Your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following
options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.htmI[?id=<ID> Replace <ID> with an

available ID: [e3fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-

€00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2del-laaa-4c25-a9b9-
6612e8f292a38 , 819elfbf-8b7e-4f6d-811f-693534916a8b , 837abl41-399e-4clf-9abc-
bace40296bac , a®a4f044-b040-410d-8ead-4deb446aec7e , d3588630-ad8e-49df-bbd7-

3167f7efb246 , zzz4f044-b040-410d-8ead-4ded446aecTe |

< 4. http://front-end.sock-shop.svc.cluster.local/category/

o >

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with

an available tag: [magic , action, blue, brown, black, sport, formal, red,

green, skin, geek]

6. http://front-end.sock-shop.svc.cluster.local/basket.html

(/=

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:
No resources found

TN IR SO, | A . o -1 _— .. 1.2 - - - - PR T [T — PR P L

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

$ kubectl delete services —-all --context kind-chaos-eater-cluster -n chaos

No resources found

S kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1

pod deleted

pod deleted

pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted

pod deleted

pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted
pod deleted

pod deleted

pod deleted
pod deleted
service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

service deleted

deployment.apps
apps
apps
apps
.apps
deployment.apps
apps
apps
apps
.apps
deployment.apps
apps
apps
apps
.apps
replicaset.apps
apps
apps
apps
.apps
replicaset.apps
apps
apps
apps
.apps
replicaset.apps

deployment.
deployment.
deployment.
deployment

deployment.
deployment.
deployment.
deployment

deployment.
deployment.
deployment.
replicaset

replicaset.
replicaset.
replicaset.
replicaset

replicaset.
replicaset.
replicaset.
replicaset

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind:
metadata:

Namespace

name: sock-shop

apiVersion: apps/vl
kind: Deployment

metadata:
name: carts
labels:
name: carts

namespace: sock-shop

spec:
replicas: 2
selector:
matchlLabels:
name: carts
template:
metadata:
labels:
name: carts
spec:
containers:
- name: carts
image: weaveworksdemos/carts:0.4.8
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 200Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts
annotations:
prometheus.io/scrape:
labels:
name: carts
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: carts

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: carts-db
template:
metadata:

labels:
name: carts-db

spec:

containers:

- name: carts-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all

add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: carts-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue
labels:
name: catalogue
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:

name: catalogue
template:
metadata:
labels:
name: catalogue
spec:
containers:
- name: catalogue
image: weaveworksdemos/catalogue:0.3.5
command: []
args:
- —port=80
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 10OOMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true

livenessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue
annotations:
prometheus.io/scrape:
labels:
name: catalogue
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: catalogue

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue-db
template:
metadata:

labels:
name: catalogue-db

spec:

containers:

- name: catalogue-db
image: weaveworksdemos/catalogue-db:0.3.0
env:

- name: MYSQL_ROOT_PASSWORD
value: fake_password
- name: MYSQL_DATABASE
value: socksdb
ports:
- name: mysql

containerPort: 3306
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 3306
targetPort: 3306
selector:

name: catalogue-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 1
selector:
matchLabels:
name: front-end
template:
metadata:

labels:
name: front-end

spec:

containers:

- name: front-end
image: weaveworksdemos/front-end:0.3.12
resources:

limits:
cpu: 300m
memory: 1000Mi

requests:
cpu: 100m
memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value:
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /
port: 8079
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 30
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: front-end
annotations:
prometheus.io/scrape:
labels:
name: front-end
namespace: sock-shop
spec:
type: NodePort
ports:
- port: 80
targetPort: 8079

nodePort: 30001
selector:

name: front-end

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders
labels:
name: orders
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders
template:
metadata:

labels:
name: orders

spec:

containers:

- name: orders
image: weaveworksdemos/orders:0.4.7
env:

- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 500m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE

readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders
annotations:
prometheus.io/scrape:
labels:
name: orders
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: orders

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders-db
template:

metadata:

labels:
name: orders-db

spec:

containers:

- name: orders-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:

name: orders-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: payment
labels:
name: payment
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: payment
template:
metadata:
labels:
name: payment
spec:
containers:
- name: payment
image: weaveworksdemos/payment:0.4.3
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 99m
memory: 10OMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /health
port: 80
initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: payment
annotations:
prometheus.io/scrape:
labels:
name: payment
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:
name: payment

apiVersion: apps/vl
kind: Deployment
metadata:
name: queue-master
labels:
name: queue-master
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: queue-master
template:
metadata:
labels:

name: queue-master

spec:
containers:
- name: queue-master
image: weaveworksdemos/queue-master:0.3.1
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl

kind: Service

metadata:
name: queue-master
annotations:

prometheus.io/scrape:
labels:
name: queue-master

namespace: sock-shop

spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: queue-master

apiVersion: apps/vl
kind: Deployment
metadata:
name: rabbitmq
labels:

name: rabbitmg
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: rabbitmg
template:
metadata:
labels:
name: rabbitmg
annotations:
prometheus.io/scrape:
spec:
containers:
- name: rabbitmqg
image: rabbitmg:3.6.8-management
ports:
- containerPort: 15672
name: management
- containerPort: 5672
name: rabbitmq
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
SETGID
SETUID
DAC_OVERRIDE
readOnlyRootFilesystem: true

- name: rabbitmg-exporter
image: kbudde/rabbitmg-exporter
ports:
- containerPort: 9090
name: exporter
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:

name: rabbitmg

annotations:
prometheus.io/scrape:
prometheus.io/port:
labels:
name: rabbitmg
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 5672
name: rabbitmg
targetPort: 5672
- port: 9090
name: exporter
targetPort: exporter
protocol: TCP
selector:

name: rabbitmqg

apiVersion: apps/vl
kind: Deployment
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: session-db
template:
metadata:

labels:
name: session-db

annotations:
prometheus.io.scrape:

spec:

containers:

- name: session-db
image: redis:alpine
ports:

- name: redis
containerPort: 6379

securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 6379
targetPort: 6379
selector:
name: session-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: shipping
labels:
name: shipping
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: shipping
template:
metadata:

labels:
name: shipping
spec:
containers:
- name: shipping
image: weaveworksdemos/shipping:0.4.8
env:
- name: ZIPKIN
value: zipkin.jaeger.svc.cluster.local
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: shipping
annotations:

prometheus.io/scrape:

labels:

name: shipping
namespace: sock-shop

spec:

ports:

the port that this service should serve on
- port: 80

targetPort: 80
selector:

name: shipping

apiVersion: apps/vl
kind: Deployment
metadata:
name: user
labels:
name: user
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user
template:
metadata:
labels:
name: user
spec:
containers:
- name: user
image: weaveworksdemos/user:0.4.7

resources:
limits:
cpu: 300m
memory: 200Mi
requests:
cpu: 100m

memory: 10OOMi
ports:
- containerPort: 80
env:
- name: mongo
value: user-db:27017

securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user
annotations:
prometheus.io/scrape:
labels:
name: user
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: user

apiVersion: apps/vl
kind: Deployment
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user-db
template:
metadata:
labels:
name: user-db
spec:
containers:
- name: user-db

image: weaveworksdemos/user-db:0.3.0

ports:
- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:

name: user-db

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 972ns
- namespace/sock-shop unchanged
- Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
- deployment.apps/carts created
- service/carts created
- deployment.apps/carts-db created
- service/carts-db created
- deployment.apps/catalogue created
- service/catalogue created
- deployment.apps/catalogue-db created
- service/catalogue-db created
- deployment.apps/front- created
- service/front- created
- deployment.apps/orders created
- service/orders created
- deployment.apps/orders-db created
- service/orders-db created
- deployment.apps/payment created
- service/payment created
- deployment.apps/queue-master created
- service/queue-master created
-~ deployment.apps/rabbitmgq created
- service/rabbitmg created

- deployment.apps/session-db created
- service/session-db created
- deployment.apps/shipping created
- service/shipping created
- deployment.apps/user created
- service/user created
- deployment.apps/user-db created
- service/user-db created
Waiting deployments to stabilize...
- sock-shop:deployment/carts-db is ready. [13/14 deployment(s) still pendil
- sock-shop:deployment/carts: creating container carts
- sock-shop:pod/carts-7d6dfb46f-nkpfr: creating container carts
- sock-shop:pod/carts-7dédfb46f-stq2w: creating container carts
- sock-shop... deployment(s) still pending]
- sock-shop:deployment/shipping is ready. [9/14 deployment(s) still pendin
- sock-shop:deployment/orders-db: creating container orders-db
- sock-shop:pod/orders-db-57bb99b8c5-9nhns: creating container orders-d
- sock-shop:pod/orders-db-57bb99b8c5-9tgjn: creating container orders-d
- sock-shop:deployment/user: waiting rollout to finish: 0 of 2 updated
- sock-shop:deployment/user-db: creating container user-db
- sock-shop:pod/user-db-c9ff4ddbf-r2nbq: creating container user-db
- sock-shop:pod/user-db-c9ff4ddbf-tqp7t: creating container user-db
- sock-shop:deployment/carts is ready. [8/14 deployment(s) still pending]
- sock-shop:deployment/rabbitmg is ready. [7/14 deployment(s) still pendin
- sock-shop:deployment/orders is ready. [6/14 deployment(s) still pending]
- sock-shop:deployment/user-db 1is ready. [5/14 deployment(s) still pending
- sock-shop:deployment/orders-db 1is ready. [4/14 deployment(s) still pendil
- sock-shop:deployment/front- is ready. [3/14 deployment(s) still pendil
- sock-shop:deployment/catalogue is ready. [2/14 deployment(s) still pendil
- sock-shop:deployment/payment 1is ready. [1/14 deployment(s) still pending
- sock-shop:deployment/user: waiting rollout to finish: 1 of 2 updated
- sock-shop:deployment/user is ready.
Deployments stabilized in 3 minutes 5.223 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS
sock-shop pod/carts-7d6édfb46f-nkpfr 1/1 Running 0
sock-shop pod/carts-7dédfb46f-stqg2w 1/1 Running 0
sock-shop pod/carts-db-84d97dbfdc-4jxk4 1/1 Running 0
sock-shop pod/carts-db-84d97dbfdc-rrbcw 1/1 Running 0
sock-shop pod/catalogue-7f479575d6-hpsqx 1/1 Running 0]
sock-shop pod/catalogue-7f479575d6-k5f2p 1/1 Running 0]

sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop
sock-shop

sock-shop

pod/catalogue-db-6f5647b5dc-c71lnn 1/1
pod/catalogue-db-6f5647b5dc-j8r54 1/1
pod/front- -55f6798567-w7mrj 1/1
pod/orders-58c4cccf9-fjzwr 1/1
pod/orders-58c4cccf9-prh9o7 1/1
pod/orders-db-57bb99b8c5-9nhns 1/1
pod/orders-db-57bb99b8c5-9tgjn 1/1
pod/payment-567b57dbb9-b87f4 1/1
pod/payment-567b57dbb9-v792x 1/1
pod/queue-master-5495cfbd7d-2xmv1 1/1
pod/queue-master-5495cfbd7d-k9h54 1/1
pod/rabbitm. .. CLUSTER-IP
service/carts ClusterIP 10.96.
service/carts-db ClusterIP 10.96.
service/catalogue ClusterIP 10.96.
service/catalogue-db ClusterIP 10.96.
service/front- NodePort 10.96.
service/orders ClusterIP 10.96.
service/orders-db ClusterIP 10.96.
service/payment ClusterIP 10.96.
service/queue-master ClusterIP 10.96.
service/rabbitmg ClusterIP 10.96.
service/session-db ClusterIP 10.96.
service/shipping ClusterIP 10.96.
service/user ClusterIP 10.96.
service/user-db ClusterIP 10.96.

Summary of each manifest:

This manifest defines a Kubernetes Namespace.

The Namespace is named 'sock-shop'.

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
EXTER
115.234
28.82
205.72
139.115
119.33
91.52
100.252
37.138
151.51
32.236
181.166
173.255
140.169
213.157

© © © © © © © O o o

0
NAL-IP
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>

<none>

Namespaces are used to organize and manage resources within a Kubernetes cluster.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'carts' application running.

The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8".

POR

Environment variables are set for Java options to optimize memory usage and disable certain

features.

Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,

and a minimum of 100m CPU and 200Mi memory.

The application listens on port 80 inside the container.
Security context is configured to run the container as a non-root user with user 1D 10001.

The container has limited capabilities, only allowing NET_BIND_SERVICE, and uses a read-
only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'carts’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: carts".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: carts".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db'.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security context is set to drop all capabilities and only add CHOWN, SETGID, and SETUID,
with a read-only root filesystem.

A volume is mounted at '/tmp' using an emptyDir volume, which is stored in memory.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'carts-db".

Itis labeled with 'name: carts-db".

The Service is created in the 'sock-shop' namespace.

It exposes port 27017 and directs traffic to the same port on the target pods.

The Service selects pods with the label 'name: carts-db' to route traffic to them.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is part of the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'catalogue' application running.
The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5".
The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and
100Mi memory.

The container is configured to run as a non-root user with user ID 10001.

Security settings include dropping all capabilities except 'NET_BIND_SERVICE' and using a

read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,
with initial delays of 300 and 180 seconds respectively.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'catalogue’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: catalogue'.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: catalogue'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas (instances) of the 'catalogue-db' pod running.
The pods are selected based on the label 'name: catalogue-db'.

Each pod runs a single container using the image 'weaveworksdemos/catalogue-db:0.3.0".

The container is configured with environment variables for 'MYSQL_ROOT_PASSWORD' and
'MYSQL_DATABASE'.

The container exposes port 3306, which is typically used for MySQL databases.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'catalogue-db".

Itis located in the 'sock-shop' namespace.
The Service is configured to expose port 3306.
It targets port 3306 on the pods it selects.

The Service uses a selector to match pods with the label 'name: catalogue-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.

It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a container image 'weaveworksdemos/front-end:0.3.12".
Resource limits are set for the container: 300 milliCPU and 1000 MiB of memory.
Resource requests are set for the container: 100 milliCPU and 300 MiB of memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true’.

Security context is configured to run the container as a non-root user with user ID 10001.
All additional Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the '/' path on port 8079, with an initial delay of 300
seconds and a period of 3 seconds.

A readiness probe is also configured to check the '/' path on port 8079, with an initial delay of

30 seconds and a period of 3 seconds.

The Deployment is scheduled to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.

The Service is named 'front-end".

Itis located in the 'sock-shop' namespace.

The Service type is 'NodePort', which exposes the service on each Node's IP at a static port.
It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, allowing external access to the service.

The Service is configured to be scraped by Prometheus for monitoring, as indicated by the

annotation 'prometheus.io/scrape: true'.

It selects pods with the label 'name: front-end' to route traffic to.

This manifest defines a Deployment in Kubernetes.
The Deployment is named 'orders' and is part of the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'orders' application running.

The Deployment uses the Docker image 'weaveworksdemos/orders:0.4.7".

Environment variables are set for Java options to optimize memory usage and disable certain
features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.
The application listens on port 80 inside the container.

Security settings ensure the container runs as a non-root user with specific capabilities and a

read-only root filesystem.
A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.
The Service is named 'orders".

It is annotated for Prometheus scraping, which means it is set up to be monitored by

Prometheus.

The Service is labeled with 'name: orders' for identification and organization.

Itis deployed in the 'sock-shop' namespace, which is a way to group resources in Kubernetes.
The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service uses a selector to target pods with the label 'name: orders".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the 'orders-db' pod to be created.

The pods are labeled with 'name: orders-db' for identification and selection.

Each pod runs a single container using the 'mongo’ image.

The container exposes port 27017, which is the default port for MongoDB.

Security context is set to drop all capabilities and add only CHOWN, SETGID, and SETUID for

enhanced security.
The root filesystem of the container is set to read-only to prevent unauthorized changes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux".

This manifest defines a Kubernetes Service.

The Service is named 'orders-db".

Itis located in the 'sock-shop' namespace.
The Service is configured to expose port 27017.
It targets the same port (27017) on the pods it selects.

The Service uses a selector to find pods with the label 'name: orders-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'payment’ application running.

The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3".

Resource limits are set for the container: 200m CPU and 200Mi memory.

Resource requests are set for the container: 99m CPU and 100Mi memory.

The container listens on port 80.

Security context is configured to run the container as a non-root user with user ID 10001.

All capabilities are dropped except 'NET_BIND_SERVICE', and the root filesystem is set to
read-only.
A liveness probe is configured to check the '/health' endpoint on port 80, starting after 300

seconds and checking every 3 seconds.

A readiness probe is also configured to check the '/health' endpoint on port 80, starting after

180 seconds and checking every 3 seconds.

The Deployment is scheduled to run on nodes with the operating system labeled as Linux.

This is a Kubernetes Service manifest.

The service is named 'payment’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: payment".

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: payment'.

This manifest defines a Kubernetes Deployment.

The Deployment is named 'queue-master’.

Itis located in the 'sock-shop' namespace.

The Deployment will create 2 replicas of the application.

It uses a selector to match pods with the label 'name: queue-master".

The pod template specifies a single container named 'queue-master".
The container uses the image 'weaveworksdemos/queue-master:0.3.1".
Environment variables are set for Java options to optimize performance.
Resource limits are set to 300m CPU and 500Mi memory.

Resource requests are set to 100m CPU and 300Mi memory.

The container exposes port 80.

The Deployment is configured to run on Linux nodes using a node selector.

This manifest defines a Kubernetes Service.

The Service is named 'queue-master".

Itis annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: queue-master".

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: queue-master".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'rabbitmq' and is located in the 'sock-shop' namespace.
It specifies 2 replicas of the RabbitMQ application.

The Deployment uses a selector to match pods with the label 'name: rabbitmq".

The pod template includes two containers: one for RabbitMQ and another for RabbitMQ

exporter.

The RabbitMQ container uses the image 'rabbitmq:3.6.8-management' and exposes ports
15672 (management) and 5672 (RabbitMQ service).

The RabbitMQ container has a security context that drops all capabilities and adds specific
ones like CHOWN, SETGID, SETUID, and DAC_OVERRIDE, and it uses a read-only root
filesystem.

The RabbitMQ exporter container uses the image 'kbudde/rabbitmqg-exporter' and exposes
port 9090.

The Deployment is configured to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.
The Service is named 'rabbitmq".

It is annotated for Prometheus scraping on port 9090.

The Service is labeled with 'name: rabbitmq".

Itis deployed in the 'sock-shop' namespace.

The Service exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.
The protocol used for the ports is TCP.

The Service selects pods with the label 'name: rabbitmq'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.
It specifies 2 replicas of the pod to be created.

The pods are selected based on the label 'name: session-db".

Each pod runs a single container using the 'redis

"image.

The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.
The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

An annotation is set to prevent Prometheus from scraping metrics from this pod.

This manifest defines a Kubernetes Service.

The Service is named 'session-db".

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 6379.

It targets the same port (6379) on the selected pods.

The Service uses a selector to match pods with the label 'name: session-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.

It specifies 2 replicas of the 'shipping' application to be run.

The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8".
Environment variables are set for the application, including 'ZIPKIN' and 'JAVA_OPTS.

Resource limits and requests are defined, with CPU limits at 300m and memory limits at
500Mi.

The application listens on port 80 within the container.

Security context is configured to run the container as a non-root user with user ID 10001.

The container has a read-only root filesystem and specific capabilities are dropped and
added.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The service is named 'shipping'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: shipping'.

Itis deployed in the 'sock-shop' namespace.

The service listens on port 80 and forwards traffic to the same port on the target pods.

It selects pods with the label 'name: shipping' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'user' application running.
The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7".

Resource limits are set for the container: 300m CPU and 200Mi memory, with requests for
100m CPU and 100Mi memory.

The container listens on port 80.
An environment variable 'mongo' is set with the value 'user-db:27017".
Security context is configured to run the container as a non-root user with user 1D 10001.

The container has a read-only root filesystem and drops all capabilities except
'NET_BIND_SERVICE".

Liveness and readiness probes are configured to check the '/health' endpoint on port 80.
The liveness probe starts after 300 seconds and checks every 3 seconds.
The readiness probe starts after 180 seconds and checks every 3 seconds.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.
The Service is named 'user’.
It is annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.

The Service is labeled with 'name: user".

Itis deployed in the 'sock-shop' namespace.
The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: user".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user-db' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user-db' pod running.

The pods are selected based on the label 'name: user-db'.

Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0".

The container exposes port 27017, labeled as 'mongo’, which is typically used for MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID, with a read-only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'user-db'.

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods it selects.

The Service uses a selector to match pods with the label 'name: user-db'.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Resource Requests

details: Pods may not get scheduled if resources are constrained, leading to potential
downtime.

manifests having the issues: ['sock-shop-2/manifests/03-carts-db-dep.yaml’, 'sock-shop-
2/manifests/07-catalogue-db-dep.yaml, 'sock-shop-2/manifests/13-orders-db-dep.yaml,
'sock-shop-2/manifests/19-rabbitmqg-dep.yaml’, 'sock-shop-2/manifests/21-session-db-
dep.yaml’, 'sock-shop-2/manifests/27-user-db-dep.yaml']

problematic config: No resource requests specified for CPU and memory.

Issue #1: Single Replica Deployment

details: Single replica deployments can lead to downtime if the pod fails.

manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

e problematic config: spec.replicas: 1
Issue #2: Missing Liveness and Readiness Probes

o details: Without liveness and readiness probes, Kubernetes cannot determine the health of
the application, leading to potential downtime or traffic being sent to unhealthy pods.

¢ manifests having the issues: ['sock-shop-2/manifests/01-carts-dep.yaml’, 'sock-shop-
2/manifests/03-carts-db-dep.yaml, 'sock-shop-2/manifests/05-catalogue-dep.yaml, 'sock-
shop-2/manifests/07-catalogue-db-dep.yaml’, 'sock-shop-2/manifests/11-orders-dep.yaml’,
'sock-shop-2/manifests/13-orders-db-dep.yaml', 'sock-shop-2/manifests/15-payment-
dep.yaml', 'sock-shop-2/manifests/17-queue-master-dep.yaml’, 'sock-shop-2/manifests/19-
rabbitmg-dep.yaml, 'sock-shop-2/manifests/21-session-db-dep.yaml’, 'sock-shop-
2/manifests/23-shipping-dep.yaml’, 'sock-shop-2/manifests/25-user-dep.yaml’, 'sock-shop-
2/manifests/27-user-db-dep.yaml']

e problematic config: No livenessProbe or readinessProbe defined.
Issue #3: Hardcoded Environment Variables

e details: Hardcoded environment variables, such as passwords, can lead to security

vulnerabilities.
e manifests having the issues: ['sock-shop-2/manifests/07-catalogue-db-dep.yaml']

e problematic config: env: MYSQL_ROOT_PASSWORD is hardcoded.
Issue #4: Missing Service Port Configuration

e details: Services without defined ports may not function correctly, leading to connectivity
issues.

¢ manifests having the issues: ['sock-shop-2/manifests/02-carts-svc.yaml', 'sock-shop-
2/manifests/04-carts-db-svc.yaml', 'sock-shop-2/manifests/06-catalogue-svc.yaml', 'sock-
shop-2/manifests/08-catalogue-db-svc.yaml), 'sock-shop-2/manifests/12-orders-svc.yaml',
'sock-shop-2/manifests/14-orders-db-svc.yaml, 'sock-shop-2/manifests/16-payment-
svc.yaml', 'sock-shop-2/manifests/18-queue-master-svc.yaml, 'sock-shop-2/manifests/22-
session-db-svc.yaml', 'sock-shop-2/manifests/24-shipping-svc.yaml’, 'sock-shop-
2/manifests/26-user-svc.yaml', 'sock-shop-2/manifests/28-user-db-svc.yaml']

e problematic config: Service ports are defined but commented out, leading to potential
misconfiguration.

Application of the manifests:

Thoughts:

The manifests provided are part of a well-known microservices demo application called 'Sock
Shop'. This application is designed to demonstrate the use of microservices architecture and

Kubernetes. The application simulates an e-commerce website for selling socks, and the

manifests include various components such as front-end, back-end services, databases, and
messaging systems. The naming conventions, such as 'carts', 'catalogue’, 'orders', 'payment’,
'shipping', and 'user', align with typical e-commerce functionalities. Additionally, the use of

images from 'weaveworksdemos' further indicates that this is the Sock Shop demo application.
Assumed application:

Sock Shop is a microservices-based e-commerce application that simulates an online store for
selling socks. It provides functionalities such as browsing a catalogue, managing a shopping cart,

placing orders, processing payments, handling shipping, and managing user accounts.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the specified
options.

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: carts-db-replicas-running ~

4 Description

The first issue to address is the 'Missing Resource Requests' in the 'carts-db'
Deployment. This is a critical issue because without resource requests, the pods may
not be scheduled if the cluster is under resource constraints, leading to potential
downtime. The steady state for this manifest should ensure that the 'carts-db' pods are
running and available, which can be measured by checking the number of replicas that

are in the 'Running' state.

@, Current state inspection

To inspect the 'carts-db-replicas-running' state, | will use the K8s API. The reason for
choosing the K8s APl is that it allows us to directly query the Kubernetes cluster to
check the status of the 'carts-db' Deployment, specifically the number of replicas that
are in the 'Running' state. This is more appropriate than using k6, which is better suited
for testing communication and performance metrics. The script will run for a maximum
of 5 seconds, checking the status every second, to ensure that the 'carts-db' pods are

running and available.

tool: duration:

Inspection script (Python)

0s
time
kubernetes client, config

Load Kubernetes configuration based on the environment
os.getenv/(E
config.load_incluster_config()
config.load_kube_config()
vl = client.AppsV1Api()
(namespace= , deployment_name=
deployment = vl.read_namespaced_deployment(name=deployment_r

replicas = deployment.status.replicas
ready_replicas = deployment.status.ready_replicas

({replicas} {ready_r
ready_replicas == replicas
client.exceptions.ApiException e:
(
False
(duration) :

success_count = 0
range (duration):
check_carts_db_replicas():
success_count += 1
time.sleep(1l)
¢ {success_cour

__name__ ==
argparse
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()
main(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Total replicas: Ready replicas:

-

Total replicas: 2, Ready replicas:

Total replicas: 2, Ready replicas:

N N NN
N N NN

Total replicas: 2, Ready replicas:

Total replicas: 2, Ready replicas: 2
Carts-db replicas running successfully 5/5 seconds.

> Threshold

The steady state we are considering is the number of 'carts-db' replicas that are running
and ready. The current state shows that there are 2 replicas, and both are ready, which
is the expected state. Given that the deployment specifies 2 replicas, the threshold
should ensure that both replicas are running and ready. To account for some
fluctuations and ensure the system remains stable, we can define a threshold that
allows for a small percentage of time where not all replicas are ready, as long as the
system recovers quickly. Since the experiment duration is 1 minute, we can set a
threshold that requires the 'carts-db' replicas to be ready for at least 90% of the time
during this period. This means that out of 60 seconds, the replicas should be ready for
at least 54 seconds. This threshold provides a reasonable tolerance for transient issues

while ensuring the system remains stable.

The 'carts-db' replicas must be ready for at least 90% of the time during a 1-minute
monitoring period, which equates to at least 54 out of 60 seconds.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will implement a check
to ensure that the 'carts-db’ replicas are ready for at least 90% of the specified duration.
This will be done by counting the number of seconds the replicas are ready and
comparing it to 90% of the total duration. If the ready count meets or exceeds this
threshold, the test will pass; otherwise, it will fail. The threshold is implemented as a

percentage (90%) of the total duration, allowing for variable durations.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self):

super () .__init__()
self.vl_apps = client.AppsV1Api()

(self, namespace= , deployn
deployment = self.vl_apps.read_namespaced_deployment (nan

replicas = deployment.status.replicas

ready_replicas = deployment.status.ready_replicas

({replicas} {ree
ready_replicas == replicas
client.exceptions.ApiException e:
(
False

(self, duration):
success_count = 0
range (duration) :
self.check_carts_db_replicas():
success_count += 1
time.sleep(1)
Calculate the threshold as 90% of the duration
threshold = 0.9 * duration
({success_
Assert that the success count meets or exceeds the threshc

success_count >= threshold,

0):
parser = argparse.ArgumentParser (description=
parser.add_argument (, type=int, default=60, help=

args = parser.parse_args()

test = TestCartsDBReplicas()
test.test_replicas_ready_threshold(args.duration)

__hame__

ERIN®)

Pod has completed sucessfully.
The inspection script's results (current states) are as follows:
Total replicas: 2, Ready replicas: 2

Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2

Total replicas: 2, Ready replicas: 2
Total replicas: 2, Ready replicas: 2
Carts-db replicas running successfully 5/5 seconds.

¥ Steady state #2: front-end-replica-running

4 Description

The next issue to address is the 'Single Replica Deployment' in the 'front-end’
Deployment. This is a critical issue because having only a single replica can lead to
downtime if the pod fails. The steady state for this manifest should ensure that the
'front-end' pod is running and available, which can be measured by checking the
number of replicas that are in the 'Running' state. Since there is only one replica, the
steady state should ensure that this single replica is running and ready for the entire

duration of the monitoring period.

@, Current state inspection

To inspect the 'front-end-replica-running' state, | will use the K8s API. The goal is to
ensure that the single replica of the 'front-end' deployment is running and ready. The
K8s APl is suitable for checking the status of Kubernetes resources, such as
deployments and pods. | will write a Python script using the K8s client library to check
the status of the 'front-end' pod in the 'sock-shop' namespace. The script will run for a
duration of 5 seconds, checking the pod status every second, and will print a summary
of the results at the end.

tool: duration:

Inspection script (Python)

oS
time

kubernetes client, config
Load Kubernetes configuration based on the environment
os.getenv ().
config.load_incluster_config()

config.load_kube_config()

vl = client.CoreV1Api()

namespace =

deployment_name =

Function to check the status of the front-end pod
()
pods = vl.list_namespaced_pod(namespace=-namespace, label_selectc
running_pods = [pod pod pods pod.status.phase ==
ready_pods = [pod pod running_pods all(container.ready
len(ready_pods)

(duration):
range (duration):
running_and_ready = check_front_end_status()
¢ {running_and_ready

time.sleep(1l)
()

__hame__ ==
argparse
parser = argparse.ArgumentParser (description=
parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

main(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Running and ready front- pods: 1
Running and ready front- pods: 1
Running and ready front- pods: 1
Running and ready front- pods: 1
Running and ready front- pods: 1

Status check completed.

> Threshold

The steady state we are considering is the availability of the 'front-end' pod, which
currently has a single replica. The current state shows that the single replica is
consistently running and ready, as indicated by the repeated output of 'Running and
ready front-end pods: 1'. Given that the system is expected to maintain this state, the
threshold should ensure that the single replica remains running and ready for the entire
duration of the monitoring period. Since the monitoring period in the scriptis 5

seconds, and the Chaos Engineering experiment must be completed within 1 minute,

we can set a threshold that requires the front-end pod to be running and ready for at
least 95% of the time during a 1-minute period. This accounts for any minor fluctuations
or delays in pod readiness checks.

The 'front-end' pod must have at least 1 running and ready replica for 95% of the time
within a 1-minute monitoring period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will implement a unit
test that checks if the 'front-end' pod is running and ready for at least 95% of the
specified duration. This will involve counting the number of successful checks and
comparing it to the total number of checks to ensure the threshold is met. The test will
use a for-loop to repeatedly check the pod status every second for the specified
duration, and at the end, it will assert that the percentage of successful checks meets or
exceeds the 95% threshold.

os
time
argparse
kubernetes client, config
unittest_base K8sAPIBase
(K8sAPIBase) :
(self):
super().__init__()
self.namespace =
self.deployment_name =
(self):

List all pods in the specified namespace with the label 'r
pods = self.vl.list_namespaced_pod(namespace=self.namespace,
Filter pods that are in the 'Running' state

running_pods = [pod pod pods pod.status.phase ==
Further filter pods that are ready

ready_pods = [pod pod running_pods all(container.r

len(ready_pods)

(self, duration):
successful_checks = 0
total_checks = duration

range (duration) :
running_and_ready = self.check_front_end_status()

¢ {running_and_r

running_and_ready >= 1:
successful_checks += 1

time.sleep(1)

Calculate the percentage of successful checks
success_rate = (successful_checks / total_checks) * 100

¢ {success_rate}%")

Assert that the success rate is at least 95%

success_rate >= 95, {success_rate}

():
parser = argparse.ArgumentParser (description=
parser.add_argument (, type=int, default=60, help=

args = parser.parse_args()
test = TestFrontEndReplicaRunning()

test.test_steady_state(args.duration)

__name__ ==

ERIN®)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Running and ready front- pods: 1
Running and ready front- pods: 1
Running and ready front- pods: 1
Running and ready front- pods: 1
Running and ready front- pods: 1

Success rate: 100.0%

Fault definition

® Scenario: Black Friday Sale

4 Description

During a Black Friday sale, the system is expected to handle a significant increase in

traffic and load. This event will test the system's ability to maintain steady states under

high demand. The 'carts-db' and 'front-end' components are critical to the user
experience, as they handle shopping cart operations and the user interface,
respectively. The 'carts-db' deployment lacks resource requests, which could lead to
scheduling issues under resource constraints. The 'front-end' deployment has a single
replica, making it vulnerable to downtime if the pod fails. To simulate the Black Friday
event, we will first inject a StressChaos fault to increase CPU and memory usage on the
‘carts-db' pods, testing their ability to remain running without resource requests. Next,
we will inject a PodChaos fault to kill the 'front-end' pod, testing the system's ability to
recover and maintain availability with a single replica. This sequence of fault injections
will reveal potential weaknesses in resource allocation and redundancy, ensuring the

system can handle the increased load and maintain steady states.

Fault-injection sequence

({'namespace': 'sock-shop’, 'label": 'name=carts-db'}) =

({'namespace': 'sock-shop), 'label': 'name=front-end'})

{ Detailed fault parameters

Detailed parameters of ({'namespace': 'sock-shop’, 'label': 'name=carts-
db'})

v {
"mode" : "all"

v n

selector" : {
v on

namespaces" : [

0 : "sock-shop"

1
Y "labelSelectors" : {

"name" : "carts-db"
}
}
Y "stressors" : {
Y repu" : {
"workers" : 2
"load" : 80
}
Y "memory" : {
"workers" : 2

"size" : "256MB"

}

v

containerNames" : [

O : "carts-db"

}

Detailed parameters of ({'namespace': 'sock-shop’, 'label’: 'name=front-end'})
MR

"action" : "pod-kill"

"mode" : "one"

Y nselector" : {

Y "namespaces" : [

0 : "sock-shop"
]

Y "labelSelectors" : {

"name" : "front-end"

}

”Value" 0 lllll

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

The Chaos Engineering experiment is designed to test the system's resilience under
simulated fault conditions, specifically during a high-demand event like a Black Friday
sale. The experiment must be completed within 1 minute, so careful time allocation is
crucial. The experiment is divided into three phases: pre-validation, fault-injection, and
post-validation.

1. Pre-validation Phase (20 seconds): This phase ensures that the system isin a
steady state before any faults are injected. We will verify that the 'carts-db' replicas
are running and ready for at least 90% of the time, and the 'front-end' replica is

running and ready for at least 95% of the time. Given the short duration of the

experiment, a 20-second pre-validation period is sufficient to confirm the system's
initial stability.

2. Fault Injection Phase (20 seconds): During this phase, we will inject the specified
faults using Chaos Mesh. The 'carts-db’ will undergo a StressChaos fault to simulate
high CPU and memory usage, while the 'front-end' will experience a PodChaos fault
to simulate a pod failure. The 20-second duration allows us to observe the system's

behavior under stress and its ability to maintain steady states.

3. Post-validation Phase (20 seconds): After fault injection, we need to ensure that
the system returns to its steady states. This phase will verify that the 'carts-db'
replicas and the 'front-end' replica meet their respective thresholds for readiness
and availability. A 20-second post-validation period is adequate to confirm recovery

and stability.

The total time for the experiment is 60 seconds, with each phase allocated 20 seconds

to balance validation and fault observation effectively.

Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (20s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
state before we proceed with fault injection. This involves verifying that the critical
components, 'carts-db' and 'front-end', are operating as expected. Given the constraints
of a 20-second total time for this phase, we will execute the unit tests for both steady
states simultaneously to maximize efficiency. The 'carts-db-replicas-running' test will
check that the 'carts-db' replicas are running and ready for at least 90% of the time
during a 10-second monitoring period. Similarly, the 'front-end-replica-running' test
will verify that the 'front-end' pod is running and ready for at least 95% of the time
during the same 10-second period. By running these tests concurrently, we ensure that
both components are in their expected steady states within the limited time frame,

allowing us to proceed confidently to the fault injection phase.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:

o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (20s)

In this fault-injection phase, we aim to simulate a Black Friday sale scenario by injecting
two types of faults: StressChaos on the 'carts-db' pods and PodChaos on the 'front-end'
pod. The total duration for this phase is 20 seconds, so we need to carefully time the

injections to observe their effects on the system's steady states.

First, we will inject the StressChaos fault on the 'carts-db' pods. This fault will increase
CPU and memory usage, testing the pods' ability to handle high load without resource
requests. We will start this fault at the beginning of the phase (grace period of 0s) and
let it run for 10 seconds. This duration is chosen to allow enough time for the stress to

impact the system while leaving time for the next fault.

Next, we will inject the PodChaos fault on the 'front-end' pod. This fault will kill the pod,
testing the system's ability to recover and maintain availability with a single replica. We
will start this fault 10 seconds into the phase (grace period of 10s) and let it run for the
remaining 10 seconds. This staggered approach allows us to observe the effects of each
fault separately and ensures that the system is under stress for the entire duration of
the phase.

By staggering the faults, we can better understand how each component reacts to stress
and failure, providing insights into potential weaknesses in resource allocation and
redundancy.

e Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:
o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (20s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the faults injected during the Black Friday
Sale simulation, we will focus on verifying the steady states of the 'carts-db' and 'front-
end' components. The post-validation phase is 20 seconds long, so we need to
efficiently schedule the unit tests to verify the steady states within this time frame.

The approach is to run the unit tests for both steady states simultaneously, as they are
independent checks and can be executed in parallel. This allows us to maximize the use
of the available time and ensure both components are back to their expected states.
The 'carts-db-replicas-running' test will check if the 'carts-db' replicas are running and
ready for at least 90% of the time during the 20-second period, while the 'front-end-
replica-running' test will verify that the 'front-end' pod is running and ready for at least
95% of the time.

By running these tests concurrently, we can quickly determine if the system has
recovered from the faults and returned to its steady states, ensuring that the system is
resilient and can handle similar scenarios in the future.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The Chaos Engineering experiment is structured into three phases, each lasting 20
seconds, to test the system's resilience during a simulated high-demand event. In the
pre-validation phase, which lasts for 20 seconds, two unit tests are executed
simultaneously to ensure the system is in a steady state before fault injection. The
'carts-db-replicas-running' test, with a workflow name of 'pre-unittest-carts-db-
replicas-running’, and the 'front-end-replica-running' test, with a workflow name of
'pre-unittest-front-end-replica-running’, both start immediately at the beginning of the
phase and run for 10 seconds. This concurrent execution confirms the readiness of the
‘carts-db' replicas and the 'front-end' pod. In the fault-injection phase, also 20 seconds
long, two faults are injected in a staggered manner. The 'StressChaos' fault, with a
workflow name of 'fault-stresschaos', is injected at the start of the phase and runs for 10

seconds, simulating high CPU and memory usage on the 'carts-db' pods. Following this,

the 'PodChaos' fault, with a workflow name of 'fault-podchaos’, is injected 10 seconds
into the phase and runs for the remaining 10 seconds, simulating a pod failure on the
'front-end". This staggered approach allows for separate observation of each fault's
impact. Finally, in the post-validation phase, which is again 20 seconds long, the
system's recovery is verified by running two unit tests concurrently. The 'carts-db-
replicas-running' test, with a workflow name of 'post-unittest-carts-db-replicas-
running', and the 'front-end-replica-running' test, with a workflow name of 'post-
unittest-front-end-replica-running’, both start immediately and run for the full 20
seconds. This ensures that both the 'carts-db' replicas and the 'front-end' pod have
returned to their expected steady states, confirming the system's resilience and

recovery capabilities.

Completed the chaos experiment!

Choose namespace]

All

Phase 3: Analysis

The Chaos Engineering experiment aimed to test the resilience of the 'sock-shop' system under
simulated high-demand conditions, specifically focusing on the 'carts-db' and 'front-end'
components. The experiment was structured into three phases: pre-validation, fault injection,

and post-validation. The results indicate that while the 'carts-db' component maintained its

steady state throughout the experiment, the 'front-end' component failed to meet its steady state

threshold during the post-validation phase.
1. Pre-Validation Phase:

o Both the 'carts-db-replicas-running' and 'front-end-replica-running' tests passed,
indicating that the system was in a steady state before the fault injection. This confirms
that the initial conditions were correctly set, with the 'carts-db' replicas running and the

single 'front-end' pod operational.

2. Fault Injection Phase:

o The 'StressChaos' fault was injected first, targeting the 'carts-db' pods with increased
CPU and memory usage. Despite the lack of resource requests in the 'carts-db'
deployment, the system managed to maintain the steady state for 'carts-db', as
evidenced by the successful post-validation test.

o The 'PodChaos' fault was injected next, targeting the 'front-end' pod by simulating a pod
failure. This fault exposed a critical vulnerability in the system: the single replica
configuration of the 'front-end' deployment.

3. Post-Validation Phase:

o The 'carts-db-replicas-running' test passed, confirming that the 'carts-db' component
recovered successfully from the stress conditions.

o The 'front-end-replica-running' test failed, with a success rate of only 10%, far below the
required 95% threshold. The logs indicate that the 'front-end' pod was not running and
ready for the majority of the post-validation period. This failure is directly linked to the
single replica configuration of the 'front-end' deployment, which lacks redundancy.
When the 'PodChaos’ fault killed the 'front-end' pod, there was no additional replica to
take over, leading to downtime.

Insights and Recommendations:

e The failure of the 'front-end' component highlights the critical issue of having a single replica
deployment. To improve resilience, it is recommended to increase the number of replicas for
the 'front-end' deployment. This will provide redundancy and ensure that the system can
maintain availability even if one pod fails.

e Considerimplementing horizontal pod autoscaling for the 'front-end' deployment to
dynamically adjust the number of replicas based on traffic and load conditions.

e Review and enhance the readiness and liveness probes for the 'front-end' deployment to
ensure that Kubernetes can effectively manage pod health and recovery.

e While the 'carts-db' component maintained its steady state, it is advisable to define resource

requests to prevent potential scheduling issues under resource constraints in future

scenarios.

In conclusion, the experiment successfully identified a significant resilience issue in the 'front-

end' component, providing valuable insights for improving the system's fault tolerance and
availability.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the 'front-end' component and avoid failures, we will increase
the number of replicas for the 'front-end' deployment from 1 to 2. This change will provide
redundancy, ensuring that the system can maintain availability even if one pod fails.
Additionally, we will add resource requests to the 'carts-db' deployment to prevent potential

scheduling issues under resource constraints.
Modification_type: replace
File name: sock-shop-2/manifests/09-front-end-dep.yaml

Increase the number of replicas from 1 to 2 to provide redundancy and improve availability.

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: front-end
template:
metadata:

labels:
name: front-end

spec:

containers:

- name: front-end
image: weaveworksdemos/front-end:0.3.12
resources:

limits:
cpu: 300m
memory: 10OOMi
requests:
cpu: 100m
memory: 300Mi

ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value: "true"
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true

livenessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /
port: 8079

initialDelaySeconds: 30
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

Modification_type: replace
File name: sock-shop-2/manifests/03-carts-db-dep.yaml

Add resource requests to ensure the 'carts-db' pods can be scheduled even under resource

constraints.

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: carts-db
template:

metadata:

labels:
name: carts-db

spec:

containers:

- name: carts-db
image: mongo
ports:

- name: mongo
containerPort: 27017
resources:
requests:
cpu: 100m
memory: 200Mi
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 391ns
- namespace/sock-shop unchanged
- Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
- deployment.apps/carts configured
- service/carts configured

deploymen
service/c
deploymen
service/c
deploymen
service/c
deploymen
service/f
deploymen
service/o
deploymen
service/o
deploymen
service/p
deploymen
service/q
deploymen
service/r
deploymen
service/s
deploymen
service/s
deploymen
service/u
deploymen

service/u

Waiting

sock-shop
sock-shop
- sock-s

sock-shop:
sock-shop:

sock-shop

sock-shop:
sock-shop:
sock-shop:
sock-shop:

sock-shop

sock-shop:
sock-shop:
sock-shop:
sock-shop:

- sock-s
sock-shop
sock-shop
sock-shop
sock-shop

t.apps/carts-db configured
arts-db configured
t.apps/catalogue configured
atalogue configured
t.apps/catalogue-db configured
atalogue-db configured
t.apps/front- configured
ront- configured

t.apps/orders configured

rders configured

t.apps/orders-db configured

rders-db configured

t.apps/payment configured

ayment configured

t.apps/queue-master configured

ueue-master configured

t.apps/rabbitmg configured

abbitmg configured

t.apps/session-db configured

ession-db configured

t.apps/shipping configured

hipping configured

t.apps/user configured

ser configured

t.apps/user-db configured

ser-db configured

deployments to stabilize...

rollout to finish: 1 out of 2 ne
:deployment/carts-db: creating container carts-db
hop:pod/carts-db-6...ated...

:deployment/carts: waiting

deployment/catalogue-db 1is ready. [10/14 deployment(s) still p
[9/14 deployment(s) still pending]

[8/14 deployment(s) still pending]
[7/14 deployment(s) still pend
deployment/queue-master 1is ready. [6/14 deployment(s) still pe
[5/14 deployment(s) still pendil

deployment/carts is ready.
:deployment/orders 1is ready.
deployment/session-db 1is ready.

deployment/orders-db is ready.

deployment/rabbitmq: waiting rollout to finish: 1 old repl
:deployment/rabbitmq is ready. [4/14 deployment(s) still pendin
deployment/front- : waiting rollout to finish: 1 old rep
deployment/front- is ready. [3/14 deployment(s) still pendil

deployment/catalogue: waiting rollout to finish: 1 old rep
deployment/payment: creating container payment
hop:pod/payment-65b4dd6f9b-kzkql: creating container payment
:deployment/user: waiting rollout to finish: 1 old replicas
:deployment/catalogue is ready. [2/14 deployment(s) still pendil
[1/14 deployment(s) still pending]

:deployment/payment is ready.

:deployment/user 1is ready.

Deployments stabilized in 6 minutes 6.87 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTA
sock-shop pod/carts-75d9599844-51f6h 1/1 Running 0]
sock-shop pod/carts-75d9599844-nclz5 1/1 Running 0]
sock-shop pod/carts-db-6794d4f987-4xnnc 1/1 Running 0]
sock-shop pod/carts-db-6794d4f987-1dcv4 1/1 Running 0
sock-shop pod/catalogue-577bcf65d7-nksxg 1/1 Running 0
sock-shop pod/catalogue-577bcf65d7-rcbhd 1/1 Running 0]
sock-shop pod/catalogue-db-56666f68cd-sdnjp 1/1 Running 0
sock-shop pod/catalogue-db-56666f68cd-w8s9n 1/1 Running 0
sock-shop pod/front- -5cd74f858b-h76kh 1/1 Running 0
sock-shop pod/front- -5cd74f858b-r2774 1/1 Running 0
sock-shop pod/orders-77b6947c8d-f78s6 1/1 Running 0]
sock-shop pod/orders-77b6947c8d-scm7g 1/1 Running 0]
sock-shop pod/orders-db-59f7c5f79d-t92qgn 1/1 Running 0
sock-shop pod/orders-db-59f7c5f79d-wxq5d 1/1 Running 0
sock-shop pod/payment-65b4dd6f9b-kzkql 1/1 Running 0
sock-shop pod/payment-65b4dd6f9b-vr7fp 1/1 Running 0]
sock-shop pod/payment-7855f7898c-s. .. 6m8s

sock-shop replicaset.apps/orders-8575b8c969
sock-shop replicaset.apps/orders-db-59f7c5f79d
sock-shop replicaset.apps/orders-db-76dfdc6865
sock-shop replicaset.apps/payment-65b4dd6f9b
sock-shop replicaset.apps/payment-7855f7898c
sock-shop replicaset.apps/queue-master-584db96944
sock-shop replicaset.apps/queue-master-778c957b8f
sock-shop replicaset.apps/rabbitmg-6db7899db6
sock-shop replicaset.apps/rabbitmg-7f84854df5
sock-shop replicaset.apps/session-db-6fc87fc86¢c
sock-shop replicaset.apps/session-db-7ff969cbdd
sock-shop replicaset.apps/shipping-5f477dd4bd
sock-shop replicaset.apps/shipping-77669895df
sock-shop replicaset.apps/user-86bfdd744f
sock-shop replicaset.apps/user-86d655596
sock-shop replicaset.apps/user-db-555dc88f6

S N N © © N N O © NN OO N ON O
S N N © O N N O © NN OO N ON O
S N N © O N N © O NN OO N ON O

sock-shop replicaset.apps/user-db-85c4bb8bd7

The fault-scope adjustment Completed!

Current fault injection settings:

¢ Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"mode": "all", "selector": {{"namespaces": ["sock-shop"], "labelSelectors":
{{"name": "carts-db"}}}}, "stressors": {{"cpu": {{"workers": 2, "load": 80}}, "memory": {{"workers":
2, "size": "256MB"}}}}, "containerNames": ["carts-db"]}}

The current K8s manifests show that the 'carts-db' deployment has added resource requests for
CPU and memory, which were not present in the previous manifests. However, this change does
not affect the scope of the fault injection, as the target remains the same: the 'carts-db’ podsin
the 'sock-shop' namespace. The label selector 'name: carts-db' is still valid and correctly
identifies the target pods for the StressChaos fault. Therefore, there is no need to adjust the scope

of the fault injection based on the current manifests.
Next fault injection scope:

T {

namespaces" : [

0 : "sock-shop"

1
Y "labelSelectors" : {

"name" : "carts-db"

Current fault injection settings:

¢ Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["sock-shop"],
"labelSelectors": {{"name": "front-end"}}}}, "value": "1"}}

The current Kubernetes manifests show that the 'front-end' deployment has increased its replicas
from 1 to 2. This change does not affect the label or namespace used for the PodChaos fault
injection, which targets the 'front-end' pod. The original goal of the chaos experiment is to test
the system's resilience by simulating a pod failure in the 'front-end' service. Since the label and

namespace remain the same, the scope of the fault injection does not need to be adjusted. The

selector will continue to target the 'front-end' pods in the 'sock-shop' namespace using the label

'name: front-end".
Next fault injection scope:

MR
Y "namespaces" : [
0 : "sock-shop"
]
¥ "labelSelectors" : {

"name" : "front-end"

Adjusted unittest

The unit test is specifically targeting the 'carts-db' deployment, checking if the number of ready
replicas matches the total replicas. In the reconfigured manifests, the 'carts-db' deployment has
not undergone any changes in terms of the number of replicas or other relevant configurations
that would affect the unit test. The only addition in the reconfigured manifest is the resource
requests for CPU and memory, which do not impact the logic of the unit test. Therefore, the unit
test does not require any modifications as the steady state condition it verifies remains

unchanged.
Adjusted unittest

The unit test is focused on the 'front-end' deployment, specifically checking if at least one pod is
running and ready at all times. In the reconfigured manifests, the 'front-end' deployment has
been updated to have 2 replicas instead of 1. However, the unit test's threshold is to ensure that
at least 1 pod is running and ready, which aligns with the intent of the test to verify redundancy.
Since the threshold remains the same and the reconfiguration was made to ensure the system
satisfies this threshold, the unit test does not require any modification. The test will still verify
that at least 1 pod is running and ready, which is consistent with the reconfigured state of having
2 replicas.

Completed the chaos experiment!

Choose namespace]

All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml &

The Chaos Engineering cycle for the 'sock-shop' system involved a detailed analysis and
testing of the system's resilience under simulated high-demand conditions, such as a Black
Friday sale. The system is composed of various Kubernetes manifests that define
deployments and services for different components of the Sock Shop application, a

microservices-based e-commerce platform.

Step 0: User-input Understanding

The system's architecture was analyzed through its Kubernetes manifests, which include
definitions for namespaces, deployments, and services. Key components such as 'carts,
'catalogue’, 'orders', 'payment!, 'shipping’, 'user’, and their respective databases were
identified. Each component's configuration, including replicas, resource limits, security
contexts, and service ports, was reviewed to understand the system's current state and
potential weaknesses.

Identified Resiliency Issues
Several resiliency issues were identified:

1. Missing Resource Requests: Some deployments, like 'carts-db', lacked resource
requests, risking scheduling issues under resource constraints.

2. Single Replica Deployment: The 'front-end' deployment had only one replica, making it
vulnerable to downtime if the pod failed.

3. Missing Liveness and Readiness Probes: Many deployments lacked these probes, which

are crucial for Kubernetes to manage pod health.

4. Hardcoded Environment Variables: Security vulnerabilities were noted due to
hardcoded passwords in environment variables.

5. Missing Service Port Configuration: Some services had commented-out port

configurations, leading to potential connectivity issues.

Step 1: Hypothesis Definition

The hypothesis was that the system would maintain its steady states even when faults were

injected. Two steady states were defined:

e Carts-db Replicas Running: Ensuring 'carts-db' replicas are ready 90% of the time

during a 1-minute period.

e Front-end Replica Running: Ensuring the 'front-end' pod is ready 95% of the time
during a 1-minute period.

Step 2.1: Chaos-Engineering Experiment
The experiment was structured into three phases, each lasting 20 seconds:

1. Pre-validation Phase: Verified the system's initial steady state.

2. Fault Injection Phase: Simulated high load and pod failure using Chaos Mesh, injecting

StressChaos on 'carts-db' and PodChaos on 'front-end".

3. Post-validation Phase: Checked if the system returned to its steady states.
Step 2.2, 3, 4: Experiment Execution, Analysis, and
Improvement

1st Try Results:

e The 'carts-db' component maintained its steady state, but the 'front-end' component
failed post-validation due to its single replica configuration.

Analysis:

e Thesingle replica of 'front-end' led to downtime when the pod was killed, highlighting

the need for redundancy.
Improvements:

e Increased 'front-end' replicas from 1 to 2.

e Added resource requests to 'carts-db' to ensure scheduling under constraints.
2nd Try Results:

e Allunit tests passed, confirming the system's resilience and recovery capabilities after

improvements.

The experiment successfully identified and addressed critical resilience issues, enhancing

the system's fault tolerance and availability.

Download output (.zip)

