(] <

ChaosEater demo

Live Q&A

Settings ~
Model

anthropic/claude-3-5-son... Vv

Token

Cluster selection

kind-chaos-eater-cluster v

Clean the cluster

@ Clean the cluster before run
@ Clean the cluster after run

@ New deployment

Max # steady states

3 -+
Max retries

3 -+

Seed (GPTs only)

42 -+

Usage:

Total billing: $0.03
Total tokens: 3.995k
Input tokens: 2.992k
Ouput tokens: 1.003k

Command history

kubectl apply -f v
sandbox/cycle_20241128_075739/hyp
othesis/k8s_ExamplePodRunningAndR
eady_pod.yaml --context kind-chaos-

eater-cluster -n chaos-eater

levihart! laae v

Your instructions for Chaos Engineering:

o

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster ... Done

S kubectl delete
No resources found

--all --context kind-chaos-eater-cluster -n chaos

$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1
pod deleted

service deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Pod
metadata:

name: example-pod

labels:
app: example

spec:

restartPolicy: Never

containers:

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

selector:
app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...

Loading images 1into kind cluster nodes...
Images loaded in 71ns

- pod/example-pod created

- service/example-service created
Waiting deployments to stabilize...

- pods is ready.
Deployments stabilized in 3.09 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME CLUSTER-IP EXTERNAL-I
default service/example-service ClusterIP 10.96.198.17 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod

e The Podis named 'example-pod'

e Ithasalabel'app: example'

e The Pod's restart policy is set to 'Never'

e Itcontains asingle container named 'example-container
e The container uses the nginx image version 1.17.1

e The container exposes port 80

e This Pod can be used to run a simple nginx web server

e This manifest defines a Kubernetes Service resource

e The Service is named 'example-service'

e Itselects pods with the label 'app: example'

e The Service exposes port 80 and forwards traffic to port 80 on the selected pods
e [|tuses TCP protocol for communication

e This Service allows other resources within the cluster to access the selected pods using the

service name

Resiliency issuses/weaknesses in the manifests:

Issue #0: Single Pod Deployment

e details: Using a single Pod without a Deployment or ReplicaSet can lead to downtime if the
Pod fails or the node it's running on becomes unavailable.

¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: Kind: Pod is used instead of a Deployment or ReplicaSet
Issue #1: Restart Policy Set to Never

o details: With restartPolicy set to Never, the Pod will not be restarted if it crashes or
terminates, leading to potential downtime.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: spec.restartPolicy: Never
Issue #2: No Resource Limits

e details: Without resource limits, the container could consume excessive CPU or memory,

potentially affecting other workloads on the node or causing OOM Kkills.
e manifests having the issues: ['nginx/pod.yaml']

o problematic config: No resources.limits specified in the container spec
Issue #3: No Liveness or Readiness Probes

o details: Without health checks, Kubernetes cannot determine if the container is functioning
correctly, potentially leading to serving traffic to a malfunctioning Pod.

¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: No livenessProbe or readinessProbe specified in the container spec
Issue #4: No Service Type Specified

o details: Without a specified service type, the default ClusterlIP is used, which may not be
suitable if external access is required.
¢ manifests having the issues: ['nginx/service.yaml']

e problematic config: No spec.type specified in the Service
Issue #5: No Session Affinity

o details: Without session affinity, client requests may be distributed across different Pods,
potentially causing issues for stateful applications.
¢ manifests having the issues: ['nginx/service.yaml']

e problematic config: No spec.sessionAffinity specified in the Service

Application of the manifests:
Thoughts:

Based on the provided manifests and their file names (nginx/pod.yaml and nginx/service.yaml),
it's clear that this application is using Nginx. The Pod manifest specifies an Nginx container
image, and the Service manifest is designed to expose this Pod. Nginx is commonly used as a web
server, reverse proxy, or load balancer. Given the simple configuration and the use of port 80,

which is the standard HTTP port, it's reasonable to assume this is a basic web server setup.
Assumed application:

This appears to be a simple web server application using Nginx. The application serves static

content or acts as a reverse proxy for other backend services over HTTP on port 80. It provides

basic web hosting capabilities, potentially for a small website or as a frontend for a larger

application architecture.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute. (This instruction is
relevant to the Experiment phase, where the time constraint for injecting failures and
monitoring system behavior is specified.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: ExamplePodRunningAndReady 2

® Description

Given the system's configuration and the identified issues, the most critical steady state
to define first would be related to the availability of the single Pod. Since there's only
one Pod without any replication, and its restart policy is set to 'Never', the system's
availability is highly vulnerable. Therefore, we should define a steady state that checks

if the Pod is running and ready to serve traffic.

@, Current state inspection

To inspect the 'ExamplePodRunningAndReady' state, we need to check if the 'example-
pod'is running and ready. Since this involves checking the status of a Kubernetes
resource, we'll use the Kubernetes API. We'll create a Python script that uses the
Kubernetes client library to query the pod's status every second for a short duration.
This will give us a good snapshot of the pod's state without exceeding the 1-minute
time constraint for the entire experiment.

tool: duration:

Inspection script (Python)

os
kubernetes client, config
time

argparse

(duration):
Load Kubernetes configuration based on the environment
os.getenv ()8

config.load_incluster_config()
config.load_kube_config()

vl = client.CoreV1Api()

pod_name =

namespace =

start_time = time.time()

end_time = start_time + duration

status_counts = { 3 @ 3 @, 3 @

time.time() < end_time:

pod = vl.read_namespaced_pod(name=pod_name, namespace=nc
pod_status = pod.status.phase

pod_status ==

status_counts|] +=1

status_counts|] +=1

pod.status.conditions:

ready_condition = next((c c pod.status.condit
ready_condition ready_condition.status ==
status_counts|[1 +=1
status_counts|[] +=1
status_counts|] +=1
client.exceptions.ApiException e:
(
status_counts|[] += 1
status_counts|] +=1

time.sleep (1)

total_checks = sum(status_counts.values()) // 2

({duration})

¢ {status_counts|[]} /{total_checks}

({status_counts|[1}/{total_checks})
status_counts| 1 == total_checks status_counts|[

(

__hame__ ==
parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()
check_pod_status(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status over 5 seconds:
Running: 5/5 checks
Ready: 5/5 checks

Steady state hypothesis: Pod is consistently running and ready.

> Threshold

Given the current state of the system and the nature of the steady state we're
monitoring (ExamplePodRunningAndReady), we need to define a threshold that
ensures the pod is consistently running and ready, while allowing for some minor
fluctuations that might occur during normal operation or during a chaos engineering

experiment.

The current state shows that the pod was running and ready for 5 out of 5 checks over a

5-second period. This indicates perfect health, but we should allow for some potential

brief interruptions or fluctuations.
Considering that:

1. We only have a single pod without any replication.
2. Therestart policy is set to 'Never', which means any downtime could be critical.

3. Thechaos engineering experiment must be completed within 1 minute.

We should set a threshold that allows for brief interruptions but ensures the pod is

running and ready for the vast majority of the time. A reasonable threshold would be to
require the pod to be running and ready for at least 90% of the checks over a 30-second
period. This allows for some brief fluctuations while still maintaining a high standard of

availability.

The pod must be in a 'Running' state and 'Ready' condition for at least 90% of the

checks over a 30-second monitoring period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I'll modify the existing
code to create a unit test that inherits from the K8sAPIBase class. The test will run for a
specified duration (default 30 seconds) and check if the pod is running and ready for at
least 90% of the checks. I'll use argparse to allow users to specify a custom duration.
The test will assert that the running and ready percentages meet or exceed the 90%
threshold.

argparse
time
unittest_base K8sAPIBase
(K8sAPIBase) :
(self, duration):
pod_name =
namespace =

threshold = 0.90 # 90% threshold
start_time = time.time()
end_time = start_time + duration
status_counts = { 3 @ 3 @ 3 0
time.time() < end_time:
pod = self.vl.read_namespaced_pod(name=pod_name, nan
pod_status = pod.status.phase
pod_status == g
status_counts|] +=1

status_counts|[] +=1

pod.status.conditions:

ready_condition = next((c c pod.status.cc
ready_condition ready_condition.status =-
status_counts|[] +=1
status_counts[] += 1

status_counts[] += 1

Exception e:

(
status_counts[] += 1
status_counts|] +=1

time.sleep (1)

total_checks = sum(status_counts.values()) // 2

running_percentage = status_counts|] / total_checks
ready_percentage = status_counts|] / total_checks

¢ {duration})

({status_counts|[1} /{total_checks}

¢ {status_counts|[1} /{total_checks}

Assert that both running and ready percentages meet or exc

running_percentage >= threshold ready_percentage

TypeError: write() argument must be str, not None

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, 1in <m
main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/1llm_agents/st
write_file(file_path, unittest["code"])

File "/workspace/app/projects/chaos-eater/chaos_eater/utils/functions.py", 1lin
f.write(content)

