(] <

ChaosEater demo

Live Q&A

Settings ~
Model

google/gemini-1.5-pro-latest Vv

Token
©
Cluster selection
kind-chaos-eater-cluster v

Clean the cluster

@ Clean the cluster before run
@ Clean the cluster after run

@ New deployment

Max # steady states

3 -+
Max retries

3 -+

Seed (GPTs only)

42 -+

Usage:

Total billing: $0.02
Total tokens: 3.404k
Input tokens: 2.859k
Ouput tokens: 0.545k

Command history

kubectl apply -f v
sandbox/cycle_20241128 082317/hyp
othesis/k8s_nginxPodCount_pod.yaml
--context kind-chaos-eater-cluster -n

chaos-eater

lenihart! lnac kQenainvnadrannt.nad .- v

Your instructions for Chaos Engineering:

o

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster ... Done

S kubectl delete --all --context kind-chaos-eater-cluster -n chaos
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos

No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1
pod deleted

service deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Pod
metadata:
name: example-pod
labels:
app: example
spec:
restartPolicy: Never
containers:
- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl
kind: Service

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 70ns
- pod/example-pod created
- service/example-service created
Waiting deployments to stabilize...
- pods is ready.
Deployments stabilized in 3.09 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME CLUSTER-IP EXTERNAL-I
default service/example-service ClusterIP 10.96.151.45 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod named

e APodisthe smallest deployable unit in Kubernetes, like a container for your application.
e This Pod uses the image, which is a popular web server.

e The Pod exposes port 80, which is the standard port for HTTP traffic.

e The means that if the container inside the pod fails, it won't be

automatically restarted.

e This manifest defines a Kubernetes Service named "example-service".

e AKubernetes Service acts as a load balancer and provides a stable IP address for accessing
Pods.

e This service targets Pods with the label "app: example".
e Itexposes port 80 on the service, which maps to port 80 on the target Pods.

e This allows external traffic to access the application running on the Pods with the label "app:
example" on port 80.

Resiliency issuses/weaknesses in the manifests:

Issue #0: No Redundancy for Pod

e details: If the pod crashes or the node it's running on fails, the application becomes

unavailable.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never, absence of a Deployment or StatefulSet managing
the pod.

Issue #1: No Health Checks

e details: The service has no way to determine the health of the pod. It might route traffic to an
unhealthy pod, leading to application downtime or errors.

o manifests having the issues: ['nginx/service.yaml!, 'nginx/pod.yaml']

e problematic config: Absence of livenessProbe or readinessProbe in the pod spec and no

health checks configured in the service.
Application of the manifests:
Thoughts:

The filenames (nginx/pod.yaml and nginx/service.yaml) and the use of the nginx image strongly
suggest that this application is a web server. The service exposes port 80, further reinforcing this

assumption. The pod and service work together to deploy and expose a basic nginx web server.
Assumed application:

This application provides a basic web server using nginx. It can serve static web content or act as

a reverse proxy to other services.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute. (This instruction
should be considered in the experiment phase.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: nginxPodCount ~

& Description

The pod's restart policy is set to "Never", which means if the pod crashes, it won't be
restarted automatically. This is the most obvious point of failure. Thus, we should first
monitor the number of available pods with the label "app: example" to ensure that the
pod continues running during the chaos experiment. We will define the steady state

related to the number of pods.

@, Current state inspection

The application is deployed with a Kubernetes Pod and Service. The Pod has the label
'app: example'. To check the number of pods with this label, | will use the Kubernetes
Python API. | will set the duration to 5 seconds to check the pod status every second for
a short period.

tool: duration:

Inspection script (Python)

Check the number of pods with the label 'app: example'
import kubernetes

import os

import time

import argparse

parser = argparse.ArgumentParser ()
parser.add_argument('--duration', type=int, default=5, help='Duratic
args = parser.parse_args()

Load Kubernetes configuration based on the environment

if os.getenv('KUBERNETES_SERVICE_HOST'):
config.load_incluster_config()

else:

config.load_kube_config()

Initialize the Kubernetes API client

vl = kubernetes.client.CoreV1Api()

start_time = time.time()

results = []

while time.time() - start_time < args.duration:

try:
Get pods with the label 'app: example'
pods = v1.list_namespaced_pod('"default", label_selector="ap;
pod_count = len(pods.items)
results.append(pod_count)
print(f"Number of pods with label 'app: example': {pod_count
time.sleep (1)

except Exception as e:
print(f"Error: {el}")
time.sleep (1)

Summarize the results

print("\nSummary:")

for i, count in enumerate(results):
print(f"Second {i+1}: {count} pods")

Pod k8snginxpodcount-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/k8s_ng
config.load_incluster_config()
NameError: name 'config' s not defined

The error "NameError: name 'config' is not defined" occurs because the
kubernetes.config module is not imported. To fix this, | will add 'from kubernetes
import config' at the beginning of the script.

tool: kas duration: 5

Inspection script (Python) k8s_nginxPodCount_modi.py :

from kubernetes import config
import kubernetes

import os

import time

import argparse

parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

Load Kubernetes configuration based on the environment
os.getenv ():
config.load_incluster_config()

config.load_kube_config()

Initialize the Kubernetes API client
vl = kubernetes.client.CoreV1Api()

start_time = time.time()
results = []

time.time() - start_time < args.duration:

Get pods with the label 'app: example'

pods = v1.list_namespaced_pod(, label_selector=
pod_count = len(pods.items)

results.append(pod_count)

({pod_count
time.sleep(1)
Exception e:
({e}")

time.sleep (1)

Summarize the results

()

i, count enumerate(results):
¢ {i+1}: {count})
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Summary:

> Threshold

The current state shows that there is 1 pod with the label 'app: example' running. Since
the restart policy is 'Never', the threshold should ensure that at least one pod is running.
To account for potential transient errors in the Kubernetes API or very short downtime,
I'll add a small tolerance by requiring the pod count to be at least 1 for at least 90% of

the monitoring period.

The number of pods with the label 'app: example' should be at least 1 for at least 90% of
the monitoring period.

B Unit test to validate the steady state

To add the threshold assertion, | calculated the percentage of time the pod count was at
least 1 during the monitoring period. This percentage is then compared against the
threshold (90%). The test passes if the percentage meets or exceeds the threshold, and

fails otherwise. | used the Kubernetes Python API to interact with the cluster and

retrieve pod information. The argparse module allows users to specify the duration of
the test.

from unittest_base import K8sAPIBase
import os

import time

import argparse

from kubernetes import client, config

class K8sAPIBase:
def __init__(self):
Load Kubernetes configuration based on the environment
if os.getenv ('KUBERNETES_SERVICE_HOST'):
config.load_incluster_config()
else:

config.load_kube_config()

Create a Kubernetes API client
self.vl = client.CoreV1Api()

class PodCountCheck (K8sAPIBase):
def test_pod_count(self, duration):
Define the threshold percentage
threshold_percentage = 0.9

Initialize variables for tracking pod counts
results = []
start_time = time.time()

Loop for the specified duration
while time.time() - start_time < duration:
try:
Get pods with the label 'app: example'
pods = self.vl.list_namespaced_pod("default", label_
pod_count = len(pods.items)
results.append(pod_count)
print(f"Number of pods with label 'app: example': {}
time.sleep (1)
except Exception as e:
print(f"Error: {el}")
time.sleep (1)

Calculate the percentage of time the pod count was at leas
successful_counts = sum(l for count in results if count >= !

percentage = successful_counts / len(results) if results el:

Summarize the results

print("\nSummary:")

for i, count in enumerate(results):
print(f"Second {i+1}: {count} pods")

print(f"Percentage of time with at least 1 pod: {percentage
Assert that the percentage meets the threshold

assert percentage >= threshold_percentage, f'"Pod count was r
print("Test passed!")

def main():

parser = argparse.ArgumentParser ()

parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

test = PodCountCheck()

test.test_pod_count(args.duration)

__hame__ ==
main()
Pod has failed.
Summary:

Percentage of time with at least 1 pod: 0.00%
Traceback (most recent call last):
File
main()
File
test.test_pod_count(args.duration)
File
assert percentage >= threshold_percentage, f

AssertionError: Pod count was not at least 1 at least 90% of the

The error "Pod count was not at least 1 for at least 90% of the time. Actual percentage:
0.00%" indicates that the pod with the label 'app: example' was not found during the
test execution. This could be due to a few reasons:

1. The pod might not exist or might not have been deployed yet.
2. The pod might have been deployed in a different namespace than "default".

3. The label selector might be incorrect.

To fix this, I've added a check to ensure that the pod exists before starting the
monitoring loop. If the pod is not found, the test will fail immediately with a descriptive
message. This helps to pinpoint the issue early on. Additionally, I've included the

namespace as an argument to allow for more flexibility in testing.

from unittest_base import K8sAPIBase
os
time
argparse
kubernetes client, config

(self):
Load Kubernetes configuration based on the environment
os.getenv(E
config.load_incluster_config()

config.load_kube_config()

Create a Kubernetes API client
self.vl = client.CoreV1Api()

(K8sAPIBase) :
(self, duration, namespace=): # Addec
Define the threshold percentage
threshold_percentage = 0.9

Check if the pod exists before starting the loop
try:
pods = self.vl.list_namespaced_pod(namespace, label_sele
if not pods.items:
raise AssertionError("No pods found with label 'app:
except client.ApiException as e:
if e.status == 404:
raise AssertionError("Namespace '" + namespace + "'
else:

raise

Initialize variables for tracking pod counts
results = []
start_time = time.time()

Loop for the specified duration
while time.time() - start_time < duration:
try:
Get pods with the label 'app: example'
pods = self.vl.list_namespaced_pod(namespace, label_
pod_count = len(pods.items)
results.append(pod_count)
print(f"Number of pods with label 'app: example': {}
time.sleep (1)
except Exception as e:
print(f"Error: {e}")
time.sleep(1)

Calculate the percentage of time the pod count was at leas
successful_counts = sum(1l for count in results if count >= !

percentage = successful_counts / len(results) if results el:

Summarize the results
print("\nSummary:")
for i, count in enumerate(results):

print(f"Second {i+1}: {count} pods")

print(f"Percentage of time with at least 1 pod: {percentage

Assert that the percentage meets the threshold
assert percentage >= threshold_percentage, f'"Pod count was r
print("Test passed!")

def main():
parser = argparse.ArgumentParser ()
parser.add_argument('--duration', type=int, default=5, help='Dur
parser.add_argument('--namespace', type=str, default='default',

args = parser.parse_args()

test = PodCountCheck()
test.test_pod_count(args.duration, args.namespace) # Pass namesf

it __name__ == " _main__"':

main()

Pod unittestnginxpodcountmodi-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte

Summary:
main()
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
test.test_pod_count(args.duration, args.namespace) # Pass namesy
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
assert percentage >= threshold_percentage, f''Pod count was not :
AssertionError: Pod count was not at least 1 for at least 90% of the
Percentage of time with at least 1 pod: 0.00%

The previous error, "Pod count was not at least 1 for at least 90% of the time. Actual
percentage: 0.00%", even after confirming the pod's existence, suggests a timing issue.
The pod might be starting up slowly, or there might be a delay in the Kubernetes API
reflecting the pod's status. To address this, I've added a short initial delay before the
monitoring loop begins. This gives the pod some time to become ready. Additionally,
I've improved the error reporting within the loop to provide more context in case of

failures, including the current time and the specific exception encountered.

from unittest_base import K8sAPIBase
import os

import time

import argparse

from kubernetes import client, config

class K8sAPIBase:
def __init__(self):
Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
config.load_incluster_config()
else:

config.load_kube_config()

Create a Kubernetes API client
self.vl = client.CoreV1Api()

class PodCountCheck (K8sAPIBase):
def test_pod_count(self, duration, namespace="default"):
Define the threshold percentage
threshold_percentage = 0.9

Check if the pod exists before starting the loop
try:
pods = self.vl.list_namespaced_pod(namespace, label_sele
if not pods.items:
raise AssertionError("No pods found with label 'app:

except client.ApiException as e:

if e.status == 404:

raise AssertionError("Namespace '" + namespace + "'
else:

raise

Add an initial delay to allow the pod to become ready
print("wWaiting for the pod to become ready...'")
time.sleep(5) # Wait for 5 seconds

Initialize variables for tracking pod counts
results = []
start_time = time.time()

Loop for the specified duration
while time.time() - start_time < duration:
try:
Get pods with the label 'app: example'
pods = self.vl.list_namespaced_pod(namespace, label_
pod_count = len(pods.items)
results.append(pod_count)
print(f"Number of pods with label 'app: example': {}
time.sleep(1)
except Exception as e:
print(f"Error at {time.ctime()}: {e}") # Improved et
time.sleep (1)

Calculate the percentage of time the pod count was at leas
successful_counts = sum(1l for count in results if count >=
percentage = successful_counts / len(results) if results el:

Summarize the results

print("\nSummary:")

for i, count in enumerate(results):
print(f"Second {i+1}: {count} pods")

print(f"Percentage of time with at least 1 pod: {percentage

Assert that the percentage meets the threshold
assert percentage >= threshold_percentage, f'"Pod count was r

print("Test passed!")

def main():
parser = argparse.ArgumentParser ()
parser.add_argument('--duration', type=int, default=5, help='Dut
parser.add_argument('--namespace', type=str, default='default',
args = parser.parse_args()

test = PodCountCheck()
test.test_pod_count(args.duration, args.namespace)

if __name__ == '_ _main__':

main()

Pod unittestnginxpodcountmod2-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
Waiting for the pod to become ready...

Summary:
Percentage of time with at least 1 pod: 0.00%
main()
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
test.test_pod_count(args.duration, args.namespace)
File "/chaos-eater/sandbox/cycle_20241128_082317/hypothesis/unitte
assert percentage >= threshold_percentage, f''Pod count was not :
AssertionError: Pod count was not at least 1 for at least 90% of the

Despite adding an initial delay, the pod count might still be 0 if the pod is not running or
is taking an unusually long time to start. The error "Pod count was not at least 1 for at

least 90% of the time. Actual percentage: 0.00%" indicates that no pods with the
specified label were found throughout the duration of the test. To address this, | will
implement a retry mechanism within the loop. Instead of immediately failing if no pods
are found, the code will retry the pod listing operation multiple times with a short delay
between each attempt. This will increase the robustness of the test and handle cases

where the pod takes longer to appear in the API.

from unittest_base import K8sAPIBase
import os

import time

import argparse

from kubernetes import client, config

class K8sAPIBase:
def __init__(self):
Load Kubernetes configuration based on the environment
if os.getenv('KUBERNETES_SERVICE_HOST'):
config.load_incluster_config()
else:
config.load_kube_config()

Create a Kubernetes API client
self.vl = client.CoreV1Api()

class PodCountCheck (K8sAPIBase):
def test_pod_count(self, duration, namespace="default"):
Define the threshold percentage
threshold_percentage = 0.9

Initialize variables for tracking pod counts
results = []
start_time = time.time()

Loop for the specified duration
while time.time() - start_time < duration:
try:
Retry mechanism to handle cases where the pod take
retries = 3
for i in range(retries):
pods = self.vl.list_namespaced_pod(namespace, 1l
if pods.items:
break # Pod found, exit retry loop
else:
if i < retries -1:
print(f"No pods found, retrying ({i+1}/{
time.sleep(2) # Wait before retrying
else:

raise AssertionError(f"No pods found wit

pod_count = len(pods.items)
results.append(pod_count)
print(f"Number of pods with label 'app: example': {}
time.sleep (1)

except Exception as e:
print(f"Error at {time.ctime()}: {el}")
time.sleep (1)

Calculate the percentage of time the pod count was at leas

successful_counts = sum(1l for count in results if count >=

percentage = successful_counts / len(results) results

Summarize the results
()
i, count enumerate(results):
({i+1}: {count})

({percentage

Assert that the percentage meets the threshold
percentage >= threshold_percentage,

()

O:
parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=5, help=
parser.add_argument (, type=str, default= ,
args = parser.parse_args()

test = PodCountCheck()
test.test_pod_count(args.duration, args.namespace)

__hame__ ==
main()
Pod has failed.
Summary:

Percentage of time with at least 1 pod: 0.00%
Traceback (most recent call last):
File
main()
File
test.test_pod_count(args.duration, args.namespace)
File
assert percentage >= threshold_percentage, f
AssertionError: Pod count was not at least 1 at least 90% of the

AssertionError: MAX_MOD_COUNT_EXCEEDED: 3

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, 1in <m
main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, 1in ma
output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/1llm_agents/st
assert mod_count < max_mod_loop, f"MAX_MOD_COUNT_EXCEEDED: {max_mod_loop}"

