
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l 
pod "example-pod" deleted
service "example-service" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
  labels:
    app: example
spec:
  restartPolicy: Never
  containers:
  - name: example-container
    image: nginx:1.17.1
    ports:
    - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
  name: example-service
spec:
  selector:
    app: example

Input instructions for your Chaos Engineering

ChaosEater demo

Live Q&A

Settings

Model

google/gemini-1.5-pro-latest

Token

Hugging Face token

Cluster selection

kind-chaos-eater-cluster

Clean the cluster

Clean the cluster before run

Clean the cluster after run

New deployment

Max # steady states

3

Max retries

3

Seed (GPTs only)

42

Usage:

Total billing: $0.02

Total tokens: 3.497k
Input tokens: 2.874k

Ouput tokens: 0.623k

Command history

kubectl apply -f
sandbox/cycle_20241128_081806/hyp

othesis/k8s_example-pod-
count_pod.yaml --context kind-chaos-

eater-cluster -n chaos-eater

kubectl logs k8sexample-pod-count-

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A


  ports:
    - protocol: TCP
      port: 80
      targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 160ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.086 seconds
You can also run  to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE   NAME              READY   STATUS    RESTARTS   AGE
default     pod/example-pod   1/1     Running   0          5s

NAMESPACE   NAME                      TYPE        CLUSTER-IP    EXTERNAL-IP 
default     service/example-service   ClusterIP   10.96.31.94   <none>      

Summary of each manifest:

nginx/pod.yaml

This manifest defines a single Pod in Kubernetes.

The Pod's name is example-pod .

It has a label app: example , which can be used to select and manage it.

The restartPolicy: Never  means that if the container inside the pod fails, it won't be
automatically restarted.

The Pod contains one container named example-container .

This container uses the nginx:1.17.1  image, which is a web server.

The container exposes port 80, which is the standard HTTP port.

nginx/service.yaml

This manifest defines a Kubernetes Service named "example-service".

Services act as a stable entry point to a set of Pods, which are the smallest deployable units
in Kubernetes.

This service targets pods with the label "app: example".

It exposes port 80 on the service, which maps to port 80 on the target pods.

This allows external traffic to access the application running on the pods through the service.

Resiliency issuses/weaknesses in the manifests:

Issue #0: No Redundancy for Pod



details: If the pod crashes or the node it's running on fails, the application becomes

unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: kind: Pod

Issue #1: No Restart Policy for Pod

details: The pod won't be restarted if the container inside fails. This leads to application

downtime.

manifests having the issues: ['nginx/pod.yaml']

problematic config: restartPolicy: Never

Issue #2: No Health Checks Defined

details: The service doesn't check the health of the pod. It might route traffic to an unhealthy
pod, leading to errors.

manifests having the issues: ['nginx/service.yaml', 'nginx/pod.yaml']

problematic config: Absence of livenessProbe or readinessProbe in pod spec and absence of
health checks at the service level.

Application of the manifests:

Thoughts:

The filenames (pod.yaml, service.yaml) and the use of the nginx  image suggest a web server
application. The service exposes port 80, further reinforcing this assumption.

Assumed application:

This application provides a basic web server. It uses Nginx to serve static content or act as a

reverse proxy to other services. The service provides a stable endpoint for accessing the Nginx

pod, even if the pod is restarted or rescheduled.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute. (This instruction

should be considered in the experiment phase.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: example-pod-count

💬 Description

The pod 'example-pod' is defined with restartPolicy: Never . This means if the pod's

container crashes, it won't be restarted automatically, leading to application downtime.
Therefore, the number of running pods corresponding to example-pod  is an important

steady state to monitor. We'll name this steady state example-pod-count  and target it at

the nginx/pod.yaml  manifest.

🔍 Current state inspection

I'll use the Kubernetes API (Python) to check the number of running pods with the name

'example-pod'. The script will check the pod count every second for a specified



duration. Since the restartPolicy is 'Never', we expect the pod count to remain at 1

unless an external event terminates the pod. I'll use a short duration (5 seconds) for the
check, as a longer duration isn't necessary for this simple scenario.

tool: k8s  duration: 5

Inspection script (Python) k8s_example-pod-count.py :

import kubernetes
import time
import os
from kubernetes import client, config
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--duration', type=int, default=5, help='Duratio
args = parser.parse_args()

DURATION = min(args.duration, 5)  # Limit duration to a maximum of 5

# Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
    config.load_incluster_config()
else:
    config.load_kube_config()

v1 = client.CoreV1Api()

results = []
for i in range(DURATION):
    try:
        pods = v1.list_namespaced_pod(namespace="default", label_sel
        pod_count = len(pods.items)
        results.append(pod_count)
        print(f"Second {i+1}: Number of example pods: {pod_count}")
        time.sleep(1)
    except Exception as e:
        print(f"Error checking pod status: {e}")
        results.append(-1)  # Append -1 to indicate an error
        time.sleep(1)

print("\nSummary:")
for i, count in enumerate(results):
    print(f"Second {i+1}: {'Error' if count == -1 else count}")

Pod k8sexample-pod-count-pod  has completed sucessfully.

The inspection script's results (current states) are as follows:

Summary:

🚩 Threshold

The steady state 'example-pod-count' represents the number of running pods with the

label 'app=example'. The current state shows that there is consistently 1 pod running.
Since the restart policy is 'Never', we need to ensure that at least 1 pod is running. Given

there is no redundancy, the threshold should be exactly 1. We'll add a small tolerance to
account for potential delays in reporting or very brief restarts, but the core requirement



is 1 pod. Since the experiment duration is short (1 minute), we'll require this condition

to be true for the entire duration of the checks (5 seconds in the provided script).

example-pod-count == 1 for 100% of the 5-second monitoring period

📄 Unit test to validate the steady state

To add the threshold assertion, I will modify the provided inspection script to include a
check within the loop. This check will verify that the number of 'example-pod' pods is

equal to 1. After the loop, a summary will be printed, and an assertion will be made to

ensure that the threshold was met for the entire duration. The threshold will be
represented as a percentage (100%) to ensure that the condition (pod count == 1) holds

true for all checks.

rt necessary libraries
kubernetes
time
os
ubernetes import client, config
argparse
nittest_base import K8sAPIBase

SteadyStateCheck(K8sAPIBase):
f test_example_pod_count(self):
 # Define the namespace and label selector for the pod
 namespace = "default"
 label_selector = "app=example"

 # Define the expected pod count and the threshold percentage
 expected_pod_count = 1
 threshold_percentage = 100  # 100% of the time

 # Initialize argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Duratio
 args = parser.parse_args()

 duration = args.duration

 # Initialize results list to store pod counts
 results = []

 # Loop for the specified duration, checking the pod count every secon
 for i in range(duration):
     try:
         # List pods matching the label selector in the specified nam
         pods = self.v1.list_namespaced_pod(namespace=namespace, labe
         pod_count = len(pods.items)
         results.append(pod_count)
         print(f"Second {i+1}: Number of example pods: {pod_count}")
         time.sleep(1)
     except Exception as e:
         print(f"Error checking pod status: {e}")
         results.append(-1)  # Append -1 to indicate an error
         time.sleep(1)

 # Print a summary of the results
 print("\nSummary:")
 successful_checks = 0



 for i, count in enumerate(results):
     if count == expected_pod_count:
         successful_checks += 1
     print(f"Second {i+1}: {'Error' if count == -1 else count}")

 # Calculate the percentage of successful checks
 success_percentage = (successful_checks / len(results)) * 100 if len

 # Assert that the success percentage meets the threshold
 print(f"Success Percentage: {success_percentage:.2f}% over {duration
 assert success_percentage >= threshold_percentage, f"The example-pod

in():
st = SteadyStateCheck()
st.test_example_pod_count()

ame__ == '__main__':
in()

Pod unittestexample-pod-countmod0-pod  has failed.

Traceback (most recent call last):
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    main()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    test.test_example_pod_count()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    assert success_percentage >= threshold_percentage, f"The example
AssertionError: The example-pod-count did not meet the threshold of 

Summary:
Success Percentage: 0.00% over 0 seconds

The error "AssertionError: The example-pod-count did not meet the threshold of 100%

for the entire duration. Only achieved 0.00%" and the summary showing 0 seconds

indicate that the duration is not being properly passed or handled. The likely culprit is
the missing initialization of duration  before the argparse  setup. Moving the duration
= args.duration  line after parsing the arguments should resolve the issue.

Import necessary libraries
port kubernetes
port time
port os
om kubernetes import client, config
port argparse
om unittest_base import K8sAPIBase

ass SteadyStateCheck(K8sAPIBase):
 def test_example_pod_count(self):
     # Define the namespace and label selector for the pod
     namespace = "default"
     label_selector = "app=example"

     # Define the expected pod count and the threshold percentage
     expected_pod_count = 1
     threshold_percentage = 100  # 100% of the time

     # Initialize argparse
     parser = argparse.ArgumentParser()



     parser.add_argument('--duration', type=int, default=5, help='Dura
     args = parser.parse_args()

     duration = args.duration # Initialize duration after parsing argu

     # Initialize results list to store pod counts
     results = []

     # Loop for the specified duration, checking the pod count every s
     for i in range(duration):
         try:
             # List pods matching the label selector in the specified 
             pods = self.v1.list_namespaced_pod(namespace=namespace, l
             pod_count = len(pods.items)
             results.append(pod_count)
             print(f"Second {i+1}: Number of example pods: {pod_count}
             time.sleep(1)
         except Exception as e:
             print(f"Error checking pod status: {e}")
             results.append(-1)  # Append -1 to indicate an error
             time.sleep(1)

     # Print a summary of the results
     print("\nSummary:")
     successful_checks = 0
     for i, count in enumerate(results):
         if count == expected_pod_count:
             successful_checks += 1
         print(f"Second {i+1}: {'Error' if count == -1 else count}")

     # Calculate the percentage of successful checks
     success_percentage = (successful_checks / len(results)) * 100 if 

     # Assert that the success percentage meets the threshold
     print(f"Success Percentage: {success_percentage:.2f}% over {durat
     assert success_percentage >= threshold_percentage, f"The example-

f main():
 test = SteadyStateCheck()
 test.test_example_pod_count()

__name__ == '__main__':
 main()

Pod unittestexample-pod-countmod1-pod  has failed.

Traceback (most recent call last):
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte

Summary:
Success Percentage: 0.00% over 0 seconds
    main()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    test.test_example_pod_count()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    assert success_percentage >= threshold_percentage, f"The example
AssertionError: The example-pod-count did not meet the threshold of 



The previous error was fixed by ensuring the duration is initialized correctly. However,

the current error, "AssertionError: The example-pod-count did not meet the threshold
of 100% for the entire duration. Only achieved 0.00%", suggests that the pod count

check is failing. This could be due to the pod not being ready or available immediately
after deployment. To address this, we'll add a check within the loop to wait for the pod

to become ready before counting it towards the success percentage. We'll use the pod's

status conditions to determine readiness.

# Import necessary libraries
import kubernetes
import time
import os
from kubernetes import client, config
import argparse
from unittest_base import K8sAPIBase

class SteadyStateCheck(K8sAPIBase):
    def test_example_pod_count(self):
        # Define the namespace and label selector for the pod
        namespace = "default"
        label_selector = "app=example"

        # Define the expected pod count and the threshold percentage
        expected_pod_count = 1
        threshold_percentage = 100  # 100% of the time

        # Initialize argparse
        parser = argparse.ArgumentParser()
        parser.add_argument('--duration', type=int, default=5, help=
        args = parser.parse_args()

        duration = args.duration

        # Initialize results list to store pod counts
        results = []

        # Loop for the specified duration, checking the pod count ev
        for i in range(duration):
            try:
                # List pods matching the label selector in the speci
                pods = self.v1.list_namespaced_pod(namespace=namespa
                pod_count = 0  # Initialize pod_count for this itera
                for pod in pods.items:
                    # Check if the pod is in the 'Running' phase and
                    if pod.status.phase == "Running" and any(conditi
                        pod_count += 1
                results.append(pod_count)
                print(f"Second {i+1}: Number of example pods: {pod_c
                time.sleep(1)
            except Exception as e:
                print(f"Error checking pod status: {e}")
                results.append(-1)  # Append -1 to indicate an error
                time.sleep(1)

        # Print a summary of the results
        print("\nSummary:")
        successful_checks = 0
        for i, count in enumerate(results):
            if count == expected_pod_count:
                successful_checks += 1



            print(f"Second {i+1}: {'Error' if count == -1 else count

        # Calculate the percentage of successful checks
        success_percentage = (successful_checks / len(results)) * 10

        # Assert that the success percentage meets the threshold
        print(f"Success Percentage: {success_percentage:.2f}% over {
        assert success_percentage >= threshold_percentage, f"The exa

def main():
    test = SteadyStateCheck()
    test.test_example_pod_count()

if __name__ == '__main__':
    main()

Pod unittestexample-pod-countmod2-pod  has failed.

Summary:
Traceback (most recent call last):
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    main()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    test.test_example_pod_count()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    assert success_percentage >= threshold_percentage, f"The example
AssertionError: The example-pod-count did not meet the threshold of 
Success Percentage: 0.00% over 0 seconds

The previous fix attempted to check pod readiness. However, the error persists,
indicating the pod might still not be ready within the test's timeframe. The duration

being 0 seconds in the error message suggests an issue with how duration is handled or

the loop not running at all. While the previous fix correctly initialized duration  after
parsing arguments, the error output suggests the duration  is still 0. This could be due

to an argparse issue or the argument not being passed correctly. To be sure the loop
runs as expected, we'll add a default value to the duration argument in argparse and

print the duration before the loop starts. This will help diagnose if the duration is being

set correctly.

# Import necessary libraries
import kubernetes
import time
import os
from kubernetes import client, config
import argparse
from unittest_base import K8sAPIBase

class SteadyStateCheck(K8sAPIBase):
    def test_example_pod_count(self):
        # Define the namespace and label selector for the pod
        namespace = "default"
        label_selector = "app=example"

        # Define the expected pod count and the threshold percentage
        expected_pod_count = 1
        threshold_percentage = 100  # 100% of the time

        # Initialize argparse



        parser = argparse.ArgumentParser()
        parser.add_argument('--duration', type=int, default=5, help=
        args = parser.parse_args()
        duration = args.duration

        print(f"Running test for {duration} seconds") # Print durati

        # Initialize results list to store pod counts
        results = []

        # Loop for the specified duration, checking the pod count ev
        for i in range(duration):
            try:
                # List pods matching the label selector in the speci
                pods = self.v1.list_namespaced_pod(namespace=namespa
                pod_count = 0
                for pod in pods.items:
                    if pod.status.phase == "Running" and any(conditi
                        pod_count += 1
                results.append(pod_count)
                print(f"Second {i+1}: Number of example pods: {pod_c
                time.sleep(1)
            except Exception as e:
                print(f"Error checking pod status: {e}")
                results.append(-1)  # Append -1 to indicate an error
                time.sleep(1)

        # Print a summary of the results
        print("\nSummary:")
        successful_checks = 0
        for i, count in enumerate(results):
            if count == expected_pod_count:
                successful_checks += 1
            print(f"Second {i+1}: {'Error' if count == -1 else count

        # Calculate the percentage of successful checks
        success_percentage = (successful_checks / len(results)) * 10

        # Assert that the success percentage meets the threshold
        print(f"Success Percentage: {success_percentage:.2f}% over {
        assert success_percentage >= threshold_percentage, f"The exa

def main():
    test = SteadyStateCheck()
    test.test_example_pod_count()

if __name__ == '__main__':
    main()

Pod unittestexample-pod-countmod3-pod  has failed.

Traceback (most recent call last):
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    main()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    test.test_example_pod_count()
  File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
    assert success_percentage >= threshold_percentage, f"The example
AssertionError: The example-pod-count did not meet the threshold of 
Running test for 0 seconds



Summary:
Success Percentage: 0.00% over 0 seconds

AssertionError: MAX_MOD_COUNT_EXCEEDED: 3

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
    exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
    main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
    output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
    hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
    steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
    unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/llm_agents/st
    assert mod_count < max_mod_loop, f"MAX_MOD_COUNT_EXCEEDED: {max_mod_loop}"


