
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-deployment-6765f47cb6-ktsg7" deleted
pod "example-deployment-6765f47cb6-pqnbj" deleted
pod "example-deployment-6765f47cb6-xbqng" deleted
service "example-service" deleted
deployment.apps "example-deployment" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:

Input instructions for your Chaos Engineering

 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service
spec:
 selector:
 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 201ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.086 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-I
default service/example-service ClusterIP 10.96.152.112 <none>

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod.

The Pod is named 'example-pod'.

It includes metadata with a label 'app: example'.

The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.

The Pod contains one container named 'example-container'.

The container uses the 'nginx:1.17.1' image, which is a specific version of the Nginx web
server.

The container exposes port 80, which is commonly used for HTTP traffic.

nginx/service.yaml

This manifest defines a Kubernetes Service.

The Service is named 'example-service'.

It uses the 'v1' API version.

The Service selects pods with the label 'app: example'.

It exposes the Service on port 80 using the TCP protocol.

The Service forwards traffic to the target port 80 on the selected pods.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Pod Restart Policy

details: The Pod will not restart automatically if it fails, which can lead to downtime.

manifests having the issues: ['nginx/pod.yaml']

problematic config: restartPolicy: Never

Issue #1: Single Pod Deployment

details: Having a single Pod means there is no redundancy. If the Pod fails, the service will be

unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: Only one Pod is defined without a Deployment or ReplicaSet.

Application of the manifests:

Thoughts:

The manifests provided define a Kubernetes Pod and a Service. The Pod runs an Nginx container,
which is a popular web server used to serve static content, reverse proxy, or load balance HTTP

traffic. The Service is configured to expose this Pod on port 80, which is the default port for HTTP
traffic. Given the use of Nginx and the configuration of the Service, it is logical to assume that

these manifests are intended to deploy a simple web server application. The file names and the

use of Nginx further support this assumption.

Assumed application:

A simple web server application using Nginx to serve HTTP content.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

✅ Steady state #1: example-pod-running

💬 Description

The first issue to address is the Pod's restart policy set to 'Never'. This is a critical issue

because if the Pod fails, it will not restart, leading to potential downtime. Therefore, the
steady state should ensure that the Pod is running and available. A measurable output

for this steady state is the number of running Pods, which should be 1, as there is only
one Pod defined in the manifest. This steady state will help verify that the Pod is up and

running, which is crucial given the restart policy configuration.

🔍 Current state inspection

To inspect whether the 'example-pod' is running, I will use the K8s API. This is because
the state to be checked is the status of a Kubernetes resource, specifically the Pod,

which is best done using the Kubernetes client libraries. The script will check the status
of the Pod every second for a duration of 5 seconds, which is within the allowed

maximum duration. This will ensure that the Pod is running and available, addressing

the critical issue of the Pod's restart policy being set to 'Never'.
tool: k8s duration: 5s

Inspection script (Python) k8s_example-pod-running.py :

import os
import time
from kubernetes import client, config

Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
else:
 config.load_kube_config()

v1 = client.CoreV1Api()

def check_pod_status(namespace, pod_name):
 try:
 pod = v1.read_namespaced_pod(name=pod_name, namespace=namesp
 return pod.status.phase == 'Running'
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_namespaced_po
 return False

def main(duration):
 namespace = 'default'
 pod_name = 'example-pod'
 running_count = 0
 for _ in range(duration):
 if check_pod_status(namespace, pod_name):
 running_count += 1
 time.sleep(1)
 print(f"Pod '{pod_name}' running status checked {duration} times

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser(description='Check if a pod is
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 main(args.duration)

Pod k8sexample-pod-running-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod 'example-pod' running status checked 5 times. Running count: 5.

🚩 Threshold

The steady state we are considering is whether the 'example-pod' is running. The

current state shows that the pod was checked 5 times over a duration of 5 seconds, and
it was running each time, resulting in a running count of 5. This indicates that the pod is

consistently running during the check period. Given the constraints of the chaos
engineering experiment, which must be completed within 1 minute, we can set a

threshold that allows for some tolerance in case of brief fluctuations. A reasonable

threshold would be that the pod should be running at least 90% of the time during the
check period. This allows for a small margin of error while still ensuring that the pod is

generally available and running.

The pod should be running at least 90% of the time during the check period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will calculate the

percentage of time the pod is running during the specified duration. The threshold is set
to 90%, meaning the pod should be running at least 90% of the time during the check

period. I will implement a for-loop to check the pod status every second for the
specified duration and then assert that the running percentage is greater than or equal

to 90%. This ensures that the pod is generally available and running, allowing for a

small margin of error.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestPodRunningState(K8sAPIBase):
 def __init__(self):
 super().__init__()

 def check_pod_status(self, namespace, pod_name):
 try:
 pod = self.v1.read_namespaced_pod(name=pod_name, namespa
 return pod.status.phase == 'Running'
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_namespace
 return False

 def test_pod_running_state(self, duration):

 namespace = 'default'
 pod_name = 'example-pod'
 running_count = 0

 # Check the pod status every second for the specified durati
 for _ in range(duration):
 if self.check_pod_status(namespace, pod_name):
 running_count += 1
 time.sleep(1)

 # Calculate the running percentage
 running_percentage = (running_count / duration) * 100

 # Assert that the running percentage is at least 90%
 assert running_percentage >= 90, f"Pod '{pod_name}' running

 print(f"Pod '{pod_name}' running status checked {duration} t

def main():
 parser = argparse.ArgumentParser(description='Test if a pod is r
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()

 test = TestPodRunningState()
 test.test_pod_running_state(args.duration)

if __name__ == '__main__':
 main()

Pod unittestexample-pod-runningmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod 'example-pod' running status checked 5 times. Running percentage

✅ Steady state #2: example-service-availability

💬 Description

The next issue to address is the 'Single Pod Deployment', which is related to the lack of
redundancy. This is a significant issue because if the single Pod fails, the service will be

unavailable. To verify this, we can define a steady state that checks the availability of

the service itself. A measurable output for this steady state is the service's response
time or availability. Since the service is exposed on port 80, we can check if the service

is responding to HTTP requests. This steady state will help verify that the service is
available and responsive, which is crucial given the single Pod deployment

configuration.

🔍 Current state inspection

To inspect the availability of the 'example-service', we need to check if the service is
responding to HTTP requests. Since the service is exposed on port 80, we can use k6 to

simulate HTTP requests to the service and measure its response time and availability.
This approach allows us to verify the service's responsiveness and availability, which is

crucial given the single Pod deployment configuration. We will use a small number of

virtual users and a short duration to fit within the 1-minute constraint of the Chaos
Engineering experiment.

tool: k6 vus: 1 duration: 5s

Inspection script (Javascript) k6_example-service-availability.js :

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,
 duration: '5s',
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'status is 200': (r) => r.status === 200,
 });
}

Pod k6example-service-availability-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

✓ status is 200

checks.........................: 100.00% 13915 out of 13915
data_received..................: 12 MB 2.4 MB/s
data_sent......................: 1.5 MB 306 kB/s

http_req_blocked...............: avg=8.11µs min=1.4µs med=4.19µ
http_req_connecting............: avg=2.23µs min=0s med=0s
http_req_duration..............: avg=236.57µs min=90.31µs med=232.0
 { expected_response:true }...: avg=236.57µs min=90.31µs med=232.0
http_req_failed................: 0.00% 0 out of 13915
http_req_receiving.............: avg=67.9µs min=17.89µs med=61.39
http_req_sending...............: avg=18.51µs min=4.66µs med=14.77
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=150.16µs min=54.98µs med=151.2
http_reqs......................: 13915 2782.666155/s
iteration_duration.............: avg=344.61µs min=131.12µs med=333.1
iterations.....................: 13915 2782.666155/s
vus............................: 1 min=1 max=1
vus_max........................: 1 min=1 max=1

🚩 Threshold

The steady state we are considering is the availability of the 'example-service'. The k6

test results show that the service is currently responding with a 200 status code for all

requests, indicating 100% availability. Given that the system consists of a single Pod,
any failure in the Pod would result in the service being unavailable. Therefore, the

threshold should ensure that the service remains available and responsive. To account
for minor fluctuations and network latency, a reasonable threshold would be to

maintain a high availability percentage, slightly below 100% to allow for brief, non-

critical failures. A threshold of 99.9% availability is a common standard for web services,
allowing for some tolerance while still ensuring high reliability.

Service availability should be at least 99.9% with a response status of 200.

📄 Unit test to validate the steady state

To add the threshold check to the k6 script, I will include a 'thresholds' property in the

'options' section. This property will specify that the service's availability should be at

least 99.9% with a response status of 200. This is done by setting a threshold on the
'http_req_failed' metric, ensuring that the failure rate is less than or equal to 0.1%

(which corresponds to 99.9% availability).

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,

 duration: '5s',
 thresholds: {
 // Ensure that the service availability is at least 99.9%
 'http_req_failed': ['rate<=0.001'], // 0.1% failure rate corresp
 },
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'status is 200': (r) => r.status === 200,
 });
}

Pod unittestexample-service-availabilitymod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

✓ status is 200

 checks.........................: 100.00% 14565 out of 14565
 data_received..................: 12 MB 2.5 MB/s
 data_sent......................: 1.6 MB 320 kB/s
 http_req_blocked...............: avg=7.92µs min=1.33µs med=4.1
 http_req_connecting............: avg=2.19µs min=0s med=0s
 http_req_duration..............: avg=225.1µs min=82.21µs med=226
 { expected_response:true }...: avg=225.1µs min=82.21µs med=226
✓ http_req_failed................: 0.00% 0 out of 14565
 http_req_receiving.............: avg=66.97µs min=15.24µs med=60.
 http_req_sending...............: avg=17.27µs min=4.03µs med=13.
 http_req_tls_handshaking.......: avg=0s min=0s med=0s
 http_req_waiting...............: avg=140.85µs min=53.55µs med=144
 http_reqs......................: 14565 2912.709122/s
 iteration_duration.............: avg=329.52µs min=117.97µs med=323
 iterations.....................: 14565 2912.709122/s
 vus............................: 1 min=1 max=1
 vus_max........................: 1 min=1 max=1

Fault definition

✅ Scenario: Cyber Attack

💬 Description

Given the system's weaknesses, a cyber attack targeting the single Pod and its network

could be highly impactful. The Pod's restart policy set to 'Never' means that if the Pod
fails, it will not restart, leading to downtime. Additionally, the single Pod deployment

means there is no redundancy, so any failure will make the service unavailable. To
simulate a cyber attack, we can start by injecting a PodChaos fault to kill the Pod,

testing the system's ability to handle Pod failures. This will directly exploit the lack of

redundancy and the restart policy issue. Next, we can simulate a network attack using
NetworkChaos to introduce network latency, testing the service's ability to maintain

availability under network stress. This sequence simulates a cyber attack by first taking
down the Pod and then stressing the network, revealing the system's vulnerabilities in

handling such scenarios.

🐞 Fault-injection sequence

PodChaos ({'pod': 'example-pod'}) ➡ NetworkChaos ({'service': 'example-service'})

⚙ Detailed fault parameters

Detailed parameters of PodChaos ({'pod': 'example-pod'})

{

:

:

{

[

]

{

:

}

}

}

"action" "pod-kill"

"mode" "one"

"selector" :

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

Detailed parameters of NetworkChaos ({'service': 'example-service'})

{

:

:

{

"action" "delay"

"direction" "to"

"target" :

:

{

[

]

{

:

}

}

}

:

{

[

]

{

:

}

}

:

{

:

:

:

}

}

"mode" "all"

"selector" :

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

"mode" "all"

"selector" :

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

"device" "eth0"

"delay" :

"latency" "100ms"

"jitter" "10ms"

"correlation" "50"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints of the chaos engineering experiment, which must be completed

within 1 minute, we need to allocate time efficiently across the three phases: pre-
validation, fault-injection, and post-validation. The pre-validation phase is crucial to

ensure that the system is in a steady state before we introduce any faults. Since we have

two steady states to validate, we should allocate a reasonable amount of time to check

both the pod's running status and the service's availability. A duration of 15 seconds
should be sufficient for pre-validation, allowing us to run the necessary checks multiple

times. The fault-injection phase is where we introduce the chaos to observe the
system's behavior under stress. Given the complexity of the faults (PodChaos and

NetworkChaos), we should allocate the majority of the time to this phase to ensure that

the faults have enough time to manifest and impact the system. A duration of 30
seconds is appropriate for fault injection, allowing us to observe the system's response

to both pod failure and network latency. Finally, the post-validation phase is essential
to verify that the system returns to its steady states after the faults are removed. We

should allocate 15 seconds for post-validation, similar to the pre-validation phase, to

ensure that the system stabilizes and meets the defined thresholds for steady states.
This allocation results in a total experiment time of 60 seconds, which fits within the 1-

minute constraint.

Total experiment time: 60s

Pre-validation Phase: 15s

Fault-injection Phase: 30s

Post-validation Phase: 15s

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
state before we proceed with fault injection. Given the constraints of a 15-second total

time for this phase, we will conduct two unit tests to verify the steady states: one for the

pod's running status and another for the service's availability. These tests will be
executed sequentially due to the short duration available, ensuring that each steady

state is verified independently and thoroughly. The first test will check if the 'example-
pod' is running at least 90% of the time over a 5-second period. This is crucial because

the pod's restart policy is set to 'Never', and we need to confirm its availability before

introducing any faults. The second test will verify the 'example-service' availability,
ensuring it responds with a 200 status code at least 99.9% of the time over another 5-

second period. This test is essential to confirm that the service is operational and
responsive, given the single pod deployment. By staggering these tests, we can focus on

each steady state individually, allowing us to identify any issues before proceeding to
the fault injection phase.

Verified Steady State #0: example-pod-running

Workflow Name: pre-unittest-example-pod-running

Grace Period: 0s

Duration: 5s

Verified Steady State #1: example-service-availability

Workflow Name: pre-unittest-example-service-availability

Grace Period: 5s

Duration: 5s

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack by injecting two types of

faults: PodChaos and NetworkChaos. The total duration for this phase is 30 seconds, so

we need to carefully schedule the faults and unit tests to fit within this timeframe.

First, we will inject the PodChaos fault to simulate a pod failure. This fault will be

injected at the start of the phase (grace period of 0s) and will last for 10 seconds. This
duration is chosen to allow enough time for the system to experience the impact of the

pod being killed, given the pod's restart policy is set to 'Never'.

Simultaneously, we will run the unit test for the 'example-pod-running' steady state to
verify if the pod is running at least 90% of the time during the fault injection. This test

will also start at 0s and run for 10 seconds, aligning with the PodChaos duration.

Next, we will inject the NetworkChaos fault to simulate network latency. This fault will

start at 10 seconds (after the PodChaos fault ends) and will last for 20 seconds. This

staggered approach allows us to observe the system's behavior under network stress
after the pod failure has been simulated.

During the NetworkChaos fault, we will run the unit test for the 'example-service-
availability' steady state. This test will start at 10 seconds and run for 20 seconds,

matching the NetworkChaos duration. This ensures we are checking the service's

availability and response time while the network is under stress.

By staggering the faults and aligning the unit tests with the fault durations, we can

effectively observe the system's behavior under each fault condition and verify if the
steady states are maintained.

Verified Steady State #0: example-pod-running

Workflow Name: fault-unittest-example-pod-running

Grace Period: 0s

Duration: 10s

Verified Steady State #1: example-service-availability

Workflow Name: fault-unittest-example-service-availability

Grace Period: 10s

Duration: 20s

Injected Faults #0: PodChaos

Workflow Name: fault-podchaos

Grace Period: 0s

Duration: 10s

Injected Faults #1: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 10s

Duration: 20s

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its

steady states after the fault injection. Given the 15-second time constraint, we will
perform quick checks to verify the steady states. The two steady states to verify are: 1)

the 'example-pod' is running, and 2) the 'example-service' is available. We will execute
these checks sequentially due to the short duration, ensuring each test has enough

time to gather meaningful data. The first test will check the pod's running status,
followed by the service availability test. This order is logical because the pod must be

running for the service to be available. Each test will have a brief grace period to allow

the system to stabilize after the fault injection, followed by a short duration to perform
the checks.

Verified Steady State #0: example-pod-running

Workflow Name: post-unittest-example-pod-running

Grace Period: 2s

Duration: 6s

Verified Steady State #1: example-service-availability

Workflow Name: post-unittest-example-service-availability

Grace Period: 8s

Duration: 5s

Summary

The chaos engineering experiment is structured into three phases: pre-validation, fault-

injection, and post-validation, all to be completed within a total of 60 seconds.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are conducted

sequentially to ensure the system is in a steady state before fault injection. The first test,

named 'pre-unittest-example-pod-running', checks the 'example-pod' running status. It

starts immediately at the beginning of the phase and runs for 5 seconds. Following this,
the second test, 'pre-unittest-example-service-availability', begins at the 5-second mark

and also runs for 5 seconds, verifying the service's availability.

The fault-injection phase spans 30 seconds and involves two types of faults: PodChaos

and NetworkChaos. Initially, the PodChaos fault, named 'fault-podchaos', is injected at

the start of the phase and lasts for 10 seconds. Concurrently, the 'fault-unittest-
example-pod-running' unit test runs for the same duration to verify the pod's status

during the fault. After the PodChaos fault concludes, the NetworkChaos fault, named
'fault-networkchaos', begins at the 10-second mark and continues for 20 seconds.

Simultaneously, the 'fault-unittest-example-service-availability' test runs for 20

seconds, starting at the same time as the NetworkChaos fault, to check the service's
availability under network stress.

Finally, the post-validation phase, also 15 seconds long, ensures the system returns to
its steady states. The 'post-unittest-example-pod-running' test starts after a 2-second

grace period and runs for 6 seconds to verify the pod's status. Subsequently, the 'post-

unittest-example-service-availability' test begins at the 8-second mark and runs for 5
seconds, checking the service's availability. This sequential execution allows for a brief

stabilization period before each test.

Completed the chaos experiment!

All
Search Choose namespace





 





Phase 3: Analysis

The chaos engineering experiment results indicate several critical issues in the system's
configuration and its ability to handle faults, particularly in the context of the defined fault

scenario. Here is a detailed analysis of the failures observed during the experiment:

1. Pod Restart Policy and Single Pod Deployment:

The 'fault-unittest-example-pod-running' test failed because the Pod was not found after
the PodChaos fault was injected. This is directly related to the Pod's restart policy set to

'Never' in the nginx/pod.yaml manifest. When the Pod was killed, it did not restart,

leading to a 404 error when attempting to read the Pod's status. This confirms the
identified issue #0 (Pod Restart Policy) and issue #1 (Single Pod Deployment), where the

lack of redundancy and automatic recovery mechanisms resulted in the Pod being
unavailable.

2. Service Availability:

The 'fault-unittest-example-service-availability' test failed due to connection refusals,
indicating that the service was unavailable. This failure is a consequence of the Pod

being killed and not restarting, as the Service relies on the Pod to handle requests. The

Service's selector in nginx/service.yaml targets Pods with the label 'app: example', and

with the Pod being down, there were no endpoints available to serve the requests,

leading to the connection refused errors.

3. Post-Validation Failures:

Both 'post-unittest-example-pod-running' and 'post-unittest-example-service-

availability' tests failed, showing that the system did not recover to its steady state after
the fault injection. The Pod remained unavailable, and consequently, the Service could

not respond to HTTP requests. This further highlights the critical impact of the Pod's
restart policy and the lack of redundancy.

Insights and Recommendations:

Pod Restart Policy: Change the Pod's restart policy from 'Never' to 'Always' or 'OnFailure' to
ensure that the Pod automatically restarts if it fails. This will help maintain the Pod's

availability and reduce downtime.

Redundancy and Scalability: Implement a Deployment or ReplicaSet to manage the Pod.
This will provide redundancy by running multiple replicas of the Pod, ensuring that the

Service remains available even if one Pod fails.

Service Resilience: Consider using a LoadBalancer or Ingress to manage traffic to multiple

Pods, enhancing the system's ability to handle failures and maintain service availability.

By addressing these issues, the system can improve its resilience against similar fault scenarios in
the future, ensuring that the steady states are maintained even when faults are injected.

Phase 4: Improvement

Reconfiguration

To improve the resiliency of the system, I will replace the Pod with a Deployment to manage
the Pod's lifecycle and provide redundancy. This will address both the restart policy issue

and the single Pod deployment issue by ensuring that multiple replicas of the Pod are

running and can automatically restart if they fail.

Modification_type: replace

File name: nginx/pod.yaml

Replace the Pod with a Deployment to manage the Pod's lifecycle and provide redundancy.

This will ensure that multiple replicas of the Pod are running and can automatically restart if

they fail.

apiVersion: apps/v1
kind: Deployment

metadata:
 name: example-deployment
 labels:
 app: example
spec:
 replicas: 3
 selector:
 matchLabels:
 app: example
 template:
 metadata:
 labels:
 app: example
 spec:
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 200ns
 - deployment.apps/example-deployment configured
 - service/example-service configured
Waiting for deployments to stabilize...
 - deployment/example-deployment is ready.
Deployments stabilized in 3.098 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS REST
default pod/example-deployment-598977f874-gxppt 1/1 Running 0
default pod/example-deployment-598977f874-hkx5m 1/1 Running 0
default pod/example-deployment-598977f874-jxg2b 1/1 Running 0

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-I
default service/example-service ClusterIP 10.96.202.254 <none>

NAMESPACE NAME READY UP-TO-DATE AVAILA
default deployment.apps/example-deployment 3/3 3 3

NAMESPACE NAME DESIRED CURREN
default replicaset.apps/example-deployment-598977f874 3 3
default replicaset.apps/example-deployment-9779766dc 0 0

The fault-scope adjustment Completed!

Current fault injection settings:

Injected Faults #0: PodChaos

Workflow Name: fault-podchaos

Grace Period: 0s

Duration: 10s

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],

"labelSelectors": {{"app": "example"}}}}}}

The previous K8s manifests targeted a single pod with the label 'app: example'. The current

manifests have changed to a Deployment with 3 replicas, all having the same label 'app:

example'. The original chaos experiment aimed to simulate a pod failure, which can still be
achieved by targeting one of the pods in the Deployment. Therefore, the scope of the fault

injection should remain the same, targeting pods with the label 'app: example' in the 'default'
namespace. This ensures that the experiment's goal of simulating a pod failure is maintained,

even with the change from a single pod to a Deployment with multiple replicas.

Next fault injection scope:

{

[

]

{

:

}

}

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

Current fault injection settings:

Injected Faults #0: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 10s

Duration: 20s

Parameters {{"action": "delay", "direction": "to", "target": {{"mode": "all", "selector":

{{"namespaces": ["default"], "labelSelectors": {{"app": "example"}}}}}}, "mode": "all", "selector":
{{"namespaces": ["default"], "labelSelectors": {{"app": "example"}}}}, "device": "eth0", "delay":

{{"latency": "100ms", "jitter": "10ms", "correlation": "50"}}}}

The previous K8s manifests had a single pod, and the NetworkChaos was targeting all pods with
the label 'app: example' in the 'default' namespace. The current manifests have been updated to

a Deployment with 3 replicas, but the label 'app: example' and the namespace 'default' remain
the same. Therefore, the scope of the fault injection should remain unchanged, as it will now

target all pods created by the Deployment, which aligns with the original goal of the chaos

experiment to test the system's behavior under network stress.

Next fault injection scope:

{

[

]

{

:

}

}

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

Adjusted unittest

The previous unit test targets a Pod resource named 'example-pod'. In the reconfigured

manifests, the Pod has been replaced by a Deployment named 'example-deployment' with 3

replicas. This change means that the unit test should now target the Deployment instead of a
single Pod. The test should verify that at least one of the Pods created by the Deployment is

running at least 90% of the time. Therefore, the unit test requires modification to account for the
change from a Pod to a Deployment with multiple replicas. The test should be updated to check

the status of the Pods created by the Deployment, ensuring that the steady state is maintained by

the entire redundancy.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestDeploymentRunningState(K8sAPIBase):
 def __init__(self):
 super().__init__()

 def check_deployment_pods_status(self, namespace, deployment_name):
 try:
 pods = self.v1.list_namespaced_pod(namespace=namespace, label_se
 running_pods = [pod for pod in pods if pod.status.phase == 'Runn
 return len(running_pods) > 0
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->list_namespaced_pod: {
 return False

 def test_deployment_running_state(self, duration):
 namespace = 'default'
 deployment_name = 'example'
 running_count = 0

 # Check the deployment pods status every second for the specified du
 for _ in range(duration):
 if self.check_deployment_pods_status(namespace, deployment_name)
 running_count += 1
 time.sleep(1)

 # Calculate the running percentage
 running_percentage = (running_count / duration) * 100

 # Assert that the running percentage is at least 90%
 assert running_percentage >= 90, f"Deployment '{deployment_name}' ru

 print(f"Deployment '{deployment_name}' running status checked {durat

def main():
 parser = argparse.ArgumentParser(description='Test if a deployment has a
 parser.add_argument('--duration', type=int, default=5, help='Duration to
 args = parser.parse_args()

 test = TestDeploymentRunningState()
 test.test_deployment_running_state(args.duration)

if __name__ == '__main__':
 main()

Adjusted unittest

The target of the unit test is the service availability, which is associated with the Service

resource in the Kubernetes manifests. In the previous and reconfigured manifests, the Service

resource has not changed, so the endpoint and the service configuration remain the same. The

unit test checks the availability of the service by sending HTTP requests to the service endpoint
and verifying the response status. Since the Service resource has not been modified, the unit

test does not require any changes. The reconfiguration of the Pod to a Deployment with 3

replicas is intended to improve the system's ability to meet the availability threshold, but it does
not affect the unit test itself, which remains valid for checking the service's availability.

Completed the chaos experiment!

All
Search Choose namespace





 





Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml

The Chaos Engineering cycle begins with understanding the user inputs, which include

Kubernetes manifests for a Pod and a Service. The Pod manifest defines a single Nginx
container with a restart policy of 'Never', and the Service manifest exposes this Pod on port

80. Two main resiliency issues are identified: the Pod's restart policy and the lack of

redundancy due to a single Pod deployment.

The hypothesis for the experiment is that the system's steady states will be maintained even

when faults are injected. Two steady states are defined: the Pod should be running at least
90% of the time, and the Service should have 99.9% availability with a response status of

200.

The fault scenario simulates a cyber attack using Chaos Mesh, injecting PodChaos to kill the
Pod and NetworkChaos to introduce network latency. The experiment is divided into three

phases: pre-validation, fault-injection, and post-validation, each with specific tasks and
durations to verify the system's behavior under stress.

In the first experiment attempt, the system fails to maintain the steady states during and

after the fault injection. The Pod does not restart due to its 'Never' restart policy, and the
Service becomes unavailable, confirming the identified issues. Recommendations include

changing the Pod's restart policy and implementing a Deployment for redundancy.

After modifying the system by replacing the Pod with a Deployment, the second experiment

attempt is successful. All unit tests pass, indicating that the system maintains its steady

states even when faults are injected, demonstrating improved resilience.

Download output (.zip)

