
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID> Replace <ID> with an

available ID: [03fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-

e00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2de1-1aaa-4c25-a9b9-

6612e8f29a38 , 819e1fbf-8b7e-4f6d-811f-693534916a8b , 837ab141-399e-4c1f-9abc-
bace40296bac , a0a4f044-b040-410d-8ead-4de0446aec7e , d3588630-ad8e-49df-bbd7-

3167f7efb246 , zzz4f044-b040-410d-8ead-4de0446aec7e]

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with
an available tag: [magic , action , blue , brown , black , sport , formal , red ,

green , skin , geek]

6. http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
workflow.chaos-mesh.org "chaos-experiment-20241127-041509" deleted
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
workflownode.chaos-mesh.org "fault-injection-phase-7xktg" deleted
workflownode.chaos-mesh.org "fault-podchaos-7sc5f" deleted
workflownode.chaos-mesh.org "fault-stresschaos-257q4" deleted
workflownode.chaos-mesh.org "post-unittest-carts-db-replicas-running-bdjjc"
workflownode.chaos-mesh.org "post-unittest-front-end-replica-running-h2fgg"
workflownode.chaos-mesh.org "post-validation-parallel-workflows-xkm6g" delet
workflownode.chaos-mesh.org "post-validation-phase-v8m2l" deleted

Input instructions for your Chaos Engineering

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

workflownode.chaos-mesh.org "pre-unittest-carts-db-replicas-running-8h5z4" d
workflownode.chaos-mesh.org "pre-unittest-front-end-replica-running-njmf2" d
workflownode.chaos-mesh.org "pre-validation-parallel-workflows-499l9" delete
workflownode.chaos-mesh.org "pre-validation-phase-nxjfl" deleted
workflownode.chaos-mesh.org "the-entry-7kqk5" deleted
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
pod "post-unittest-carts-db-replicas-running-bdjjc-8pfzb" deleted
pod "post-unittest-front-end-replica-running-h2fgg-fc7j8" deleted
pod "pre-unittest-carts-db-replicas-running-8h5z4-z22kb" deleted
pod "pre-unittest-front-end-replica-running-njmf2-pj82p" deleted
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "carts-75d9599844-5lf6h" deleted
pod "carts-75d9599844-nclz5" deleted
pod "carts-db-6794d4f987-4xnnc" deleted
pod "carts-db-6794d4f987-ldcv4" deleted
pod "catalogue-577bcf65d7-nksxg" deleted
pod "catalogue-577bcf65d7-rcbhd" deleted
pod "catalogue-db-56666f68cd-sdnjp" deleted
pod "catalogue-db-56666f68cd-w8s9n" deleted
pod "front-end-5cd74f858b-6rpnw" deleted
pod "front-end-5cd74f858b-r2774" deleted
pod "orders-77b6947c8d-f78s6" deleted
pod "orders-77b6947c8d-scm7g" deleted
pod "orders-db-59f7c5f79d-t92qn" deleted
pod "orders-db-59f7c5f79d-wxq5d" deleted
pod "payment-65b4dd6f9b-kzkql" deleted
pod "payment-65b4dd6f9b-vr7fp" deleted
pod "queue-master-778c957b8f-gpk9t" deleted
pod "queue-master-778c957b8f-gt97p" deleted
pod "rabbitmq-6db7899db6-657s6" deleted
pod "rabbitmq-6db7899db6-g2kdt" deleted
pod "session-db-7ff969cbdd-4bvrm" deleted
pod "session-db-7ff969cbdd-6jmcw" deleted
pod "shipping-5f477dd4bd-q8mr9" deleted
pod "shipping-5f477dd4bd-qz2kf" deleted
pod "user-86d655596-4xv2z" deleted
pod "user-86d655596-gtp85" deleted
pod "user-db-555dc88f6-24hbk" deleted
pod "user-db-555dc88f6-jcczn" deleted
service "carts" deleted

service "carts-db" deleted
service "catalogue" deleted
service "catalogue-db" deleted
service "front-end" deleted
service "orders" deleted
service "orders-db" deleted
service "payment" deleted
service "queue-master" deleted
service "rabbitmq" deleted
service "session-db" deleted
service "shipping" deleted
service "user" deleted
service "user-db" delete...ployment.apps "queue-master" deleted
deployment.apps "rabbitmq" deleted
deployment.apps "session-db" deleted
deployment.apps "shipping" deleted
deployment.apps "user" deleted
deployment.apps "user-db" deleted
replicaset.apps "carts-75d9599844" deleted
replicaset.apps "carts-7b44c6f9f" deleted
replicaset.apps "carts-db-6794d4f987" deleted
replicaset.apps "carts-db-75b7fbbbbb" deleted
replicaset.apps "catalogue-577bcf65d7" deleted
replicaset.apps "catalogue-594894b47b" deleted
replicaset.apps "catalogue-db-56666f68cd" deleted
replicaset.apps "catalogue-db-68d6947649" deleted
replicaset.apps "front-end-5cd74f858b" deleted
replicaset.apps "front-end-75cb4d77df" deleted
replicaset.apps "orders-77b6947c8d" deleted
replicaset.apps "orders-8575b8c969" deleted
replicaset.apps "orders-db-59f7c5f79d" deleted
replicaset.apps "orders-db-76dfdc6865" deleted
replicaset.apps "payment-65b4dd6f9b" deleted
replicaset.apps "payment-7855f7898c" deleted
replicaset.apps "queue-master-584db96944" deleted
replicaset.apps "queue-master-778c957b8f" deleted
replicaset.apps "rabbitmq-6db7899db6" deleted
replicaset.apps "rabbitmq-7f84854df5" deleted
replicaset.apps "session-db-6fc87fc86c" deleted
replicaset.apps "session-db-7ff969cbdd" deleted
replicaset.apps "shipping-5f477dd4bd" deleted
replicaset.apps "shipping-77669895df" deleted
replicaset.apps "user-86bfdd744f" deleted
replicaset.apps "user-86d655596" deleted
replicaset.apps "user-db-555dc88f6" deleted
replicaset.apps "user-db-85c4bb8bd7" deleted

K8s manifest(s) to be deployed:

sock-shop-2/manifests/00-sock-shop-ns.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: sock-shop

sock-shop-2/manifests/01-carts-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: carts
 labels:
 name: carts
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: carts
 template:
 metadata:
 labels:
 name: carts
 spec:
 containers:
 - name: carts
 image: weaveworksdemos/carts:0.4.8
 env:
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 300m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 200Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001

 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/02-carts-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: carts
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: carts
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: carts

sock-shop-2/manifests/03-carts-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: carts-db
 labels:
 name: carts-db
 namespace: sock-shop
spec:

 replicas: 2
 selector:
 matchLabels:
 name: carts-db
 template:
 metadata:
 labels:
 name: carts-db
 spec:
 containers:
 - name: carts-db
 image: mongo
 ports:
 - name: mongo
 containerPort: 27017
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/04-carts-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: carts-db
 labels:
 name: carts-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on

 - port: 27017
 targetPort: 27017
 selector:
 name: carts-db

sock-shop-2/manifests/05-catalogue-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: catalogue
 labels:
 name: catalogue
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: catalogue
 template:
 metadata:
 labels:
 name: catalogue
 spec:
 containers:
 - name: catalogue
 image: weaveworksdemos/catalogue:0.3.5
 command: ["/app"]
 args:
 - -port=80
 resources:
 limits:
 cpu: 200m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:

 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 180
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/06-catalogue-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: catalogue
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: catalogue
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: catalogue

sock-shop-2/manifests/07-catalogue-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: catalogue-db
 labels:
 name: catalogue-db
 namespace: sock-shop

spec:
 replicas: 2
 selector:
 matchLabels:
 name: catalogue-db
 template:
 metadata:
 labels:
 name: catalogue-db
 spec:
 containers:
 - name: catalogue-db
 image: weaveworksdemos/catalogue-db:0.3.0
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: fake_password
 - name: MYSQL_DATABASE
 value: socksdb
 ports:
 - name: mysql
 containerPort: 3306
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/08-catalogue-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: catalogue-db
 labels:
 name: catalogue-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 3306
 targetPort: 3306
 selector:
 name: catalogue-db

sock-shop-2/manifests/09-front-end-dep.yaml

apiVersion: apps/v1
kind: Deployment

metadata:
 name: front-end
 namespace: sock-shop
spec:
 replicas: 1
 selector:
 matchLabels:
 name: front-end
 template:
 metadata:
 labels:
 name: front-end
 spec:
 containers:
 - name: front-end
 image: weaveworksdemos/front-end:0.3.12
 resources:
 limits:
 cpu: 300m
 memory: 1000Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 8079
 env:
 - name: SESSION_REDIS
 value: "true"
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /
 port: 8079
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /
 port: 8079
 initialDelaySeconds: 30
 periodSeconds: 3

 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/10-front-end-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: front-end
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: front-end
 namespace: sock-shop
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 8079
 nodePort: 30001
 selector:
 name: front-end

sock-shop-2/manifests/11-orders-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: orders
 labels:
 name: orders
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: orders
 template:
 metadata:
 labels:
 name: orders
 spec:
 containers:
 - name: orders
 image: weaveworksdemos/orders:0.4.7

 env:
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 500m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/12-orders-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: orders
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: orders
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80

 targetPort: 80
 selector:
 name: orders

sock-shop-2/manifests/13-orders-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: orders-db
 labels:
 name: orders-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: orders-db
 template:
 metadata:
 labels:
 name: orders-db
 spec:
 containers:
 - name: orders-db
 image: mongo
 ports:
 - name: mongo
 containerPort: 27017
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory

 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/14-orders-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: orders-db
 labels:
 name: orders-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 27017
 targetPort: 27017
 selector:
 name: orders-db

sock-shop-2/manifests/15-payment-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: payment
 labels:
 name: payment
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: payment
 template:
 metadata:
 labels:
 name: payment
 spec:
 containers:
 - name: payment
 image: weaveworksdemos/payment:0.4.3
 resources:
 limits:
 cpu: 200m

 memory: 200Mi
 requests:
 cpu: 99m
 memory: 100Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 180
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/16-payment-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: payment
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: payment
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80

 selector:
 name: payment

sock-shop-2/manifests/17-queue-master-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: queue-master
 labels:
 name: queue-master
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: queue-master
 template:
 metadata:
 labels:
 name: queue-master
 spec:
 containers:
 - name: queue-master
 image: weaveworksdemos/queue-master:0.3.1
 env:
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 300m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 80
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/18-queue-master-svc.yaml

apiVersion: v1
kind: Service
metadata:

 name: queue-master
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: queue-master
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: queue-master

sock-shop-2/manifests/19-rabbitmq-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: rabbitmq
 labels:
 name: rabbitmq
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: rabbitmq
 template:
 metadata:
 labels:
 name: rabbitmq
 annotations:
 prometheus.io/scrape: "false"
 spec:
 containers:
 - name: rabbitmq
 image: rabbitmq:3.6.8-management
 ports:
 - containerPort: 15672
 name: management
 - containerPort: 5672
 name: rabbitmq
 securityContext:
 capabilities:
 drop:

 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 - DAC_OVERRIDE
 readOnlyRootFilesystem: true
 - name: rabbitmq-exporter
 image: kbudde/rabbitmq-exporter
 ports:
 - containerPort: 9090
 name: exporter
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/20-rabbitmq-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: rabbitmq
 annotations:
 prometheus.io/scrape: 'true'
 prometheus.io/port: '9090'
 labels:
 name: rabbitmq
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 5672
 name: rabbitmq
 targetPort: 5672
 - port: 9090
 name: exporter
 targetPort: exporter
 protocol: TCP
 selector:
 name: rabbitmq

sock-shop-2/manifests/21-session-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:

 name: session-db
 labels:
 name: session-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: session-db
 template:
 metadata:
 labels:
 name: session-db
 annotations:
 prometheus.io.scrape: "false"
 spec:
 containers:
 - name: session-db
 image: redis:alpine
 ports:
 - name: redis
 containerPort: 6379
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/22-session-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: session-db
 labels:
 name: session-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on

 - port: 6379
 targetPort: 6379
 selector:
 name: session-db

sock-shop-2/manifests/23-shipping-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: shipping
 labels:
 name: shipping
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: shipping
 template:
 metadata:
 labels:
 name: shipping
 spec:
 containers:
 - name: shipping
 image: weaveworksdemos/shipping:0.4.8
 env:
 - name: ZIPKIN
 value: zipkin.jaeger.svc.cluster.local
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 300m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:

 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/24-shipping-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: shipping
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: shipping
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: shipping

sock-shop-2/manifests/25-user-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user
 labels:
 name: user
 namespace: sock-shop
spec:
 replicas: 2
 selector:

 matchLabels:
 name: user
 template:
 metadata:
 labels:
 name: user
 spec:
 containers:
 - name: user
 image: weaveworksdemos/user:0.4.7
 resources:
 limits:
 cpu: 300m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 80
 env:
 - name: mongo
 value: user-db:27017
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 180
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/26-user-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: user
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: user
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: user

sock-shop-2/manifests/27-user-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-db
 labels:
 name: user-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: user-db
 template:
 metadata:
 labels:
 name: user-db
 spec:
 containers:
 - name: user-db
 image: weaveworksdemos/user-db:0.3.0

 ports:
 - name: mongo
 containerPort: 27017
 securityContext:
 capabilities:

 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/28-user-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: user-db
 labels:
 name: user-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 27017
 targetPort: 27017
 selector:
 name: user-db

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 80ns
 - namespace/sock-shop unchanged
 - Warning: spec.template.spec.nodeSelector : deprecat
 - deployment.apps/carts created

[beta.kubernetes.io/os]

 - service/carts created
 - deployment.apps/carts-db created
 - service/carts-db created
 - deployment.apps/catalogue created
 - service/catalogue created
 - deployment.apps/catalogue-db created
 - service/catalogue-db created
 - deployment.apps/front-end created
 - service/front-end created
 - deployment.apps/orders created
 - service/orders created
 - deployment.apps/orders-db created
 - service/orders-db created
 - deployment.apps/payment created
 - service/payment created
 - deployment.apps/queue-master created
 - service/queue-master created
 - deployment.apps/rabbitmq created
 - service/rabbitmq created
 - deployment.apps/session-db created
 - service/session-db created
 - deployment.apps/shipping created
 - service/shipping created
 - deployment.apps/user created
 - service/user created
 - deployment.apps/user-db created
 - service/user-db created
Waiting for deployments to stabilize...
 - sock-shop:deployment/carts is ready. [13/14 deployment(s) still pending]
 - sock-shop:deployment/carts-db: creating container carts-db
 - sock-shop:pod/carts-db-84dd74485f-jn289: creating container carts-db
 - sock-shop:pod/carts-db-84dd74485f-pggts: creating container carts...pl
 - sock-shop:deployment/orders: waiting for rollout to finish: 1 of 2 update
 - sock-shop:deployment/payment: creating container payment
 - sock-shop:pod/payment-6b5cf84897-x5phb: creating container payment
 - sock-shop:pod/payment-6b5cf84897-mn7d6: creating container payment
 - sock-shop:deployment/shipping: creating container shipping
 - sock-shop:pod/shipping-6cc64f8975-cl4ql: creating container shipping
 - sock-shop:pod/shipping-6cc64f8975-zz945: creating container shipping
 - sock-shop:deployment/user: creating container user
 - sock-shop:pod/user-84fb6b864c-lptjk: creating container user
 - sock-shop:deployment/orders is ready. [7/14 deployment(s) still pending]
 - sock-shop:deployment/rabbitmq is ready. [6/14 deployment(s) still pending
 - sock-shop:deployment/shipping is ready. [5/14 deployment(s) still pending
 - sock-shop:deployment/orders-db is ready. [4/14 deployment(s) still pendin
 - sock-shop:deployment/user: waiting for rollout to finish: 0 of 2 updated
 - sock-shop:deployment/front-end is ready. [3/14 deployment(s) still pendin

 - sock-shop:deployment/payment is ready. [2/14 deployment(s) still pending]
 - sock-shop:deployment/catalogue is ready. [1/14 deployment(s) still pendin
 - sock-shop:deployment/user is ready.
Deployments stabilized in 3 minutes 5.307 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS
sock-shop pod/carts-56cc746557-d4jm9 1/1 Running 0
sock-shop pod/carts-56cc746557-dvqt5 1/1 Running 0
sock-shop pod/carts-db-84dd74485f-jn289 1/1 Running 0
sock-shop pod/carts-db-84dd74485f-pggts 1/1 Running 0
sock-shop pod/catalogue-8695b4dcfd-tldhj 1/1 Running 0
sock-shop pod/catalogue-8695b4dcfd-vbml7 1/1 Running 0
sock-shop pod/catalogue-db-68bb48f867-pbnwt 1/1 Running 0
sock-shop pod/catalogue-db-68bb48f867-rg594 1/1 Running 0
sock-shop pod/front-end-c669bb67f-l4fvb 1/1 Running 0
sock-shop pod/orders-697c586dd7-952x5 1/1 Running 0
sock-shop pod/orders-697c586dd7-npwkz 1/1 Running 0
sock-shop pod/orders-db-694d59df67-f972v 1/1 Running 0
sock-shop pod/orders-db-694d59df67-hc2tj 1/1 Running 0
sock-shop pod/payment-6b5cf84897-mn7d6 1/1 Running 0
sock-shop pod/payment-6b5cf84897-x5phb 1/1 Running 0
sock-shop pod/queue-master-85c79fbdf8-7hlbz 1/1 Running 0
sock-shop pod/queue-master-85c79fbdf8-pnlw8 1/1 Running 0
sock-shop pod/rabbitm... 2 2 3m8s
sock-shop deployment.apps/user 2/2 2 2
sock-shop deployment.apps/user-db 2/2 2 2

NAMESPACE NAME DESIRED CURRENT RE
sock-shop replicaset.apps/carts-56cc746557 2 2 2
sock-shop replicaset.apps/carts-db-84dd74485f 2 2 2
sock-shop replicaset.apps/catalogue-8695b4dcfd 2 2 2
sock-shop replicaset.apps/catalogue-db-68bb48f867 2 2 2
sock-shop replicaset.apps/front-end-c669bb67f 1 1 1
sock-shop replicaset.apps/orders-697c586dd7 2 2 2
sock-shop replicaset.apps/orders-db-694d59df67 2 2 2
sock-shop replicaset.apps/payment-6b5cf84897 2 2 2
sock-shop replicaset.apps/queue-master-85c79fbdf8 2 2 2
sock-shop replicaset.apps/rabbitmq-c5b8d94c7 2 2 2
sock-shop replicaset.apps/session-db-65c8df9f69 2 2 2
sock-shop replicaset.apps/shipping-6cc64f8975 2 2 2

sock-shop replicaset.apps/user-84fb6b864c 2 2 2
sock-shop replicaset.apps/user-db-745c77dd65 2 2 2

Summary of each manifest:

sock-shop-2/manifests/00-sock-shop-ns.yaml

This manifest defines a Kubernetes Namespace.

The Namespace is named 'sock-shop'.

Namespaces are used to organize and manage resources within a Kubernetes cluster,

providing a way to divide cluster resources between multiple users or teams.

sock-shop-2/manifests/01-carts-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'carts' application running.

The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8'.

Environment variables are set for Java options to optimize memory usage and disable certain

features.

Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,
and a minimum of 100m CPU and 200Mi memory.

The application listens on port 80 within the container.

Security settings ensure the container runs as a non-root user with specific capabilities and a
read-only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/02-carts-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'carts'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: carts'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the target pods.

It selects pods with the label 'name: carts' to route traffic to.

sock-shop-2/manifests/03-carts-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db'.

Each pod runs a single container using the 'mongo' image.

The container exposes port 27017, which is the default port for MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and

SETUID.

The root filesystem of the container is set to read-only for security purposes.

A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/04-carts-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'carts-db'.

It is labeled with 'name: carts-db'.

The Service is created in the 'sock-shop' namespace.

It exposes port 27017 and directs traffic to the same port on the target pods.

The Service selects pods with the label 'name: carts-db' to route traffic to them.

sock-shop-2/manifests/05-catalogue-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is part of the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'catalogue' application running.

The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5'.

The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and

100Mi memory.

The container is configured to run as a non-root user with user ID 10001.

Security settings include dropping all capabilities except 'NET_BIND_SERVICE' and using a
read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,

with initial delays of 300 and 180 seconds respectively.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/06-catalogue-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'catalogue'.

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: catalogue'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: catalogue' to route traffic to.

sock-shop-2/manifests/07-catalogue-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db'.

It is located in the 'sock-shop' namespace.

The Deployment will create 2 replicas of the pod.

Each pod will run a container from the image 'weaveworksdemos/catalogue-db:0.3.0'.

The container is configured with environment variables for 'MYSQL_ROOT_PASSWORD' and

'MYSQL_DATABASE'.

The container exposes port 3306, which is typically used for MySQL.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

sock-shop-2/manifests/08-catalogue-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'catalogue-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 3306.

It targets the same port (3306) on the pods.

The Service selects pods with the label 'name: catalogue-db'.

sock-shop-2/manifests/09-front-end-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.

It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a selector to match pods with the label 'name: front-end'.

The pod template includes a single container named 'front-end'.

The container uses the image 'weaveworksdemos/front-end:0.3.12'.

Resource limits are set for the container: 300m CPU and 1000Mi memory.

Resource requests are set for the container: 100m CPU and 300Mi memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true'.

Security context is configured to run the container as a non-root user with user ID 10001.

All additional Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the '/' path on port 8079, with an initial delay of 300
seconds and a period of 3 seconds.

A readiness probe is also configured to check the '/' path on port 8079, with an initial delay of

30 seconds and a period of 3 seconds.

The node selector ensures that the pod runs on nodes with the operating system labeled as
Linux.

sock-shop-2/manifests/10-front-end-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'front-end'.

It is located in the 'sock-shop' namespace.

The Service type is 'NodePort', which exposes the service on each Node's IP at a static port.

It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, which is the port on each node where the service can be

accessed externally.

The Service is configured to be scraped by Prometheus for monitoring, as indicated by the
annotation 'prometheus.io/scrape: true'.

It selects pods with the label 'name: front-end' to route traffic to.

sock-shop-2/manifests/11-orders-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders' application running.

The Deployment uses the 'weaveworksdemos/orders:0.4.7' Docker image for the container.

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.

The container listens on port 80.

Security settings ensure the container runs as a non-root user with specific capabilities and a

read-only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/12-orders-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'orders'.

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: orders'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the target pods.

It uses a selector to match pods with the label 'name: orders'.

sock-shop-2/manifests/13-orders-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders-db' pod running.

The pods are selected based on the label 'name: orders-db'.

Each pod runs a single container using the 'mongo' image.

The container exposes port 27017, which is the default port for MongoDB.

Security context is set to drop all capabilities and add only CHOWN, SETGID, and SETUID,

with a read-only root filesystem.

A volume named 'tmp-volume' is mounted at '/tmp' and uses an in-memory empty directory.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/14-orders-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'orders-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods.

The Service selects pods with the label 'name: orders-db'.

sock-shop-2/manifests/15-payment-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'payment' application running.

The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3'.

Resource limits are set for the container, with a maximum of 200m CPU and 200Mi memory,

and requests for 99m CPU and 100Mi memory.

The container listens on port 80.

Security settings ensure the container runs as a non-root user with user ID 10001, and the

root filesystem is read-only.

The container has a liveness probe and a readiness probe, both checking the '/health'

endpoint on port 80, with initial delays of 300 and 180 seconds respectively.

The Deployment is configured to run on nodes with the Linux operating system.

sock-shop-2/manifests/16-payment-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'payment'.

It is annotated for Prometheus scraping, which means it is set up for monitoring.

The Service is labeled with 'name: payment'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service selects pods with the label 'name: payment' to route traffic to them.

sock-shop-2/manifests/17-queue-master-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'queue-master' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'queue-master' application running.

The Deployment uses a container image 'weaveworksdemos/queue-master:0.3.1'.

Environment variables are set for the container, including Java options for memory

management and garbage collection.

Resource limits and requests are defined, with a CPU limit of 300m and memory limit of

500Mi, and requests for 100m CPU and 300Mi memory.

The container exposes port 80.

The Deployment is configured to run on nodes with the Linux operating system.

sock-shop-2/manifests/18-queue-master-svc.yaml

This manifest defines a Kubernetes Service.

The service is named 'queue-master'.

It is annotated for Prometheus scraping, which means it is set up to be monitored by

Prometheus.

The service is labeled with 'name: queue-master' for identification and selection purposes.

It is deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the target pods.

The service uses a selector to target pods with the label 'name: queue-master'.

sock-shop-2/manifests/19-rabbitmq-dep.yaml

This manifest defines a Deployment for RabbitMQ in a Kubernetes cluster.

The Deployment is named 'rabbitmq' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the RabbitMQ pod running.

The Deployment uses a selector to match pods with the label 'name: rabbitmq'.

The pod template includes two containers: one for RabbitMQ and another for RabbitMQ

Exporter.

The RabbitMQ container uses the image 'rabbitmq:3.6.8-management' and exposes two
ports: 15672 for management and 5672 for RabbitMQ.

The RabbitMQ container has a security context that drops all capabilities and adds specific

ones like CHOWN, SETGID, SETUID, and DAC_OVERRIDE, and it uses a read-only root
filesystem.

The RabbitMQ Exporter container uses the image 'kbudde/rabbitmq-exporter' and exposes

port 9090.

The Deployment is configured to run on nodes with the label 'beta.kubernetes.io/os: linux'.

Annotations are set to prevent Prometheus from scraping metrics from this pod.

sock-shop-2/manifests/20-rabbitmq-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'rabbitmq'.

It is annotated for Prometheus scraping on port 9090.

The Service is labeled with 'name: rabbitmq'.

It is deployed in the 'sock-shop' namespace.

The Service exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.

The Service uses TCP protocol for communication.

It selects pods with the label 'name: rabbitmq' to route traffic to.

sock-shop-2/manifests/21-session-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'session-db' pod running.

The pods are selected based on the label 'name: session-db'.

Each pod runs a single container using the 'redis
' image.

The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

sock-shop-2/manifests/22-session-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'session-db'.

It is located in the 'sock-shop' namespace.

The Service listens on port 6379 and forwards traffic to the same port on the target pods.

It uses a selector to target pods with the label 'name: session-db'.

sock-shop-2/manifests/23-shipping-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'shipping' application running.

The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8'.

Environment variables are set for the application, including 'ZIPKIN' and 'JAVA_OPTS'.

Resource limits and requests are defined, with a CPU limit of 300m and memory limit of

500Mi, and requests for 100m CPU and 300Mi memory.

The application listens on port 80.

Security context is configured to run the container as a non-root user with user ID 10001, and

with a read-only root filesystem.

The container has a volume mounted at '/tmp', which is an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/24-shipping-svc.yaml

This is a Kubernetes Service manifest.

The service is named 'shipping'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: shipping'.

It is deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: shipping'.

sock-shop-2/manifests/25-user-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user' application running.

The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7'.

Resource limits are set for the container: 300m CPU and 200Mi memory, with requests for

100m CPU and 100Mi memory.

The container listens on port 80.

An environment variable 'mongo' is set with the value 'user-db:27017'.

Security context is configured to run the container as a non-root user with user ID 10001.

The container has a read-only root filesystem and drops all capabilities except

'NET_BIND_SERVICE'.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80.

The liveness probe starts after 300 seconds and checks every 3 seconds.

The readiness probe starts after 180 seconds and checks every 3 seconds.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/26-user-svc.yaml

This manifest defines a Kubernetes Service.

The service is named 'user'.

It is annotated for Prometheus scraping, which means it is set up for monitoring.

The service is labeled with 'name: user'.

It is deployed in the 'sock-shop' namespace.

The service listens on port 80 and forwards traffic to the same port on the selected pods.

The service selects pods with the label 'name: user'.

sock-shop-2/manifests/27-user-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user-db' pod running.

The pods are selected based on the label 'name: user-db'.

Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0'.

The container exposes port 27017, which is typically used by MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and

SETUID.

The root filesystem of the container is set to be read-only for security purposes.

A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/28-user-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'user-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods it selects.

The Service uses a selector to match pods with the label 'name: user-db'.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Resource Requests

details: Pods may not get scheduled if the cluster is under resource pressure, leading to

potential downtime.

manifests having the issues: ['sock-shop-2/manifests/03-carts-db-dep.yaml', 'sock-shop-

2/manifests/07-catalogue-db-dep.yaml', 'sock-shop-2/manifests/13-orders-db-dep.yaml',

'sock-shop-2/manifests/19-rabbitmq-dep.yaml', 'sock-shop-2/manifests/21-session-db-
dep.yaml', 'sock-shop-2/manifests/27-user-db-dep.yaml']

problematic config: The deployments for carts-db, catalogue-db, orders-db, rabbitmq,

session-db, and user-db do not specify resource requests.

Issue #1: Single Replica Deployment

details: The front-end deployment has only one replica, which can lead to downtime if the
pod fails.

manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

problematic config: spec.replicas: 1

Issue #2: High Initial Delay for Liveness Probe

details: A high initial delay for the liveness probe can delay the detection of a failed pod,

leading to longer downtime.

manifests having the issues: ['sock-shop-2/manifests/05-catalogue-dep.yaml', 'sock-shop-

2/manifests/09-front-end-dep.yaml', 'sock-shop-2/manifests/15-payment-dep.yaml', 'sock-

shop-2/manifests/25-user-dep.yaml']

problematic config: livenessProbe.initialDelaySeconds: 300

Issue #3: Missing Port Specification in Service

details: The service may not function correctly if the port is not specified, leading to
connectivity issues.

manifests having the issues: ['sock-shop-2/manifests/02-carts-svc.yaml', 'sock-shop-

2/manifests/04-carts-db-svc.yaml', 'sock-shop-2/manifests/06-catalogue-svc.yaml', 'sock-
shop-2/manifests/08-catalogue-db-svc.yaml', 'sock-shop-2/manifests/12-orders-svc.yaml',

'sock-shop-2/manifests/14-orders-db-svc.yaml', 'sock-shop-2/manifests/16-payment-
svc.yaml', 'sock-shop-2/manifests/18-queue-master-svc.yaml', 'sock-shop-2/manifests/22-

session-db-svc.yaml', 'sock-shop-2/manifests/24-shipping-svc.yaml', 'sock-shop-

2/manifests/26-user-svc.yaml', 'sock-shop-2/manifests/28-user-db-svc.yaml']

problematic config: The port field is commented out or not specified in the service manifests.

Application of the manifests:

Thoughts:

The manifests provided are part of a Kubernetes deployment for a microservices-based

application called 'sock-shop'. This is evident from the namespace 'sock-shop' and the naming

conventions used in the manifests, such as 'carts', 'catalogue', 'orders', 'payment', 'shipping',
'user', and their respective databases. These components are typical of an e-commerce

application, where users can browse a catalogue, add items to a cart, place orders, and make
payments. The use of services like RabbitMQ and Redis further supports the assumption of a

complex, distributed application architecture, which is common in e-commerce platforms.

Assumed application:

The 'sock-shop' application is an e-commerce platform that allows users to browse a catalogue of

items, add items to a shopping cart, place orders, and make payments. It is a microservices-
based application deployed on Kubernetes, with each service handling a specific aspect of the e-

commerce process, such as managing the catalogue, processing orders, handling payments, and

managing user sessions.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID> Replace <ID> with an
available ID: [03fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-

e00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2de1-1aaa-4c25-a9b9-
6612e8f29a38 , 819e1fbf-8b7e-4f6d-811f-693534916a8b , 837ab141-399e-4c1f-9abc-

bace40296bac , a0a4f044-b040-410d-8ead-4de0446aec7e , d3588630-ad8e-49df-bbd7-
3167f7efb246 , zzz4f044-b040-410d-8ead-4de0446aec7e]

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with an

available tag: [magic , action , blue , brown , black , sport , formal , red , green ,

skin , geek]

6. http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 1: Hypothesis

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

Steady-state definition

✅ Steady state #1: carts-db-pod-count

💬 Description

The first issue to address is the 'Missing Resource Requests' in the 'carts-db'

Deployment. This is a critical issue because without resource requests, the pods may
not get scheduled if the cluster is under resource pressure, leading to potential

downtime. To verify the steady state, we can measure the number of 'carts-db' pods
running, ensuring it matches the expected replica count of 2. This will help us

understand if the pods are being scheduled correctly despite the missing resource

requests.

🔍 Current state inspection

To inspect the 'carts-db-pod-count', I will use the Kubernetes API to check the number

of running pods for the 'carts-db' deployment. This is because the task involves
verifying the number of pods, which is a Kubernetes resource state, and the K8s API is

suitable for this purpose. The deployment is in the 'sock-shop' namespace, and the

expected replica count is 2. I will implement a Python script using the K8s client library
to check the pod count every second for a duration of 5 seconds.

tool: k8s duration: 5s

Inspection script (Python) k8s_carts-db-pod-count.py :

import os
import time
from kubernetes import client, config

Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
else:
 config.load_kube_config()

v1 = client.AppsV1Api()

def check_carts_db_pod_count(namespace, expected_count):
 pod_count = 0
 try:
 resp = v1.read_namespaced_deployment(name='carts-db', namesp
 pod_count = resp.status.replicas
 except client.exceptions.ApiException as e:

 print(f"Exception when calling AppsV1Api->read_namespaced_de
 return pod_count

def main(duration):
 namespace = 'sock-shop'
 expected_count = 2
 for _ in range(duration):
 pod_count = check_carts_db_pod_count(namespace, expected_cou
 print(f"Current 'carts-db' pod count: {pod_count}")
 if pod_count == expected_count:
 print("Pod count matches expected count.")
 else:
 print("Pod count does not match expected count.")
 time.sleep(1)

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser(description='Check carts-db pod
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 main(args.duration)

Pod k8scarts-db-pod-count-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current 'carts-db' pod count: 2
Pod count matches expected count.
Current 'carts-db' pod count: 2
Pod count matches expected count.
Current 'carts-db' pod count: 2
Pod count matches expected count.
Current 'carts-db' pod count: 2
Pod count matches expected count.
Current 'carts-db' pod count: 2
Pod count matches expected count.

🚩 Threshold

The steady state we are examining is the number of 'carts-db' pods running, which
should match the expected replica count of 2. The current state shows that the pod

count consistently matches the expected count of 2 over multiple checks. Given that the

system is expected to maintain 2 replicas, the threshold should ensure that at least 2
pods are running to maintain redundancy and availability. To account for potential

fluctuations, such as during pod restarts or updates, a reasonable tolerance can be

applied. For example, allowing a brief period where the pod count might drop to 1, but
it should recover quickly. Therefore, the threshold can be defined as maintaining at

least 2 'carts-db' pods running 95% of the time within a 1-minute monitoring period.
This allows for brief fluctuations while ensuring the system remains stable and

available.

At least 2 'carts-db' pods must be running 95% of the time within a 1-minute monitoring
period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will implement a loop
that checks the number of 'carts-db' pods running every second for the specified

duration. I will count the number of times the pod count matches the expected count of

2. At the end of the duration, I will calculate the percentage of time the pod count was
as expected. I will then assert that this percentage is at least 95%, which is the threshold

defined for the steady state. This approach allows for brief fluctuations while ensuring
the system remains stable and available.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestCartsDBPodCount(K8sAPIBase):
 def __init__(self):
 super().__init__()
 self.v1_apps = client.AppsV1Api()

 def check_carts_db_pod_count(self, namespace, expected_count):
 pod_count = 0
 try:
 resp = self.v1_apps.read_namespaced_deployment(name='car
 pod_count = resp.status.replicas
 except client.exceptions.ApiException as e:
 print(f"Exception when calling AppsV1Api->read_namespace
 return pod_count

 def test_steady_state(self, duration):
 namespace = 'sock-shop'
 expected_count = 2
 successful_checks = 0

 for _ in range(duration):
 pod_count = self.check_carts_db_pod_count(namespace, exp
 print(f"Current 'carts-db' pod count: {pod_count}")
 if pod_count == expected_count:
 successful_checks += 1
 time.sleep(1)

 # Calculate the percentage of successful checks
 success_percentage = (successful_checks / duration) * 100
 print(f"Success percentage: {success_percentage}%")

 # Assert that the success percentage is at least 95%
 assert success_percentage >= 95, f"Pod count was not stable

def main():
 parser = argparse.ArgumentParser(description='Test carts-db pod
 parser.add_argument('--duration', type=int, default=60, help='Du
 args = parser.parse_args()

 test = TestCartsDBPodCount()
 test.test_steady_state(args.duration)

if __name__ == '__main__':
 main()

Pod unittestcarts-db-pod-countmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current 'carts-db' pod count: 2
Current 'carts-db' pod count: 2
Current 'carts-db' pod count: 2
Current 'carts-db' pod count: 2
Current 'carts-db' pod count: 2
Success percentage: 100.0%

✅ Steady state #2: front-end-pod-count

💬 Description

The next issue to address is the 'Single Replica Deployment' in the 'front-end'

Deployment. This is a critical issue because having only one replica can lead to
downtime if the pod fails. To verify the steady state, we can measure the number of

'front-end' pods running, ensuring it matches the expected replica count of 1. This will
help us understand if the pod is being scheduled correctly and remains available

despite being a single replica. Monitoring the pod count will allow us to verify the

system's resilience to potential failures.

🔍 Current state inspection

To inspect the 'front-end-pod-count', I will use the K8s API. This is because the task

involves checking the number of pods running for the 'front-end' deployment, which is
a Kubernetes resource. The K8s API is suitable for querying the current state of

Kubernetes resources, such as deployments and pods. I will write a Python script using

the Kubernetes client library to check the number of 'front-end' pods running in the
'sock-shop' namespace. The script will run for a duration of 5 seconds, checking the pod

count every second, and will print a summary of the results at the end.
tool: k8s duration: 5s

Inspection script (Python) k8s_front-end-pod-count.py :

import os
import time
import argparse
from kubernetes import client, config

def check_front_end_pod_count(namespace, duration):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 v1 = client.CoreV1Api()
 pod_label_selector = 'name=front-end'

 for _ in range(duration):
 pods = v1.list_namespaced_pod(namespace=namespace, label_sel
 pod_count = len(pods.items)
 print(f'Current front-end pod count: {pod_count}')
 time.sleep(1)

 print('Finished checking front-end pod count.')

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description='Check front-end po
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()

 check_front_end_pod_count(namespace='sock-shop', duration=args.d

Pod k8sfront-end-pod-count-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current front-end pod count: 1
Current front-end pod count: 1
Current front-end pod count: 1
Current front-end pod count: 1
Current front-end pod count: 1
Finished checking front-end pod count.

🚩 Threshold

The current state of the system shows that the front-end pod count is consistently at 1,

which matches the expected replica count as per the deployment configuration. Given
that the system is currently stable with a single replica, the threshold should ensure

that at least 1 front-end pod is running at all times. However, to account for potential
fluctuations or brief disruptions, a reasonable tolerance should be included. Since the

experiment must be completed within 1 minute, we can set a threshold that allows for a

brief period where the pod count might temporarily drop below 1, but it should recover
quickly. Therefore, the threshold can be defined as having at least 1 front-end pod

running 95% of the time during the 1-minute monitoring period. This allows for a brief
3-second window where the pod count might be 0, but it should not persist beyond

that.

At least 1 front-end pod must be running 95% of the time during a 1-minute monitoring
period.

📄 Unit test to validate the steady state

To verify the steady state of the front-end pod count, I will implement a unit test that
checks if at least 1 front-end pod is running 95% of the time during the specified

duration. This will be done by counting the number of times the pod count is 1 or more
and ensuring it meets the 95% threshold. The test will use a for-loop to check the pod

count every second for the specified duration, and at the end, it will assert whether the

threshold is met. The threshold is represented as a percentage (95%) and will be

calculated based on the duration provided by the user.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestFrontEndPodCount(K8sAPIBase):
 def __init__(self, namespace, duration):
 super().__init__()
 self.namespace = namespace
 self.duration = duration

 def test_front_end_pod_count(self):
 pod_label_selector = 'name=front-end'
 successful_checks = 0

 # Check the pod count every second for the specified duratio
 for _ in range(self.duration):
 pods = self.v1.list_namespaced_pod(namespace=self.namesp
 pod_count = len(pods.items)
 print(f'Current front-end pod count: {pod_count}')

 # Increment successful checks if pod count is 1 or more
 if pod_count >= 1:
 successful_checks += 1

 time.sleep(1)

 # Calculate the percentage of successful checks
 success_rate = (successful_checks / self.duration) * 100
 print(f'Success rate: {success_rate}%')

 # Assert that the success rate meets the 95% threshold
 assert success_rate >= 95, f"Front-end pod count did not mee

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='Test front-end pod
 parser.add_argument('--duration', type=int, default=60, help='Du
 args = parser.parse_args()

 test = TestFrontEndPodCount(namespace='sock-shop', duration=args
 test.test_front_end_pod_count()

Pod unittestfront-end-pod-countmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Current front-end pod count: 1
Current front-end pod count: 1
Current front-end pod count: 1
Current front-end pod count: 1
Current front-end pod count: 1
Success rate: 100.0%

Fault definition

✅ Scenario: Black Friday Sale

💬 Description

During a Black Friday sale, the system is expected to handle a significant increase in

traffic and load. This event will test the system's ability to maintain steady states under
high demand. The system's weaknesses, such as missing resource requests and single

replica deployments, can lead to potential downtime or degraded performance. To
simulate this event, we will inject faults that target these weaknesses. First, we will use

StressChaos to simulate high CPU and memory usage on the 'carts-db' pods, which lack

resource requests, to see if they can maintain the required pod count. Next, we will use
PodChaos to kill the single replica 'front-end' pod to test its resilience and recovery.

Finally, we will introduce NetworkChaos to simulate network latency on the 'front-end'
service, which will test the system's ability to handle network issues during high traffic.

This sequence of fault injections will simulate the phenomena of a Black Friday sale,

where high load, potential failures, and network issues are common.

🐞 Fault-injection sequence

StressChaos ({'namespace': 'sock-shop', 'label': 'name=carts-db'}) ➡ PodChaos

({'namespace': 'sock-shop', 'label': 'name=front-end'}) ➡ NetworkChaos ({'namespace':
'sock-shop', 'label': 'name=front-end'})

⚙ Detailed fault parameters

Detailed parameters of StressChaos ({'namespace': 'sock-shop', 'label': 'name=carts-

db'})

{

:

{

[

]

{

:

}

}

{

{

:

:

}

{

:

:

}

}

[

]

}

"mode" "all"

"selector" :

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "carts-db"

"stressors" :

"cpu" :

"workers" 2

"load" 100

"memory" :

"workers" 2

"size" "256MB"

"containerNames" :

0 : "carts-db"

Detailed parameters of PodChaos ({'namespace': 'sock-shop', 'label': 'name=front-end'})

{

:

:

{

[

]

{

:

}

}

}

"action" "pod-kill"

"mode" "one"

"selector" :

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "front-end"

Detailed parameters of NetworkChaos ({'namespace': 'sock-shop', 'label': 'name=front-
end'})

{

:

:

{

[

]

{

:

}

}

:

:

{

:

:

:

}

}

"action" "delay"

"mode" "all"

"selector" :

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "front-end"

"direction" "to"

"device" "eth0"

"delay" :

"latency" "100ms"

"jitter" "10ms"

"correlation" "50"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

To design a Chaos Engineering experiment that fits within the 1-minute constraint, we

need to allocate time efficiently across the three phases: pre-validation, fault injection,

and post-validation. Given the steady states and the fault scenario, we should ensure
that each phase is long enough to gather meaningful data while staying within the total

time limit.

1. Pre-validation Phase: This phase is crucial to ensure that the system is in a steady

state before we introduce any faults. We need to verify that the 'carts-db' and 'front-

end' pods are running as expected. Given the 1-minute total time constraint, we
can allocate 15 seconds for this phase. This should be sufficient to run the steady

state checks for both 'carts-db' and 'front-end' pods, as the checks are designed to

run quickly.

2. Fault Injection Phase: This is the core of the experiment where we introduce the

faults. We have three faults to inject: StressChaos on 'carts-db', PodChaos on 'front-

end', and NetworkChaos on 'front-end'. We need to observe the system's behavior
under these conditions. Allocating 30 seconds for this phase allows us to introduce

each fault and observe the immediate impact on the system. This duration is a
compromise between observing the effects and staying within the time limit.

3. Post-validation Phase: After the faults are removed, we need to ensure that the

system returns to its steady state. This phase should verify that the 'carts-db' and
'front-end' pods are back to their expected counts. Allocating 15 seconds for this

phase allows us to run the steady state checks again to confirm recovery.

In summary, the time allocation is 15 seconds for pre-validation, 30 seconds for fault

injection, and 15 seconds for post-validation, totaling 60 seconds.

Total experiment time: 60s

Pre-validation Phase: 15s

Fault-injection Phase: 30s

Post-validation Phase: 15s

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in a steady state

before we proceed with fault injection. This involves verifying that the key components
of the system are operating as expected. Given the constraints of a 15-second total time

for this phase, we need to efficiently schedule the unit tests to verify the steady states.

The two steady states we need to verify are:

1. carts-db-pod-count : Ensure that at least 2 'carts-db' pods are running 95% of the

time within a 1-minute monitoring period.

2. front-end-pod-count : Ensure that at least 1 'front-end' pod is running 95% of the

time during a 1-minute monitoring period.

Since we only have 15 seconds for the pre-validation phase, we will perform a quick

check to ensure that the current pod counts meet the expected values. This will not be a

full 1-minute check but a snapshot to ensure that the system is in a steady state at the
start of the experiment.

The approach is to run both unit tests simultaneously to maximize the use of the limited

time. Each test will have a grace period of 0 seconds and a duration of 15 seconds,
allowing us to quickly verify the current state of the system. This approach ensures that

we can confirm the system's readiness for the chaos experiment within the given time
constraint.

Verified Steady State #0: carts-db-pod-count

Workflow Name: pre-unittest-carts-db-pod-count

Grace Period: 0s

Duration: 15s

Verified Steady State #1: front-end-pod-count

Workflow Name: pre-unittest-front-end-pod-count

Grace Period: 0s

Duration: 15s

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a Black Friday sale scenario by

introducing stress and disruptions to the system. The phase is designed to last 30
seconds, and we will inject three types of faults sequentially to observe the system's

behavior under stress. The sequence and timing of the fault injections are crucial to

effectively simulate the scenario and observe the system's resilience.

1. StressChaos on 'carts-db' Pods: We will start by injecting a StressChaos fault

targeting the 'carts-db' pods. This fault will simulate high CPU and memory usage,
which is typical during a high-traffic event like Black Friday. The stress will be

applied for 10 seconds, starting immediately at the beginning of the phase (grace

period of 0s). This will help us observe if the 'carts-db' pods can maintain the
required pod count despite the missing resource requests.

2. PodChaos on 'front-end' Pod: After the StressChaos, we will introduce a PodChaos
fault to kill the single replica 'front-end' pod. This fault will be injected at the 10-

second mark (grace period of 10s) and will last for 10 seconds. This will test the

system's ability to recover from a pod failure, especially since the 'front-end'
deployment has only one replica.

3. NetworkChaos on 'front-end' Service: Finally, we will inject a NetworkChaos fault
to introduce network latency on the 'front-end' service. This fault will be injected at

the 20-second mark (grace period of 20s) and will last for 10 seconds. This

simulates network issues that might occur during high traffic, testing the system's
ability to handle such disruptions.

The faults are injected sequentially to ensure that each fault's impact can be observed

independently, while also simulating a realistic scenario where multiple issues might
occur in quick succession during a high-demand event. The timing is staggered to allow

for clear observation of each fault's effects and the system's response.

Injected Faults #0: StressChaos

Workflow Name: fault-stresschaos

Grace Period: 0s

Duration: 10s

Injected Faults #1: PodChaos

Workflow Name: fault-podchaos

Grace Period: 10s

Duration: 10s

Injected Faults #2: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 20s

Duration: 10s

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the constraints of a 15-second total time for

this phase, we will focus on quickly verifying the two defined steady states: 'carts-db-

pod-count' and 'front-end-pod-count'. The approach is to execute these unit tests
simultaneously to maximize the use of the limited time available. Each unit test will

have a short grace period to allow the system to stabilize after the fault injection,
followed by a brief duration to verify the steady state. The thought process is to ensure

that both critical components, 'carts-db' and 'front-end', are functioning as expected,

which will indicate that the system has recovered from the injected faults.

Verified Steady State #0: carts-db-pod-count

Workflow Name: post-unittest-carts-db-pod-count

Grace Period: 2s

Duration: 6s

Verified Steady State #1: front-end-pod-count

Workflow Name: post-unittest-front-end-pod-count

Grace Period: 2s

Duration: 6s

Summary

The Chaos Engineering experiment is structured into three phases: pre-validation, fault
injection, and post-validation, all within a total duration of 60 seconds.

In the pre-validation phase, which lasts for 15 seconds, the system's steady state is
verified by checking the 'carts-db' and 'front-end' pods. Both unit tests, 'carts-db-pod-

count' and 'front-end-pod-count', are executed simultaneously with no delay at the
start of this phase. Each test runs for the entire 15 seconds to ensure the system is ready

for the chaos experiment.

The fault injection phase spans 30 seconds and involves three sequential fault
injections. First, a StressChaos fault is applied to the 'carts-db' pods immediately at the

start of the phase, lasting for 10 seconds. Next, a PodChaos fault is introduced to the
'front-end' pod at the 10-second mark, also lasting for 10 seconds. Finally, a

NetworkChaos fault is injected on the 'front-end' service at the 20-second mark,

continuing for 10 seconds. This staggered approach allows for independent observation
of each fault's impact.

In the post-validation phase, which also lasts 15 seconds, the system's recovery is
verified. The unit tests 'carts-db-pod-count' and 'front-end-pod-count' are executed

simultaneously, each starting after a 2-second delay to allow for stabilization. Both tests

run for 6 seconds to confirm that the system has returned to its steady state after the
faults are removed.

Completed the chaos experiment!

All
Search Choose namespace





 





Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml

The Chaos Engineering cycle for the 'sock-shop' application involves a detailed process to
test the system's resilience under simulated fault conditions. The application is a

microservices-based e-commerce platform deployed on Kubernetes, consisting of various
components such as 'carts', 'catalogue', 'orders', 'payment', 'shipping', 'user', and their

respective databases. The cycle begins with understanding the user inputs, which include
Kubernetes manifests defining the deployment and service configurations for each

component. These manifests specify details such as the number of replicas, resource limits,

security settings, and service ports.

The cycle identifies several resiliency issues in the system, including missing resource

requests in some deployments, a single replica deployment for the 'front-end', high initial
delays for liveness probes, and missing port specifications in service manifests. These issues

could lead to potential downtime or degraded performance under stress.

The Chaos Engineering experiment is designed to test the hypothesis that the system

maintains its steady states even when faults are injected. Two steady states are defined:
ensuring at least 2 'carts-db' pods and 1 'front-end' pod are running 95% of the time during a

1-minute monitoring period. Python scripts using the Kubernetes API are provided to verify
these steady states.

The fault scenario simulates a Black Friday sale, introducing high load and potential failures.

Chaos Mesh is used to inject faults, including StressChaos on 'carts-db' to simulate high CPU
and memory usage, PodChaos to kill the 'front-end' pod, and NetworkChaos to introduce

network latency on the 'front-end' service.

The experiment is divided into three phases: pre-validation, fault injection, and post-

validation, each with specific time allocations to fit within a 1-minute constraint. Pre-

validation ensures the system is in a steady state, fault injection introduces the faults, and
post-validation checks if the system returns to its steady state.

The experiment is executed using a Chaos Mesh Workflow file, which automates the process
according to the plan. The first try of the experiment results in all unit tests passing,

indicating that the system maintained its steady states throughout the experiment. This

suggests that the system is resilient to the simulated faults, although further improvements
could be made to address the identified issues.

Download output (.zip)

