
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-pod" deleted
service "example-service" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:
 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service
spec:

Input instructions for your Chaos Engineering

ChaosEater demo

Live Q&A

Settings

Model

anthropic/claude-3-5-son…

Token

Hugging Face token

Cluster selection

kind-chaos-eater-cluster

Clean the cluster

Clean the cluster before run

Clean the cluster after run

New deployment

Max # steady states

3

Max retries

3

Seed (GPTs only)

42

Usage:

Total billing: $0.03

Total tokens: 3.995k
Input tokens: 2.992k

Ouput tokens: 1.003k

Command history

kubectl apply -f
sandbox/cycle_20241128_075739/hyp

othesis/k8s_ExamplePodRunningAndR
eady_pod.yaml --context kind-chaos-

eater-cluster -n chaos-eater

kubectl logs

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

 selector:
 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 71ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.09 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.198.17 <none>

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod

The Pod is named 'example-pod'

It has a label 'app: example'

The Pod's restart policy is set to 'Never'

It contains a single container named 'example-container'

The container uses the nginx image version 1.17.1

The container exposes port 80

This Pod can be used to run a simple nginx web server

nginx/service.yaml

This manifest defines a Kubernetes Service resource

The Service is named 'example-service'

It selects pods with the label 'app: example'

The Service exposes port 80 and forwards traffic to port 80 on the selected pods

It uses TCP protocol for communication

This Service allows other resources within the cluster to access the selected pods using the

service name

Resiliency issuses/weaknesses in the manifests:

Issue #0: Single Pod Deployment

details: Using a single Pod without a Deployment or ReplicaSet can lead to downtime if the
Pod fails or the node it's running on becomes unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: Kind: Pod is used instead of a Deployment or ReplicaSet

Issue #1: Restart Policy Set to Never

details: With restartPolicy set to Never, the Pod will not be restarted if it crashes or

terminates, leading to potential downtime.

manifests having the issues: ['nginx/pod.yaml']

problematic config: spec.restartPolicy: Never

Issue #2: No Resource Limits

details: Without resource limits, the container could consume excessive CPU or memory,

potentially affecting other workloads on the node or causing OOM kills.

manifests having the issues: ['nginx/pod.yaml']

problematic config: No resources.limits specified in the container spec

Issue #3: No Liveness or Readiness Probes

details: Without health checks, Kubernetes cannot determine if the container is functioning
correctly, potentially leading to serving traffic to a malfunctioning Pod.

manifests having the issues: ['nginx/pod.yaml']

problematic config: No livenessProbe or readinessProbe specified in the container spec

Issue #4: No Service Type Specified

details: Without a specified service type, the default ClusterIP is used, which may not be

suitable if external access is required.

manifests having the issues: ['nginx/service.yaml']

problematic config: No spec.type specified in the Service

Issue #5: No Session Affinity

details: Without session affinity, client requests may be distributed across different Pods,

potentially causing issues for stateful applications.

manifests having the issues: ['nginx/service.yaml']

problematic config: No spec.sessionAffinity specified in the Service

Application of the manifests:

Thoughts:

Based on the provided manifests and their file names (nginx/pod.yaml and nginx/service.yaml),
it's clear that this application is using Nginx. The Pod manifest specifies an Nginx container

image, and the Service manifest is designed to expose this Pod. Nginx is commonly used as a web
server, reverse proxy, or load balancer. Given the simple configuration and the use of port 80,

which is the standard HTTP port, it's reasonable to assume this is a basic web server setup.

Assumed application:

This appears to be a simple web server application using Nginx. The application serves static

content or acts as a reverse proxy for other backend services over HTTP on port 80. It provides

basic web hosting capabilities, potentially for a small website or as a frontend for a larger

application architecture.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute. (This instruction is

relevant to the Experiment phase, where the time constraint for injecting failures and

monitoring system behavior is specified.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: ExamplePodRunningAndReady

💬 Description

Given the system's configuration and the identified issues, the most critical steady state
to define first would be related to the availability of the single Pod. Since there's only

one Pod without any replication, and its restart policy is set to 'Never', the system's

availability is highly vulnerable. Therefore, we should define a steady state that checks
if the Pod is running and ready to serve traffic.

🔍 Current state inspection

To inspect the 'ExamplePodRunningAndReady' state, we need to check if the 'example-
pod' is running and ready. Since this involves checking the status of a Kubernetes

resource, we'll use the Kubernetes API. We'll create a Python script that uses the

Kubernetes client library to query the pod's status every second for a short duration.
This will give us a good snapshot of the pod's state without exceeding the 1-minute

time constraint for the entire experiment.
tool: k8s duration: 5s

Inspection script (Python) k8s_ExamplePodRunningAndReady.py :

import os
from kubernetes import client, config
import time
import argparse

def check_pod_status(duration):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 v1 = client.CoreV1Api()
 pod_name = "example-pod"
 namespace = "default"

 start_time = time.time()
 end_time = start_time + duration
 status_counts = {"Running": 0, "Not Running": 0, "Ready": 0, "No

 while time.time() < end_time:
 try:

 pod = v1.read_namespaced_pod(name=pod_name, namespace=na
 pod_status = pod.status.phase
 if pod_status == "Running":
 status_counts["Running"] += 1
 else:
 status_counts["Not Running"] += 1

 if pod.status.conditions:
 ready_condition = next((c for c in pod.status.condit
 if ready_condition and ready_condition.status == "Tr
 status_counts["Ready"] += 1
 else:
 status_counts["Not Ready"] += 1
 else:
 status_counts["Not Ready"] += 1

 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_namespace
 status_counts["Not Running"] += 1
 status_counts["Not Ready"] += 1

 time.sleep(1)

 total_checks = sum(status_counts.values()) // 2
 print(f"Pod status over {duration} seconds:")
 print(f"Running: {status_counts['Running']}/{total_checks} check
 print(f"Ready: {status_counts['Ready']}/{total_checks} checks")

 if status_counts['Running'] == total_checks and status_counts['R
 print("Steady state hypothesis: Pod is consistently running
 else:
 print("Steady state hypothesis: Pod is not consistently runn

if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 check_pod_status(args.duration)

Pod k8sexamplepodrunningandready-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status over 5 seconds:
Running: 5/5 checks
Ready: 5/5 checks
Steady state hypothesis: Pod is consistently running and ready.

🚩 Threshold

Given the current state of the system and the nature of the steady state we're

monitoring (ExamplePodRunningAndReady), we need to define a threshold that
ensures the pod is consistently running and ready, while allowing for some minor

fluctuations that might occur during normal operation or during a chaos engineering
experiment.

The current state shows that the pod was running and ready for 5 out of 5 checks over a

5-second period. This indicates perfect health, but we should allow for some potential

brief interruptions or fluctuations.

Considering that:

1. We only have a single pod without any replication.

2. The restart policy is set to 'Never', which means any downtime could be critical.

3. The chaos engineering experiment must be completed within 1 minute.

We should set a threshold that allows for brief interruptions but ensures the pod is

running and ready for the vast majority of the time. A reasonable threshold would be to

require the pod to be running and ready for at least 90% of the checks over a 30-second
period. This allows for some brief fluctuations while still maintaining a high standard of

availability.

The pod must be in a 'Running' state and 'Ready' condition for at least 90% of the

checks over a 30-second monitoring period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I'll modify the existing
code to create a unit test that inherits from the K8sAPIBase class. The test will run for a

specified duration (default 30 seconds) and check if the pod is running and ready for at
least 90% of the checks. I'll use argparse to allow users to specify a custom duration.

The test will assert that the running and ready percentages meet or exceed the 90%
threshold.

import argparse
import time
from unittest_base import K8sAPIBase

class TestPodRunningAndReady(K8sAPIBase):
 def test_pod_status(self, duration):
 pod_name = "example-pod"
 namespace = "default"
 threshold = 0.90 # 90% threshold

 start_time = time.time()
 end_time = start_time + duration
 status_counts = {"Running": 0, "Not Running": 0, "Ready": 0,

 while time.time() < end_time:
 try:
 pod = self.v1.read_namespaced_pod(name=pod_name, nam
 pod_status = pod.status.phase
 if pod_status == "Running":
 status_counts["Running"] += 1
 else:
 status_counts["Not Running"] += 1

 if pod.status.conditions:
 ready_condition = next((c for c in pod.status.co
 if ready_condition and ready_condition.status ==
 status_counts["Ready"] += 1
 else:
 status_counts["Not Ready"] += 1
 else:
 status_counts["Not Ready"] += 1

 except Exception as e:
 print(f"Exception when calling CoreV1Api->read_names
 status_counts["Not Running"] += 1
 status_counts["Not Ready"] += 1

 time.sleep(1)

 total_checks = sum(status_counts.values()) // 2
 running_percentage = status_counts["Running"] / total_checks
 ready_percentage = status_counts["Ready"] / total_checks

 print(f"Pod status over {duration} seconds:")
 print(f"Running: {status_counts['Running']}/{total_checks} c
 print(f"Ready: {status_counts['Ready']}/{total_checks} check

 # Assert that both running and ready percentages meet or exc
 assert running_percentage >= threshold and ready_percentage

TypeError: write() argument must be str, not None

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
 exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
 main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
 output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
 hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
 steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
 unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/llm_agents/st
 write_file(file_path, unittest["code"])

File "/workspace/app/projects/chaos-eater/chaos_eater/utils/functions.py", lin
 f.write(content)

