Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

® Phase 0: Preprocessing

Cleaning the cluster ... Done

$ kubectl delete --all --context kind-chaos-eater-cluster -n chaos
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos

No resources found

$ kubectl delete all --all-namespaces —-context kind-chaos-eater-cluster -1

pod deleted
pod deleted
pod deleted
service deleted

deployment. apps deleted

K8s manifest(s) to be deployed:

aniVersion: vl

app: example
spec:
restartPolicy: Never
containers:
- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl
kind: Service
metadata:
name: example-service
spec:
selector:
app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 201ns
- pod/example-pod created
- service/example-service created
Waiting deployments to stabilize...
- pods 1is ready.
Deployments stabilized in 3.086 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME CLUSTER-IP EXTERNAL-.
default service/example-service ClusterIP 10.96.152.112 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod.

e The Podis named 'example-pod".

¢ ltincludes metadata with a label 'app: example'.

e The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.
e The Pod contains one container named 'example-container’.

e The container uses the 'nginx:1.17.1' image, which is a specific version of the Nginx web

server.

e The container exposes port 80, which is commonly used for HTTP traffic.

e This manifest defines a Kubernetes Service.

e The Service is named 'example-service'.

e ltusesthe'vl' APl version.

e The Service selects pods with the label 'app: example'.

e It exposes the Service on port 80 using the TCP protocol.

e The Service forwards traffic to the target port 80 on the selected pods.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Pod Restart Policy

e details: The Pod will not restart automatically if it fails, which can lead to downtime.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never
Issue #1: Single Pod Deployment

e details: Having a single Pod means there is no redundancy. If the Pod fails, the service will be

unavailable.
e manifests having the issues: ['nginx/pod.yaml']

e problematic config: Only one Pod is defined without a Deployment or ReplicaSet.

Application of the manifests:

Thoughts:

The manifests provided define a Kubernetes Pod and a Service. The Pod runs an Nginx container,
which is a popular web server used to serve static content, reverse proxy, or load balance HTTP
traffic. The Service is configured to expose this Pod on port 80, which is the default port for HTTP
traffic. Given the use of Nginx and the configuration of the Service, it is logical to assume that
these manifests are intended to deploy a simple web server application. The file names and the

use of Nginx further support this assumption.

Assumed application:

A simple web server application using Nginx to serve HTTP content.
Summary of your instructions for Chaos Engineering:

¢ The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: example-pod-running ~

& Description

The first issue to address is the Pod's restart policy set to 'Never'. This is a critical issue
because if the Pod fails, it will not restart, leading to potential downtime. Therefore, the
steady state should ensure that the Pod is running and available. A measurable output
for this steady state is the number of running Pods, which should be 1, as there is only
one Pod defined in the manifest. This steady state will help verify that the Pod is up and

running, which is crucial given the restart policy configuration.

@, Current state inspection

To inspect whether the 'example-pod' is running, | will use the K8s API. This is because
the state to be checked is the status of a Kubernetes resource, specifically the Pod,
which is best done using the Kubernetes client libraries. The script will check the status
of the Pod every second for a duration of 5 seconds, which is within the allowed
maximum duration. This will ensure that the Pod is running and available, addressing
the critical issue of the Pod's restart policy being set to 'Never".

tool: duration:

Inspection script (Python)

oS
time

kubernetes client, config

Load Kubernetes configuration based on the environment
os.getenv ()
config.load_incluster_config()

config.load_kube_config()
vl = client.CoreV1Api()
(namespace, pod_name) :

pod = vl.read_namespaced_pod(name=pod_name, namespace=namesf
pod.status.phase ==
client.exceptions.ApiException e:

(

False

(duration) :
namespace =
pod_name =
running_count = 0
range (duration):
check_pod_status(namespace, pod_name) :
running_count += 1
time.sleep(1)
({pod_name} {duration}

argparse
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

main(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod running status checked 5 times. Running count: 5.

> Threshold

The steady state we are considering is whether the 'example-pod' is running. The
current state shows that the pod was checked 5 times over a duration of 5 seconds, and
it was running each time, resulting in a running count of 5. This indicates that the pod is
consistently running during the check period. Given the constraints of the chaos
engineering experiment, which must be completed within 1 minute, we can set a
threshold that allows for some tolerance in case of brief fluctuations. A reasonable
threshold would be that the pod should be running at least 90% of the time during the
check period. This allows for a small margin of error while still ensuring that the pod is

generally available and running.

The pod should be running at least 90% of the time during the check period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will calculate the
percentage of time the pod is running during the specified duration. The threshold is set
to 90%, meaning the pod should be running at least 90% of the time during the check
period. | will implement a for-loop to check the pod status every second for the
specified duration and then assert that the running percentage is greater than or equal
to 90%. This ensures that the pod is generally available and running, allowing for a

small margin of error.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self):
super () .__init__()

(self, namespace, pod_name):

pod = self.vl.read_namespaced_pod(name=pod_name, namesp:
pod.status.phase ==

client.exceptions.ApiException e:

(

False

(self, duration):

namespace =
pod_name =

running_count = 0

Check the pod status every second for the specified durati
range (duration) :
self.check_pod_status(namespace, pod_name):
running_count += 1
time.sleep(1)

Calculate the running percentage

running_percentage = (running_count / duration) * 100

Assert that the running percentage i1s at least 90%

running_percentage >= 90, {pod_name}

({pod_name} {duration}

():
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

test

TestPodRunningState()

test.test_pod_running_state(args.duration)

__hame__
ERIN®)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod running status checked 5 times. Running percentage

¥ Steady state #2: example-service-availability ~

4 Description

The next issue to address is the 'Single Pod Deployment’, which is related to the lack of

redundancy. This is a significant issue because if the single Pod fails, the service will be

unavailable. To verify this, we can define a steady state that checks the availability of
the service itself. A measurable output for this steady state is the service's response
time or availability. Since the service is exposed on port 80, we can check if the service
is responding to HTTP requests. This steady state will help verify that the service is
available and responsive, which is crucial given the single Pod deployment

configuration.

Current state inspection

To inspect the availability of the 'example-service', we need to check if the service is
responding to HTTP requests. Since the service is exposed on port 80, we can use k6 to
simulate HTTP requests to the service and measure its response time and availability.
This approach allows us to verify the service's responsiveness and availability, which is
crucial given the single Pod deployment configuration. We will use a small number of
virtual users and a short duration to fit within the 1-minute constraint of the Chaos
Engineering experiment.

tool: vus: 1 duration:

Inspection script (Javascript)

http 2
{ check } ;

options = {

1,

b
0O {
res = http. ¢
(res, {
(r) => r.status === 200,
1)
+
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

v status is 200

checks......... : 100.00% 13915 out of 13915
data_received..................: 12 MB 2.4 MB/s
data_sent......................: 1.5 MB 306 kB/s

http_req_blocked...............: avg=8.11lus min=1.4us med=4.19}

http_req_connecting............: avg=2.23us min=0s med=0s
http_req_duration..............: avg=236.57us min=90.31ys med=232.(
{ expected_response:true }...: avg=236.57us min=90.31us med=232.¢
http_req_failed................: 0.00% ®@ out of 13915
http_req_receiving.............: avg=67.9us min=17.89us med=61.3¢
http_req_sending...............: avg=18.51ys min=4.66us med=14.71
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=150.16us min=54.98us med=151.:
http_regs......................: 13915 2782.666155/s
iteration_duration.............: avg=344.61ys min=131.12pus med=333.]
iterations.....................: 13915 2782.666155/s
VUS . ¢ ettt et eeeoeeeoneeeensnns i min=1 max=1
VUS_MAX e ¢ e v v veeeeeeeennnneeeeaas 1 min=1 max=1

P> Threshold

The steady state we are considering is the availability of the 'example-service'. The k6
test results show that the service is currently responding with a 200 status code for all
requests, indicating 100% availability. Given that the system consists of a single Pod,
any failure in the Pod would result in the service being unavailable. Therefore, the
threshold should ensure that the service remains available and responsive. To account
for minor fluctuations and network latency, a reasonable threshold would be to
maintain a high availability percentage, slightly below 100% to allow for brief, non-
critical failures. A threshold of 99.9% availability is a common standard for web services,
allowing for some tolerance while still ensuring high reliability.

Service availability should be at least 99.9% with a response status of 200.

B Unit test to validate the steady state

To add the threshold check to the k6 script, | will include a 'thresholds' property in the
'options' section. This property will specify that the service's availability should be at
least 99.9% with a response status of 200. This is done by setting a threshold on the
'http_req_failed' metric, ensuring that the failure rate is less than or equal to 0.1%
(which corresponds to 99.9% availability).

http ;
{ check } 5

options = {

duration: s
thresholds: {

// Ensure that the service availability is at least 99.9%
'http_req_failed': [

i
3
res = http.
(res, {
"'status is 200':
1)
}
Pod

(r) => r.status

200,

1, // 0.1% failure rate correst

has completed sucessfully.

The inspection script's results (current states) are as follows:

v status 1is 200

checks............
data_received.....
data_sent.........
http_req_blocked..
http_req_connecting

http_req_duration

{ expected_response:true }...:

v http_req_failed...
http_req_receiving
http_req_sending. .
http_req_tls_handshaking.......:
http_req_waiting..
http_regs.........
iteration_duration

iterations........

Fault definition

® Scenario: Cyber Attack

100.00% 14565 out of 14565

.............. 12 MB 2.5 MB/s
.............. 1.6 MB 320 kB/s
.............. avg=7.92us min=1.33us
............. avg=2.19us min=0s
.............. avg=225.1pys min=82.21ps
avg=225.1ys min=82.21us
.............. 0.00% 0 out of 14565
.............. avg=66.97us min=15.24us
.............. avg=17.27us min=4.03us
avg=0s min=0s
.............. avg=140.85us min=53.55us
.............. 14565 2912.709122/s
.............. avg=329.52us min=117.97us
.............. 14565 2912.709122/s
.............. 1 min=1
.............. 1 min=1

med=4.
med=0s

med=22¢
med=22¢

med=60.
med=13.
med=0s

med=14+¢

med=32:

max=1

max=1

4 Description

Given the system's weaknesses, a cyber attack targeting the single Pod and its network
could be highly impactful. The Pod's restart policy set to 'Never' means that if the Pod
fails, it will not restart, leading to downtime. Additionally, the single Pod deployment
means there is no redundancy, so any failure will make the service unavailable. To
simulate a cyber attack, we can start by injecting a PodChaos fault to kill the Pod,
testing the system's ability to handle Pod failures. This will directly exploit the lack of
redundancy and the restart policy issue. Next, we can simulate a network attack using
NetworkChaos to introduce network latency, testing the service's ability to maintain
availability under network stress. This sequence simulates a cyber attack by first taking
down the Pod and then stressing the network, revealing the system's vulnerabilities in

handling such scenarios.

Fault-injection sequence

({'pod'": 'example-pod'}) = ({'service': 'example-service'})

£ Detailed fault parameters

Detailed parameters of ({'pod": 'example-pod'})
v {
"action" : "pod-kill"
"mode" : "one"
Y vselector" : {
Y "namespaces" : [
0 : "default"
]
¥ "labelSelectors" : {
"app" : "example"
}
}
}
Detailed parameters of ({'service': 'example-service'})
M
"action" : "delay"
"direction" : "to"

Y "target" : {

"mode" : "all"

v

"selector" : {
Y "namespaces" : [

0 : "default"

]
Y "labelSelectors" : {

"app" : "example"

}

"mode" : "all"

Y nselector" : {

v n

namespaces" : [

0 : "default"

]

¥ "labelSelectors" : {

"app" : "example"

}

"device" : "etho"

Y "delay" : {

"latency" : "100ms"
"jitter" : "10ms"
"correlation" : "50"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints of the chaos engineering experiment, which must be completed
within 1 minute, we need to allocate time efficiently across the three phases: pre-
validation, fault-injection, and post-validation. The pre-validation phase is crucial to

ensure that the system is in a steady state before we introduce any faults. Since we have

two steady states to validate, we should allocate a reasonable amount of time to check
both the pod's running status and the service's availability. A duration of 15 seconds
should be sufficient for pre-validation, allowing us to run the necessary checks multiple
times. The fault-injection phase is where we introduce the chaos to observe the
system's behavior under stress. Given the complexity of the faults (PodChaos and
NetworkChaos), we should allocate the majority of the time to this phase to ensure that
the faults have enough time to manifest and impact the system. A duration of 30
seconds is appropriate for fault injection, allowing us to observe the system's response
to both pod failure and network latency. Finally, the post-validation phase is essential
to verify that the system returns to its steady states after the faults are removed. We
should allocate 15 seconds for post-validation, similar to the pre-validation phase, to
ensure that the system stabilizes and meets the defined thresholds for steady states.
This allocation results in a total experiment time of 60 seconds, which fits within the 1-

minute constraint.
Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
state before we proceed with fault injection. Given the constraints of a 15-second total
time for this phase, we will conduct two unit tests to verify the steady states: one for the
pod's running status and another for the service's availability. These tests will be
executed sequentially due to the short duration available, ensuring that each steady
state is verified independently and thoroughly. The first test will check if the 'example-
pod'is running at least 90% of the time over a 5-second period. This is crucial because
the pod's restart policy is set to 'Never', and we need to confirm its availability before
introducing any faults. The second test will verify the 'example-service' availability,
ensuring it responds with a 200 status code at least 99.9% of the time over another 5-
second period. This test is essential to confirm that the service is operational and
responsive, given the single pod deployment. By staggering these tests, we can focus on
each steady state individually, allowing us to identify any issues before proceeding to
the fault injection phase.

e \Verified Steady State #0:
o Workflow Name:

o Grace Period:

o Duration:

o \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack by injecting two types of
faults: PodChaos and NetworkChaos. The total duration for this phase is 30 seconds, so

we need to carefully schedule the faults and unit tests to fit within this timeframe.

First, we will inject the PodChaos fault to simulate a pod failure. This fault will be
injected at the start of the phase (grace period of 0s) and will last for 10 seconds. This
duration is chosen to allow enough time for the system to experience the impact of the

pod being killed, given the pod's restart policy is set to 'Never".

Simultaneously, we will run the unit test for the 'example-pod-running' steady state to
verify if the pod is running at least 90% of the time during the fault injection. This test

will also start at 0s and run for 10 seconds, aligning with the PodChaos duration.

Next, we will inject the NetworkChaos fault to simulate network latency. This fault will
start at 10 seconds (after the PodChaos fault ends) and will last for 20 seconds. This
staggered approach allows us to observe the system's behavior under network stress
after the pod failure has been simulated.

During the NetworkChaos fault, we will run the unit test for the 'example-service-
availability' steady state. This test will start at 10 seconds and run for 20 seconds,
matching the NetworkChaos duration. This ensures we are checking the service's
availability and response time while the network is under stress.

By staggering the faults and aligning the unit tests with the fault durations, we can
effectively observe the system's behavior under each fault condition and verify if the
steady states are maintained.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:

o Grace Period:

o Duration:

e Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:
o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the 15-second time constraint, we will
perform quick checks to verify the steady states. The two steady states to verify are: 1)
the 'example-pod' is running, and 2) the 'example-service' is available. We will execute
these checks sequentially due to the short duration, ensuring each test has enough
time to gather meaningful data. The first test will check the pod's running status,
followed by the service availability test. This order is logical because the pod must be
running for the service to be available. Each test will have a brief grace period to allow
the system to stabilize after the fault injection, followed by a short duration to perform
the checks.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The chaos engineering experiment is structured into three phases: pre-validation, fault-

injection, and post-validation, all to be completed within a total of 60 seconds.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are conducted

sequentially to ensure the system is in a steady state before fault injection. The first test,

named 'pre-unittest-example-pod-running’, checks the 'example-pod' running status. It
starts immediately at the beginning of the phase and runs for 5 seconds. Following this,
the second test, 'pre-unittest-example-service-availability', begins at the 5-second mark

and also runs for 5 seconds, verifying the service's availability.

The fault-injection phase spans 30 seconds and involves two types of faults: PodChaos
and NetworkChaos. Initially, the PodChaos fault, named 'fault-podchaos!, is injected at
the start of the phase and lasts for 10 seconds. Concurrently, the 'fault-unittest-
example-pod-running' unit test runs for the same duration to verify the pod's status
during the fault. After the PodChaos fault concludes, the NetworkChaos fault, named
'fault-networkchaos', begins at the 10-second mark and continues for 20 seconds.
Simultaneously, the 'fault-unittest-example-service-availability' test runs for 20
seconds, starting at the same time as the NetworkChaos fault, to check the service's

availability under network stress.

Finally, the post-validation phase, also 15 seconds long, ensures the system returns to
its steady states. The 'post-unittest-example-pod-running' test starts after a 2-second
grace period and runs for 6 seconds to verify the pod's status. Subsequently, the 'post-
unittest-example-service-availability' test begins at the 8-second mark and runs for 5
seconds, checking the service's availability. This sequential execution allows for a brief

stabilization period before each test.

Completed the chaos experiment!

Choose namespace]

All

Phase 3: Analysis

The chaos engineering experiment results indicate several critical issues in the system's
configuration and its ability to handle faults, particularly in the context of the defined fault

scenario. Here is a detailed analysis of the failures observed during the experiment:

1. Pod Restart Policy and Single Pod Deployment:

o The 'fault-unittest-example-pod-running' test failed because the Pod was not found after
the PodChaos fault was injected. This is directly related to the Pod's restart policy set to
'Never' in the manifest. When the Pod was killed, it did not restart,
leading to a 404 error when attempting to read the Pod's status. This confirms the
identified issue #0 (Pod Restart Policy) and issue #1 (Single Pod Deployment), where the
lack of redundancy and automatic recovery mechanisms resulted in the Pod being

unavailable.

2. Service Availability:

o The 'fault-unittest-example-service-availability' test failed due to connection refusals,
indicating that the service was unavailable. This failure is a consequence of the Pod
being killed and not restarting, as the Service relies on the Pod to handle requests. The

Service's selector in targets Pods with the label 'app: example', and

with the Pod being down, there were no endpoints available to serve the requests,
leading to the connection refused errors.

3. Post-Validation Failures:

o Both 'post-unittest-example-pod-running' and 'post-unittest-example-service-
availability' tests failed, showing that the system did not recover to its steady state after
the fault injection. The Pod remained unavailable, and consequently, the Service could
not respond to HTTP requests. This further highlights the critical impact of the Pod's
restart policy and the lack of redundancy.

Insights and Recommendations:

¢ Pod Restart Policy: Change the Pod's restart policy from 'Never' to 'Always' or 'OnFailure' to
ensure that the Pod automatically restarts if it fails. This will help maintain the Pod's
availability and reduce downtime.

¢ Redundancy and Scalability: Implement a Deployment or ReplicaSet to manage the Pod.
This will provide redundancy by running multiple replicas of the Pod, ensuring that the
Service remains available even if one Pod fails.

e Service Resilience: Consider using a LoadBalancer or Ingress to manage traffic to multiple

Pods, enhancing the system's ability to handle failures and maintain service availability.

By addressing these issues, the system can improve its resilience against similar fault scenarios in
the future, ensuring that the steady states are maintained even when faults are injected.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the system, | will replace the Pod with a Deployment to manage
the Pod's lifecycle and provide redundancy. This will address both the restart policy issue
and the single Pod deployment issue by ensuring that multiple replicas of the Pod are

running and can automatically restart if they fail.
Modification_type: replace
File name: nginx/pod.yaml

Replace the Pod with a Deployment to manage the Pod's lifecycle and provide redundancy.
This will ensure that multiple replicas of the Pod are running and can automatically restart if
they fail.

apiVersion: apps/vl
kind: Deployment

metadata:
name: example-deployment
labels:
app: example
spec:
replicas: 3
selector:
matchlLabels:
app: example
template:
metadata:
labels:
app: example
spec:
containers:
- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 200ns
- deployment.apps/example-deployment configured
- service/example-service configured
Waiting deployments to stabilize...
- deployment/example-deployment is ready.
Deployments stabilized in 3.098 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RES
default pod/example-deployment-598977f874-gxppt 1/1 Running
default pod/example-deployment-598977f874-hkx5m 1/1 Running

default pod/example-deployment-598977f874-jxg2b 1/1 Running

NAMESPACE NAME CLUSTER-IP EXTERNAL-

default service/example-service ClusterIP 10.96.202.254 <none>
NAMESPACE NAME READY UP-TO-DATE AVAIL,
default deployment.apps/example-deployment 3/3 3 3
NAMESPACE NAME DESIRED CURREI
default replicaset.apps/example-deployment-598977f874 3 3
default replicaset.apps/example-deployment-9779766dc 0 0

The fault-scope adjustment Completed!

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],
"labelSelectors": {"app": "example"}}}}}}

The previous K8s manifests targeted a single pod with the label 'app: example'. The current
manifests have changed to a Deployment with 3 replicas, all having the same label 'app:
example'. The original chaos experiment aimed to simulate a pod failure, which can still be
achieved by targeting one of the pods in the Deployment. Therefore, the scope of the fault
injection should remain the same, targeting pods with the label 'app: example' in the 'default’
namespace. This ensures that the experiment's goal of simulating a pod failure is maintained,

even with the change from a single pod to a Deployment with multiple replicas.

Next fault injection scope:

T {

v n

namespaces" : [

0 : "default"
]

Y "labelSelectors" : {

"app" : "example"

Current fault injection settings:

e Injected Faults #0:

o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "delay", "direction": "to", "target": {{"mode": "all", "selector":
{{"namespaces": ["default"], "labelSelectors": {{"app": "example"}}}}}}, "mode": "all", "selector":
{{"namespaces": ["default"], "labelSelectors": {{"app": "example"}}}}, "device": "eth0", "delay":

{{"latency": "100ms", "jitter": "10ms", "correlation": "50"}}}}

The previous K8s manifests had a single pod, and the NetworkChaos was targeting all pods with
the label 'app: example' in the 'default’ namespace. The current manifests have been updated to
a Deployment with 3 replicas, but the label 'app: example' and the namespace 'default’ remain
the same. Therefore, the scope of the fault injection should remain unchanged, as it will now
target all pods created by the Deployment, which aligns with the original goal of the chaos

experiment to test the system's behavior under network stress.
Next fault injection scope:

M
Y "namespaces" : [

0 : "default"
]
Y "labelSelectors" : {

"app" : "example"

Adjusted unittest

The previous unit test targets a Pod resource named 'example-pod". In the reconfigured
manifests, the Pod has been replaced by a Deployment named 'example-deployment' with 3
replicas. This change means that the unit test should now target the Deployment instead of a
single Pod. The test should verify that at least one of the Pods created by the Deployment is
running at least 90% of the time. Therefore, the unit test requires modification to account for the
change from a Pod to a Deployment with multiple replicas. The test should be updated to check
the status of the Pods created by the Deployment, ensuring that the steady state is maintained by

the entire redundancy.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

class TestDeploymentRunningState (K8sAPIBase):
def __init__(self):

super () .__init__()

def check_deployment_pods_status(self, namespace, deployment_name) :

try:
pods = self.vl.list_namespaced_pod(namespace=namespace, label_s
running_pods = [pod for pod in pods if pod.status.phase == 'Run
return len(running_pods) > 0

except client.exceptions.ApiException as e:
print(f"Exception when calling CoreV1Api->list_namespaced_pod:
return False

def test_deployment_running_state(self, duration):
namespace = 'default'
deployment_name = 'example'

running_count = 0

Check the deployment pods status every second for the specified di
for _ in range(duration):
if self.check_deployment_pods_status(namespace, deployment_name
running_count += 1

time.sleep(1l)

Calculate the running percentage

running_percentage = (running_count / duration) * 100

Assert that the running percentage is at least 90%

assert running_percentage >= 90, f'"Deployment '{deployment_name}' r

print(f"Deployment '{deployment_name}' running status checked {dura

def main():
parser = argparse.ArgumentParser (description='Test if a deployment has
parser.add_argument('--duration', type=int, default=5, help='Duration t
args = parser.parse_args()

test
test.test_deployment_running_state(args.duration)

TestDeploymentRunningState()

if __name__ == '_ main__"':

Adjusted unittest

The target of the unit test is the service availability, which is associated with the

resource in the Kubernetes manifests. In the previous and reconfigured manifests, the

resource has not changed, so the endpoint and the service configuration remain the same. The
unit test checks the availability of the service by sending HTTP requests to the service endpoint
and verifying the response status. Since the resource has not been modified, the unit
test does not require any changes. The reconfiguration of the toa with 3
replicas is intended to improve the system's ability to meet the availability threshold, but it does
not affect the unit test itself, which remains valid for checking the service's availability.

Completed the chaos experiment!

Search Choose namespace

= Q All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml &

The Chaos Engineering cycle begins with understanding the user inputs, which include
Kubernetes manifests for a Pod and a Service. The Pod manifest defines a single Nginx

container with a restart policy of 'Never', and the Service manifest exposes this Pod on port

80. Two main resiliency issues are identified: the Pod's restart policy and the lack of

redundancy due to a single Pod deployment.

The hypothesis for the experiment is that the system's steady states will be maintained even
when faults are injected. Two steady states are defined: the Pod should be running at least
90% of the time, and the Service should have 99.9% availability with a response status of
200.

The fault scenario simulates a cyber attack using Chaos Mesh, injecting PodChaos to kill the
Pod and NetworkChaos to introduce network latency. The experiment is divided into three
phases: pre-validation, fault-injection, and post-validation, each with specific tasks and
durations to verify the system's behavior under stress.

In the first experiment attempt, the system fails to maintain the steady states during and
after the fault injection. The Pod does not restart due to its 'Never' restart policy, and the
Service becomes unavailable, confirming the identified issues. Recommendations include

changing the Pod's restart policy and implementing a Deployment for redundancy.

After modifying the system by replacing the Pod with a Deployment, the second experiment
attempt is successful. All unit tests pass, indicating that the system maintains its steady

states even when faults are injected, demonstrating improved resilience.

Download output (.zip)

