
Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos-
workflow.chaos-mesh.org "chaos-experiment-20241124-124141" deleted
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n ch
workflownode.chaos-mesh.org "fault-injection-overlapped-workflows-8qbxd" del
workflownode.chaos-mesh.org "fault-injection-parallel-workflow-dpgwq" delete
workflownode.chaos-mesh.org "fault-injection-parallel-workflows-77zbn" delet
workflownode.chaos-mesh.org "fault-injection-phase-rwmdt" deleted
workflownode.chaos-mesh.org "fault-injection-suspend-l7mwf" deleted
workflownode.chaos-mesh.org "fault-injection-suspend-workflow-dft2q" deleted
workflownode.chaos-mesh.org "fault-networkchaos-bltj7" deleted
workflownode.chaos-mesh.org "fault-podchaos-b7tqw" deleted
workflownode.chaos-mesh.org "fault-unittest-podrunningstatusnginxpodyaml-kq4
workflownode.chaos-mesh.org "fault-unittest-serviceavailabilitynginxservicey
workflownode.chaos-mesh.org "post-unittest-podrunningstatusnginxpodyaml-s8fr
workflownode.chaos-mesh.org "post-unittest-serviceavailabilitynginxserviceya
workflownode.chaos-mesh.org "post-validation-parallel-workflows-ft7cq" delet
workflownode.chaos-mesh.org "post-validation-phase-rbxm7" deleted
workflownode.chaos-mesh.org "pre-unittest-podrunningstatusnginxpodyaml-pnd9b
workflownode.chaos-mesh.org "pre-unittest-serviceavailabilitynginxserviceyam
workflownode.chaos-mesh.org "pre-validation-parallel-workflows-x5w7f" delete
workflownode.chaos-mesh.org "pre-validation-phase-nxfrr" deleted
workflownode.chaos-mesh.org "the-entry-84pfw" deleted
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n cha
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eate
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos-
No resources found

Input instructions for your Chaos Engineering

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -l
pod "example-deployment-f849656cf-5khq8" deleted
pod "example-deployment-f849656cf-bmc42" deleted
pod "example-deployment-f849656cf-zzqqq" deleted
service "example-service" deleted
deployment.apps "example-deployment" deleted

K8s manifest(s) to be deployed:

nginx/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 labels:
 app: example
spec:
 restartPolicy: Never
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

nginx/service.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service
spec:
 selector:
 app: example
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated

Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 90ns
 - pod/example-pod created
 - service/example-service created
Waiting for deployments to stabilize...
 - pods is ready.
Deployments stabilized in 3.095 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS RESTARTS AGE
default pod/example-pod 1/1 Running 0 6s

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.216.95 <none>

Summary of each manifest:

nginx/pod.yaml

This manifest defines a Kubernetes Pod.

The Pod is named 'example-pod'.

It includes metadata with a label 'app: example'.

The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.

The Pod contains one container named 'example-container'.

The container uses the 'nginx:1.17.1' image.

The container exposes port 80 for network traffic.

nginx/service.yaml

This manifest defines a Kubernetes Service.

The Service is named 'example-service'.

It uses the 'v1' API version.

The Service selects pods with the label 'app: example'.

It exposes the Service on port 80 using the TCP protocol.

The Service forwards traffic to the target port 80 on the selected pods.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Pod Restart Policy

details: The Pod will not restart automatically if it fails, which can lead to downtime.

manifests having the issues: ['nginx/pod.yaml']

problematic config: restartPolicy: Never

Issue #1: Single Pod Deployment

details: Using a single Pod without a controller like Deployment or ReplicaSet can lead to lack

of redundancy and no automatic recovery if the Pod fails.

manifests having the issues: ['nginx/pod.yaml']

problematic config: kind: Pod

Application of the manifests:

Thoughts:

The manifests provided are for a basic setup of an Nginx web server. The pod.yaml file specifies a
pod running an Nginx container, and the service.yaml file sets up a service to expose this pod on

port 80. The use of the Nginx image and the exposure of port 80, which is the default HTTP port,
strongly suggest that this setup is intended to serve web content. The file names and the use of

Nginx, a popular web server, further support this assumption.

Assumed application:

Web server hosting static or dynamic web content using Nginx.

Summary of your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

✅ Steady state #1: example-pod-running

💬 Description

The first issue to address is the Pod's restart policy set to 'Never', which means the Pod
will not restart automatically if it fails. This is a critical issue because it can lead to

downtime if the Pod encounters any failure. Therefore, the steady state should verify
that the Pod is running and has not failed. This can be measured by checking the Pod's

status to ensure it is in the 'Running' state. This steady state is specific to the

'nginx/pod.yaml' manifest, which defines the Pod with the problematic restart policy.

🔍 Current state inspection

To inspect the 'example-pod-running' state, I will use the K8s API. The reason for

choosing the K8s API is that it allows us to directly check the status of the Pod within
the Kubernetes cluster. We need to verify that the Pod is in the 'Running' state, which is

a specific status check that can be efficiently performed using the K8s API. The check

will be performed every second for a duration of 5 seconds to ensure the Pod remains in
the desired state.

tool: k8s duration: 5s

Inspection script (Python) k8s_example-pod-running.py :

import os
import time
from kubernetes import client, config

def check_pod_status(namespace, pod_name, duration):
 # Load Kubernetes configuration based on the environment
 if os.getenv('KUBERNETES_SERVICE_HOST'):
 config.load_incluster_config()
 else:
 config.load_kube_config()

 v1 = client.CoreV1Api()
 running_count = 0
 for _ in range(duration):
 try:
 pod = v1.read_namespaced_pod(name=pod_name, namespace=na
 if pod.status.phase == 'Running':
 running_count += 1
 print(f"Pod status: {pod.status.phase}")
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_namespace
 time.sleep(1)
 print(f"Pod was running {running_count} out of {duration} second

if __name__ == "__main__":
 import argparse
 parser = argparse.ArgumentParser(description='Check the status o
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 check_pod_status(namespace='default', pod_name='example-pod', du

Pod k8sexample-pod-running-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod was running 5 out of 5 seconds.

🚩 Threshold

The steady state we are considering is that the Pod should be in the 'Running' state. The
current state shows that the Pod was running 5 out of 5 seconds, which indicates a

100% uptime during the observation period. Given that the Chaos Engineering
experiment must be completed within 1 minute, we can set a threshold that allows for

some minor fluctuations but still ensures high availability. A reasonable threshold

would be that the Pod should be in the 'Running' state at least 90% of the time during
the observation period. This allows for brief interruptions or delays in status updates

while still maintaining a high level of reliability.

The Pod should be in the 'Running' state at least 90% of the time during the observation

period.

📄 Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, I will calculate the
percentage of time the Pod is in the 'Running' state during the specified duration. The

threshold is set to 90%, meaning the Pod should be running at least 90% of the time. I
will implement a for-loop to check the Pod's status every second for the given duration

and then assert that the running percentage meets or exceeds the threshold. This

ensures that the Pod's availability is within acceptable limits.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestPodRunningState(K8sAPIBase):
 def __init__(self, namespace, pod_name, duration):

 super().__init__()
 self.namespace = namespace
 self.pod_name = pod_name
 self.duration = duration

 def test_pod_running_state(self):
 running_count = 0
 # Check the pod status every second for the specified durati
 for _ in range(self.duration):
 try:
 pod = self.v1.read_namespaced_pod(name=self.pod_name
 if pod.status.phase == 'Running':
 running_count += 1
 print(f"Pod status: {pod.status.phase}")
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->read_names
 time.sleep(1)
 # Calculate the running percentage
 running_percentage = (running_count / self.duration) * 100
 print(f"Pod was running {running_count} out of {self.duratio
 print(f"Running percentage: {running_percentage}%")
 # Assert that the running percentage meets the threshold
 assert running_percentage >= 90, f"Pod running percentage {r

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='Test the running s
 parser.add_argument('--duration', type=int, default=5, help='Dur
 args = parser.parse_args()
 # Create an instance of the test class
 test = TestPodRunningState(namespace='default', pod_name='exampl
 # Run the test
 test.test_pod_running_state()

Pod unittestexample-pod-runningmod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod was running 5 out of 5 seconds.
Running percentage: 100.0%

✅ Steady state #2: example-service-availability

💬 Description

The next issue to address is the lack of redundancy due to the use of a single Pod

without a controller like Deployment or ReplicaSet. This can lead to a lack of automatic
recovery if the Pod fails. To verify the system's resilience, we should define a steady

state that measures the availability of the service provided by the Pod. Since the Service
'example-service' is responsible for exposing the Pod, we can measure the service's

availability by checking the response time or success rate of HTTP requests to the

service. This steady state is specific to the 'nginx/service.yaml' manifest, which defines
the Service that forwards traffic to the Pod.

🔍 Current state inspection

To inspect the availability of the 'example-service', we need to measure the response
time or success rate of HTTP requests to the service. Since this involves checking the

communication status and metrics, such as request sending and response time, k6 is

the appropriate tool for this task. We will use k6 to send HTTP requests to the service
and verify its availability by checking the response status. The service is exposed on

port 80, and we will use the internal DNS name 'example-
service.default.svc.cluster.local:80' to send requests. We will configure k6 to run with a

small number of virtual users and a short duration to fit within the 1-minute constraint

of the Chaos Engineering experiment.
tool: k6 vus: 1 duration: 5s

Inspection script (Javascript) k6_example-service-availability.js :

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,
 duration: '5s',
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'status is 200': (r) => r.status === 200,
 });
}

Pod k6example-service-availability-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

✓ status is 200

checks.........................: 100.00% 14968 out of 14968
data_received..................: 13 MB 2.5 MB/s
data_sent......................: 1.6 MB 329 kB/s
http_req_blocked...............: avg=7.92µs min=1.24µs med=4.11µ
http_req_connecting............: avg=2.2µs min=0s med=0s
http_req_duration..............: avg=216.27µs min=80.03µs med=218.1
 { expected_response:true }...: avg=216.27µs min=80.03µs med=218.1
http_req_failed................: 0.00% 0 out of 14968
http_req_receiving.............: avg=64.56µs min=17.24µs med=58.25
http_req_sending...............: avg=17.12µs min=4.13µs med=13.36
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=134.58µs min=53.84µs med=138.0
http_reqs......................: 14968 2993.500375/s
iteration_duration.............: avg=320.27µs min=120.11µs med=313.4
iterations.....................: 14968 2993.500375/s
vus............................: 1 min=1 max=1
vus_max........................: 1 min=1 max=1

🚩 Threshold

The steady state we are considering is the availability of the 'example-service', which is
measured by the success rate of HTTP requests. The k6 test results show that 100% of

the requests returned a status of 200, indicating that the service is fully available. To

define a reasonable threshold, we should consider a success rate that accounts for
minor fluctuations or transient issues that might occur in a real-world scenario. A

success rate of 99% is a common threshold for availability, allowing for some tolerance
while still ensuring high availability. This threshold is also satisfied by the current state,

which shows a 100% success rate.

HTTP request success rate >= 99%

📄 Unit test to validate the steady state

To add the threshold check to the k6 script, I will include a 'thresholds' property in the

'options' section. This property will specify that the success rate of HTTP requests
should be at least 99%. This is done by using the 'http_req_failed' metric, which tracks

the percentage of failed requests. The threshold will be set to ensure that the

percentage of failed requests is less than or equal to 1%, which corresponds to a
success rate of 99% or higher.

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,
 duration: '5s',
 thresholds: {
 // Define a threshold for the success rate of HTTP requests
 'http_req_failed': ['rate<=0.01'], // This ensures that the fail
 },
};

export default function () {
 const res = http.get('http://example-service.default.svc.cluster.l
 check(res, {
 'status is 200': (r) => r.status === 200,
 });
}

Pod unittestexample-service-availabilitymod0-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

✓ status is 200

 checks.........................: 100.00% 14775 out of 14775
 data_received..................: 13 MB 2.5 MB/s
 data_sent......................: 1.6 MB 325 kB/s
 http_req_blocked...............: avg=7.74µs min=1.49µs med=4.0
 http_req_connecting............: avg=2.18µs min=0s med=0s
 http_req_duration..............: avg=220.16µs min=84.15µs med=218
 { expected_response:true }...: avg=220.16µs min=84.15µs med=218
✓ http_req_failed................: 0.00% 0 out of 14775
 http_req_receiving.............: avg=65.69µs min=19.05µs med=58.
 http_req_sending...............: avg=17.06µs min=4.12µs med=13.
 http_req_tls_handshaking.......: avg=0s min=0s med=0s
 http_req_waiting...............: avg=137.4µs min=55.79µs med=137
 http_reqs......................: 14775 2954.803361/s
 iteration_duration.............: avg=324.72µs min=131.81µs med=314
 iterations.....................: 14775 2954.803361/s

 vus............................: 1 min=1 max=1
 vus_max........................: 1 min=1 max=1

Fault definition

✅ Scenario: Cyber Attack Simulation

💬 Description

Given the system's weaknesses, a cyber attack simulation can be impactful. The system
has a single Pod with a 'Never' restart policy, making it vulnerable to downtime if the

Pod fails. Additionally, the lack of redundancy means that any failure in the Pod will

directly affect the service availability. To simulate a cyber attack, we can start by
injecting a 'PodChaos' fault to kill the Pod, testing the system's ability to maintain the

'example-pod-running' steady state. This will reveal the impact of the Pod's restart
policy and lack of redundancy. Next, we can inject a 'NetworkChaos' fault to introduce

network latency, simulating a DDoS attack, and testing the 'example-service-

availability' steady state. This will reveal how the system handles network disruptions
and whether the service can maintain a high success rate under stress. The sequence of

injecting Pod failure first, followed by network latency, simulates a scenario where an
attacker first disrupts the Pod and then targets the network, maximizing the impact on

the system.

🐞 Fault-injection sequence

PodChaos ({'namespace': 'default', 'pod_name': 'example-pod'}) ➡ NetworkChaos

({'namespace': 'default', 'service_name': 'example-service'})

⚙ Detailed fault parameters

Detailed parameters of PodChaos ({'namespace': 'default', 'pod_name': 'example-pod'})

{

:

:

{

[

]

"action" "pod-kill"

"mode" "one"

"selector" :

"namespaces" :

0 : "default"

{

:

}

}

}

"labelSelectors" :

"app" "example"

Detailed parameters of NetworkChaos ({'namespace': 'default', 'service_name':

'example-service'})

{

:

:

:

{

[

]

{

:

}

}

{

:

:

}

}

"action" "delay"

"direction" "to"

"mode" "all"

"selector" :

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

"delay" :

"latency" "100ms"

"jitter" "10ms"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints and the nature of the system, we need to design a Chaos
Engineering experiment that fits within a 1-minute timeframe. The experiment will be

divided into three phases: pre-validation, fault-injection, and post-validation. The pre-

validation phase will ensure that the system is in a steady state before any faults are
injected. This involves checking that the Pod is running and the service is available. The

fault-injection phase will simulate a cyber attack by first killing the Pod and then

introducing network latency. This will test the system's resilience to these faults. Finally,
the post-validation phase will verify that the system returns to its steady states after the

faults are removed. Given the 1-minute constraint, a reasonable time allocation would
be 15 seconds for pre-validation, 30 seconds for fault injection, and 15 seconds for post-

validation. This allows enough time to observe the system's behavior during each phase

while staying within the overall time limit.

Total experiment time: 1m

Pre-validation Phase: 15s

Fault-injection Phase: 30s

Post-validation Phase: 15s

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
states before we proceed with fault injection. Given the constraints, we have 15 seconds

to perform these checks. We have two steady states to verify: 'example-pod-running'
and 'example-service-availability'. To efficiently utilize the time, we will run both unit

tests simultaneously. This approach allows us to maximize the use of the available time

and ensure that both steady states are verified within the 15-second window. The
'example-pod-running' test will check if the Pod is in the 'Running' state for at least 90%

of the time, while the 'example-service-availability' test will verify that the HTTP
request success rate is at least 99%. By running these tests concurrently, we can quickly

confirm that the system is stable and ready for the fault injection phase.

Verified Steady State #0: example-pod-running

Workflow Name: pre-unittest-example-pod-running

Grace Period: 0s

Duration: 15s

Verified Steady State #1: example-service-availability

Workflow Name: pre-unittest-example-service-availability

Grace Period: 0s

Duration: 15s

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack scenario by injecting two
types of faults: 'PodChaos' and 'NetworkChaos'. The goal is to observe the system's

behavior under these conditions and assess its resilience. Given the 30-second time

constraint for this phase, we need to carefully schedule the fault injections and unit
tests to maximize the insights gained while ensuring the experiment remains within the

allotted time.

The approach is to stagger the fault injections and unit tests to observe the system's

response to each fault type separately. We will start with the 'PodChaos' fault, which

will kill the Pod, and then follow with the 'NetworkChaos' fault, which introduces
network latency. This sequence simulates an attack where the Pod is disrupted first,

followed by network interference.

The 'PodChaos' fault will be injected at the beginning of the phase, with a short

duration to allow time for the system to react. Immediately after the 'PodChaos' fault,

we will run the unit test for the 'example-pod-running' steady state to verify if the Pod
remains in the 'Running' state despite the fault. This test will help us understand the

impact of the Pod's restart policy and lack of redundancy.

Next, we will inject the 'NetworkChaos' fault, which introduces network latency. After

this fault is injected, we will run the unit test for the 'example-service-availability'

steady state to check if the service can maintain a high success rate under network
stress. This test will reveal how the system handles network disruptions.

By staggering the fault injections and unit tests, we can isolate the effects of each fault
and gain a clearer understanding of the system's resilience. The timing is designed to

ensure that each fault and test fits within the 30-second phase, allowing us to complete
the experiment efficiently.

Verified Steady State #0: example-pod-running

Workflow Name: fault-unittest-example-pod-running

Grace Period: 10s

Duration: 5s

Verified Steady State #1: example-service-availability

Workflow Name: fault-unittest-example-service-availability

Grace Period: 25s

Duration: 5s

Injected Faults #0: PodChaos

Workflow Name: fault-podchaos

Grace Period: 0s

Duration: 10s

Injected Faults #1: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 15s

Duration: 10s

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its

steady states after the fault injection. Given the 15-second time constraint, we will

conduct unit tests to verify each steady state. The tests will be executed sequentially
due to the short duration, allowing us to focus on one steady state at a time and ensure

accurate validation. The first test will check the 'example-pod-running' steady state,
ensuring the Pod is back in the 'Running' state. The second test will verify the 'example-

service-availability' steady state, ensuring the service is available with a high success

rate. Each test will have a brief grace period to allow the system to stabilize after the
fault injection, followed by a short duration to perform the validation.

Verified Steady State #0: example-pod-running

Workflow Name: post-unittest-example-pod-running

Grace Period: 0s

Duration: 7s

Verified Steady State #1: example-service-availability

Workflow Name: post-unittest-example-service-availability

Grace Period: 7s

Duration: 8s

Summary

The Chaos Engineering experiment is structured into three phases: pre-validation, fault-

injection, and post-validation, all within a 1-minute timeframe.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are executed

simultaneously to verify the system's steady state. The 'example-pod-running' test, with

the workflow name 'pre-unittest-example-pod-running', and the 'example-service-
availability' test, with the workflow name 'pre-unittest-example-service-availability',

both start immediately at the beginning of this phase and run for the entire 15 seconds.
These tests ensure that the Pod is running and the service is available before

proceeding to fault injection.

The fault-injection phase spans 30 seconds and involves staggered execution of faults

and unit tests. Initially, the 'PodChaos' fault, with the workflow name 'fault-podchaos',

is injected at the start of this phase and lasts for 10 seconds. Concurrently, at 10
seconds into the phase, the 'example-pod-running' unit test, with the workflow name

'fault-unittest-example-pod-running', is conducted for 5 seconds to assess the Pod's

resilience. Following this, at 15 seconds, the 'NetworkChaos' fault, with the workflow
name 'fault-networkchaos', is introduced for 10 seconds. Subsequently, at 25 seconds,

the 'example-service-availability' unit test, with the workflow name 'fault-unittest-
example-service-availability', is executed for 5 seconds to evaluate the service's

performance under network stress.

In the post-validation phase, which also lasts 15 seconds, unit tests are performed
sequentially to confirm the system's return to steady states. The 'example-pod-running'

test, with the workflow name 'post-unittest-example-pod-running', starts immediately
and runs for 7 seconds. Following this, the 'example-service-availability' test, with the

workflow name 'post-unittest-example-service-availability', begins at 7 seconds and

continues for the remaining 8 seconds. This phase ensures that both the Pod and
service have stabilized after the fault injections.

Completed the chaos experiment!

All
Search Choose namespace





 





Phase 3: Analysis

The Chaos Engineering experiment results indicate a failure in maintaining the steady states

during and after the fault injection phase. Let's analyze the reasons for these failures step by step:

1. Pre-Validation Phase Success: Both pre-unittest-example-pod-running and pre-unittest-

example-service-availability tests passed, confirming that the system was in a steady state
before the fault injection. The Pod was running, and the service was available, as expected.

2. Fault-Unit Test Failures:

fault-unittest-example-pod-running: This test failed because the Pod was not found
during the fault injection phase. The 'PodChaos' fault, which involved killing the Pod,

was injected at the start of the fault-injection phase. Since the Pod's restart policy is set
to 'Never', it did not restart after being killed, leading to a 0% running time during the

test. This directly correlates with the identified issue #0 (Pod Restart Policy) and issue #1

(Single Pod Deployment) in the system configuration.

fault-unittest-example-service-availability: This test also failed due to the service being

unavailable. The 'PodChaos' fault resulted in the Pod being killed, and since there was

no redundancy (issue #1), the service had no backend Pod to route traffic to, leading to
connection refusals. The subsequent 'NetworkChaos' fault, which introduced network

latency, further compounded the issue by simulating a network disruption, but the
primary cause of failure was the absence of a running Pod.

3. Post-Validation Phase Failures:

post-unittest-example-pod-running: The Pod was still not found, as indicated by the 404
error. This is expected because the Pod was not configured to restart automatically after

being killed, and no manual intervention or controller (like a Deployment) was in place
to recreate it.

post-unittest-example-service-availability: The service remained unavailable, as the

Pod was not running, leading to continued connection refusals. This highlights the
critical impact of having a single Pod without redundancy or a restart mechanism.

Insights and Recommendations:

Pod Restart Policy: Change the Pod's restart policy from 'Never' to 'Always' or 'OnFailure' to
ensure it restarts automatically after a failure.

Redundancy and Scalability: Use a Deployment or ReplicaSet instead of a single Pod to

manage the Nginx container. This will provide redundancy and ensure that if one Pod fails,
others can take over, maintaining service availability.

Service Resilience: Ensure that the Service is backed by multiple Pods to handle failures and

maintain availability. This can be achieved by scaling the Deployment to have multiple
replicas.

Monitoring and Alerts: Implement monitoring and alerting mechanisms to detect and

respond to Pod failures promptly, ensuring minimal downtime.

By addressing these issues, the system can improve its resilience and maintain steady states even

during fault scenarios.

Phase 4: Improvement

Reconfiguration

To improve the resiliency of the system, I will replace the existing Pod manifest with a

Deployment manifest. This will allow for automatic restarts and scaling of the Nginx
container, providing redundancy and ensuring that the service remains available even if one

Pod fails. The Deployment will manage the Pods and ensure that the desired number of

replicas are running at all times.

Modification_type: replace

File name: nginx/pod.yaml

Replace the Pod manifest with a Deployment manifest to provide redundancy and

automatic recovery. The Deployment will manage multiple replicas of the Pod, ensuring that

the service remains available even if one Pod fails.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example-deployment
 labels:
 app: example
spec:
 replicas: 3
 selector:
 matchLabels:
 app: example
 template:
 metadata:
 labels:
 app: example
 spec:
 containers:
 - name: example-container
 image: nginx:1.17.1
 ports:
 - containerPort: 80

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -l project=chaos-eate
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 180ns
 - deployment.apps/example-deployment configured
 - service/example-service configured
Waiting for deployments to stabilize...
 - deployment/example-deployment is ready.
Deployments stabilized in 4.105 seconds
You can also run to get the logs[skaffold run --tail]

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sele
NAMESPACE NAME READY STATUS REST
default pod/example-deployment-6977c97c99-7dcbd 1/1 Running 0
default pod/example-deployment-6977c97c99-7x9gb 1/1 Running 0
default pod/example-deployment-6977c97c99-gbxgz 1/1 Running 0

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.10.57 <none>

NAMESPACE NAME READY UP-TO-DATE AVAILA
default deployment.apps/example-deployment 3/3 3 3

NAMESPACE NAME DESIRED CURREN
default replicaset.apps/example-deployment-65968c46f 0 0
default replicaset.apps/example-deployment-6977c97c99 3 3

The fault-scope adjustment Completed!

Current fault injection settings:

Injected Faults #0: PodChaos

Workflow Name: fault-podchaos

Grace Period: 0s

Duration: 10s

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],

"labelSelectors": {{"app": "example"}}}}}}

The current K8s manifests have changed from a single Pod to a Deployment with 3 replicas. This

means that the system now has redundancy, and killing one Pod will not have the same impact as
before. However, the original goal of the chaos experiment was to test the system's resilience to a

Pod being killed, so we should maintain the same label selector to target one of the Pods in the

Deployment. The namespace remains the same, so no changes are needed there.

Next fault injection scope:

{

[

]

{

:

}

}

"namespaces" :

0 : "default"

"labelSelectors" :

"app" "example"

Current fault injection settings:

Injected Faults #0: NetworkChaos

Workflow Name: fault-networkchaos

Grace Period: 15s

Duration: 10s

Parameters {{"action": "delay", "direction": "to", "mode": "all", "selector": {{"namespaces":
["default"], "labelSelectors": {{"app": "example"}}}}, "delay": {{"latency": "100ms", "jitter":

"10ms"}}}}

The previous K8s manifests targeted a single Pod with the label 'app: example'. The current

manifests have changed to a Deployment with 3 replicas, but the label 'app: example' remains

the same. Therefore, the scope of the fault injection should still target Pods with the label 'app:
example' in the 'default' namespace. The change from a single Pod to a Deployment with

multiple replicas does not require a change in the label selector, as the label remains consistent.
The fault injection will now affect all Pods created by the Deployment that match the label, which

aligns with the original goal of testing the system's resilience under network chaos conditions.

Next fault injection scope:

{

["namespaces" :

0 : "default"

]

{

:

}

}

"labelSelectors" :

"app" "example"

Adjusted unittest

The previous unit test targets a Pod resource named 'example-pod'. In the reconfigured
manifests, the Pod has been replaced by a Deployment named 'example-deployment' with 3

replicas. This change means that the unit test should now target the Deployment rather than a
single Pod, and it should verify that all Pods created by the Deployment maintain the steady state.

The test should be updated to check the status of all Pods managed by the Deployment and

ensure that the running percentage meets the threshold for the entire set of Pods. The test should
iterate over all Pods with the label 'app: example' and calculate the running percentage for the

entire group.

import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestDeploymentRunningState(K8sAPIBase):
 def __init__(self, namespace, label_selector, duration):
 super().__init__()
 self.namespace = namespace
 self.label_selector = label_selector
 self.duration = duration

 def test_deployment_running_state(self):
 running_count = 0
 total_pods = 0
 # Check the pod status every second for the specified duration
 for _ in range(self.duration):
 try:
 pods = self.v1.list_namespaced_pod(namespace=self.namespace
 total_pods = len(pods)
 running_pods = [pod for pod in pods if pod.status.phase ==
 running_count += len(running_pods)
 print(f"Running pods: {len(running_pods)} out of {total_pods
 except client.exceptions.ApiException as e:
 print(f"Exception when calling CoreV1Api->list_namespaced_po
 time.sleep(1)
 # Calculate the running percentage
 running_percentage = (running_count / (self.duration * total_pods))

 print(f"Pods were running {running_count} out of {self.duration * to
 print(f"Running percentage: {running_percentage}%")
 # Assert that the running percentage meets the threshold
 assert running_percentage >= 90, f"Pod running percentage {running_p

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='Test the running state of
 parser.add_argument('--duration', type=int, default=5, help='Duration to
 args = parser.parse_args()
 # Create an instance of the test class
 test = TestDeploymentRunningState(namespace='default', label_selector='a
 # Run the test
 test.test_deployment_running_state()

Adjusted unittest

The target of the unit test is the HTTP service provided by the Kubernetes Service resource, which
remains unchanged in the reconfigured manifests. The Service still points to the same

application, now managed by a Deployment instead of a standalone Pod. The reconfiguration
introduces redundancy by scaling the application to 3 replicas, but this does not affect the

endpoint or the HTTP request being tested. The unit test checks the availability and success rate

of HTTP requests to the service, which should still be valid as the service endpoint and port
remain the same. Therefore, the unit test does not require any modification.

Completed the chaos experiment!

All
Search Choose namespace





 





Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml

The Chaos Engineering cycle involves a structured approach to testing the resilience of a
Kubernetes-based system, specifically focusing on an Nginx web server setup. The cycle

begins with understanding the user inputs, which include Kubernetes manifests for a Pod
and a Service. The Pod manifest defines a single Nginx container with a 'Never' restart

policy, while the Service manifest exposes this Pod on port 80. Identified weaknesses
include the Pod's restart policy and the lack of redundancy due to a single Pod deployment.

The hypothesis for the experiment is that the system should maintain its steady states even

when faults are injected. Two steady states are defined: the Pod should be running at least
90% of the time, and the Service should have an HTTP request success rate of at least 99%.

These are tested using Python scripts and K6 JavaScript, respectively.

The fault scenario simulates a cyber attack using Chaos Mesh, injecting 'PodChaos' to kill the

Pod and 'NetworkChaos' to introduce network latency. The experiment is divided into three

phases: pre-validation, fault-injection, and post-validation, all within a 1-minute timeframe.

Pre-validation ensures the system is stable, fault-injection tests resilience under attack, and

post-validation checks recovery.

Initially, the experiment fails due to the Pod not restarting after being killed and the Service

becoming unavailable. Analysis reveals the need for a Deployment to manage multiple Pod
replicas, providing redundancy and automatic recovery. After modifying the Pod manifest to

a Deployment with three replicas, the experiment is rerun successfully, with all unit tests

passing, confirming the system's improved resilience.

Download output (.zip)

