Your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following
options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.htmI[?id=<ID> Replace <ID> with an
available ID: [e3fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-
€00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2del-laaa-4c25-a9b9-
6612e8f29a38 , 819elfbf-8b7e-4f6d-811f-693534916a8b , 837abl41-399e-4clf-9abc-

bace40296bac , a®a4f044-b040-410d-8ead-4de0446aec7e , d3588630-ad8e-49df-bbd7-

b

3167f7efb246 , zzz4f044-b040-410d-8ead-4deB446aecTe]

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with

an available tag: [magic , action, blue, brown, black, sport, formal, red,

green, skin, geek]

I

6. http://front-end.sock-shop.svc.cluster.local/basket.html

© Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos
workflow.chaos-mesh.org '"chaos-experiment-20241127-042755" deleted

$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
workflownode.chaos-mesh.org "fault-injection-phase-fnsrg" deleted
workflownode.chaos-mesh.org "fault-networkchaos-k96c7" deleted
workflownode.chaos-mesh.org "fault-podchaos-w48f4" deleted

viim i, €T AviiiaAaAd A AlhAaAanr mmAamblh A~ LT e e e T AT AN AAT A A A

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

workflownode.

workflownode

workflownode.

workflownode

workflownode

workflownode.

chaos-mesh.org

.chaos—-mesh.org

chaos—-mesh.org

.chaos-mesh.org

.chaos-mesh.org

chaos-mesh.org

deleted
deleted
delete
delet:
deleted

deleted

$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:

No resources

found

$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat

pod
pod
pod
pod

deleted
deleted
deleted
deleted

$ kubectl delete services —-all --context kind-chaos-eater-cluster —-n chaos

No resources

found

$ kubectl delete all --all-namespaces —-context kind-chaos-eater-cluster -1

pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod
pod

service

deleted
deleted
deleted
deleted
deleted
deleted

deleted
deleted

deleted
deleted
deleted
deleted
deleted
deleted
deleted

deleted
deleted

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

service
service
service
service
service
service
service
service
service
service
service
service

service

deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
deployment.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.
replicaset.

replicaset.

apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps
apps

deleted

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Namespace
metadata:

name: sock-shop

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts
labels:
name: carts
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: carts
template:
metadata:
labels:
name: carts
spec:
containers:
- name: carts
image: weaveworksdemos/carts:0.4.8
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 200Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:

- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts
annotations:
prometheus.io/scrape:
labels:
name: carts
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: carts

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: carts-db

template:
metadata:
labels:
name: carts-db
spec:
containers:
- name: carts-db
image: mongo
ports:
- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: carts-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue
labels:
name: catalogue
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue
template:
metadata:

labels:
name: catalogue

spec:

containers:

- name: catalogue
image: weaveworksdemos/catalogue:0.3.5
command: []
args:

- —port=80
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 10Q0Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health

port: 80
initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue
annotations:
prometheus.io/scrape:
labels:
name: catalogue
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: catalogue

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:

name: catalogue-db

template:
metadata:
labels:
name: catalogue-db
spec:
containers:
- name: catalogue-db
image: weaveworksdemos/catalogue-db:0.3.0
env:
- name: MYSQL_ROOT_PASSWORD
value: fake_password
- name: MYSQL_DATABASE
value: socksdb
ports:
- name: mysql
containerPort: 3306
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 3306
targetPort: 3306
selector:

name: catalogue-db

apiVersion: apps/vl
kind: Deployment
metadata:

name: front-end

namespace: sock-shop
spec:

replicas: 1

selector:
matchLabels:
name: front-end
template:
metadata:
labels:
name: front-end
spec:
containers:
- name: front-end
image: weaveworksdemos/front-end:0.3.12

resources:
limits:
cpu: 300m
memory: 10OOOMi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value:
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /
port: 8079
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 30
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:

name: front-end

annotations:

prometheus.io/scrape:
labels:
name: front-end
namespace: sock-shop
spec:

type: NodePort

ports:

- port: 80
targetPort: 8079
nodePort: 30001

selector:

name: front-end

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders
labels:
name: orders
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders
template:
metadata:

labels:
name: orders

spec:

containers:

- name: orders
image: weaveworksdemos/orders:0.4.7
env:

- name: JAVA_OPTS

value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d
resources:

limits:

cpu: 500m

memory: 500Mi
requests:
cpu: 100m
memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders
annotations:
prometheus.io/scrape:
labels:
name: orders
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: orders

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders-db
template:
metadata:

labels:
name: orders-db

spec:

containers:

- name: orders-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID

readOnlyRootFilesystem:

volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory

nodeSelector:

true

beta.kubernetes.io/os: linux

apiVersion: vl

kind: Service

metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: orders-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: payment
labels:
name: payment
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: payment
template:
metadata:

labels:
name: payment

spec:

containers:

- name: payment
image: weaveworksdemos/payment:0.4.3
resources:

limits:
Cpu: 200m
memory: 200Mi
requests:
cpu: 99m
memory: 10OMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true

runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: payment
annotations:
prometheus.io/scrape:
labels:
name: payment
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: payment

apiVersion: apps/vl
kind: Deployment

metadata:
name: queue-master
labels:
name: queue-master
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: queue-master
template:
metadata:

labels:
name: queue-master

spec:

containers:

- name: queue-master
image: weaveworksdemos/queue-master:0.3.1
env:

- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: queue-master
annotations:
prometheus.io/scrape:
labels:
name: queue-master
namespace: sock-shop
spec:
ports:

the port that this service should serve on
- port: 80

targetPort: 80
selector:

name: queue-master

apiVersion: apps/vl
kind: Deployment
metadata:
name: rabbitmq
labels:
name: rabbitmqg
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: rabbitmg
template:
metadata:
labels:
name: rabbitmg
annotations:
prometheus.io/scrape:
spec:
containers:
- name: rabbitmg
image: rabbitmq:3.6.8-management
ports:
- containerPort: 15672
name: management
- containerPort: 5672
name: rabbitmg
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
- DAC_OVERRIDE
readOnlyRootFilesystem: true
- name: rabbitmg-exporter

image: kbudde/rabbitmg-exporter
ports:
- containerPort: 9090
name: exporter
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: rabbitmg
annotations:
prometheus.io/scrape:
prometheus.io/port:
labels:
name: rabbitmqg
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 5672
name: rabbitmqg
targetPort: 5672
- port: 9090
name: exporter
targetPort: exporter
protocol: TCP
selector:
name: rabbitmg

apiVersion: apps/vl
kind: Deployment
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:

name: session-db
template:
metadata:

labels:
name: session-db

annotations:
prometheus.io.scrape:

spec:

containers:

- name: session-db
image: redis:alpine
ports:

- name: redis
containerPort: 6379
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 6379
targetPort: 6379
selector:

name: session-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: shipping
labels:
name: shipping
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: shipping
template:
metadata:
labels:
name: shipping
spec:
containers:
- name: shipping
image: weaveworksdemos/shipping:0.4.8
env:
- name: ZIPKIN
value: zipkin.jaeger.svc.cluster.local
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume

volumes:

- name: tmp-volume
emptyDir:

medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: shipping
annotations:
prometheus.io/scrape:
labels:
name: shipping
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:
name: shipping

apiVersion: apps/vl
kind: Deployment
metadata:
name: user
labels:
name: user
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user
template:
metadata:
labels:
name: user
spec:
containers:

- hame: user

image: weaveworksdemos/user:0.4.7

resources:
limits:
cpu: 300m
memory: 200Mi
requests:
cpu: 100m

memory: 100Mi
ports:
- containerPort: 80
env:
- name: mongo
value: user-db:27017
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user
annotations:
prometheus.io/scrape:

labels:
name: user
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: user

apiVersion: apps/vl
kind: Deployment
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user-db
template:
metadata:
labels:
name: user-db
spec:
containers:
- name: user-db

image: weaveworksdemos/user-db:0.3.0

ports:
- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true

volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:

name: user-db

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 190ns
- namespace/sock-shop unchanged
- Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
- deployment.apps/carts created
- service/carts created
- deployment.apps/carts-db created
- service/carts-db created
- deployment.apps/catalogue created
- service/catalogue created
- deployment.apps/catalogue-db created
- service/catalogue-db created

deployment.apps/front- created
service/front- created
deployment.apps/orders created
service/orders created
deployment.apps/orders—-db created
service/orders—-db created
deployment.apps/payment created
service/payment created
deployment.apps/queue-master created
service/queue-master created
deployment.apps/rabbitmg created
service/rabbitmg created
deployment.apps/session-db created
service/session-db created
deployment.apps/shipping created
service/shipping created
deployment.apps/user created
service/user created
deployment.apps/user-db created
service/user-db created

Waiting deployments to stabilize...

sock-shop:deployment/carts is ready. [13/14 deployment(s) still pending]
sock-shop:deployment/queue-master is ready. [12/14 deployment(s) still p
sock-shop:deployment/carts—-db: creating container carts-db

- sock-shop:pod/carts-db-55b978876b-mdpml: creating contai...-shop:depl
sock-shop:deployment/shipping is ready. [10/14 deployment(s) still pendii
sock-shop:deployment/orders is ready. [9/14 deployment(s) still pending]
sock-shop:deployment/session-db is ready. [8/14 deployment(s) still pend
sock-shop:deployment/user: creating container user

- sock-shop:pod/user-69f4d49b54-21p5j: creating container user

- sock-shop:pod/user-69f4d49b54-vpknl: creating container user
sock-shop:deployment/user-db: creating container user-db

- sock-shop:pod/user-db-68746cbc74-h4xq4: creating container user-db

- sock-shop:pod/user-db-68746cbc74-wnrtc: creating container user-db
sock-shop:deployment/carts-db is ready. [7/14 deployment(s) still pendin;
sock-shop:deployment/user-db is ready. [6/14 deployment(s) still pending
sock-shop:deployment/orders-db 1is ready. [5/14 deployment(s) still pendil
sock-shop:deployment/rabbitmg is ready. [4/14 deployment(s) still pendin;
sock-shop:deployment/user: waiting rollout to finish: 0 of 2 updated
sock-shop:deployment/front- is ready. [3/14 deployment(s) still pendil
sock-shop:deployment/user is ready. [2/14 deployment(s) still pending]
sock-shop:deployment/catalogue is ready. [1/14 deployment(s) still pendil
sock-shop:deployment/payment is ready.

Deployments stabilized in 3 minutes 4.334 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop

NAME

pod/carts-658f596954-7zxc2
pod/carts-658f596954-tflvf
pod/carts-db-55b978876b-mdpml
pod/carts-db-55b978876b-p82bt
pod/catalogue-594ddbdbb9-kb1lmb
pod/catalogue-594ddbdbb9-tm2rv
pod/catalogue-db-77c4db4876-2pqgm
pod/catalogue-db-77c4db4876-bklsr
pod/front- ~-79cdc649b4-zzn4t
pod/orders-59f55567b6-487r7
pod/orders-59f55567b6-j2st6
pod/orders-db-5dbb89b648-nmzps
pod/orders-db-5dbb89h648-x4zks
pod/payment-7b6d6477c8-5r79f
pod/payment-7b6d6477c8-jjmjw
pod/queue-master-59d99497f5-9ks41l
pod/queue-master-59d99497f5-x4p8m
pod/rabbitmg-d57757696-9ffnc
pod/rabbitmg-d57757696-vqp6z
pod/session-db-5696479b94-2frqx
pod/session-db-5696479b94-pj2ts
pod/shipping-68f8f8b566-ngcjm
pod/shipping-68f8f8b566—qzhkw
pod/user-69f4d49b54-21p5j
pod/user-69f4d49b54-vpknl
pod/user-db-68746cbc74-h4xqg4
pod/user-db-68746cbc74-wnrtc

Summary of each manifest:

This manifest defines a Kubernetes Namespace.

The Namespace is named 'sock-shop'.

Namespaces are used to organize and manage resources in a Kubernetes cluster.

This manifest defines a Deployment in Kubernetes.

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
2/2
2/2
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

The Deployment is named 'carts' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'carts' application running.

RESTARTS

© © © O © © © © © © © © © © © O O © O O OO © o o o o

The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8".

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,

and a minimum of 100m CPU and 200Mi memory.
The application listens on port 80 within the container.

Security settings ensure the container runs as a non-root user with specific capabilities and a

read-only root filesystem.
A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'carts’.

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: carts".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: carts".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db'.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.
The Service is named 'carts-db".

It is labeled with 'name: carts-db".

The Service is created in the 'sock-shop' namespace.
It exposes port 27017 and directs traffic to the same port on the target pods.

The Service selects pods with the label 'name: carts-db' to route traffic to them.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is part of the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'catalogue' application running.
The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5".
The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and
100Mi memory.

The container is configured to run as a non-root user with user ID 10001.

Security settings include dropping all capabilities except 'NET_BIND_SERVICE' and using a

read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,

with initial delays of 300 and 180 seconds respectively.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'catalogue’.

It is annotated to enable Prometheus scraping for monitoring purposes.

The Service is labeled with 'name: catalogue'.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: catalogue'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db".

Itis located in the 'sock-shop' namespace.

The Deployment will create 2 replicas of the pod.

Each pod will run a container from the image 'weaveworksdemos/catalogue-db:0.3.0"

The container is configured with environment variables for MySQL, including a root password

and database name.

The container exposes port 3306, which is commonly used for MySQL.

The pods are scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'catalogue-db".

It is associated with the 'sock-shop' namespace.

The Service listens on port 3306 and forwards traffic to the same port on the target pods.

It uses a selector to target pods with the label 'name: catalogue-db'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.
It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a selector to match pods with the label 'name: front-end".
The pod template includes a single container named 'front-end".

The container uses the image 'weaveworksdemos/front-end:0.3.12".

Resource limits are set for the container: 300m CPU and 1000Mi memory.

Resource requests are set for the container: 100m CPU and 300Mi memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true".

Security context is configured to run the container as a non-root user with user ID 10001.
All Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the '/' path on port 8079, with an initial delay of 300

seconds and a period of 3 seconds.

A readiness probe is also configured to check the '/' path on port 8079, with an initial delay of
30 seconds and a period of 3 seconds.

The node selector ensures that the pod runs on nodes with the operating system labeled as

Linux.

This manifest defines a Kubernetes Service.

The Service is named 'front-end".

Itis located in the 'sock-shop' namespace.

The Service type is '"NodePort', which exposes the service on each Node's IP at a static port.
It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, allowing external access to the service.

The Service is configured to be scraped by Prometheus for monitoring, as indicated by the

annotation 'prometheus.io/scrape: true'.

It selects pods with the label 'name: front-end' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders' application running.

The Deployment uses the 'weaveworksdemos/orders:0.4.7' Docker image for the container.

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.
The container listens on port 80.

Security context is configured to run the container as a non-root user with specific

capabilities and a read-only root filesystem.
A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'orders".

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: orders".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the target pods.

It uses a selector to match pods with the label 'name: orders".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.
It specifies 2 replicas of the 'orders-db' pod to be created.

The pods are labeled with 'name: orders-db' for identification and selection.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security settings are applied to drop all capabilities and add only CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'orders-db".

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods it selects.

The Service uses a selector to match pods with the label 'name: orders-db'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is part of the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'payment' application running.
The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3".

Resource limits are set for the container, with a maximum of 200m CPU and 200Mi memory,
and requests for 99m CPU and 100Mi memory.

The container listens on port 80.

Security settings ensure the container runs as a non-root user with user ID 10001, drops all
capabilities except 'NET_BIND_SERVICE', and uses a read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,
with initial delays of 300 and 180 seconds respectively, and a period of 3 seconds.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'payment’.

It is annotated for Prometheus scraping, which means it is set up for monitoring.

The Service is labeled with 'name: payment'.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service selects pods with the label 'name: payment’.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'queue-master' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas (instances) of the 'queue-master' application
running.
The Deployment uses a container image 'weaveworksdemos/queue-master:0.3.1".

Environment variables are set for the container, including Java options for memory

management and garbage collection.
Resource limits and requests are defined, with a CPU limit of 300m and memory limit of
500Mi, and requests for 100m CPU and 300Mi memory.

The container exposes port 80 for network traffic.

The Deployment is configured to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'queue-master’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: queue-master’.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: queue-master' to route traffic to.

This manifest defines a Deployment for RabbitMQ in Kubernetes.

Itis settorunin the 'sock-shop' namespace.

The Deployment is named 'rabbitmq' and is labeled accordingly.

It specifies 2 replicas, meaning there will be 2 instances of RabbitMQ running.
The Deployment uses a selector to match pods with the label 'name: rabbitmq'.

The pod template includes two containers: one for RabbitMQ and another for a RabbitMQ

exporter.
The RabbitMQ container uses the image 'rabbitmq:3.6.8-management’.
It exposes two ports: 15672 for management and 5672 for RabbitMQ operations.

Security context is set to drop all capabilities and add specific ones like CHOWN, SETGID,
SETUID, and DAC_OVERRIDE.

The root filesystem is set to read-only for security purposes.

The RabbitMQ exporter container uses the image 'kbudde/rabbitmqg-exporter' and exposes
port 9090.

The Deployment is configured to run on nodes with the label 'beta.kubernetes.io/os: linux"

Annotations are set to prevent Prometheus from scraping metrics from this deployment.

This manifest defines a Kubernetes Service.

The Service is named 'rabbitmq’.

It is annotated for Prometheus scraping on port 9090.

The Service is labeled with 'name: rabbitmq".

It is deployed in the 'sock-shop' namespace.

The Service exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.
The protocol used for the ports is TCP.

The Service selects pods with the label 'name: rabbitmq'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'session-db' pod running.

The pods are selected based on the label 'name: session-db".

Each pod runs a single container using the 'redis

"image.

The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID, with a read-only root filesystem for enhanced security.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.

The Service is named 'session-db'.

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 6379.

It targets the same port (6379) on the selected pods.

The Service uses a selector to match pods with the label 'name: session-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'shipping' application running.
The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8".

Environment variables are set for the application, including 'ZIPKIN' and 'JAVA_OPTS.

Resource limits and requests are defined, with limits set to 300m CPU and 500Mi memory,

and requests set to 100m CPU and 300Mi memory.
The application listens on port 80.

Security context is configured to run the container as a non-root user with user ID 10001, and
it drops all capabilities except 'NET_BIND_SERVICE".

The root filesystem is set to be read-only.
A temporary volume is mounted at '/tmp', using an in-memory emptyDir volume.

The Deployment is scheduled to run on nodes with the operating system labeled as 'linux".

This is a Kubernetes Service manifest.

The service is named 'shipping'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: shipping".

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: shipping' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'user' application running.
The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7".

Resource limits are set for the container: 300m CPU and 200Mi memory, with requests for
100m CPU and 100Mi memory.

The container listens on port 80.
An environment variable 'mongo’ is set with the value 'user-db:27017".
Security context is configured to run the container as a non-root user with user 1D 10001.

The container has a read-only root filesystem and drops all capabilities except
'NET_BIND_SERVICE".

Liveness and readiness probes are configured to check the '/health' endpoint on port 80.
The liveness probe starts after 300 seconds and checks every 3 seconds.
The readiness probe starts after 180 seconds and checks every 3 seconds.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

e The Service is named 'user".

e Itisannotated for Prometheus scraping, which means it is set up for monitoring.

e The Serviceis labeled with 'name: user".

e Itisdeployed in the 'sock-shop' namespace.

e The Service listens on port 80 and forwards traffic to the same port on the selected pods.

e The Service selects pods with the label 'name: user".

e This manifest defines a Deployment in Kubernetes.

e The Deploymentis named 'user-db' and is located in the 'sock-shop' namespace.

e |t specifies that there should be 2 replicas of the 'user-db' pod running.

e The pods are selected based on the label 'name: user-db'.

e Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0".

e The container exposes port 27017, labeled as 'mongo’, which is typically used for MongoDB.

e Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID, with a read-only root filesystem.

e Atemporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

e The pods are scheduled to run on nodes with the operating system labeled as 'linux".

e This manifest defines a Kubernetes Service.

e The Service is named 'user-db".

e ltislabeled with 'name: user-db".

e The Service is created in the 'sock-shop' namespace.

e Itexposes port 27017 and directs traffic to the same port on the target pods.

e The Service selects pods with the label 'name: user-db' to route traffic to them.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Resource Requests

e details: Pods may not get scheduled if the cluster is under resource pressure, leading to
potential downtime.

¢ manifests having the issues: ['sock-shop-2/manifests/03-carts-db-dep.yaml, 'sock-shop-
2/manifests/07-catalogue-db-dep.yaml, 'sock-shop-2/manifests/13-orders-db-dep.yaml,
'sock-shop-2/manifests/19-rabbitmqg-dep.yaml’, 'sock-shop-2/manifests/21-session-db-
dep.yaml’, 'sock-shop-2/manifests/27-user-db-dep.yaml']

e problematic config: The deployments for carts-db, catalogue-db, orders-db, rabbitmq,
session-db, and user-db do not specify resource requests.

Issue #1: Single Replica Deployment

e details: The front-end deployment has only one replica, which can lead to downtime if the

pod fails.
¢ manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

e problematic config: spec.replicas: 1
Issue #2: Missing Liveness and Readiness Probes

e details: Without liveness and readiness probes, Kubernetes cannot determine the health of
the containers, which may lead to serving traffic to unhealthy pods.

¢ manifests having the issues: ['sock-shop-2/manifests/01-carts-dep.yaml’, 'sock-shop-
2/manifests/03-carts-db-dep.yaml, 'sock-shop-2/manifests/05-catalogue-dep.yaml, 'sock-
shop-2/manifests/07-catalogue-db-dep.yaml’, 'sock-shop-2/manifests/11-orders-dep.yaml’,
'sock-shop-2/manifests/13-orders-db-dep.yaml', 'sock-shop-2/manifests/15-payment-
dep.yaml', 'sock-shop-2/manifests/17-queue-master-dep.yaml’, 'sock-shop-2/manifests/19-
rabbitmg-dep.yaml), 'sock-shop-2/manifests/21-session-db-dep.yaml’, 'sock-shop-
2/manifests/23-shipping-dep.yaml’, 'sock-shop-2/manifests/25-user-dep.yaml’, 'sock-shop-
2/manifests/27-user-db-dep.yaml']

e problematic config: The deployments for carts, carts-db, catalogue, catalogue-db, orders,
orders-db, payment, queue-master, rabbitmq, session-db, shipping, user, and user-db do not
have liveness or readiness probes configured.

Issue #3: Hardcoded Environment Variables

e details: Hardcoded environment variables, such as passwords, can lead to security

vulnerabilities.
¢ manifests having the issues: ['sock-shop-2/manifests/07-catalogue-db-dep.yaml']

e problematic config: env: MYSQL_ROOT_PASSWORD is hardcoded with value: fake_password.

Application of the manifests:

Thoughts:

The manifests provided are part of a well-known microservices demo application called 'Sock
Shop'. This application is designed to demonstrate the use of microservices architecture and
Kubernetes orchestration. The application simulates an e-commerce website for selling socks,
with various services such as carts, catalogue, orders, payment, and user management. The file
names, labels, and Docker images used in the manifests (e.g., 'weaveworksdemos') are indicative
of the Sock Shop application, which is a common reference application in the Kubernetes

community.

Assumed application:

Sock Shop is an e-commerce application that simulates an online sock store. It offers users the

ability to browse a catalogue of socks, add items to a cart, place orders, and manage user

accounts. The application is composed of multiple microservices, each responsible for a specific

function, such as managing the product catalogue, handling user sessions, processing payments,

and managing orders.

Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1.
2.
3.

http://front-end.sock-shop.svc.cluster.local/

http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

http://front-end.sock-shop.svc.cluster.local/detail.htm|?id=<ID> Replace <ID> with an
available ID: [.

;]

http://front-end.sock-shop.svc.cluster.local/category/

http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with an

available tag: [A A) 5 5 : ,))

;]

http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: carts-db-replicas ~

4 Description

The first issue to address is the 'Missing Resource Requests' for the 'carts-db'’

deployment. This is a critical issue because without resource requests, the pods may

not get scheduled if the cluster is under resource pressure, leading to potential

downtime. To ensure the system's steady state, we need to verify that the 'carts-db'

deployment maintains the expected number of replicas, which is 2, even under

resource constraints. This can be measured by checking the number of running pods for

the 'carts-db' deployment.

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

@, Current state inspection

To inspect the number of replicas for the 'carts-db' deployment, | will use the
Kubernetes API. This is because the task involves checking the current state of a
Kubernetes resource, specifically the number of running pods for a deployment, which
is best achieved using the Kubernetes client libraries. The script will check the number
of replicas every second for a duration of 5 seconds, which is sufficient to verify the
steady state of the deployment.

tool: duration:

Inspection script (Python)

oS
time
argparse

kubernetes client, config

(namespace= , deployment_name=
Load Kubernetes configuration based on the environment
os.getenv()

config.load_incluster_config()
config.load_kube_config()
vl = client.AppsV1Api()
range (duration):

deployment = vl.read_namespaced_deployment(deployment_n:
replicas = deployment.status.replicas
ready_replicas = deployment.status.ready_replicas
({replicas} {rec
client.exceptions.ApiException e:

¢
time.sleep(1l)

__name__ ==
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

check_carts_db_replicas(duration=args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Total replicas: Ready replicas:

-

Total replicas: 2, Ready replicas:

Total replicas: Ready replicas:

Total replicas: 2, Ready replicas:

N NN NN
N NN NN

Total replicas: 2, Ready replicas:

> Threshold

The steady state we are considering is the number of replicas for the 'carts-db'
deployment. The current state shows that there are 2 total replicas and 2 ready replicas
consistently over a period of 5 seconds. This indicates that the system is currently stable
with all replicas being ready. Given that the deployment is configured to have 2 replicas,
the threshold should ensure that both replicas are ready to maintain the steady state.
To account for some fluctuations, we can set a tolerance that allows for a brief period
where not all replicas are ready, but the system should recover quickly. A reasonable
threshold would be to have at least 1 ready replica 100% of the time and both replicas
ready at least 80% of the time during the monitoring period. This ensures that the
system remains operational even if one replica temporarily becomes unavailable.

At least 1 ready replica 100% of the time and 2 ready replicas at least 80% of the time
during the monitoring period.

B Unit test to validate the steady state

To verify the steady state of the 'carts-db' deployment, | will write a unit test that checks
the number of ready replicas over a specified duration. The test will ensure that there is
at least 1 ready replica 100% of the time and 2 ready replicas at least 80% of the time. |
will implement a loop that checks the status every second for the specified duration
and use assertions to validate the threshold conditions. The test will be run from the

command line with a '--duration' argument to specify the monitoring period.

0s
time
argparse
kubernetes client, config
unittest_base K8sAPIBase
(K8sAPIBase) :
(self, namespace= , deployment_name=

super () .__init__()
self.namespace = namespace

self.deployment_name = deployment_name
self.duration = duration

def test_replicas_threshold(self):
Initialize counters for ready replicas
total_checks = 0
ready_replicas_count = 0
fully_ready_replicas_count = 0

for _ in range(self.duration):
try:
Read the deployment status
deployment = self.vl.read_namespaced_deployment (seli
replicas = deployment.status.replicas
ready_replicas = deployment.status.ready_replicas

print(f"Total replicas: {replicas}, Ready replicas:

Increment the total checks
total_checks += 1

Check if at least 1 replica is ready
if ready_replicas >= 1:

ready_replicas_count += 1

Check if both replicas are ready
if ready_replicas ==
fully_ready_replicas_count += 1

except client.exceptions.ApiException as e:
print(f"Exception when calling AppsV1Api->read_names

Wait for 1 second before the next check

time.sleep(1)

Calculate the percentage of time conditions are met
one_ready_percentage = (ready_replicas_count / total_checks)
two_ready_percentage = (fully_ready_replicas_count / total_c

Assert the threshold conditions
assert one_ready_percentage == 100, "At least 1 ready replic

assert two_ready_percentage >= 80, "2 ready replicas were nc

print("Test passed: Steady state conditions are satisfied.")

def main():

parser = argparse.ArgumentParser (description="'Test carts-db repl

parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

Create an instance of the test class with the specified durati
test = TestCartsDBReplicas(duration=args.duration)

Run the test

test.test_replicas_threshold()

Pod has failed.

Traceback (most recent call last):
File
ERIN®)
File
test.test_replicas_threshold()
File
deployment = self.vl.read_namespaced_deployment(self.deployment._
AttributeError: object has no attribute

The error occurs because the 'CoreV1Api' object does not have a method called
'read_namespaced_deployment'. The correct API to use for reading deployments is
'‘AppsV1Api'. | will fix the error by changing the API client from 'CoreV1Api' to 'AppsV1Api'
in the 'K8sAPIBase' class initialization. This will allow the test to correctly access the

deployment information.

0s
time
argparse
kubernetes client, config
unittest_base K8sAPIBase
(K8sAPIBase) :
(self, namespace= , deployment_name=

super () .__init__()

self.namespace = namespace
self.deployment_name = deployment_name
self.duration = duration

Use the correct API client for deployments
self.apps_vl = client.AppsV1Api ()

(self):

Initialize counters for ready replicas
total_checks = 0

ready_replicas_count = 0
fully_ready_replicas_count = 0

for _ in range(self.duration):
try:
Read the deployment status using the correct API ¢
deployment = self.apps_vl.read_namespaced_deployment
replicas = deployment.status.replicas
ready_replicas = deployment.status.ready_replicas
print(f"Total replicas: {replicas}, Ready replicas:

Increment the total checks
total_checks += 1

Check if at least 1 replica is ready
if ready_replicas >= 1:
ready_replicas_count += 1

Check if both replicas are ready
if ready_replicas ==

fully_ready_replicas_count += 1

except client.exceptions.ApiException as e:

print(f"Exception when calling AppsV1Api->read_names

Wait for 1 second before the next check
time.sleep(1)

Calculate the percentage of time conditions are met

one_ready_percentage = (ready_replicas_count / total_checks)

two_ready_percentage (fully_ready_replicas_count / total_c

Assert the threshold conditions
assert one_ready_percentage == 100, "At least 1 ready replic
assert two_ready_percentage >= 80, "2 ready replicas were nc

print("Test passed: Steady state conditions are satisfied.")

def main():
parser = argparse.ArgumentParser (description='Test carts-db repl
parser.add_argument('--duration', type=int, default=5, help='Dur

args = parser.parse_args()

Create an instance of the test class with the specified durati

test = TestCartsDBReplicas(duration=args.duration)
Run the test
test.test_replicas_threshold()

__hame__ ==

ERIN®)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Total replicas: 2, Ready replicas:

Total replicas:

2

Total replicas: 2, Ready replicas:
2, Ready replicas:
2

N N NN

Total replicas: 2, Ready replicas:

Total replicas: 2, Ready replicas: 2
Test passed: Steady state conditions are satisfied.

¥ Steady state #2: front-end-replica

4 Description

The next issue to address is the 'Single Replica Deployment' for the 'front-end'
deployment. This is a critical issue because having only one replica can lead to
downtime if the pod fails. To ensure the system's steady state, we need to verify that the
'front-end' deployment maintains at least one running pod at all times. This can be
measured by checking the number of running pods for the 'front-end' deployment.
Given that the deployment is configured to have only 1 replica, the threshold should
ensure that this single replica is always ready to maintain the steady state. A reasonable
threshold would be to have at least 1 ready replica 100% of the time during the
monitoring period. This ensures that the system remains operational even if there are
temporary issues with the pod.

¥, Current state inspection

To inspect the 'front-end-replica’ state, | will use the K8s API to check the number of
ready replicas for the 'front-end' deployment in the 'sock-shop' namespace. This is
because the task involves verifying the number of running pods, which is a Kubernetes
resource state check. The K8s APl is suitable for this purpose as it allows us to directly

query the deployment status and ensure that the single replica is always ready. The
script will run for a duration of 5 seconds, checking the status every second, to ensure
the deployment maintains at least one ready replica 100% of the time.

tool: duration:

Inspection script (Python)

0s
time
argparse

kubernetes client, config

(namespace, deployment_name, duration):
Load Kubernetes configuration based on the environment
os.getenv():
config.load_incluster_config()

config.load_kube_config()

vl = client.AppsV1Api()
ready_replicas_count = 0

range (duration):
resp = vl.read_namespaced_deployment_status(deployment_name,
ready_replicas = resp.status.ready_replicas 0
¢ {deployment_name}: {ready_replic:
ready_replicas >= 1:
ready_replicas_count += 1
time.sleep(1l)

(f"{deployment_name} {ready_replicas_count}/{durc

_hame__ ==

parser = argparse.ArgumentParser (description=

parser.add_argument(, type=int, default=5, help=

args = parser.parse_args()

check_front_end_replicas(, , args.duratior
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Ready replicas front- 1
Ready replicas front- 1
Ready replicas front- 1
Ready replicas front- 1

Ready replicas front- 1
front- was ready 5/5 times.

> Threshold

The steady state we are considering is the availability of the 'front-end' deployment,
which currently has only one replica. The current state shows that the 'front-end'
deployment has 1 ready replica consistently over a monitoring period of 5 seconds. To
ensure the system remains operational, the threshold should be set such that the 'front-
end' deployment maintains at least 1 ready replica 100% of the time during the
monitoring period. This accounts for the fact that there is only one replica, and any
downtime would mean the service is unavailable. Given the current state satisfies this
condition, the threshold should be set to ensure that at least 1 ready replica is present
100% of the time during the monitoring period.

At least 1 ready replica must be present 100% of the time during the monitoring period.

B Unit test to validate the steady state

To verify the steady state of the 'front-end' deployment, | will write a unit test that
checks if there is at least 1 ready replica 100% of the time during the specified
monitoring period. The test will use a for-loop to check the status every second for the
given duration. The threshold is set to ensure that the 'front-end' deployment
maintains at least 1 ready replica 100% of the time, which means the number of times
the ready replicas are 1 or more should equal the duration. | will use the Kubernetes
Python API to interact with the cluster and check the deployment status. The test will
include an assertion to verify that the steady state satisfies the threshold, and it will
print a summary of the results at the end.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, deployment_name, duration):
super () .__init__()
self.namespace = namespace
self.deployment_name = deployment_name
self.duration = duration

def test_steady_state(self):
ready_replicas_count = 0

Loop for the specified duration

for _ in range(self.duration):
Get the deployment status
resp = self.vl.read_namespaced_deployment_status(self.de
ready_replicas = resp.status.ready_replicas or 0
print(f"Ready replicas for {self.deployment_name}: {reac

Check if the number of ready replicas is at least 1
if ready_replicas >= 1:

ready_replicas_count += 1

Wait for 1 second before the next check

time.sleep(1)

Calculate the percentage of time the deployment was ready
readiness_percentage = (ready_replicas_count / self.duratior
print(f"{self.deployment_name} was ready {ready_replicas_col

Assert that the deployment was ready 100% of the time
assert readiness_percentage == 100, f'"{self.deployment_name]

def main():
parser = argparse.ArgumentParser (description='Test front-end re;g
parser.add_argument('--duration', type=int, default=5, help='Dur
args = parser.parse_args()

Create a test instance and run the test
test = TestFrontEndReplica('sock-shop', 'front-end', args.durat-
test.test_steady_state()

it __name__ == '_ main__"':

main()

Pod unittestfront-end-replicamod®-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241127_043136/hypothesis/unitte
main()
File "/chaos-eater/sandbox/cycle_20241127_043136/hypothesis/unitte
test.test_steady_state()
File "/chaos-eater/sandbox/cycle_20241127_043136/hypothesis/unitte

resp = self.vl.read_namespaced_deployment_status(self.deployment
AttributeError: object has no attribute

The error occurs because the class does not have a method called
. Instead, the correct class to use for reading

deployment status is . I will fix the error by changing the API client from
to in the class. This will allow the test to correctly
call the method and check the deployment status.

The rest of the test logic remains the same, ensuring that the deployment maintains at
least 1 ready replica 100% of the time during the specified duration.

0s

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :

(self, namespace, deployment_name, duration):
super () .__init__()
self.namespace = namespace
self.deployment_name = deployment_name
self.duration = duration
Use AppsV1Api to interact with deployments
self.apps_vl = client.AppsV1Api ()

(self):
ready_replicas_count = 0

Loop for the specified duration
_ range (self.duration):

Get the deployment status

resp = self.apps_vl.read_namespaced_deployment_status(se

ready_replicas = resp.status.ready_replicas 0

({self.deployment_name}: {reac

Check if the number of ready replicas is at least 1
ready_replicas >= 1:
ready_replicas_count += 1

Wait for 1 second before the next check

time.sleep(1)

Calculate the percentage of time the deployment was ready

readiness_percentage = (ready_replicas_count / self.duratior

(f"{self.deployment_name} {ready_replicas_col

Assert that the deployment was ready 100% of the time

readiness_percentage == 100, {self.deployment_name]

():
parser = argparse.ArgumentParser (description=
parser.add_argument (, type=int, default=5, help=

args = parser.parse_args()

Create a test instance and run the test
test = TestFrontEndReplica(s , args.durat-
test.test_steady_state()

__nhame__ ==

ERIN®)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Ready replicas front- 1
Ready replicas front- 1
Ready replicas front- 1
Ready replicas front- 1
Ready replicas front- 1
front- was ready 5/5 times.
Fault definition
® Scenario: Black Friday Sale ~

4 Description

During a Black Friday sale, the system is expected to handle a significant increase in
traffic, which can stress the system's resources and reveal weaknesses. The 'carts-db'
deployment lacks resource requests, which can lead to scheduling issues under
resource pressure. The 'front-end' deployment has only one replica, making it a single
point of failure. To simulate the Black Friday event, we will first inject a 'StressChaos'

fault to simulate high CPU usage on the 'carts-db' pods, testing if the system can

maintain the steady state of having at least 1 ready replica 100% of the time and 2 ready
replicas 80% of the time. Next, we will inject a 'PodChaos’ fault to kill the 'front-end'
pod, testing if the system can maintain the steady state of having at least 1 ready replica
100% of the time. This sequence simulates the increased load and potential failures

during a high-traffic event like Black Friday.

Fault-injection sequence

({'namespace': 'sock-shop’, 'label': 'name=carts-db'}) =
({'namespace': 'sock-shop’, 'label': 'name=front-end'})

£ Detailed fault parameters

Detailed parameters of ({'namespace': 'sock-shop’, 'label': 'name=carts-
db'})

v {
"mode" : "all"
Y "selector" : {
Y "namespaces" : [

0 : "sock-shop"

]
¥ "labelSelectors" : {
"name" : "carts-db"
}
}
Y "stressors" : {
Y o'epu" @ {
"workers" : 2
"load" : 80
}
}
Y "containerNames" : [
0 : "carts-db"
1
}
Detailed parameters of ({'namespace': 'sock-shop’, 'label": 'name=front-end'})
v {

"action" : "pod-kill"

"mode" : "one"
Y "selector" : {

Y "namespaces" : [

0 : "sock-shop"

]
¥ "labelSelectors" : {
"name" : "front-end"
}
}
"value" : "1"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

The chaos engineering experiment is designed to test the system's resilience under
stress conditions and potential failures. Given the constraints, the experiment must be
completed within 1 minute. The experiment is divided into three phases: pre-validation,

fault-injection, and post-validation.

1. Pre-validation Phase: This phase ensures that the system is in a steady state before
any faults are injected. We will allocate 20 seconds for this phase. During this time,
we will verify that the 'carts-db' deployment maintains at least 1 ready replica 100%
of the time and 2 ready replicas 80% of the time, and that the 'front-end'

deployment maintains at least 1 ready replica 100% of the time.

2. Fault-injection Phase: This phase involves injecting faults to simulate the Black
Friday event. We will allocate 20 seconds for this phase. The faults include a
'StressChaos' fault to simulate high CPU usage on the 'carts-db' pods and a
'PodChaos' fault to kill the 'front-end' pod. These faults will test the system's ability

to maintain the defined steady states under stress and failure conditions.

3. Post-validation Phase: This phase ensures that the system returns to its steady
state after the faults are removed. We will allocate 20 seconds for this phase. During
this time, we will again verify the steady states for the 'carts-db' and 'front-end'
deployments to ensure they meet the defined thresholds.

The total time for the experiment is 60 seconds, with each phase receiving an equal
allocation of 20 seconds. This allocation allows for a balanced approach to validating
the system's steady state, injecting faults, and confirming recovery.

Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (20s)

In the pre-validation phase, we need to ensure that the system is in a steady state
before we introduce any faults. This involves verifying that the current state of the
system meets the defined steady state thresholds. Given the constraints of a 20-second
total time for this phase, we will execute the unit tests for both steady states
simultaneously to maximize efficiency. The first steady state, 'carts-db-replicas’,
requires checking that at least 1 replica is ready 100% of the time and 2 replicas are
ready at least 80% of the time. The second steady state, 'front-end-replica’, requires
ensuring that the single replica is ready 100% of the time. Both tests will run for the full
20 seconds, with checks occurring every second. This approach ensures that we have
sufficient data to confirm the system's readiness before proceeding to the fault injection
phase.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (20s)

In this fault-injection phase, we aim to simulate a Black Friday sale scenario by
introducing two types of faults: 'StressChaos' and 'PodChaos’. The goal is to observe
how the system behaves under stress and potential failure conditions. The phase is

limited to 20 seconds, so we need to carefully time the injections and tests to fit within

this window.

First, we will inject a 'StressChaos' fault on the 'carts-db' deployment to simulate high
CPU usage. This will help us test the system's ability to maintain the steady state of
having at least 1 ready replica 100% of the time and 2 ready replicas 80% of the time.
We will start this fault injection immediately at the beginning of the phase and let it run

for 10 seconds.

Simultaneously, we will run the unit test for the 'carts-db-replicas' steady state to verify
if the system can maintain the required number of ready replicas during the stress
period. This test will also start at the beginning of the phase and run for 10 seconds.

Next, we will inject a 'PodChaos' fault to kill the 'front-end' pod. This will test the
system's ability to maintain the steady state of having at least 1 ready replica 100% of
the time for the 'front-end' deployment. We will start this fault injection at the 10-

second mark and let it run for 5 seconds.

Finally, we will run the unit test for the 'front-end-replica' steady state to verify if the
system can maintain the required readiness during the pod failure. This test will start at

the 10-second mark and run for 5 seconds.

By staggering the fault injections and unit tests in this manner, we can effectively
simulate the Black Friday scenario and assess the system's resilience under stress and

failure conditions.

o \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

e Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:
e Injected Faults #1:
o Workflow Name:

o Grace Period:

o Duration:

Post-validation Phase (20s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. The steady states we are concerned with are the
'carts-db-replicas' and 'front-end-replica'. The post-validation phase will involve
running unit tests to verify these steady states. Given the total time of 20 seconds for
this phase, we will stagger the unit tests to ensure both steady states are verified within

this timeframe.

The 'carts-db-replicas' steady state requires that at least 1 ready replica is available
100% of the time and 2 ready replicas are available at least 80% of the time. We will
allocate 10 seconds for this test, with a grace period of 0 seconds, as we want to

immediately verify the recovery of the 'carts-db' deployment after the stress test.

The 'front-end-replica’ steady state requires that at least 1 ready replica is available
100% of the time. We will allocate the remaining 10 seconds for this test, also with a
grace period of 0 seconds, to ensure the 'front-end' deployment has recovered from the
pod kill fault.

By staggering the tests in this manner, we ensure that both steady states are verified
within the 20-second post-validation phase, allowing us to confirm that the system has
returned to its expected operational state.

o \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The chaos engineering experiment is structured into three phases, each lasting 20
seconds, to test the system's resilience. In the pre-validation phase, both unit tests for
verifying steady states are executed simultaneously for the entire 20 seconds. The
‘carts-db-replicas' test checks that at least one replica is ready 100% of the time and
two replicas are ready 80% of the time, while the 'front-end-replica’ test ensures one

replica is ready 100% of the time. In the fault-injection phase, the 'StressChaos' fault is
injected on the 'carts-db' deployment to simulate high CPU usage, starting immediately
and lasting for 10 seconds. Concurrently, the 'carts-db-replicas' unit test runs for 10
seconds to verify readiness under stress. At the 10-second mark, the 'PodChaos' fault is
injected to kill the 'front-end' pod, lasting for 5 seconds, while the 'front-end-replica’
unit test runs for 5 seconds to check readiness during the fault. In the post-validation
phase, the 'carts-db-replicas’ unit test runs for the first 10 seconds to verify recovery,
followed by the 'front-end-replica’ unit test for the next 10 seconds, ensuring both

deployments return to their steady states.

Completed the chaos experiment!

Search Choose namespacse

= Q All

Phase 3: Analysis

The chaos engineering experiment aimed to test the resilience of the 'sock-shop' system under
simulated fault conditions, specifically focusing on the 'carts-db' and 'front-end' deployments.
The experiment was structured into three phases: pre-validation, fault-injection, and post-
validation. The results indicate that while the 'carts-db' deployment maintained its steady state
throughout the experiment, the 'front-end' deployment failed to meet the expected steady state

during both the fault-injection and post-validation phases.

1. Pre-Validation Phase:

o Both the 'carts-db-replicas' and 'front-end-replica’ tests passed, indicating that the
system was in a stable state before any faults were injected. This confirms that the initial

configuration of the system was functioning as expected.

2. Fault-Injected Phase:

o The 'carts-db-replicas' test passed during the fault-injection phase, demonstrating that
the 'carts-db' deployment was resilient to the 'StressChaos' fault, which simulated high
CPU usage. This suggests that despite the lack of resource requests, the 'carts-db'
deployment was able to maintain at least one ready replica 100% of the time and two
ready replicas 80% of the time.

o The 'front-end-replica’ test failed during the fault-injection phase. The 'PodChaos' fault,
which involved killing the 'front-end' pod, resulted in 0 ready replicas throughout the
test duration. This failure highlights the critical issue of having only a single replica for
the 'front-end' deployment, making it a single point of failure. The system was unable to
recover or maintain availability when the single pod was terminated.

3. Post-Validation Phase:

o The 'carts-db-replicas' test continued to pass in the post-validation phase, indicating
that the 'carts-db' deployment returned to its steady state after the fault was removed.

o The 'front-end-replica’ test failed again in the post-validation phase, with 0 ready replicas
recorded throughout the test. This suggests that the 'front-end' deployment did not

recover after the fault was removed, likely due to the absence of additional replicas to
take over when the single pod was killed.

Insights and Recommendations:

e The failure of the 'front-end' deployment to maintain its steady state during and after the
fault-injection phase underscores the importance of addressing the 'Single Replica
Deployment' issue. To improve resilience, it is recommended to increase the number of
replicas for the 'front-end' deployment. This will ensure that the system can maintain
availability even if one pod fails.

e Considerimplementing horizontal pod autoscaling for the 'front-end' deployment to
dynamically adjust the number of replicas based on traffic and resource usage. This can help
the system handle sudden spikes in demand, such as those experienced during events like
Black Friday.

¢ Review and potentially adjust the readiness and liveness probes for the 'front-end’

deployment to ensure that Kubernetes can accurately determine the health of the pods and
take corrective actions if necessary.

By addressing these issues, the system's resilience can be significantly improved, reducing the

risk of downtime during high-traffic events and fault scenarios.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the 'front-end' deployment and avoid failures during fault
scenarios, we need to address the 'Single Replica Deployment' issue. The simplest
reconfiguration is to increase the number of replicas for the 'front-end' deployment from 1
to 2. This change will ensure that there is at least one additional replica available to handle

traffic if one pod fails, thus maintaining the steady state of having at least 1 ready replica
100% of the time.

Modification_type: replace
File name: sock-shop-2/manifests/09-front-end-dep.yaml

Increase the number of replicas from 1 to 2 to improve resiliency and ensure availability

during pod failures.

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: front-end
template:
metadata:

labels:
name: front-end

spec:

containers:

- name: front-end
image: weaveworksdemos/front-end:0.3.12
resources:

limits:
cpu: 300m
memory: 10OOMi
requests:
cpu: 100m
memory: 300Mi

ports:

- containerPort: 8079
env:
- name: SESSION_REDIS
value:
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true

livenessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 30
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 420ns
- namespace/sock-shop unchanged
- Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
- deployment.apps/carts configured
- service/carts configured
- deployment.apps/carts-db configured
- service/carts-db configured
- deployment.apps/catalogue configured
- service/catalogue configured
- deployment.apps/catalogue-db configured
- service/catalogue-db configured
- deployment.apps/front- configured

service/f
deploymen
service/o
deploymen
service/o
deploymen
service/p
deploymen
service/q
deploymen
service/r
deploymen
service/s
deploymen
service/s
deploymen
service/u
deploymen

service/u

Waiting

sock-shop
- sock-s

sock-shop:
- sock-s.
sock-shop:
sock-shop:
sock-shop:

sock-shop

sock-shop:
sock-shop:
sock-shop:
sock-shop:
sock-shop:
sock-shop:

- sock-s
sock-shop
- sock-s
sock-shop
sock-shop
sock-shop

sock-shop

ront- configured

t.apps/orders configured

rders configured

t.apps/orders-db configured

rders-db configured

t.apps/payment configured

ayment configured

t.apps/queue-master configured

ueue-master configured

t.apps/rabbitmg configured

abbitmg configured

t.apps/session-db configured

ession-db configured

t.apps/shipping configured

hipping configured

t.apps/user configured

ser configured

t.apps/user-db configured

ser-db configured

deployments to stabilize...

:deployment/carts: creating container carts

hop:pod/carts-7cfb5db745-648jk: creating container carts

deployment/carts—-db: creating container carts-db

..—db: waiting rollout to finish: 1 out of 2 new replicas

[10/14 deployment(s) still pending]

[9/14 deployment(s) still pe

deployment/queue-master 1is ready. [8/14 deployment(s) still pe

:deployment/session-db is ready. [7/14 deployment(s) still pend

[6/14 deployment(s) still pending

[5/14 deployment(s) still pendin

[4/14 deployment(s) still pendin
rollout to finish:

[3/14 deployment(s) still pendil

deployment/catalogue: creating container catalogue

deployment/carts is ready.

deployment/catalogue-db 1is ready.

deployment/user-db is ready.
deployment/shipping is ready.
deployment/carts-db is ready.
deployment/front-

: waiting 1 old rep

deployment/front- is ready.
hop:pod/catalogue-7c75fd67f4-94jt7: creating container catalogu:
:deployment/payment: creating container payment
hop:pod/payment-65c6784b49-f991z: creating container payment
:deployment/user: waiting rollout to finish: 1 old replicas
[2/14 deployment(s) still pending
[1/14 deployment(s) still pendil

:deployment/payment is ready.
:deployment/catalogue is ready.

:deployment/user 1is ready.

Deployments stabilized in 6 minutes 7.825 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTAI
sock-shop pod/carts-7cfb5db745-648jk 1/1 Running 0]
sock-shop pod/carts-7cfb5db745-k4x1p 1/1 Running 0
sock-shop pod/carts-db-dd7df56b7-1ccqd 1/1 Running 0
sock-shop pod/carts-db-dd7df56b7-w8f82 1/1 Running 0]
sock-shop pod/catalogue-7c75fd67f4-947jt7 1/1 Running 0
sock-shop pod/catalogue-7c75fd67f4-vfxnt 1/1 Running 0]
sock-shop pod/catalogue-db-6645646675-dm6qgk 1/1 Running 0
sock-shop pod/catalogue-db-6645646675-wg8kq 1/1 Running 0
sock-shop pod/front- -69548cf559-ks7nc 1/1 Running 0
sock-shop pod/front- -69548cf559-tsk9m 1/1 Running 0]
sock-shop pod/orders-6645544599-bv5j2 1/1 Running 0]
sock-shop pod/orders-6645544599-d68mr 1/1 Running 0]
sock-shop pod/orders-db-7897884687-m8hdn 1/1 Running 0
sock-shop pod/orders-db-7897884687-rwfkm 1/1 Running 0
sock-shop pod/payment-65c6784b49-bz7m2 1/1 Running 0
sock-shop pod/payment-65c6784b49-f991z 1/1 Running 0
sock-shop pod/queue-master-7ff77db. .. 9ml19s

sock-shop replicaset.apps/orders-6645544599 2 2 2
sock-shop replicaset.apps/orders-db-56776875d7 0 0 0]
sock-shop replicaset.apps/orders-db-7897884687 2 2 2
sock-shop replicaset.apps/payment-5c5549fd9c 0 0] 0
sock-shop replicaset.apps/payment-65c6784b49 2 2 2
sock-shop replicaset.apps/queue-master-57bfedd7c8 0 0 0
sock-shop replicaset.apps/queue-master-7ff77db77d 2 2 2
sock-shop replicaset.apps/rabbitmg-58d6f88d5 2 2 2
sock-shop replicaset.apps/rabbitmgq-59d99c7945 0 0 0
sock-shop replicaset.apps/session-db-769cd76c85 2 2 2
sock-shop replicaset.apps/session-db-c7b86c77 0 0 0
sock-shop replicaset.apps/shipping-8574c9fb5f 2 2 2
sock-shop replicaset.apps/shipping-866c845f5f 0 0] 0
sock-shop replicaset.apps/user-67d8df8487 2 2 2
sock-shop replicaset.apps/user-d9bbf4567 0 0] 0
sock-shop replicaset.apps/user-db-5bfbfd5fc7 0 0 0
sock-shop replicaset.apps/user-db-767d6bd885 2 2 2

The fault-scope adjustment Completed!

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"mode": "all", "selector": {{"namespaces": ["sock-shop"], "labelSelectors":

{{"name": "carts-db"}}}}, "stressors": {{"'cpu": {{"workers": 2, "load": 80}}}}, "containerNames":
["carts-db"]}}

The current Kubernetes manifests show that the 'carts-db' deployment remains unchanged in
terms of its namespace and labels. The 'carts-db' deployment is still in the 'sock-shop'
namespace and has the label 'name: carts-db'. Therefore, the scope of the fault injection, which
targets the 'carts-db' pods using the label selector 'name: carts-db' in the 'sock-shop' namespace,
does not need to be adjusted. The original goal of the chaos experiment, which is to test the
system's resilience under stress conditions by applying a 'StressChaos' fault to the 'carts-db'
pods, remains valid with the current manifests.

Next fault injection scope:

{

Y "namespaces" : [

0 : "sock-shop"
]

Y "labelSelectors" : {

"name" : "carts-db"

}

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["sock-shop"],

"labelSelectors": {{"name": "front-end"}}}}, "value": "1"}}

The current Kubernetes manifests show that the 'front-end' deployment has increased its replicas
from 1 to 2. This change does not affect the label selectors or namespace, which remain the same.
Therefore, the scope of the fault injection, which targets the 'front-end' pod using the label
'name: front-end' in the 'sock-shop' namespace, remains valid. The fault injection will still target

one of the 'front-end' pods, as specified by the 'mode: one' parameter.
Next fault injection scope:

{

namespaces" : [

0 : "sock-shop"

1
Y "labelSelectors" : {

"name" : "front-end"

Adjusted unittest

The unit test is specifically targeting the deployment, which is defined in the

manifest. Upon comparing the previous and reconfigured manifests for ,
there are no changes in the configuration. The number of replicas remains the same, and there
are no modifications to the deployment's specifications that would affect the unit test. Therefore,
the unit test does not require any adjustments as the reconfigured manifests do not introduce

any changes that would impact the test's logic or its threshold conditions.

Adjusted unittest

The unit test is targeting the 'front-end' deployment in the 'sock-shop' namespace. In the
reconfigured manifests, the 'front-end' deployment has been modified to increase the number of
replicas from 1 to 2. However, the unit test is designed to verify that there is at least 1 ready
replica at all times, which is still valid even with the increased number of replicas. The test checks
for a minimum of 1 ready replica, and the reconfiguration was likely done to ensure that this
condition is met more reliably. Therefore, the unit test does not require any modification, as the
threshold of having at least 1 ready replica remains unchanged and is still applicable.

Completed the chaos experiment!

Choose namespace]

All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml &

The Chaos Engineering cycle for the 'sock-shop' system involved a detailed analysis and
testing of the system's resilience under simulated fault conditions. The system is composed
of multiple Kubernetes manifests that define various microservices, such as 'carts’,
'catalogue’, 'orders', 'payment’, and 'user’, each with associated deployments and services.
The primary focus of the experiment was to address identified resiliency issues, including
missing resource requests, single replica deployments, missing liveness and readiness

probes, and hardcoded environment variables.

The experiment was structured into three phases: pre-validation, fault-injection, and post-
validation, each lasting 20 seconds, to fit within a total duration of 60 seconds. The pre-
validation phase ensured that the system was in a steady state before any faults were
injected. The fault-injection phase simulated a Black Friday sale scenario by introducing
'StressChaos' and 'PodChaos’ faults to test the system's behavior under stress and potential
failure conditions. The post-validation phase verified that the system returned to its steady
state after the faults were removed.

The initial experiment revealed that while the 'carts-db' deployment maintained its steady
state throughout, the 'front-end' deployment failed during the fault-injection and post-
validation phases due to having only a single replica, which made it a single point of failure.
This led to a recommendation to increase the number of replicas for the 'front-end’
deployment to improve resilience.

After modifying the 'front-end' deployment to have two replicas, a second experiment was
conducted. This time, all unit tests passed, indicating that the system successfully
maintained its steady states during and after the fault-injection phase. The improvements
ensured that the system could handle the simulated high-traffic event and recover from
faults, demonstrating enhanced resilience and availability.

Download output (.zip)

