
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-deployment-6cb7ddd6c4-92f5r" deleted
pod "example-deployment-6cb7ddd6c4-g6v8z" deleted
pod "example-deployment-6cb7ddd6c4-jrdmq" deleted
service "example-service" deleted
deployment.apps "example-deployment" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:
 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service

Input instructions for your Chaos Engineering

ChaosEater demo

Live Q&A

Settings

Model

anthropic/claude-3-5-son…

Token

Hugging Face token

Cluster selection

kind-chaos-eater-cluster

Clean the cluster

Clean the cluster before run

Clean the cluster after run

New deployment

Max # steady states

3

Max retries

3

Seed (GPTs only)

42

Usage:

Total billing: $0.03

Total tokens: 3.997k
Input tokens: 3.001k

Ouput tokens: 0.996k

Command history

kubectl apply -f
sandbox/cycle_20241128_075141/hyp

othesis/k8s_ExamplePodRunningAndR
eady_pod.yaml --context kind-chaos-

eater-cluster -n chaos-eater

kubectl logs

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

metadata:
 name: example-service
spec:
 selector:
 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 221ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.087 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.173.52 <none>

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod

The Pod is named 'example-pod'

It has a label 'app: example'

The Pod's restart policy is set to 'Never'

It contains a single container:

The container is named 'example-container'

It uses the nginx image version 1.17.1

The container exposes port 80

This Pod can be used to run a simple nginx web server

nginx/service.yaml

This manifest defines a Kubernetes Service resource

The Service is named 'example-service'

It selects pods with the label 'app: example'

The Service exposes port 80 and forwards traffic to port 80 on the selected pods

It uses TCP protocol for communication

This Service allows other resources within the cluster to access the selected pods using a
stable network endpoint

Resiliency issuses/weaknesses in the manifests:

Issue #0: Single Pod Deployment

details: Using a single Pod without a Deployment or ReplicaSet can lead to downtime if the
Pod fails or the node it's running on becomes unavailable.

manifests having the issues: ['nginx/pod.yaml']

problematic config: Kind: Pod is used instead of a Deployment or ReplicaSet

Issue #1: Restart Policy Set to Never

details: With restartPolicy set to Never, the Pod will not be restarted if it crashes or

terminates, leading to potential downtime.

manifests having the issues: ['nginx/pod.yaml']

problematic config: spec.restartPolicy: Never

Issue #2: No Resource Limits

details: Without resource limits, the container could consume excessive CPU or memory,

potentially affecting other workloads on the node or causing OOM kills.

manifests having the issues: ['nginx/pod.yaml']

problematic config: No resources.limits specified in the container spec

Issue #3: No Liveness or Readiness Probes

details: Without health checks, Kubernetes cannot determine if the container is functioning
correctly, potentially leading to serving traffic to a malfunctioning Pod.

manifests having the issues: ['nginx/pod.yaml']

problematic config: No livenessProbe or readinessProbe specified in the container spec

Issue #4: No Service Type Specified

details: Without a specified service type, the default ClusterIP is used, which may not be

suitable if external access is required.

manifests having the issues: ['nginx/service.yaml']

problematic config: No spec.type specified in the Service

Issue #5: No Session Affinity

details: Without session affinity, client requests may be distributed across different Pods,

potentially causing issues for stateful applications.

manifests having the issues: ['nginx/service.yaml']

problematic config: No spec.sessionAffinity specified in the Service

Application of the manifests:

Thoughts:

Based on the provided manifests and their file names (nginx/pod.yaml and nginx/service.yaml),
it's clear that this application is using Nginx. The pod specification includes an Nginx container

image, and the service is set up to expose port 80, which is the default HTTP port. This strongly
suggests that the application is a web server or web application using Nginx as the web server or

reverse proxy.

Assumed application:

This appears to be a simple web server or web application using Nginx. The application offers

HTTP services to users, likely serving static content or acting as a reverse proxy for other backend
services. It provides a basic web hosting environment that can be easily scaled and managed

within a Kubernetes cluster.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute. (This instruction is
relevant to the Experiment phase, where the time constraint for injecting failures and

monitoring the system's response is specified.)

Phase 1: Hypothesis

Steady-state definition

✅ Steady state #1: ExamplePodRunningAndReady

💬 Description

Given the system's configuration and the identified issues, the most critical steady state

to define first would be related to the availability of the single Pod. Since there's only
one Pod without any replication, and its restart policy is set to 'Never', the system's

availability is highly vulnerable. Therefore, we should define a steady state that checks

if the Pod is running and ready to serve traffic.

🔍 Current state inspection

To inspect the 'ExamplePodRunningAndReady' state, we need to check if the 'example-

pod' is running and ready. Since this involves checking the status of a Kubernetes
resource, we'll use the Kubernetes API. We'll create a Python script that uses the

Kubernetes client library to query the pod's status every second for a short duration.

This will give us a good snapshot of the pod's state without exceeding the 1-minute
time constraint for the entire experiment.

tool: k8s duration: 5s

Inspection script (Python) k8s_ExamplePodRunningAndReady.py :

import os
from kubernetes import client, config
import time
import argparse

def check_pod_status(duration):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 v1 = client.CoreV1Api()
 pod_name = "example-pod"
 namespace = "default"

 start_time = time.time()
 end_time = start_time + duration
 status_counts = {"Running": 0, "Not Running": 0, "Ready": 0, "No

 while time.time() < end_time:
 try:
 pod = v1.read_namespaced_pod(name=pod_name, namespace=na
 pod_status = pod.status.phase
 if pod_status == "Running":
 status_counts["Running"] += 1
 else:
 status_counts["Not Running"] += 1

 if pod.status.conditions:
 ready_condition = next((c for c in pod.status.condit
 if ready_condition and ready_condition.status == "Tr
 status_counts["Ready"] += 1
 else:
 status_counts["Not Ready"] += 1
 else:
 status_counts["Not Ready"] += 1

 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_namespace
 status_counts["Not Running"] += 1
 status_counts["Not Ready"] += 1

 time.sleep(1)

 total_checks = sum(status_counts.values()) // 2 # Divide by 2 b
 print(f"Pod status over {duration} seconds:")
 print(f"Running: {status_counts['Running']/total_checks*100:.2f}
 print(f"Ready: {status_counts['Ready']/total_checks*100:.2f}% of

if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 check_pod_status(args.duration)

Pod k8sexamplepodrunningandready-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status over 5 seconds:
Running: 100.00% of the time
Ready: 100.00% of the time

🚩 Threshold

Given the current state of the system and the identified issues, we need to define a

threshold for the ExamplePodRunningAndReady steady state that accounts for the
single Pod deployment and its vulnerability to failures. The current state shows that the

Pod is running and ready 100% of the time over a 5-second period. However, we should
allow for some fluctuations and potential brief periods of unavailability, considering the

lack of redundancy and the 'Never' restart policy.

Given that:

1. There's only one Pod without replication.

2. The restart policy is set to 'Never', which means the Pod won't automatically

recover from failures.

3. The Chaos Engineering experiment must be completed within 1 minute.

We should set a threshold that allows for some downtime but ensures the Pod is

running and ready for the majority of the time. A reasonable threshold would be to
require the Pod to be running and ready for at least 90% of the time over a 1-minute

period. This allows for up to 6 seconds of downtime, which could account for brief
network issues or other transient problems.

The example-pod must be in a Running state and Ready condition for at least 90% of

the time over a 1-minute monitoring period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will modify the existing

code to create a unit test that inherits from the K8sAPIBase class. The test will run for a
specified duration (default 60 seconds) and check if the example-pod is in a Running

state and Ready condition for at least 90% of the time. I'll use argparse to allow users to

specify a custom duration. The test will collect status information every second,
calculate the percentages, and assert that they meet or exceed the 90% threshold.

import argparse
import time
from unittest_base import K8sAPIBase

class TestPodStatus(K8sAPIBase):
 def test_pod_running_and_ready(self, duration):
 # Define the pod details
 pod_name = "example-pod"
 namespace = "default"

 # Define the threshold (90%)
 threshold = 0.9

 # Initialize counters
 status_counts = {"Running": 0, "Ready": 0}
 total_checks = 0

 # Start the test loop
 start_time = time.time()
 end_time = start_time + duration

 while time.time() < end_time:
 try:
 # Get the pod status
 pod = self.v1.read_namespaced_pod(name=pod_name, nam

 # Check if the pod is running
 if pod.status.phase == "Running":
 status_counts["Running"] += 1

 # Check if the pod is ready
 if pod.status.conditions:
 ready_condition = next((c for c in pod.status.co
 if ready_condition and ready_condition.status ==
 status_counts["Ready"] += 1

 total_checks += 1

 except Exception as e:
 print(f"Error occurred while checking pod status: {e

 # Wait for 1 second before the next check
 time.sleep(1)

 # Calculate percentages
 running_percentage = status_counts["Running"] / total_checks
 ready_percentage = status_counts["Ready"] / total_checks

 # Print summary
 print(f"Pod status over {duration} seconds:")
 print(f"Running: {running_percentage:.2%} of the time")
 print(f"Ready: {ready_percentage:.2%} of the time")

 # Assert that the percentages meet or exceed the threshold
 assert running_percentage >= threshold, f"Pod was running {r
 assert ready_percentage >= threshold, f"Pod was ready {ready

 print("Test passed: Pod was running and ready above the thre

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--duration', type=int, default=60, help='Du
 args = parser.parse_args()

 test = TestPodStatus()
 test.test_pod_running_and_ready(args.duration)

if __name__ == '__main__':
 main()

Pod unittestexamplepodrunningandreadymod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status over 5 seconds:
Running: 100.00% of the time
Ready: 100.00% of the time
Test passed: Pod was running and ready above the threshold

Steady state #2: ExampleServiceEndpointAvailable

💬 Description

Given the existing steady state and the system's configuration, the next most critical

aspect to monitor would be the Service's ability to route traffic to the Pod. Since we
have a single Pod and a Service that's supposed to direct traffic to it, we should ensure

that the Service is correctly selecting and routing traffic to the Pod. This is particularly

important because if the Service fails to route traffic, even if the Pod is running, the
application would be inaccessible. Therefore, we'll define a steady state for the

Service's endpoint availability.

🔍 Current state inspection

To inspect the ExampleServiceEndpointAvailable state, we need to check if the Service

is correctly routing traffic to the Pod. Since this involves testing network
communication, we'll use k6 to send HTTP requests to the Service endpoint and verify

its availability. We'll use the internal DNS name of the Service to send requests, as this is
how other components within the cluster would access it.

tool: k6 vus: 1 duration: 5s

Inspection script (Javascript) k6_ExampleServiceEndpointAvailable.js :

import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
 vus: 1,
 duration: '5s',
 thresholds: {
 'http_req_failed': ['rate<0.01'], // Less than 1% of requests s
 'http_req_duration': ['p(95)<500'] // 95% of requests should be
 }
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'status is 200': (r) => r.status === 200,
 'body contains nginx': (r) => r.body.includes('nginx')
 });
 sleep(1);
}

Pod k6exampleserviceendpointavailable-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

✓ status is 200
 ✓ body contains nginx

 checks.........................: 100.00% 10 out of 10
 data_received..................: 4.3 kB 848 B/s
 data_sent......................: 550 B 110 B/s
 http_req_blocked...............: avg=608.17µs min=4.08µs med=7.8
 http_req_connecting............: avg=52.46µs min=0s med=0s
✓ http_req_duration..............: avg=601.43µs min=414.1µs med=588
 { expected_response:true }...: avg=601.43µs min=414.1µs med=588
✓ http_req_failed................: 0.00% 0 out of 5
 http_req_receiving.............: avg=119.66µs min=62.64µs med=77.
 http_req_sending...............: avg=62.36µs min=11.99µs med=26.
 http_req_tls_handshaking.......: avg=0s min=0s med=0s
 http_req_waiting...............: avg=419.39µs min=281.12µs med=484
 http_reqs......................: 5 0.997875/s
 iteration_duration.............: avg=1s min=1s med=1s
 iterations.....................: 5 0.997875/s
 vus............................: 1 min=1 max=1
 vus_max........................: 1 min=1 max=1

🚩 Threshold

Based on the current state and the system configuration, we need to define a threshold

for the ExampleServiceEndpointAvailable steady state. The k6 test results show that the
service is currently performing well, with 100% of checks passing, 0% failed requests,

and response times well under 500ms. However, we should allow for some fluctuations
in performance while still maintaining a high standard of availability and

responsiveness.

Considering that:

1. The system has only one pod, making it more susceptible to downtime.

2. The restart policy is set to 'Never', which could lead to extended downtime if the

pod fails.

3. There are no resource limits or health checks in place.

We should set a threshold that is slightly more lenient than the current perfect

performance, but still ensures high availability and responsiveness.

The ExampleServiceEndpointAvailable steady state is considered maintained if:

1. At least 99% of requests return a 200 status code.

2. At least 99% of response bodies contain the word 'nginx'.

3. The 95th percentile of response times is below 750ms.

4. Less than 1% of requests fail.

5. These conditions must be met over a 1-minute rolling window, with checks
performed every 10 seconds.

📄 Unit test to validate the steady state

To verify if the steady state satisfies the threshold, we need to modify the existing k6

script by adding new thresholds and adjusting the test duration. We'll add thresholds
for the success rate of status checks, the presence of 'nginx' in the response body, and

adjust the existing thresholds for response time and failed requests. We'll also increase
the test duration to 1 minute to match the specified rolling window, and set the

iteration interval to 10 seconds.

import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
 vus: 1,
 duration: '1m',
 iterations: 6, // Run every 10 seconds for 1 minute
 thresholds: {
 // Check if at least 99% of requests return a 200 status code
 "checks{status is 200}": ["rate>0.99"],

 // Check if at least 99% of response bodies contain the word 'ng
 "checks{body contains nginx}": ["rate>0.99"],

 // Check if the 95th percentile of response times is below 750ms
 "http_req_duration": ["p(95)<750"],

 // Check if less than 1% of requests fail
 "http_req_failed": ["rate<0.01"]

 }
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l

 check(res, {
 'status is 200': (r) => r.status === 200,
 'body contains nginx': (r) => r.body.includes('nginx')
 });

 sleep(10); // Sleep for 10 seconds between iterations
}

Pod unittestexampleserviceendpointavailablemod0-pod has failed.

time="2024-11-28T07:54:07Z" level=error msg="unable to validate thre

The error occurs because the threshold expression for the 'body contains nginx' check
is not correctly formatted. In k6, when referencing check metrics in thresholds, we need

to use square brackets and quotes for the check name. Also, we should remove the fixed
number of iterations to support variable durations. Here's how we can fix these issues:

import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
 vus: 1,
 duration: '1m',
 thresholds: {
 // Check if at least 99% of requests return a 200 status code
 "checks['status is 200']": ["rate>0.99"],

 // Check if at least 99% of response bodies contain the word 'ng
 "checks['body contains nginx']": ["rate>0.99"],

 // Check if the 95th percentile of response times is below 750ms
 "http_req_duration": ["p(95)<750"],

 // Check if less than 1% of requests fail
 "http_req_failed": ["rate<0.01"]
 }
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l

 check(res, {
 'status is 200': (r) => r.status === 200,
 'body contains nginx': (r) => r.body.includes('nginx')
 });

 sleep(10); // Sleep for 10 seconds between iterations
}

Pod unittestexampleserviceendpointavailablemod1-pod has failed.

time="2024-11-28T07:54:24Z" level=error msg="invalid threshold defin

The error occurs because k6 doesn't recognize the check names with spaces when

defined in the thresholds. To fix this, we need to use the exact metric names that k6

generates for checks. These are in the format 'checks{checkName}'. We'll update the
threshold definitions to use this format.

import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
 vus: 1,
 duration: '1m',
 thresholds: {
 // Check if at least 99% of requests return a 200 status code
 "checks{status is 200}": ["rate>0.99"],

 // Check if at least 99% of response bodies contain the word 'ng
 "checks{body contains nginx}": ["rate>0.99"],

 // Check if the 95th percentile of response times is below 750ms
 "http_req_duration": ["p(95)<750"],

 // Check if less than 1% of requests fail
 "http_req_failed": ["rate<0.01"]
 }
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l

 check(res, {
 'status is 200': (r) => r.status === 200,
 'body contains nginx': (r) => r.body.includes('nginx')
 });

 sleep(10); // Sleep for 10 seconds between iterations
}

Pod unittestexampleserviceendpointavailablemod2-pod has failed.

time="2024-11-28T07:54:38Z" level=error msg="unable to validate thre

The error persists because the check names contain spaces, which are not allowed in k6

metric names. To resolve this, we need to modify the check names to remove spaces

and use camelCase or snake_case. We'll update both the check definitions and the
corresponding threshold definitions to use consistent, space-free names.

import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
 vus: 1,
 duration: '1m',
 thresholds: {
 // Check if at least 99% of requests return a 200 status code

 "checks{statusIs200}": ["rate>0.99"],

 // Check if at least 99% of response bodies contain the word 'ng
 "checks{bodyContainsNginx}": ["rate>0.99"],

 // Check if the 95th percentile of response times is below 750ms
 "http_req_duration": ["p(95)<750"],

 // Check if less than 1% of requests fail
 "http_req_failed": ["rate<0.01"]
 }
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l

 check(res, {
 statusIs200: (r) => r.status === 200,
 bodyContainsNginx: (r) => r.body.includes('nginx')
 });

 sleep(10); // Sleep for 10 seconds between iterations
}

Pod unittestexampleserviceendpointavailablemod3-pod has failed.

time="2024-11-28T07:54:54Z" level=error msg="unable to validate thre

AssertionError: MAX_MOD_COUNT_EXCEEDED: 3

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
 exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
 main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
 output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
 hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
 steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
 unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/llm_agents/st
 assert mod_count < max_mod_loop, f"MAX_MOD_COUNT_EXCEEDED: {max_mod_loop}"

