
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID> Replace <ID> with an

available ID: [03fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-

e00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2de1-1aaa-4c25-a9b9-

6612e8f29a38 , 819e1fbf-8b7e-4f6d-811f-693534916a8b , 837ab141-399e-4c1f-9abc-
bace40296bac , a0a4f044-b040-410d-8ead-4de0446aec7e , d3588630-ad8e-49df-bbd7-

3167f7efb246 , zzz4f044-b040-410d-8ead-4de0446aec7e]

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with
an available tag: [magic , action , blue , brown , black , sport , formal , red ,

green , skin , geek]

6. http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources foundInput instructions for your Chaos Engineering

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "carts-cd68b5d8b-r4f6k" deleted
pod "carts-cd68b5d8b-sgsq6" deleted
pod "carts-db-77454679c8-hh4bs" deleted
pod "carts-db-77454679c8-t8kns" deleted
pod "catalogue-69bd9c99d9-ljd6f" deleted
pod "catalogue-69bd9c99d9-n86d6" deleted
pod "catalogue-db-6464798844-8d28v" deleted
pod "catalogue-db-6464798844-9xh5d" deleted
pod "front-end-5b8c9495cb-h4j2p" deleted
pod "orders-7f4d894958-hcqzp" deleted
pod "orders-7f4d894958-m4wn2" deleted
pod "orders-db-5486cc55fb-754rz" deleted
pod "orders-db-5486cc55fb-7nfqh" deleted
pod "payment-7748fd6778-sphzp" deleted
pod "payment-7748fd6778-vxl25" deleted
pod "queue-master-6fb6576f9f-cxngf" deleted
pod "queue-master-6fb6576f9f-s4dzd" deleted
pod "rabbitmq-bc7f76c4d-4wnlb" deleted
pod "rabbitmq-bc7f76c4d-sc74r" deleted
pod "session-db-764c6dbdf4-c2bdd" deleted
pod "session-db-764c6dbdf4-s7bdd" deleted
pod "shipping-76fbccf45d-k6gct" deleted
pod "shipping-76fbccf45d-rjzvb" deleted
pod "user-7f7c77c49d-6wj4b" deleted
pod "user-7f7c77c49d-ql4zw" deleted
pod "user-db-7547b87478-89hzd" deleted
pod "user-db-7547b87478-prgbt" deleted
service "carts" deleted
service "carts-db" deleted
service "catalogue" deleted
service "catalogue-db" deleted
service "front-end" deleted
service "orders" deleted
service "orders-db" deleted
service "payment" deleted
service "queue-master" deleted
service "rabbitmq" deleted
service "session-db" deleted
service "shipping" deleted
service "user" deleted
service "user-db" deleted

deployment.apps "carts" deleted
deployment.apps "carts-db" deleted
deployment.apps "catalogue" deleted
deployment.apps "catalogue-db" deleted
deployment.apps "front-end" deleted
deployment.apps "orders" deleted
deployment.apps "orders-db" deleted
deployment.apps "payment" deleted
deployment.apps "queue-master" deleted
deployment.apps "rabbitmq" deleted
deployment.apps "session-db" deleted
deployment.apps "shipping" deleted
deployment.apps "user" deleted
deployment.apps "user-db" deleted
replicaset.apps "catalogue-69bd9c99d9" deleted
replicaset.apps "catalogue-db-6464798844" deleted
replicaset.apps "front-end-5b8c9495cb" deleted
replicaset.apps "orders-7f4d894958" deleted
replicaset.apps "orders-db-5486cc55fb" deleted
replicaset.apps "payment-7748fd6778" deleted
replicaset.apps "queue-master-6fb6576f9f" deleted
replicaset.apps "rabbitmq-bc7f76c4d" deleted
replicaset.apps "session-db-764c6dbdf4" deleted
replicaset.apps "shipping-76fbccf45d" deleted
replicaset.apps "user-7f7c77c49d" deleted
replicaset.apps "user-db-7547b87478" deleted

K8s manifest(s) to be deployed:

sock-shop-2/manifests/00-sock-shop-ns.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: sock-shop

sock-shop-2/manifests/01-carts-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: carts
 labels:
 name: carts
 namespace: sock-shop

spec:
 replicas: 2
 selector:
 matchLabels:
 name: carts
 template:
 metadata:
 labels:
 name: carts
 spec:
 containers:
 - name: carts
 image: weaveworksdemos/carts:0.4.8
 env:
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 300m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 200Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/02-carts-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: carts
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: carts
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: carts

sock-shop-2/manifests/03-carts-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: carts-db
 labels:
 name: carts-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: carts-db
 template:
 metadata:
 labels:
 name: carts-db
 spec:
 containers:
 - name: carts-db
 image: mongo
 ports:
 - name: mongo
 containerPort: 27017
 securityContext:
 capabilities:
 drop:
 - all

 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/04-carts-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: carts-db
 labels:
 name: carts-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 27017
 targetPort: 27017
 selector:
 name: carts-db

sock-shop-2/manifests/05-catalogue-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: catalogue
 labels:
 name: catalogue
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:

 name: catalogue
 template:
 metadata:
 labels:
 name: catalogue
 spec:
 containers:
 - name: catalogue
 image: weaveworksdemos/catalogue:0.3.5
 command: ["/app"]
 args:
 - -port=80
 resources:
 limits:
 cpu: 200m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 180
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/06-catalogue-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: catalogue
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: catalogue
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: catalogue

sock-shop-2/manifests/07-catalogue-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: catalogue-db
 labels:
 name: catalogue-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: catalogue-db
 template:
 metadata:
 labels:
 name: catalogue-db
 spec:
 containers:
 - name: catalogue-db
 image: weaveworksdemos/catalogue-db:0.3.0
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: fake_password
 - name: MYSQL_DATABASE
 value: socksdb
 ports:
 - name: mysql

 containerPort: 3306
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/08-catalogue-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: catalogue-db
 labels:
 name: catalogue-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 3306
 targetPort: 3306
 selector:
 name: catalogue-db

sock-shop-2/manifests/09-front-end-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: front-end
 namespace: sock-shop
spec:
 replicas: 1
 selector:
 matchLabels:
 name: front-end
 template:
 metadata:
 labels:
 name: front-end
 spec:
 containers:
 - name: front-end
 image: weaveworksdemos/front-end:0.3.12
 resources:
 limits:
 cpu: 300m
 memory: 1000Mi

 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 8079
 env:
 - name: SESSION_REDIS
 value: "true"
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /
 port: 8079
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /
 port: 8079
 initialDelaySeconds: 30
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/10-front-end-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: front-end
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: front-end
 namespace: sock-shop
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 8079

 nodePort: 30001
 selector:
 name: front-end

sock-shop-2/manifests/11-orders-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: orders
 labels:
 name: orders
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: orders
 template:
 metadata:
 labels:
 name: orders
 spec:
 containers:
 - name: orders
 image: weaveworksdemos/orders:0.4.7
 env:
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 500m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE

 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/12-orders-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: orders
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: orders
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: orders

sock-shop-2/manifests/13-orders-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: orders-db
 labels:
 name: orders-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: orders-db
 template:

 metadata:
 labels:
 name: orders-db
 spec:
 containers:
 - name: orders-db
 image: mongo
 ports:
 - name: mongo
 containerPort: 27017
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/14-orders-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: orders-db
 labels:
 name: orders-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 27017
 targetPort: 27017
 selector:
 name: orders-db

sock-shop-2/manifests/15-payment-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: payment
 labels:
 name: payment
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: payment
 template:
 metadata:
 labels:
 name: payment
 spec:
 containers:
 - name: payment
 image: weaveworksdemos/payment:0.4.3
 resources:
 limits:
 cpu: 200m
 memory: 200Mi
 requests:
 cpu: 99m
 memory: 100Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:

 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 180
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/16-payment-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: payment
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: payment
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: payment

sock-shop-2/manifests/17-queue-master-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: queue-master
 labels:
 name: queue-master
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: queue-master
 template:
 metadata:
 labels:
 name: queue-master

 spec:
 containers:
 - name: queue-master
 image: weaveworksdemos/queue-master:0.3.1
 env:
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 300m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 80
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/18-queue-master-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: queue-master
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: queue-master
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: queue-master

sock-shop-2/manifests/19-rabbitmq-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: rabbitmq
 labels:

 name: rabbitmq
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: rabbitmq
 template:
 metadata:
 labels:
 name: rabbitmq
 annotations:
 prometheus.io/scrape: "false"
 spec:
 containers:
 - name: rabbitmq
 image: rabbitmq:3.6.8-management
 ports:
 - containerPort: 15672
 name: management
 - containerPort: 5672
 name: rabbitmq
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 - DAC_OVERRIDE
 readOnlyRootFilesystem: true
 - name: rabbitmq-exporter
 image: kbudde/rabbitmq-exporter
 ports:
 - containerPort: 9090
 name: exporter
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/20-rabbitmq-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: rabbitmq

 annotations:
 prometheus.io/scrape: 'true'
 prometheus.io/port: '9090'
 labels:
 name: rabbitmq
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 5672
 name: rabbitmq
 targetPort: 5672
 - port: 9090
 name: exporter
 targetPort: exporter
 protocol: TCP
 selector:
 name: rabbitmq

sock-shop-2/manifests/21-session-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: session-db
 labels:
 name: session-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: session-db
 template:
 metadata:
 labels:
 name: session-db
 annotations:
 prometheus.io.scrape: "false"
 spec:
 containers:
 - name: session-db
 image: redis:alpine
 ports:
 - name: redis
 containerPort: 6379

 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/22-session-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: session-db
 labels:
 name: session-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 6379
 targetPort: 6379
 selector:
 name: session-db

sock-shop-2/manifests/23-shipping-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: shipping
 labels:
 name: shipping
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: shipping
 template:
 metadata:

 labels:
 name: shipping
 spec:
 containers:
 - name: shipping
 image: weaveworksdemos/shipping:0.4.8
 env:
 - name: ZIPKIN
 value: zipkin.jaeger.svc.cluster.local
 - name: JAVA_OPTS
 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/de
 resources:
 limits:
 cpu: 300m
 memory: 500Mi
 requests:
 cpu: 100m
 memory: 300Mi
 ports:
 - containerPort: 80
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/24-shipping-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: shipping
 annotations:

 prometheus.io/scrape: 'true'
 labels:
 name: shipping
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: shipping

sock-shop-2/manifests/25-user-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user
 labels:
 name: user
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: user
 template:
 metadata:
 labels:
 name: user
 spec:
 containers:
 - name: user
 image: weaveworksdemos/user:0.4.7
 resources:
 limits:
 cpu: 300m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 80
 env:
 - name: mongo
 value: user-db:27017

 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 add:
 - NET_BIND_SERVICE
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /health
 port: 80
 initialDelaySeconds: 180
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/26-user-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: user
 annotations:
 prometheus.io/scrape: 'true'
 labels:
 name: user
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 name: user

sock-shop-2/manifests/27-user-db-dep.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-db
 labels:
 name: user-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: user-db
 template:
 metadata:
 labels:
 name: user-db
 spec:
 containers:
 - name: user-db
 image: weaveworksdemos/user-db:0.3.0

 ports:
 - name: mongo
 containerPort: 27017
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

sock-shop-2/manifests/28-user-db-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: user-db
 labels:
 name: user-db
 namespace: sock-shop
spec:
 ports:
 # the port that this service should serve on
 - port: 27017
 targetPort: 27017
 selector:
 name: user-db

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 972ns
 - namespace/sock-shop unchanged
 - Warning: spec.template.spec.nodeSelector : deprecat
 - deployment.apps/carts created
 - service/carts created
 - deployment.apps/carts-db created
 - service/carts-db created
 - deployment.apps/catalogue created
 - service/catalogue created
 - deployment.apps/catalogue-db created
 - service/catalogue-db created
 - deployment.apps/front-end created
 - service/front-end created
 - deployment.apps/orders created
 - service/orders created
 - deployment.apps/orders-db created
 - service/orders-db created
 - deployment.apps/payment created
 - service/payment created
 - deployment.apps/queue-master created
 - service/queue-master created
 - deployment.apps/rabbitmq created
 - service/rabbitmq created

[beta.kubernetes.io/os]

 - deployment.apps/session-db created
 - service/session-db created
 - deployment.apps/shipping created
 - service/shipping created
 - deployment.apps/user created
 - service/user created
 - deployment.apps/user-db created
 - service/user-db created
Waiting for deployments to stabilize...
 - sock-shop:deployment/carts-db is ready. [13/14 deployment(s) still pendin
 - sock-shop:deployment/carts: creating container carts
 - sock-shop:pod/carts-7d6dfb46f-nkpfr: creating container carts
 - sock-shop:pod/carts-7d6dfb46f-stq2w: creating container carts
 - sock-shop... deployment(s) still pending]
 - sock-shop:deployment/shipping is ready. [9/14 deployment(s) still pending
 - sock-shop:deployment/orders-db: creating container orders-db
 - sock-shop:pod/orders-db-57bb99b8c5-9nhns: creating container orders-db
 - sock-shop:pod/orders-db-57bb99b8c5-9tgjn: creating container orders-db
 - sock-shop:deployment/user: waiting for rollout to finish: 0 of 2 updated
 - sock-shop:deployment/user-db: creating container user-db
 - sock-shop:pod/user-db-c9ff4ddbf-r2nbq: creating container user-db
 - sock-shop:pod/user-db-c9ff4ddbf-tqp7t: creating container user-db
 - sock-shop:deployment/carts is ready. [8/14 deployment(s) still pending]
 - sock-shop:deployment/rabbitmq is ready. [7/14 deployment(s) still pending
 - sock-shop:deployment/orders is ready. [6/14 deployment(s) still pending]
 - sock-shop:deployment/user-db is ready. [5/14 deployment(s) still pending]
 - sock-shop:deployment/orders-db is ready. [4/14 deployment(s) still pendin
 - sock-shop:deployment/front-end is ready. [3/14 deployment(s) still pendin
 - sock-shop:deployment/catalogue is ready. [2/14 deployment(s) still pendin
 - sock-shop:deployment/payment is ready. [1/14 deployment(s) still pending]
 - sock-shop:deployment/user: waiting for rollout to finish: 1 of 2 updated
 - sock-shop:deployment/user is ready.
Deployments stabilized in 3 minutes 5.223 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS
sock-shop pod/carts-7d6dfb46f-nkpfr 1/1 Running 0
sock-shop pod/carts-7d6dfb46f-stq2w 1/1 Running 0
sock-shop pod/carts-db-84d97dbfdc-4jxk4 1/1 Running 0
sock-shop pod/carts-db-84d97dbfdc-rrbcw 1/1 Running 0
sock-shop pod/catalogue-7f479575d6-hpsqx 1/1 Running 0
sock-shop pod/catalogue-7f479575d6-k5f2p 1/1 Running 0

sock-shop pod/catalogue-db-6f5647b5dc-c7lnn 1/1 Running 0
sock-shop pod/catalogue-db-6f5647b5dc-j8r54 1/1 Running 0
sock-shop pod/front-end-55f6798567-w7mrj 1/1 Running 0
sock-shop pod/orders-58c4cccf9-fjzwr 1/1 Running 0
sock-shop pod/orders-58c4cccf9-prh97 1/1 Running 0
sock-shop pod/orders-db-57bb99b8c5-9nhns 1/1 Running 0
sock-shop pod/orders-db-57bb99b8c5-9tgjn 1/1 Running 0
sock-shop pod/payment-567b57dbb9-b87f4 1/1 Running 0
sock-shop pod/payment-567b57dbb9-v792x 1/1 Running 0
sock-shop pod/queue-master-5495cfbd7d-2xmvl 1/1 Running 0
sock-shop pod/queue-master-5495cfbd7d-k9h54 1/1 Running 0
sock-shop pod/rabbitm... TYPE CLUSTER-IP EXTERNAL-IP PORT
sock-shop service/carts ClusterIP 10.96.115.234 <none>
sock-shop service/carts-db ClusterIP 10.96.28.82 <none>
sock-shop service/catalogue ClusterIP 10.96.205.72 <none>
sock-shop service/catalogue-db ClusterIP 10.96.139.115 <none>
sock-shop service/front-end NodePort 10.96.119.33 <none>
sock-shop service/orders ClusterIP 10.96.91.52 <none>
sock-shop service/orders-db ClusterIP 10.96.100.252 <none>
sock-shop service/payment ClusterIP 10.96.37.138 <none>
sock-shop service/queue-master ClusterIP 10.96.151.51 <none>
sock-shop service/rabbitmq ClusterIP 10.96.32.236 <none>
sock-shop service/session-db ClusterIP 10.96.181.166 <none>
sock-shop service/shipping ClusterIP 10.96.173.255 <none>
sock-shop service/user ClusterIP 10.96.140.169 <none>
sock-shop service/user-db ClusterIP 10.96.213.157 <none>

Summary of each manifest:

sock-shop-2/manifests/00-sock-shop-ns.yaml

This manifest defines a Kubernetes Namespace.

The Namespace is named 'sock-shop'.

Namespaces are used to organize and manage resources within a Kubernetes cluster.

sock-shop-2/manifests/01-carts-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'carts' application running.

The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8'.

Environment variables are set for Java options to optimize memory usage and disable certain

features.

Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,

and a minimum of 100m CPU and 200Mi memory.

The application listens on port 80 inside the container.

Security context is configured to run the container as a non-root user with user ID 10001.

The container has limited capabilities, only allowing NET_BIND_SERVICE, and uses a read-
only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/02-carts-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'carts'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: carts'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: carts'.

sock-shop-2/manifests/03-carts-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db'.

Each pod runs a single container using the 'mongo' image.

The container exposes port 27017, which is the default port for MongoDB.

Security context is set to drop all capabilities and only add CHOWN, SETGID, and SETUID,
with a read-only root filesystem.

A volume is mounted at '/tmp' using an emptyDir volume, which is stored in memory.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/04-carts-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'carts-db'.

It is labeled with 'name: carts-db'.

The Service is created in the 'sock-shop' namespace.

It exposes port 27017 and directs traffic to the same port on the target pods.

The Service selects pods with the label 'name: carts-db' to route traffic to them.

sock-shop-2/manifests/05-catalogue-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is part of the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'catalogue' application running.

The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5'.

The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and

100Mi memory.

The container is configured to run as a non-root user with user ID 10001.

Security settings include dropping all capabilities except 'NET_BIND_SERVICE' and using a

read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,
with initial delays of 300 and 180 seconds respectively.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/06-catalogue-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'catalogue'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: catalogue'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: catalogue'.

sock-shop-2/manifests/07-catalogue-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas (instances) of the 'catalogue-db' pod running.

The pods are selected based on the label 'name: catalogue-db'.

Each pod runs a single container using the image 'weaveworksdemos/catalogue-db:0.3.0'.

The container is configured with environment variables for 'MYSQL_ROOT_PASSWORD' and

'MYSQL_DATABASE'.

The container exposes port 3306, which is typically used for MySQL databases.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/08-catalogue-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'catalogue-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 3306.

It targets port 3306 on the pods it selects.

The Service uses a selector to match pods with the label 'name: catalogue-db'.

sock-shop-2/manifests/09-front-end-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.

It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a container image 'weaveworksdemos/front-end:0.3.12'.

Resource limits are set for the container: 300 milliCPU and 1000 MiB of memory.

Resource requests are set for the container: 100 milliCPU and 300 MiB of memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true'.

Security context is configured to run the container as a non-root user with user ID 10001.

All additional Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the '/' path on port 8079, with an initial delay of 300
seconds and a period of 3 seconds.

A readiness probe is also configured to check the '/' path on port 8079, with an initial delay of

30 seconds and a period of 3 seconds.

The Deployment is scheduled to run on nodes with the operating system labeled as Linux.

sock-shop-2/manifests/10-front-end-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'front-end'.

It is located in the 'sock-shop' namespace.

The Service type is 'NodePort', which exposes the service on each Node's IP at a static port.

It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, allowing external access to the service.

The Service is configured to be scraped by Prometheus for monitoring, as indicated by the

annotation 'prometheus.io/scrape: true'.

It selects pods with the label 'name: front-end' to route traffic to.

sock-shop-2/manifests/11-orders-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders' and is part of the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders' application running.

The Deployment uses the Docker image 'weaveworksdemos/orders:0.4.7'.

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.

The application listens on port 80 inside the container.

Security settings ensure the container runs as a non-root user with specific capabilities and a

read-only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/12-orders-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'orders'.

It is annotated for Prometheus scraping, which means it is set up to be monitored by

Prometheus.

The Service is labeled with 'name: orders' for identification and organization.

It is deployed in the 'sock-shop' namespace, which is a way to group resources in Kubernetes.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service uses a selector to target pods with the label 'name: orders'.

sock-shop-2/manifests/13-orders-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the 'orders-db' pod to be created.

The pods are labeled with 'name: orders-db' for identification and selection.

Each pod runs a single container using the 'mongo' image.

The container exposes port 27017, which is the default port for MongoDB.

Security context is set to drop all capabilities and add only CHOWN, SETGID, and SETUID for

enhanced security.

The root filesystem of the container is set to read-only to prevent unauthorized changes.

A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/14-orders-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'orders-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods it selects.

The Service uses a selector to find pods with the label 'name: orders-db'.

sock-shop-2/manifests/15-payment-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'payment' application running.

The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3'.

Resource limits are set for the container: 200m CPU and 200Mi memory.

Resource requests are set for the container: 99m CPU and 100Mi memory.

The container listens on port 80.

Security context is configured to run the container as a non-root user with user ID 10001.

All capabilities are dropped except 'NET_BIND_SERVICE', and the root filesystem is set to

read-only.

A liveness probe is configured to check the '/health' endpoint on port 80, starting after 300

seconds and checking every 3 seconds.

A readiness probe is also configured to check the '/health' endpoint on port 80, starting after
180 seconds and checking every 3 seconds.

The Deployment is scheduled to run on nodes with the operating system labeled as Linux.

sock-shop-2/manifests/16-payment-svc.yaml

This is a Kubernetes Service manifest.

The service is named 'payment'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: payment'.

It is deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: payment'.

sock-shop-2/manifests/17-queue-master-dep.yaml

This manifest defines a Kubernetes Deployment.

The Deployment is named 'queue-master'.

It is located in the 'sock-shop' namespace.

The Deployment will create 2 replicas of the application.

It uses a selector to match pods with the label 'name: queue-master'.

The pod template specifies a single container named 'queue-master'.

The container uses the image 'weaveworksdemos/queue-master:0.3.1'.

Environment variables are set for Java options to optimize performance.

Resource limits are set to 300m CPU and 500Mi memory.

Resource requests are set to 100m CPU and 300Mi memory.

The container exposes port 80.

The Deployment is configured to run on Linux nodes using a node selector.

sock-shop-2/manifests/18-queue-master-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'queue-master'.

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: queue-master'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: queue-master'.

sock-shop-2/manifests/19-rabbitmq-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'rabbitmq' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the RabbitMQ application.

The Deployment uses a selector to match pods with the label 'name: rabbitmq'.

The pod template includes two containers: one for RabbitMQ and another for RabbitMQ

exporter.

The RabbitMQ container uses the image 'rabbitmq:3.6.8-management' and exposes ports
15672 (management) and 5672 (RabbitMQ service).

The RabbitMQ container has a security context that drops all capabilities and adds specific

ones like CHOWN, SETGID, SETUID, and DAC_OVERRIDE, and it uses a read-only root
filesystem.

The RabbitMQ exporter container uses the image 'kbudde/rabbitmq-exporter' and exposes

port 9090.

The Deployment is configured to run on nodes with the operating system labeled as Linux.

sock-shop-2/manifests/20-rabbitmq-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'rabbitmq'.

It is annotated for Prometheus scraping on port 9090.

The Service is labeled with 'name: rabbitmq'.

It is deployed in the 'sock-shop' namespace.

The Service exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.

The protocol used for the ports is TCP.

The Service selects pods with the label 'name: rabbitmq'.

sock-shop-2/manifests/21-session-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the pod to be created.

The pods are selected based on the label 'name: session-db'.

Each pod runs a single container using the 'redis
' image.

The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

An annotation is set to prevent Prometheus from scraping metrics from this pod.

sock-shop-2/manifests/22-session-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'session-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 6379.

It targets the same port (6379) on the selected pods.

The Service uses a selector to match pods with the label 'name: session-db'.

sock-shop-2/manifests/23-shipping-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the 'shipping' application to be run.

The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8'.

Environment variables are set for the application, including 'ZIPKIN' and 'JAVA_OPTS'.

Resource limits and requests are defined, with CPU limits at 300m and memory limits at

500Mi.

The application listens on port 80 within the container.

Security context is configured to run the container as a non-root user with user ID 10001.

The container has a read-only root filesystem and specific capabilities are dropped and
added.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/24-shipping-svc.yaml

This manifest defines a Kubernetes Service.

The service is named 'shipping'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: shipping'.

It is deployed in the 'sock-shop' namespace.

The service listens on port 80 and forwards traffic to the same port on the target pods.

It selects pods with the label 'name: shipping' to route traffic to.

sock-shop-2/manifests/25-user-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user' application running.

The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7'.

Resource limits are set for the container: 300m CPU and 200Mi memory, with requests for
100m CPU and 100Mi memory.

The container listens on port 80.

An environment variable 'mongo' is set with the value 'user-db:27017'.

Security context is configured to run the container as a non-root user with user ID 10001.

The container has a read-only root filesystem and drops all capabilities except

'NET_BIND_SERVICE'.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80.

The liveness probe starts after 300 seconds and checks every 3 seconds.

The readiness probe starts after 180 seconds and checks every 3 seconds.

The Deployment is scheduled to run on nodes with the Linux operating system.

sock-shop-2/manifests/26-user-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'user'.

It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: user'.

It is deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: user'.

sock-shop-2/manifests/27-user-db-dep.yaml

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user-db' pod running.

The pods are selected based on the label 'name: user-db'.

Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0'.

The container exposes port 27017, labeled as 'mongo', which is typically used for MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID, with a read-only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

sock-shop-2/manifests/28-user-db-svc.yaml

This manifest defines a Kubernetes Service.

The Service is named 'user-db'.

It is located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods it selects.

The Service uses a selector to match pods with the label 'name: user-db'.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Resource Requests

details: Pods may not get scheduled if resources are constrained, leading to potential

downtime.

manifests having the issues: ['sock-shop-2/manifests/03-carts-db-dep.yaml', 'sock-shop-
2/manifests/07-catalogue-db-dep.yaml', 'sock-shop-2/manifests/13-orders-db-dep.yaml',

'sock-shop-2/manifests/19-rabbitmq-dep.yaml', 'sock-shop-2/manifests/21-session-db-
dep.yaml', 'sock-shop-2/manifests/27-user-db-dep.yaml']

problematic config: No resource requests specified for CPU and memory.

Issue #1: Single Replica Deployment

details: Single replica deployments can lead to downtime if the pod fails.

manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

problematic config: spec.replicas: 1

Issue #2: Missing Liveness and Readiness Probes

details: Without liveness and readiness probes, Kubernetes cannot determine the health of

the application, leading to potential downtime or traffic being sent to unhealthy pods.

manifests having the issues: ['sock-shop-2/manifests/01-carts-dep.yaml', 'sock-shop-
2/manifests/03-carts-db-dep.yaml', 'sock-shop-2/manifests/05-catalogue-dep.yaml', 'sock-

shop-2/manifests/07-catalogue-db-dep.yaml', 'sock-shop-2/manifests/11-orders-dep.yaml',
'sock-shop-2/manifests/13-orders-db-dep.yaml', 'sock-shop-2/manifests/15-payment-

dep.yaml', 'sock-shop-2/manifests/17-queue-master-dep.yaml', 'sock-shop-2/manifests/19-

rabbitmq-dep.yaml', 'sock-shop-2/manifests/21-session-db-dep.yaml', 'sock-shop-
2/manifests/23-shipping-dep.yaml', 'sock-shop-2/manifests/25-user-dep.yaml', 'sock-shop-

2/manifests/27-user-db-dep.yaml']

problematic config: No livenessProbe or readinessProbe defined.

Issue #3: Hardcoded Environment Variables

details: Hardcoded environment variables, such as passwords, can lead to security
vulnerabilities.

manifests having the issues: ['sock-shop-2/manifests/07-catalogue-db-dep.yaml']

problematic config: env: MYSQL_ROOT_PASSWORD is hardcoded.

Issue #4: Missing Service Port Configuration

details: Services without defined ports may not function correctly, leading to connectivity

issues.

manifests having the issues: ['sock-shop-2/manifests/02-carts-svc.yaml', 'sock-shop-

2/manifests/04-carts-db-svc.yaml', 'sock-shop-2/manifests/06-catalogue-svc.yaml', 'sock-

shop-2/manifests/08-catalogue-db-svc.yaml', 'sock-shop-2/manifests/12-orders-svc.yaml',
'sock-shop-2/manifests/14-orders-db-svc.yaml', 'sock-shop-2/manifests/16-payment-

svc.yaml', 'sock-shop-2/manifests/18-queue-master-svc.yaml', 'sock-shop-2/manifests/22-
session-db-svc.yaml', 'sock-shop-2/manifests/24-shipping-svc.yaml', 'sock-shop-

2/manifests/26-user-svc.yaml', 'sock-shop-2/manifests/28-user-db-svc.yaml']

problematic config: Service ports are defined but commented out, leading to potential
misconfiguration.

Application of the manifests:

Thoughts:

The manifests provided are part of a well-known microservices demo application called 'Sock
Shop'. This application is designed to demonstrate the use of microservices architecture and

Kubernetes. The application simulates an e-commerce website for selling socks, and the

manifests include various components such as front-end, back-end services, databases, and

messaging systems. The naming conventions, such as 'carts', 'catalogue', 'orders', 'payment',
'shipping', and 'user', align with typical e-commerce functionalities. Additionally, the use of

images from 'weaveworksdemos' further indicates that this is the Sock Shop demo application.

Assumed application:

Sock Shop is a microservices-based e-commerce application that simulates an online store for

selling socks. It provides functionalities such as browsing a catalogue, managing a shopping cart,
placing orders, processing payments, handling shipping, and managing user accounts.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

When using k6 in steady-state definition, always select a request URL from the specified
options.

Phase 1: Hypothesis

Steady-state definition

✅ Steady state #1: carts-db-replicas-running

💬 Description

The first issue to address is the 'Missing Resource Requests' in the 'carts-db'
Deployment. This is a critical issue because without resource requests, the pods may

not be scheduled if the cluster is under resource constraints, leading to potential

downtime. The steady state for this manifest should ensure that the 'carts-db' pods are
running and available, which can be measured by checking the number of replicas that

are in the 'Running' state.

🔍 Current state inspection

To inspect the 'carts-db-replicas-running' state, I will use the K8s API. The reason for

choosing the K8s API is that it allows us to directly query the Kubernetes cluster to

check the status of the 'carts-db' Deployment, specifically the number of replicas that
are in the 'Running' state. This is more appropriate than using k6, which is better suited

for testing communication and performance metrics. The script will run for a maximum
of 5 seconds, checking the status every second, to ensure that the 'carts-db' pods are

running and available.

tool: k8s duration: 5s

Inspection script (Python) k8s_carts-db-replicas-running.py :

import os
import time
from kubernetes import client, config

Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
else:
 config.load_kube_config()

v1 = client.AppsV1Api()

def check_carts_db_replicas(namespace='sock-shop', deployment_name='
 try:
 deployment = v1.read_namespaced_deployment(name=deployment_n
 replicas = deployment.status.replicas
 ready_replicas = deployment.status.ready_replicas
 print(f"Total replicas: {replicas}, Ready replicas: {ready_r
 return ready_replicas == replicas
 except client.exceptions.ApiException as e:
 print(f"Exception when calling AppsV1Api->read_namespaced_de
 return False

def main(duration):
 success_count = 0
 for _ in range(duration):
 if check_carts_db_replicas():
 success_count += 1
 time.sleep(1)
 print(f"Carts-db replicas running successfully for {success_coun

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser(description='Check carts-db rep
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 main(args.duration)

Pod k8scarts-db-replicas-running-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Carts-db replicas running successfully for 5/5 seconds.

🚩 Threshold

The steady state we are considering is the number of 'carts-db' replicas that are running

and ready. The current state shows that there are 2 replicas, and both are ready, which

is the expected state. Given that the deployment specifies 2 replicas, the threshold
should ensure that both replicas are running and ready. To account for some

fluctuations and ensure the system remains stable, we can define a threshold that
allows for a small percentage of time where not all replicas are ready, as long as the

system recovers quickly. Since the experiment duration is 1 minute, we can set a

threshold that requires the 'carts-db' replicas to be ready for at least 90% of the time
during this period. This means that out of 60 seconds, the replicas should be ready for

at least 54 seconds. This threshold provides a reasonable tolerance for transient issues
while ensuring the system remains stable.

The 'carts-db' replicas must be ready for at least 90% of the time during a 1-minute
monitoring period, which equates to at least 54 out of 60 seconds.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will implement a check

to ensure that the 'carts-db' replicas are ready for at least 90% of the specified duration.
This will be done by counting the number of seconds the replicas are ready and

comparing it to 90% of the total duration. If the ready count meets or exceeds this
threshold, the test will pass; otherwise, it will fail. The threshold is implemented as a

percentage (90%) of the total duration, allowing for variable durations.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestCartsDBReplicas(K8sAPIBase):
 def __init__(self):

 super().__init__()
 self.v1_apps = client.AppsV1Api()

 def check_carts_db_replicas(self, namespace='sock-shop', deploym
 try:
 deployment = self.v1_apps.read_namespaced_deployment(nam
 replicas = deployment.status.replicas
 ready_replicas = deployment.status.ready_replicas
 print(f"Total replicas: {replicas}, Ready replicas: {rea
 return ready_replicas == replicas
 except client.exceptions.ApiException as e:
 print(f"Exception when calling AppsV1Api->read_namespace
 return False

 def test_replicas_ready_threshold(self, duration):
 success_count = 0
 for _ in range(duration):
 if self.check_carts_db_replicas():
 success_count += 1
 time.sleep(1)
 # Calculate the threshold as 90% of the duration
 threshold = 0.9 * duration
 print(f"Carts-db replicas running successfully for {success_
 # Assert that the success count meets or exceeds the thresho
 assert success_count >= threshold, f"Replicas were not ready

def main():
 parser = argparse.ArgumentParser(description='Test carts-db repl
 parser.add_argument('--duration', type=int, default=60, help='Du
 args = parser.parse_args()

 test = TestCartsDBReplicas()
 test.test_replicas_ready_threshold(args.duration)

if __name__ == '__main__':
 main()

Pod unittestcarts-db-replicas-runningmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2

Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Carts-db replicas running successfully for 5/5 seconds.

✅ Steady state #2: front-end-replica-running

💬 Description

The next issue to address is the 'Single Replica Deployment' in the 'front-end'

Deployment. This is a critical issue because having only a single replica can lead to
downtime if the pod fails. The steady state for this manifest should ensure that the

'front-end' pod is running and available, which can be measured by checking the

number of replicas that are in the 'Running' state. Since there is only one replica, the
steady state should ensure that this single replica is running and ready for the entire

duration of the monitoring period.

🔍 Current state inspection

To inspect the 'front-end-replica-running' state, I will use the K8s API. The goal is to

ensure that the single replica of the 'front-end' deployment is running and ready. The

K8s API is suitable for checking the status of Kubernetes resources, such as
deployments and pods. I will write a Python script using the K8s client library to check

the status of the 'front-end' pod in the 'sock-shop' namespace. The script will run for a
duration of 5 seconds, checking the pod status every second, and will print a summary

of the results at the end.
tool: k8s duration: 5s

Inspection script (Python) k8s_front-end-replica-running.py :

import os
import time
from kubernetes import client, config

Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
else:
 config.load_kube_config()

v1 = client.CoreV1Api()

namespace = 'sock-shop'
deployment_name = 'front-end'

Function to check the status of the front-end pod
def check_front_end_status():
 pods = v1.list_namespaced_pod(namespace=namespace, label_selecto
 running_pods = [pod for pod in pods if pod.status.phase == 'Runn
 ready_pods = [pod for pod in running_pods if all(container.ready
 return len(ready_pods)

def main(duration):
 for _ in range(duration):
 running_and_ready = check_front_end_status()
 print(f'Running and ready front-end pods: {running_and_ready
 time.sleep(1)
 print('Status check completed.')

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser(description='Check front-end po
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 main(args.duration)

Pod k8sfront-end-replica-running-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Running and ready front-end pods: 1
Running and ready front-end pods: 1
Running and ready front-end pods: 1
Running and ready front-end pods: 1
Running and ready front-end pods: 1
Status check completed.

🚩 Threshold

The steady state we are considering is the availability of the 'front-end' pod, which

currently has a single replica. The current state shows that the single replica is
consistently running and ready, as indicated by the repeated output of 'Running and

ready front-end pods: 1'. Given that the system is expected to maintain this state, the
threshold should ensure that the single replica remains running and ready for the entire

duration of the monitoring period. Since the monitoring period in the script is 5

seconds, and the Chaos Engineering experiment must be completed within 1 minute,

we can set a threshold that requires the front-end pod to be running and ready for at

least 95% of the time during a 1-minute period. This accounts for any minor fluctuations
or delays in pod readiness checks.

The 'front-end' pod must have at least 1 running and ready replica for 95% of the time
within a 1-minute monitoring period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will implement a unit

test that checks if the 'front-end' pod is running and ready for at least 95% of the
specified duration. This will involve counting the number of successful checks and

comparing it to the total number of checks to ensure the threshold is met. The test will
use a for-loop to repeatedly check the pod status every second for the specified

duration, and at the end, it will assert that the percentage of successful checks meets or

exceeds the 95% threshold.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestFrontEndReplicaRunning(K8sAPIBase):
 def __init__(self):
 super().__init__()
 self.namespace = 'sock-shop'
 self.deployment_name = 'front-end'

 def check_front_end_status(self):
 # List all pods in the specified namespace with the label 'n
 pods = self.v1.list_namespaced_pod(namespace=self.namespace,
 # Filter pods that are in the 'Running' state
 running_pods = [pod for pod in pods if pod.status.phase == '
 # Further filter pods that are ready
 ready_pods = [pod for pod in running_pods if all(container.r
 return len(ready_pods)

 def test_steady_state(self, duration):
 successful_checks = 0
 total_checks = duration

 for _ in range(duration):
 running_and_ready = self.check_front_end_status()
 print(f'Running and ready front-end pods: {running_and_r

 if running_and_ready >= 1:
 successful_checks += 1
 time.sleep(1)

 # Calculate the percentage of successful checks
 success_rate = (successful_checks / total_checks) * 100
 print(f'Success rate: {success_rate}%')

 # Assert that the success rate is at least 95%
 assert success_rate >= 95, f'Success rate {success_rate}% is

def main():
 parser = argparse.ArgumentParser(description='Test front-end pod
 parser.add_argument('--duration', type=int, default=60, help='Du
 args = parser.parse_args()

 test = TestFrontEndReplicaRunning()
 test.test_steady_state(args.duration)

if __name__ == '__main__':
 main()

Pod unittestfront-end-replica-runningmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Running and ready front-end pods: 1
Running and ready front-end pods: 1
Running and ready front-end pods: 1
Running and ready front-end pods: 1
Running and ready front-end pods: 1
Success rate: 100.0%

Fault definition

✅ Scenario: Black Friday Sale

💬 Description

During a Black Friday sale, the system is expected to handle a significant increase in

traffic and load. This event will test the system's ability to maintain steady states under

high demand. The 'carts-db' and 'front-end' components are critical to the user

experience, as they handle shopping cart operations and the user interface,
respectively. The 'carts-db' deployment lacks resource requests, which could lead to

scheduling issues under resource constraints. The 'front-end' deployment has a single
replica, making it vulnerable to downtime if the pod fails. To simulate the Black Friday

event, we will first inject a StressChaos fault to increase CPU and memory usage on the

'carts-db' pods, testing their ability to remain running without resource requests. Next,
we will inject a PodChaos fault to kill the 'front-end' pod, testing the system's ability to

recover and maintain availability with a single replica. This sequence of fault injections
will reveal potential weaknesses in resource allocation and redundancy, ensuring the

system can handle the increased load and maintain steady states.

🐞 Fault-injection sequence

StressChaos ({'namespace': 'sock-shop', 'label': 'name=carts-db'}) ➡ PodChaos

({'namespace': 'sock-shop', 'label': 'name=front-end'})

⚙ Detailed fault parameters

Detailed parameters of StressChaos ({'namespace': 'sock-shop', 'label': 'name=carts-
db'})

{

:

{

[

]

{

:

}

}

{

{

:

:

}

{

:

:

"mode" "all"

"selector" :

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "carts-db"

"stressors" :

"cpu" :

"workers" 2

"load" 80

"memory" :

"workers" 2

"size" "256MB"

}

}

[

]

}

"containerNames" :

0 : "carts-db"

Detailed parameters of PodChaos ({'namespace': 'sock-shop', 'label': 'name=front-end'})

{

:

:

{

[

]

{

:

}

}

:

}

"action" "pod-kill"

"mode" "one"

"selector" :

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "front-end"

"value" "1"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

The Chaos Engineering experiment is designed to test the system's resilience under

simulated fault conditions, specifically during a high-demand event like a Black Friday
sale. The experiment must be completed within 1 minute, so careful time allocation is

crucial. The experiment is divided into three phases: pre-validation, fault-injection, and
post-validation.

1. Pre-validation Phase (20 seconds): This phase ensures that the system is in a

steady state before any faults are injected. We will verify that the 'carts-db' replicas
are running and ready for at least 90% of the time, and the 'front-end' replica is

running and ready for at least 95% of the time. Given the short duration of the

experiment, a 20-second pre-validation period is sufficient to confirm the system's

initial stability.

2. Fault Injection Phase (20 seconds): During this phase, we will inject the specified

faults using Chaos Mesh. The 'carts-db' will undergo a StressChaos fault to simulate

high CPU and memory usage, while the 'front-end' will experience a PodChaos fault
to simulate a pod failure. The 20-second duration allows us to observe the system's

behavior under stress and its ability to maintain steady states.

3. Post-validation Phase (20 seconds): After fault injection, we need to ensure that

the system returns to its steady states. This phase will verify that the 'carts-db'

replicas and the 'front-end' replica meet their respective thresholds for readiness
and availability. A 20-second post-validation period is adequate to confirm recovery

and stability.

The total time for the experiment is 60 seconds, with each phase allocated 20 seconds

to balance validation and fault observation effectively.

Total experiment time: 60s

Pre-validation Phase: 20s

Fault-injection Phase: 20s

Post-validation Phase: 20s

Pre-validation Phase (20s)

In the pre-validation phase, we need to ensure that the system is in its expected steady

state before we proceed with fault injection. This involves verifying that the critical
components, 'carts-db' and 'front-end', are operating as expected. Given the constraints

of a 20-second total time for this phase, we will execute the unit tests for both steady
states simultaneously to maximize efficiency. The 'carts-db-replicas-running' test will

check that the 'carts-db' replicas are running and ready for at least 90% of the time

during a 10-second monitoring period. Similarly, the 'front-end-replica-running' test
will verify that the 'front-end' pod is running and ready for at least 95% of the time

during the same 10-second period. By running these tests concurrently, we ensure that
both components are in their expected steady states within the limited time frame,

allowing us to proceed confidently to the fault injection phase.

Verified Steady State #0: carts-db-replicas-running

Workflow Name: pre-unittest-carts-db-replicas-running

Grace Period: 0s

Duration: 10s

Verified Steady State #1: front-end-replica-running

Workflow Name: pre-unittest-front-end-replica-running

Grace Period: 0s

Duration: 10s

Fault-injection Phase (20s)

In this fault-injection phase, we aim to simulate a Black Friday sale scenario by injecting

two types of faults: StressChaos on the 'carts-db' pods and PodChaos on the 'front-end'
pod. The total duration for this phase is 20 seconds, so we need to carefully time the

injections to observe their effects on the system's steady states.

First, we will inject the StressChaos fault on the 'carts-db' pods. This fault will increase

CPU and memory usage, testing the pods' ability to handle high load without resource

requests. We will start this fault at the beginning of the phase (grace period of 0s) and
let it run for 10 seconds. This duration is chosen to allow enough time for the stress to

impact the system while leaving time for the next fault.

Next, we will inject the PodChaos fault on the 'front-end' pod. This fault will kill the pod,

testing the system's ability to recover and maintain availability with a single replica. We

will start this fault 10 seconds into the phase (grace period of 10s) and let it run for the
remaining 10 seconds. This staggered approach allows us to observe the effects of each

fault separately and ensures that the system is under stress for the entire duration of
the phase.

By staggering the faults, we can better understand how each component reacts to stress

and failure, providing insights into potential weaknesses in resource allocation and
redundancy.

Injected Faults #0: StressChaos

Workflow Name: fault-stresschaos

Grace Period: 0s

Duration: 10s

Injected Faults #1: PodChaos

Workflow Name: fault-podchaos

Grace Period: 10s

Duration: 10s

Post-validation Phase (20s)

In the post-validation phase, we need to ensure that the system has returned to its

steady states after the fault injection. Given the faults injected during the Black Friday
Sale simulation, we will focus on verifying the steady states of the 'carts-db' and 'front-

end' components. The post-validation phase is 20 seconds long, so we need to
efficiently schedule the unit tests to verify the steady states within this time frame.

The approach is to run the unit tests for both steady states simultaneously, as they are

independent checks and can be executed in parallel. This allows us to maximize the use
of the available time and ensure both components are back to their expected states.

The 'carts-db-replicas-running' test will check if the 'carts-db' replicas are running and
ready for at least 90% of the time during the 20-second period, while the 'front-end-

replica-running' test will verify that the 'front-end' pod is running and ready for at least

95% of the time.

By running these tests concurrently, we can quickly determine if the system has

recovered from the faults and returned to its steady states, ensuring that the system is
resilient and can handle similar scenarios in the future.

Verified Steady State #0: carts-db-replicas-running

Workflow Name: post-unittest-carts-db-replicas-running

Grace Period: 0s

Duration: 20s

Verified Steady State #1: front-end-replica-running

Workflow Name: post-unittest-front-end-replica-running

Grace Period: 0s

Duration: 20s

Summary

The Chaos Engineering experiment is structured into three phases, each lasting 20

seconds, to test the system's resilience during a simulated high-demand event. In the
pre-validation phase, which lasts for 20 seconds, two unit tests are executed

simultaneously to ensure the system is in a steady state before fault injection. The

'carts-db-replicas-running' test, with a workflow name of 'pre-unittest-carts-db-
replicas-running', and the 'front-end-replica-running' test, with a workflow name of

'pre-unittest-front-end-replica-running', both start immediately at the beginning of the
phase and run for 10 seconds. This concurrent execution confirms the readiness of the

'carts-db' replicas and the 'front-end' pod. In the fault-injection phase, also 20 seconds

long, two faults are injected in a staggered manner. The 'StressChaos' fault, with a
workflow name of 'fault-stresschaos', is injected at the start of the phase and runs for 10

seconds, simulating high CPU and memory usage on the 'carts-db' pods. Following this,

the 'PodChaos' fault, with a workflow name of 'fault-podchaos', is injected 10 seconds

into the phase and runs for the remaining 10 seconds, simulating a pod failure on the
'front-end'. This staggered approach allows for separate observation of each fault's

impact. Finally, in the post-validation phase, which is again 20 seconds long, the
system's recovery is verified by running two unit tests concurrently. The 'carts-db-

replicas-running' test, with a workflow name of 'post-unittest-carts-db-replicas-

running', and the 'front-end-replica-running' test, with a workflow name of 'post-
unittest-front-end-replica-running', both start immediately and run for the full 20

seconds. This ensures that both the 'carts-db' replicas and the 'front-end' pod have
returned to their expected steady states, confirming the system's resilience and

recovery capabilities.

Completed the chaos experiment!

All
Search Choose namespace





 





Phase 3: Analysis

The Chaos Engineering experiment aimed to test the resilience of the 'sock-shop' system under

simulated high-demand conditions, specifically focusing on the 'carts-db' and 'front-end'
components. The experiment was structured into three phases: pre-validation, fault injection,

and post-validation. The results indicate that while the 'carts-db' component maintained its

steady state throughout the experiment, the 'front-end' component failed to meet its steady state

threshold during the post-validation phase.

1. Pre-Validation Phase:

Both the 'carts-db-replicas-running' and 'front-end-replica-running' tests passed,
indicating that the system was in a steady state before the fault injection. This confirms

that the initial conditions were correctly set, with the 'carts-db' replicas running and the

single 'front-end' pod operational.

2. Fault Injection Phase:

The 'StressChaos' fault was injected first, targeting the 'carts-db' pods with increased

CPU and memory usage. Despite the lack of resource requests in the 'carts-db'
deployment, the system managed to maintain the steady state for 'carts-db', as

evidenced by the successful post-validation test.

The 'PodChaos' fault was injected next, targeting the 'front-end' pod by simulating a pod
failure. This fault exposed a critical vulnerability in the system: the single replica

configuration of the 'front-end' deployment.

3. Post-Validation Phase:

The 'carts-db-replicas-running' test passed, confirming that the 'carts-db' component

recovered successfully from the stress conditions.

The 'front-end-replica-running' test failed, with a success rate of only 10%, far below the

required 95% threshold. The logs indicate that the 'front-end' pod was not running and

ready for the majority of the post-validation period. This failure is directly linked to the
single replica configuration of the 'front-end' deployment, which lacks redundancy.

When the 'PodChaos' fault killed the 'front-end' pod, there was no additional replica to
take over, leading to downtime.

Insights and Recommendations:

The failure of the 'front-end' component highlights the critical issue of having a single replica
deployment. To improve resilience, it is recommended to increase the number of replicas for

the 'front-end' deployment. This will provide redundancy and ensure that the system can
maintain availability even if one pod fails.

Consider implementing horizontal pod autoscaling for the 'front-end' deployment to

dynamically adjust the number of replicas based on traffic and load conditions.

Review and enhance the readiness and liveness probes for the 'front-end' deployment to
ensure that Kubernetes can effectively manage pod health and recovery.

While the 'carts-db' component maintained its steady state, it is advisable to define resource

requests to prevent potential scheduling issues under resource constraints in future
scenarios.

In conclusion, the experiment successfully identified a significant resilience issue in the 'front-

end' component, providing valuable insights for improving the system's fault tolerance and
availability.

Phase 4: Improvement

Reconfiguration

To improve the resiliency of the 'front-end' component and avoid failures, we will increase
the number of replicas for the 'front-end' deployment from 1 to 2. This change will provide

redundancy, ensuring that the system can maintain availability even if one pod fails.
Additionally, we will add resource requests to the 'carts-db' deployment to prevent potential

scheduling issues under resource constraints.

Modification_type: replace

File name: sock-shop-2/manifests/09-front-end-dep.yaml

Increase the number of replicas from 1 to 2 to provide redundancy and improve availability.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: front-end
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: front-end
 template:
 metadata:
 labels:
 name: front-end
 spec:
 containers:
 - name: front-end
 image: weaveworksdemos/front-end:0.3.12
 resources:
 limits:
 cpu: 300m
 memory: 1000Mi
 requests:
 cpu: 100m
 memory: 300Mi

 ports:
 - containerPort: 8079
 env:
 - name: SESSION_REDIS
 value: "true"
 securityContext:
 runAsNonRoot: true
 runAsUser: 10001
 capabilities:
 drop:
 - all
 readOnlyRootFilesystem: true
 livenessProbe:
 httpGet:
 path: /
 port: 8079
 initialDelaySeconds: 300
 periodSeconds: 3
 readinessProbe:
 httpGet:
 path: /
 port: 8079
 initialDelaySeconds: 30
 periodSeconds: 3
 nodeSelector:
 beta.kubernetes.io/os: linux

Modification_type: replace

File name: sock-shop-2/manifests/03-carts-db-dep.yaml

Add resource requests to ensure the 'carts-db' pods can be scheduled even under resource

constraints.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: carts-db
 labels:
 name: carts-db
 namespace: sock-shop
spec:
 replicas: 2
 selector:
 matchLabels:
 name: carts-db
 template:

 metadata:
 labels:
 name: carts-db
 spec:
 containers:
 - name: carts-db
 image: mongo
 ports:
 - name: mongo
 containerPort: 27017
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 securityContext:
 capabilities:
 drop:
 - all
 add:
 - CHOWN
 - SETGID
 - SETUID
 readOnlyRootFilesystem: true
 volumeMounts:
 - mountPath: /tmp
 name: tmp-volume
 volumes:
 - name: tmp-volume
 emptyDir:
 medium: Memory
 nodeSelector:
 beta.kubernetes.io/os: linux

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 391ns
 - namespace/sock-shop unchanged
 - Warning: spec.template.spec.nodeSelector : deprecat
 - deployment.apps/carts configured
 - service/carts configured

[beta.kubernetes.io/os]

 - deployment.apps/carts-db configured
 - service/carts-db configured
 - deployment.apps/catalogue configured
 - service/catalogue configured
 - deployment.apps/catalogue-db configured
 - service/catalogue-db configured
 - deployment.apps/front-end configured
 - service/front-end configured
 - deployment.apps/orders configured
 - service/orders configured
 - deployment.apps/orders-db configured
 - service/orders-db configured
 - deployment.apps/payment configured
 - service/payment configured
 - deployment.apps/queue-master configured
 - service/queue-master configured
 - deployment.apps/rabbitmq configured
 - service/rabbitmq configured
 - deployment.apps/session-db configured
 - service/session-db configured
 - deployment.apps/shipping configured
 - service/shipping configured
 - deployment.apps/user configured
 - service/user configured
 - deployment.apps/user-db configured
 - service/user-db configured
Waiting for deployments to stabilize...
 - sock-shop:deployment/carts: waiting for rollout to finish: 1 out of 2 new
 - sock-shop:deployment/carts-db: creating container carts-db
 - sock-shop:pod/carts-db-6...ated...
 - sock-shop:deployment/catalogue-db is ready. [10/14 deployment(s) still pe
 - sock-shop:deployment/carts is ready. [9/14 deployment(s) still pending]
 - sock-shop:deployment/orders is ready. [8/14 deployment(s) still pending]
 - sock-shop:deployment/session-db is ready. [7/14 deployment(s) still pendi
 - sock-shop:deployment/queue-master is ready. [6/14 deployment(s) still pen
 - sock-shop:deployment/orders-db is ready. [5/14 deployment(s) still pendin
 - sock-shop:deployment/rabbitmq: waiting for rollout to finish: 1 old repli
 - sock-shop:deployment/rabbitmq is ready. [4/14 deployment(s) still pending
 - sock-shop:deployment/front-end: waiting for rollout to finish: 1 old repl
 - sock-shop:deployment/front-end is ready. [3/14 deployment(s) still pendin
 - sock-shop:deployment/catalogue: waiting for rollout to finish: 1 old repl
 - sock-shop:deployment/payment: creating container payment
 - sock-shop:pod/payment-65b4dd6f9b-kzkql: creating container payment
 - sock-shop:deployment/user: waiting for rollout to finish: 1 old replicas
 - sock-shop:deployment/catalogue is ready. [2/14 deployment(s) still pendin
 - sock-shop:deployment/user is ready. [1/14 deployment(s) still pending]
 - sock-shop:deployment/payment is ready.

Deployments stabilized in 6 minutes 6.87 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTAR
sock-shop pod/carts-75d9599844-5lf6h 1/1 Running 0
sock-shop pod/carts-75d9599844-nclz5 1/1 Running 0
sock-shop pod/carts-db-6794d4f987-4xnnc 1/1 Running 0
sock-shop pod/carts-db-6794d4f987-ldcv4 1/1 Running 0
sock-shop pod/catalogue-577bcf65d7-nksxg 1/1 Running 0
sock-shop pod/catalogue-577bcf65d7-rcbhd 1/1 Running 0
sock-shop pod/catalogue-db-56666f68cd-sdnjp 1/1 Running 0
sock-shop pod/catalogue-db-56666f68cd-w8s9n 1/1 Running 0
sock-shop pod/front-end-5cd74f858b-h76kh 1/1 Running 0
sock-shop pod/front-end-5cd74f858b-r2774 1/1 Running 0
sock-shop pod/orders-77b6947c8d-f78s6 1/1 Running 0
sock-shop pod/orders-77b6947c8d-scm7g 1/1 Running 0
sock-shop pod/orders-db-59f7c5f79d-t92qn 1/1 Running 0
sock-shop pod/orders-db-59f7c5f79d-wxq5d 1/1 Running 0
sock-shop pod/payment-65b4dd6f9b-kzkql 1/1 Running 0
sock-shop pod/payment-65b4dd6f9b-vr7fp 1/1 Running 0
sock-shop pod/payment-7855f7898c-s... 6m8s
sock-shop replicaset.apps/orders-8575b8c969 0 0 0
sock-shop replicaset.apps/orders-db-59f7c5f79d 2 2 2
sock-shop replicaset.apps/orders-db-76dfdc6865 0 0 0
sock-shop replicaset.apps/payment-65b4dd6f9b 2 2 2
sock-shop replicaset.apps/payment-7855f7898c 0 0 0
sock-shop replicaset.apps/queue-master-584db96944 0 0 0
sock-shop replicaset.apps/queue-master-778c957b8f 2 2 2
sock-shop replicaset.apps/rabbitmq-6db7899db6 2 2 2
sock-shop replicaset.apps/rabbitmq-7f84854df5 0 0 0
sock-shop replicaset.apps/session-db-6fc87fc86c 0 0 0
sock-shop replicaset.apps/session-db-7ff969cbdd 2 2 2
sock-shop replicaset.apps/shipping-5f477dd4bd 2 2 2
sock-shop replicaset.apps/shipping-77669895df 0 0 0
sock-shop replicaset.apps/user-86bfdd744f 0 0 0
sock-shop replicaset.apps/user-86d655596 2 2 2
sock-shop replicaset.apps/user-db-555dc88f6 2 2 2
sock-shop replicaset.apps/user-db-85c4bb8bd7 0 0 0

The fault-scope adjustment Completed!

Current fault injection settings:

Injected Faults #0: StressChaos

Workflow Name: fault-stresschaos

Grace Period: 0s

Duration: 10s

Parameters {{"mode": "all", "selector": {{"namespaces": ["sock-shop"], "labelSelectors":
{{"name": "carts-db"}}}}, "stressors": {{"cpu": {{"workers": 2, "load": 80}}, "memory": {{"workers":

2, "size": "256MB"}}}}, "containerNames": ["carts-db"]}}

The current K8s manifests show that the 'carts-db' deployment has added resource requests for

CPU and memory, which were not present in the previous manifests. However, this change does

not affect the scope of the fault injection, as the target remains the same: the 'carts-db' pods in
the 'sock-shop' namespace. The label selector 'name: carts-db' is still valid and correctly

identifies the target pods for the StressChaos fault. Therefore, there is no need to adjust the scope
of the fault injection based on the current manifests.

Next fault injection scope:

{

[

]

{

:

}

}

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "carts-db"

Current fault injection settings:

Injected Faults #0: PodChaos

Workflow Name: fault-podchaos

Grace Period: 10s

Duration: 10s

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["sock-shop"],

"labelSelectors": {{"name": "front-end"}}}}, "value": "1"}}

The current Kubernetes manifests show that the 'front-end' deployment has increased its replicas
from 1 to 2. This change does not affect the label or namespace used for the PodChaos fault

injection, which targets the 'front-end' pod. The original goal of the chaos experiment is to test
the system's resilience by simulating a pod failure in the 'front-end' service. Since the label and

namespace remain the same, the scope of the fault injection does not need to be adjusted. The

selector will continue to target the 'front-end' pods in the 'sock-shop' namespace using the label

'name: front-end'.

Next fault injection scope:

{

[

]

{

:

}

}

"namespaces" :

0 : "sock-shop"

"labelSelectors" :

"name" "front-end"

Adjusted unittest

The unit test is specifically targeting the 'carts-db' deployment, checking if the number of ready
replicas matches the total replicas. In the reconfigured manifests, the 'carts-db' deployment has

not undergone any changes in terms of the number of replicas or other relevant configurations
that would affect the unit test. The only addition in the reconfigured manifest is the resource

requests for CPU and memory, which do not impact the logic of the unit test. Therefore, the unit
test does not require any modifications as the steady state condition it verifies remains

unchanged.

Adjusted unittest

The unit test is focused on the 'front-end' deployment, specifically checking if at least one pod is

running and ready at all times. In the reconfigured manifests, the 'front-end' deployment has
been updated to have 2 replicas instead of 1. However, the unit test's threshold is to ensure that

at least 1 pod is running and ready, which aligns with the intent of the test to verify redundancy.

Since the threshold remains the same and the reconfiguration was made to ensure the system
satisfies this threshold, the unit test does not require any modification. The test will still verify

that at least 1 pod is running and ready, which is consistent with the reconfigured state of having
2 replicas.

Completed the chaos experiment!

All
Search Choose namespace





 





Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml

The Chaos Engineering cycle for the 'sock-shop' system involved a detailed analysis and
testing of the system's resilience under simulated high-demand conditions, such as a Black

Friday sale. The system is composed of various Kubernetes manifests that define
deployments and services for different components of the Sock Shop application, a

microservices-based e-commerce platform.

Step 0: User-input Understanding
The system's architecture was analyzed through its Kubernetes manifests, which include

definitions for namespaces, deployments, and services. Key components such as 'carts',

'catalogue', 'orders', 'payment', 'shipping', 'user', and their respective databases were
identified. Each component's configuration, including replicas, resource limits, security

contexts, and service ports, was reviewed to understand the system's current state and
potential weaknesses.

Identified Resiliency Issues
Several resiliency issues were identified:

1. Missing Resource Requests: Some deployments, like 'carts-db', lacked resource
requests, risking scheduling issues under resource constraints.

2. Single Replica Deployment: The 'front-end' deployment had only one replica, making it
vulnerable to downtime if the pod failed.

3. Missing Liveness and Readiness Probes: Many deployments lacked these probes, which

are crucial for Kubernetes to manage pod health.

4. Hardcoded Environment Variables: Security vulnerabilities were noted due to
hardcoded passwords in environment variables.

5. Missing Service Port Configuration: Some services had commented-out port

configurations, leading to potential connectivity issues.

Step 1: Hypothesis Definition
The hypothesis was that the system would maintain its steady states even when faults were

injected. Two steady states were defined:

Carts-db Replicas Running: Ensuring 'carts-db' replicas are ready 90% of the time

during a 1-minute period.

Front-end Replica Running: Ensuring the 'front-end' pod is ready 95% of the time
during a 1-minute period.

Step 2.1: Chaos-Engineering Experiment
The experiment was structured into three phases, each lasting 20 seconds:

1. Pre-validation Phase: Verified the system's initial steady state.

2. Fault Injection Phase: Simulated high load and pod failure using Chaos Mesh, injecting

StressChaos on 'carts-db' and PodChaos on 'front-end'.

3. Post-validation Phase: Checked if the system returned to its steady states.

Step 2.2, 3, 4: Experiment Execution, Analysis, and
Improvement
1st Try Results:

The 'carts-db' component maintained its steady state, but the 'front-end' component
failed post-validation due to its single replica configuration.

Analysis:

The single replica of 'front-end' led to downtime when the pod was killed, highlighting

the need for redundancy.

Improvements:

Increased 'front-end' replicas from 1 to 2.

Added resource requests to 'carts-db' to ensure scheduling under constraints.

2nd Try Results:

All unit tests passed, confirming the system's resilience and recovery capabilities after
improvements.

The experiment successfully identified and addressed critical resilience issues, enhancing

the system's fault tolerance and availability.

Download output (.zip)

