'session-db’ pod running.

The pods are selected based on the label 'name: session-db".

Each pod runs a single container using the 'redis

"image.

The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.

The Service is named 'session-db".

Itis located in the 'sock-shop' namespace.

The Service listens on port 6379 and forwards traffic to the same port on the target pods.

It uses a selector to target pods with the label 'name: session-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'shipping' application running.

The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8".
Environment variables are set for the application, including 'ZIPKIN' and 'JAVA_OPTS..

Resource limits and requests are defined, with a CPU limit of 300m and memory limit of
500Mi, and requests for 100m CPU and 300Mi memory.

The application listens on port 80.

Security context is configured to run the container as a non-root user with user ID 10001, and

with a read-only root filesystem.
The container has a volume mounted at '/tmp’, which is an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This is a Kubernetes Service manifest.

The service is named 'shipping'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: shipping".

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: shipping'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'user' application running.
The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7".

Resource limits are set for the container: 300m CPU and 200Mi memory, with requests for
100m CPU and 100Mi memory.

The container listens on port 80.
An environment variable 'mongo’ is set with the value 'user-db:27017".
Security context is configured to run the container as a non-root user with user 1D 10001.

The container has a read-only root filesystem and drops all capabilities except
'NET_BIND_SERVICE".

Liveness and readiness probes are configured to check the '/health' endpoint on port 80.
The liveness probe starts after 300 seconds and checks every 3 seconds.
The readiness probe starts after 180 seconds and checks every 3 seconds.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The service is named 'user'.

It is annotated for Prometheus scraping, which means it is set up for monitoring.

The service is labeled with 'name: user’.

Itis deployed in the 'sock-shop' namespace.

The service listens on port 80 and forwards traffic to the same port on the selected pods.

The service selects pods with the label 'name: user".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user-db' pod running.

The pods are selected based on the label 'name: user-db'.

Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0".
The container exposes port 27017, which is typically used by MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux..

This manifest defines a Kubernetes Service.
The Service is named 'user-db".
Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

e |ttargets the same port (27017) on the pods it selects.

e The Service uses a selector to match pods with the label 'name: user-db'.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Resource Requests

e details: Pods may not get scheduled if the cluster is under resource pressure, leading to
potential downtime.

¢ manifests having the issues: ['sock-shop-2/manifests/03-carts-db-dep.yaml, 'sock-shop-
2/manifests/07-catalogue-db-dep.yaml, 'sock-shop-2/manifests/13-orders-db-dep.yaml,
'sock-shop-2/manifests/19-rabbitmqg-dep.yaml’, 'sock-shop-2/manifests/21-session-db-
dep.yaml), 'sock-shop-2/manifests/27-user-db-dep.yaml']

e problematic config: The deployments for carts-db, catalogue-db, orders-db, rabbitmq,

session-db, and user-db do not specify resource requests.
Issue #1: Single Replica Deployment

e details: The front-end deployment has only one replica, which can lead to downtime if the
pod fails.

¢ manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

e problematic config: spec.replicas: 1
Issue #2: High Initial Delay for Liveness Probe

e details: A high initial delay for the liveness probe can delay the detection of a failed pod,
leading to longer downtime.

e manifests having the issues: ['sock-shop-2/manifests/05-catalogue-dep.yaml’, 'sock-shop-
2/manifests/09-front-end-dep.yaml’, 'sock-shop-2/manifests/15-payment-dep.yaml’, 'sock-
shop-2/manifests/25-user-dep.yaml']

e problematic config: livenessProbe.initialDelaySeconds: 300
Issue #3: Missing Port Specification in Service

e details: The service may not function correctly if the port is not specified, leading to
connectivity issues.

¢ manifests having the issues: ['sock-shop-2/manifests/02-carts-svc.yaml', 'sock-shop-
2/manifests/04-carts-db-svc.yaml', 'sock-shop-2/manifests/06-catalogue-svc.yaml', 'sock-
shop-2/manifests/08-catalogue-db-svc.yaml, 'sock-shop-2/manifests/12-orders-svc.yaml,
'sock-shop-2/manifests/14-orders-db-svc.yaml', 'sock-shop-2/manifests/16-payment-
svc.yaml', 'sock-shop-2/manifests/18-queue-master-svc.yaml', 'sock-shop-2/manifests/22-
session-db-svc.yaml', 'sock-shop-2/manifests/24-shipping-svc.yaml, 'sock-shop-
2/manifests/26-user-svc.yaml', 'sock-shop-2/manifests/28-user-db-svc.yaml']

e problematic config: The port field is commented out or not specified in the service manifests.

Application of the manifests:

Thoughts:

The manifests provided are part of a Kubernetes deployment for a microservices-based
application called 'sock-shop'. This is evident from the namespace 'sock-shop' and the naming
conventions used in the manifests, such as 'carts’, 'catalogue’, 'orders', 'payment’, 'shipping,
'user’, and their respective databases. These components are typical of an e-commerce
application, where users can browse a catalogue, add items to a cart, place orders, and make
payments. The use of services like RabbitMQ and Redis further supports the assumption of a

complex, distributed application architecture, which is common in e-commerce platforms.
Assumed application:

The 'sock-shop' application is an e-commerce platform that allows users to browse a catalogue of
items, add items to a shopping cart, place orders, and make payments. It is a microservices-
based application deployed on Kubernetes, with each service handling a specific aspect of the e-
commerce process, such as managing the catalogue, processing orders, handling payments, and

managing user sessions.
Summary of your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID> Replace <ID> with an
available ID: [!

) b
K b
K b

;]

4, http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with an

available tag: [A A) 5 ; ;)
)]
6. http://front-end.sock-shop.svc.cluster.local/basket.html

) b

Phase 1: Hypothesis

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

Steady-state definition

¥ Steady state #1: carts-db-pod-count

4 Description

The firstissue to address is the 'Missing Resource Requests' in the 'carts-db'
Deployment. This is a critical issue because without resource requests, the pods may
not get scheduled if the cluster is under resource pressure, leading to potential
downtime. To verify the steady state, we can measure the number of 'carts-db' pods
running, ensuring it matches the expected replica count of 2. This will help us
understand if the pods are being scheduled correctly despite the missing resource

requests.

.

@, Current state inspection

To inspect the 'carts-db-pod-count’, | will use the Kubernetes API to check the number
of running pods for the 'carts-db' deployment. This is because the task involves
verifying the number of pods, which is a Kubernetes resource state, and the K8s APl is
suitable for this purpose. The deployment is in the 'sock-shop' namespace, and the
expected replica count is 2. | will implement a Python script using the K8s client library
to check the pod count every second for a duration of 5 seconds.

tool: duration:

Inspection script (Python)

oS
time

kubernetes client, config
Load Kubernetes configuration based on the environment
os.getenv(E
config.load_incluster_config()
config.load_kube_config()

vl = client.AppsV1Api()

(namespace, expected_count):
pod_count = 0

resp = vl.read_namespaced_deployment(name= , hamesg
pod_count = resp.status.replicas

client.exceptions.ApiException e:

(

pod_count

(duration) :
namespace =
expected_count = 2
range (duration):
pod_count = check_carts_db_pod_count(namespace, expected_col
¢ {pod_count}")
pod_count == expected_count:

()

¢)
time.sleep(1l)

__hame__ ==
argparse
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

main(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current pod count: 2
Pod count matches expected count.
Current pod count: 2
Pod count matches expected count.
Current pod count: 2
Pod count matches expected count.
Current pod count: 2
Pod count matches expected count.
Current pod count: 2
Pod count matches expected count.

P> Threshold

The steady state we are examining is the number of 'carts-db' pods running, which
should match the expected replica count of 2. The current state shows that the pod
count consistently matches the expected count of 2 over multiple checks. Given that the
system is expected to maintain 2 replicas, the threshold should ensure that at least 2

pods are running to maintain redundancy and availability. To account for potential

fluctuations, such as during pod restarts or updates, a reasonable tolerance can be
applied. For example, allowing a brief period where the pod count might drop to 1, but
it should recover quickly. Therefore, the threshold can be defined as maintaining at
least 2 'carts-db' pods running 95% of the time within a 1-minute monitoring period.
This allows for brief fluctuations while ensuring the system remains stable and

available.

At least 2 'carts-db' pods must be running 95% of the time within a 1-minute monitoring

period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | willimplement a loop
that checks the number of 'carts-db' pods running every second for the specified
duration. | will count the number of times the pod count matches the expected count of
2. At the end of the duration, | will calculate the percentage of time the pod count was
as expected. | will then assert that this percentage is at least 95%, which is the threshold
defined for the steady state. This approach allows for brief fluctuations while ensuring
the system remains stable and available.

os
time
argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self):
super () .__init__()
self.vl_apps = client.AppsV1Api ()

(self, namespace, expected_count):

pod_count = 0

resp = self.vl_apps.read_namespaced_deployment (name=
pod_count = resp.status.replicas
client.exceptions.ApiException e:

(

pod_count

(self, duration):
namespace =
expected_count = 2
successful_checks = 0

range (duration):
pod_count = self.check_carts_db_pod_count(namespace, exf
({pod_count}")
pod_count == expected_count:
successful_checks += 1
time.sleep(1)

Calculate the percentage of successful checks
success_percentage = (successful_checks / duration) * 100
¢ {success_percentage}%'")

Assert that the success percentage i1s at least 95%

success_percentage >= 95,

0):
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=60, help=

args parser.parse_args()

test TestCartsDBPodCount ()

test.test_steady_state(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current pod count: 2
Current pod count: 2
Current pod count: 2
Current pod count: 2
Current pod count: 2
Success percentage: 100.0%
¥ Steady state #2: front-end-pod-count ~

& Description

The next issue to address is the 'Single Replica Deployment' in the 'front-end'
Deployment. This is a critical issue because having only one replica can lead to
downtime if the pod fails. To verify the steady state, we can measure the number of
'front-end' pods running, ensuring it matches the expected replica count of 1. This will
help us understand if the pod is being scheduled correctly and remains available
despite being a single replica. Monitoring the pod count will allow us to verify the

system's resilience to potential failures.

Current state inspection

To inspect the 'front-end-pod-count’, | will use the K8s API. This is because the task
involves checking the number of pods running for the 'front-end' deployment, which is
a Kubernetes resource. The K8s APl is suitable for querying the current state of
Kubernetes resources, such as deployments and pods. | will write a Python script using
the Kubernetes client library to check the number of 'front-end' pods running in the
'sock-shop' namespace. The script will run for a duration of 5 seconds, checking the pod
count every second, and will print a summary of the results at the end.

tool: duration:

Inspection script (Python)

oS
time
argparse

kubernetes client, config

(namespace, duration):
Load Kubernetes configuration based on the environment
os.getenv():

config.load_incluster_config()
config.load_kube_config()

vl = client.CoreV1Api()
pod_Tlabel_selector =

range (duration):
pods = vl1.list_namespaced_pod(namespace=-namespace, Llabel_sel
pod_count = len(pods.items)

¢ {pod_count}")
time.sleep(1)

parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=

args = parser.parse_args()

check_front_end_pod_count (namespace= , duration=args.c

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current front- pod count: 1
Current front- pod count: 1
Current front- pod count: 1
Current front- pod count: 1
Current front- pod count: 1
Finished checking front- pod count.

> Threshold

The current state of the system shows that the front-end pod count is consistently at 1,
which matches the expected replica count as per the deployment configuration. Given
that the system is currently stable with a single replica, the threshold should ensure
that at least 1 front-end pod is running at all times. However, to account for potential
fluctuations or brief disruptions, a reasonable tolerance should be included. Since the
experiment must be completed within 1 minute, we can set a threshold that allows for a
brief period where the pod count might temporarily drop below 1, but it should recover
quickly. Therefore, the threshold can be defined as having at least 1 front-end pod
running 95% of the time during the 1-minute monitoring period. This allows for a brief
3-second window where the pod count might be 0, but it should not persist beyond
that.

At least 1 front-end pod must be running 95% of the time during a 1-minute monitoring
period.

B Unit test to validate the steady state

To verify the steady state of the front-end pod count, | will implement a unit test that
checks if at least 1 front-end pod is running 95% of the time during the specified
duration. This will be done by counting the number of times the pod count is 1 or more
and ensuring it meets the 95% threshold. The test will use a for-loop to check the pod
count every second for the specified duration, and at the end, it will assert whether the

threshold is met. The threshold is represented as a percentage (95%) and will be

calculated based on the duration provided by the user.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, duration):
super () .__init__()
self.namespace = namespace
self.duration = duration

(self):
pod_Tlabel_selector =

successful_checks = 0

Check the pod count every second for the specified duratic
range (self.duration):
pods = self.vl.list_namespaced_pod(namespace=self.namesf
pod_count = len(pods.items)
¢ {pod_count}")

Increment successful checks if pod count is 1 or more
pod_count >= 1:

successful_checks += 1

time.sleep(1)

Calculate the percentage of successful checks
success_rate = (successful_checks / self.duration) * 100

¢ {success_rate}%")

Assert that the success rate meets the 95% threshold

success_rate >= 95,

__name__ ==
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=60, help=
args = parser.parse_args()

test
test.test_front_end_pod_count()

TestFrontEndPodCount (namespace= , duration=args

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current front- pod count: 1
Current front- pod count: 1
Current front- pod count: 1
Current front- pod count: 1
Current front- pod count: 1

Success rate: 100.0%

Fault definition

¥ Scenario: Black Friday Sale

4 Description

During a Black Friday sale, the system is expected to handle a significant increase in
traffic and load. This event will test the system's ability to maintain steady states under
high demand. The system's weaknesses, such as missing resource requests and single
replica deployments, can lead to potential downtime or degraded performance. To
simulate this event, we will inject faults that target these weaknesses. First, we will use
StressChaos to simulate high CPU and memory usage on the 'carts-db' pods, which lack
resource requests, to see if they can maintain the required pod count. Next, we will use
PodChaos to kill the single replica 'front-end' pod to test its resilience and recovery.
Finally, we will introduce NetworkChaos to simulate network latency on the 'front-end'
service, which will test the system's ability to handle network issues during high traffic.
This sequence of fault injections will simulate the phenomena of a Black Friday sale,

where high load, potential failures, and network issues are common.

Fault-injection sequence

({'namespace': 'sock-shop’, 'label'": 'name=carts-db'}) =
({'namespace': 'sock-shop’, 'label': 'name=front-end'}) = ({'namespace":
'sock-shop), 'label': 'name=front-end'})

& Detailed fault parameters

Detailed parameters of ({'namespace': 'sock-shop’, 'label': 'name=carts-
db'})

v {
"mode" : "all"

v n

selector" : {

v n

namespaces" : [
0 : "sock-shop"
]
Y "labelSelectors" : {
"name" : "carts-db"
}
}
Y "stressors" : {

~ W g 4
"workers" : 2
"load" : 100

}

Y "memory" : {
"workers" : 2
"size" : "256MB"

}

}
Y "containerNames" : [

O : "carts-db"

Detailed parameters of ({'namespace': 'sock-shop’, 'label': 'name=front-end'})

v {
"action" : "pod-kill"
"mode" : "one"

Y "selector" : {
Y "namespaces" : [

0 : "sock-shop"

]

Y "labelSelectors" : {

"name" : "front-end"

Detailed parameters of

({'"namespace': 'sock-shop’, 'label': 'name=front-
end'})

v {
"action" : "delay"

"mode" : "all"

v n

selector" : {

v n

namespaces" : [

0 : "sock-shop"

]
Y "labelSelectors" : {
"name" : "front-end"
}
}
"direction" : "to"
"device" : "etho"

Y "delay" : {

"latency" : "100ms"
"jitter" : "10ms"
"correlation" : "50"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

To design a Chaos Engineering experiment that fits within the 1-minute constraint, we
need to allocate time efficiently across the three phases: pre-validation, fault injection,
and post-validation. Given the steady states and the fault scenario, we should ensure
that each phase is long enough to gather meaningful data while staying within the total

time limit.

1. Pre-validation Phase: This phase is crucial to ensure that the system is in a steady
state before we introduce any faults. We need to verify that the 'carts-db' and 'front-
end' pods are running as expected. Given the 1-minute total time constraint, we
can allocate 15 seconds for this phase. This should be sufficient to run the steady

state checks for both 'carts-db' and 'front-end' pods, as the checks are designed to
run quickly.

2. Fault Injection Phase: This is the core of the experiment where we introduce the
faults. We have three faults to inject: StressChaos on 'carts-db’, PodChaos on 'front-
end’, and NetworkChaos on 'front-end'. We need to observe the system's behavior
under these conditions. Allocating 30 seconds for this phase allows us to introduce
each fault and observe the immediate impact on the system. This duration is a
compromise between observing the effects and staying within the time limit.

3. Post-validation Phase: After the faults are removed, we need to ensure that the
system returns to its steady state. This phase should verify that the 'carts-db' and
'front-end' pods are back to their expected counts. Allocating 15 seconds for this

phase allows us to run the steady state checks again to confirm recovery.

In summary, the time allocation is 15 seconds for pre-validation, 30 seconds for fault

injection, and 15 seconds for post-validation, totaling 60 seconds.
Total experiment time:

Pre-validation Phase:

Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in a steady state
before we proceed with fault injection. This involves verifying that the key components
of the system are operating as expected. Given the constraints of a 15-second total time

for this phase, we need to efficiently schedule the unit tests to verify the steady states.
The two steady states we need to verify are:

1. : Ensure that at least 2 'carts-db' pods are running 95% of the
time within a 1-minute monitoring period.
2. : Ensure that at least 1 'front-end' pod is running 95% of the

time during a 1-minute monitoring period.

Since we only have 15 seconds for the pre-validation phase, we will perform a quick
check to ensure that the current pod counts meet the expected values. This will not be a
full 1-minute check but a snapshot to ensure that the system is in a steady state at the
start of the experiment.

The approach is to run both unit tests simultaneously to maximize the use of the limited
time. Each test will have a grace period of 0 seconds and a duration of 15 seconds,
allowing us to quickly verify the current state of the system. This approach ensures that
we can confirm the system's readiness for the chaos experiment within the given time
constraint.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a Black Friday sale scenario by
introducing stress and disruptions to the system. The phase is designed to last 30
seconds, and we will inject three types of faults sequentially to observe the system's
behavior under stress. The sequence and timing of the fault injections are crucial to

effectively simulate the scenario and observe the system's resilience.

1. StressChaos on 'carts-db' Pods: We will start by injecting a StressChaos fault
targeting the 'carts-db' pods. This fault will simulate high CPU and memory usage,
which is typical during a high-traffic event like Black Friday. The stress will be
applied for 10 seconds, starting immediately at the beginning of the phase (grace
period of 0s). This will help us observe if the 'carts-db' pods can maintain the
required pod count despite the missing resource requests.

2. PodChaos on 'front-end' Pod: After the StressChaos, we will introduce a PodChaos
fault to kill the single replica 'front-end' pod. This fault will be injected at the 10-
second mark (grace period of 10s) and will last for 10 seconds. This will test the
system's ability to recover from a pod failure, especially since the 'front-end'
deployment has only one replica.

3. NetworkChaos on 'front-end' Service: Finally, we will inject a NetworkChaos fault
to introduce network latency on the 'front-end' service. This fault will be injected at
the 20-second mark (grace period of 20s) and will last for 10 seconds. This
simulates network issues that might occur during high traffic, testing the system's
ability to handle such disruptions.

The faults are injected sequentially to ensure that each fault's impact can be observed
independently, while also simulating a realistic scenario where multiple issues might
occur in quick succession during a high-demand event. The timing is staggered to allow

for clear observation of each fault's effects and the system's response.

¢ Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #2:
o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the constraints of a 15-second total time for
this phase, we will focus on quickly verifying the two defined steady states: 'carts-db-
pod-count' and 'front-end-pod-count’. The approach is to execute these unit tests
simultaneously to maximize the use of the limited time available. Each unit test will
have a short grace period to allow the system to stabilize after the fault injection,
followed by a brief duration to verify the steady state. The thought process is to ensure
that both critical components, 'carts-db' and 'front-end’, are functioning as expected,

which will indicate that the system has recovered from the injected faults.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The Chaos Engineering experiment is structured into three phases: pre-validation, fault
injection, and post-validation, all within a total duration of 60 seconds.

In the pre-validation phase, which lasts for 15 seconds, the system's steady state is
verified by checking the 'carts-db' and 'front-end' pods. Both unit tests, 'carts-db-pod-
count' and 'front-end-pod-count’, are executed simultaneously with no delay at the
start of this phase. Each test runs for the entire 15 seconds to ensure the system is ready

for the chaos experiment.

The fault injection phase spans 30 seconds and involves three sequential fault
injections. First, a StressChaos fault is applied to the 'carts-db' pods immediately at the
start of the phase, lasting for 10 seconds. Next, a PodChaos fault is introduced to the
'front-end' pod at the 10-second mark, also lasting for 10 seconds. Finally, a
NetworkChaos fault is injected on the 'front-end' service at the 20-second mark,
continuing for 10 seconds. This staggered approach allows for independent observation
of each fault's impact.

In the post-validation phase, which also lasts 15 seconds, the system's recovery is
verified. The unit tests 'carts-db-pod-count' and 'front-end-pod-count' are executed
simultaneously, each starting after a 2-second delay to allow for stabilization. Both tests
run for 6 seconds to confirm that the system has returned to its steady state after the
faults are removed.

Completed the chaos experiment!

Choose namespace]

All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml &

The Chaos Engineering cycle for the 'sock-shop' application involves a detailed process to
test the system's resilience under simulated fault conditions. The applicationis a
microservices-based e-commerce platform deployed on Kubernetes, consisting of various
components such as 'carts’, 'catalogue’, 'orders’, 'payment’, 'shipping', 'user’, and their
respective databases. The cycle begins with understanding the user inputs, which include
Kubernetes manifests defining the deployment and service configurations for each
component. These manifests specify details such as the number of replicas, resource limits,
security settings, and service ports.

The cycle identifies several resiliency issues in the system, including missing resource
requests in some deployments, a single replica deployment for the 'front-end’, high initial
delays for liveness probes, and missing port specifications in service manifests. These issues

could lead to potential downtime or degraded performance under stress.

The Chaos Engineering experiment is designed to test the hypothesis that the system
maintains its steady states even when faults are injected. Two steady states are defined:
ensuring at least 2 'carts-db' pods and 1 'front-end' pod are running 95% of the time during a
1-minute monitoring period. Python scripts using the Kubernetes APl are provided to verify
these steady states.

The fault scenario simulates a Black Friday sale, introducing high load and potential failures.
Chaos Mesh is used to inject faults, including StressChaos on 'carts-db' to simulate high CPU
and memory usage, PodChaos to kill the 'front-end' pod, and NetworkChaos to introduce

network latency on the 'front-end’ service.

The experiment is divided into three phases: pre-validation, fault injection, and post-
validation, each with specific time allocations to fit within a 1-minute constraint. Pre-
validation ensures the system is in a steady state, fault injection introduces the faults, and
post-validation checks if the system returns to its steady state.

The experiment is executed using a Chaos Mesh Workflow file, which automates the process
according to the plan. The first try of the experiment results in all unit tests passing,
indicating that the system maintained its steady states throughout the experiment. This
suggests that the system is resilient to the simulated faults, although further improvements
could be made to address the identified issues.

Download output (.zip)

