(] <

ChaosEater demo
Live Q&A Your instructions for Chaos Engineering:
The Chaos-Engineering experiment must be completed within 1 minute.
Settings A
Model (c

Phase 0: Preprocessing

google/gemini-1.5-pro-latest Vv

Cleaning the cluster ... Done
Token
©
S kubectl delete --all --context kind-chaos-eater-cluster -n chaos
. No resources found
Cluster selection
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
kind-chaos-eater-cluster v $ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch

No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat
Clean the cluster
No resources found

$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos
@ Clean the cluster before run

@ Clean the cluster after run

. New deployment $ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1
pod deleted
Max # steady states pod deleted
pod deleted
3 I .
service deleted
deployment. apps deleted
Max retries
3 -+

K8s manifest(s) to be deployed:

Seed (GPTs only)

42 = |
apiVersion: vl
kind: Pod
metadata:
Usage: name: example-pod

labels:

Total billing: $0.02
app: example

Total tokens: 3.552k

spec:
Input tokens: 2.858k restartPolicy: Never
Ouput tokens: 0.694k containers:

- name: example-container
. image: nginx:1.17.1
Command history
ports:

- containerPort: 80
kubectl apply -f v
sandbox/cycle_20241128 _081601/hyp
othesis/k8s_NumberOfRunningPods_e
xample_pod.yaml --context kind-

chaos-eater-cluster -n chaos-eater 5

levihart! laae v

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

spec:
selector:

app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 501ns
- pod/example-pod created
- service/example-service created
Waiting deployments to stabilize...
- pods is ready.
Deployments stabilized in 2.099 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

Summary of each manifest:

¢ This manifest defines a Kubernetes Pod named

e APodisthe smallest deployable unit in Kubernetes, like a container for your application.
e This Pod uses the image, which is a popular web server.

e The Pod exposes port 80, which is the standard port for HTTP traffic.

e The means that if the container inside the pod fails, it won't be
automatically restarted.

e This manifest defines a Kubernetes Service named "example-service".

e AKubernetes Service acts as a load balancer and provides a stable IP address for accessing
Pods.

e This service targets Pods with the label "app: example".
e Itexposes port 80 on the service, which maps to port 80 on the target Pods.

e This allows external traffic to access the application running on the Pods with the label "app:

example" on port 80.
Resiliency issuses/weaknesses in the manifests:
Issue #0: No Redundancy for Pod

e details: If the pod crashes or the node it's running on fails, the application becomes

unavailable.

¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never
Issue #1: No Replica for Pod

e details: The application is running as a single pod, which means a single point of failure. If the
pod crashes or the node it's running on fails, the application becomes unavailable.

¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: Absence of a Deployment or other controller managing multiple replicas
of the pod.

Issue #2: No Health Check

o details: The service has no way to determine the health of the underlying pod. It might route
traffic to an unhealthy pod, leading to application downtime.

e manifests having the issues: ['nginx/pod.yaml, 'nginx/service.yaml']

e problematic config: Lack of livenessProbe or readinessProbe in the pod spec and no health

checks configured in the service.
Application of the manifests:
Thoughts:

The filenames (nginx/pod.yaml and nginx/service.yaml) and the container image (nginx:1.17.1)
clearly indicate that this application is intended to serve web content using the Nginx web server.

The service.yaml exposes port 80, further reinforcing this assumption.
Assumed application:

This application provides a basic web server using Nginx. It can serve static web content or act as
a reverse proxy to other services. The provided manifests create a single pod for the web server
and a service to expose it. This setup is suitable for simple web applications or testing
environments. For production, it would typically be extended with features like deployments for

managing multiple pods, ingress for external access, and configmaps for managing configuration.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute. (This instruction

should be considered in the experiment phase.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: NumberOfRunningPods_example 2

® Description

The pod's restart policy is set to "Never", which means if the pod's container crashes, it
won't be restarted automatically. This is the most likely point of failure. Thus, I'll define
the steady state of the number of pods running with the label "app: example". This
steady state is directly tied to the 'nginx/pod.yaml' manifest and will immediately

reflect any issues with the pod's availability.

@, Current state inspection

I'll use the Kubernetes API (Python) with the official Python client library to check the
number of running pods. This allows me to directly query the Kubernetes API server for
the current state of the pods. I'll use a loop to periodically check the pod count for a
specified duration, providing a summary at the end. This approach is suitable for
monitoring the state of Kubernetes resources over time.

tool: duration:

Inspection script (Python)

Check the number of running pods with label 'app=example'
kubernetes
time
os
kubernetes client, config
argparse

0:
parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

Load Kubernetes configuration based on the environment
os.getenv(E
config.load_incluster_config()
config.load_kube_config()

vl = client.CoreV1Api()

running_counts = []

i range(args.duration):
pods = v1.list_namespaced_pod(, label_selector:
running_pods = [pod pod pods.items pod.status.

running_count = len(running_pods)

running_counts.append(running_count)

({i+1} {running_
time.sleep (1)
Exception e:
({e}")

running_counts.append(-1) # Append -1 to indicate an ert

time.sleep (1)

()

i, count enumerate(running_counts) :
¢ {i+1} {count count != -1 1)
__hame__ ==
main()
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Summary:

> Threshold

The current setup has a single pod and no redundancy. The restart policy is "Never", so
a crash won't result in an automatic restart. Therefore, the number of running pods
should be 1. To account for momentary fluctuations in the pod status, I'll allow for a
short period where the pod count might be 0, but it should be 1 for at least 80% of the
monitoring duration (which is reasonable for a 1-minute experiment).

The number of running pods with the label 'app=example' should be equal to 1 for at
least 80% of the monitoring period.

B Unit test to validate the steady state

| added a threshold assertion to the provided Python script. The threshold is that the
number of running pods with the label 'app=example' should be equal to 1 for at least
80% of the monitoring period. | implemented this by calculating the percentage of time
the running pod count was 1 and asserting that this percentage is greater than or equal
to 80%. The script now takes a '--duration' argument to specify the monitoring
duration, and the assertion is performed at the end of the monitoring period. The script
also provides a summary of the pod counts at each time step.

TypeError: write() argument must be str, not None

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, 1in <m
main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, 1in ma
output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/1llm_agents/st
write_file(file_path, unittest["code"])

File "/workspace/app/projects/chaos-eater/chaos_eater/utils/functions.py", lin
f.write(content)

