Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

® Phase 0: Preprocessing

Cleaning the cluster

$ kubectl delete
.chaos—-mesh.org

... Done

-—-all —-context kind-chaos-eater-cluster —-n chaos

S kubectl delete workflownode —--all --context kind-chaos-eater-cluster -n cl

workflownode.chaos-mesh.org

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

chaos-mesh.org
chaos-mesh.org
chaos—-mesh.org

chaos—-mesh.org

.chaos-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos-mesh.org

chaos—-mesh.org

.chaos—-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos-mesh.org

chaos—-mesh.org

.chaos—-mesh.org

chaos-mesh.org
chaos-mesh.org
chaos-mesh.org

chaos-mesh.org

.chaos—-mesh.org

deleted
de’
deleted
deleted
deletes
delet
deleted
deleted
deleted
dele
delet:
de’
deleted
deleted
delete:
delete:
delet:
deleted

deleted

$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:

No resources

found

>

$ kubectl delete services —-all --context kind-chaos-eater-cluster -n chaos

No resources found

S kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1

pod deleted
pod deleted
pod deleted
service deleted

deployment. apps deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Pod
metadata:

name: example-pod

labels:
app: example

spec:

restartPolicy: Never

containers:

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl
kind: Service
metadata:
name: example-service
spec:
selector:

app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 281ns
- pod/example-pod created
- service/example-service created
Waiting deployments to stabilize...
- pods is ready.
Deployments stabilized in 3.088 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME CLUSTER-IP EXTERNAL-TI
default service/example-service ClusterIP 10.96.107.80 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod.

e The Podis named 'example-pod".

e Itincludes metadata with a label 'app: example'.

e The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.
e The Pod contains one container named 'example-container’.

e The container uses the 'nginx:1.17.1" image.

¢ The container exposes port 80 for network traffic.

¢ This manifest defines a Kubernetes Service.
e The Service is named 'example-service'.

e ltusesthe 'vl' APl version.

e The Service selects pods with the label 'app: example'.
e It exposes the Service on port 80 using the TCP protocol.

e The target port for the Service is also port 80, meaning it forwards traffic to port 80 on the

selected pods.
Resiliency issuses/weaknesses in the manifests:
Issue #0: Pod Restart Policy

o details: The Pod will not restart automatically if it fails, which can lead to downtime.
e manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never
Issue #1: Single Pod Deployment

e details: Using a single Pod without replication can lead to a single point of failure.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: kind: Pod
Application of the manifests:
Thoughts:

The manifests provided are for a Kubernetes Pod and Service that utilize the Nginx web server.
The Pod manifest specifies a container running the Nginx image, which is a popular open-source
web server used for serving static content, reverse proxying, and load balancing. The Service
manifest is configured to expose this Pod on port 80, which is the default port for HTTP traffic.
Given the use of Nginx and the configuration of the Service, it is logical to assume that these
manifests are intended to deploy a simple web server application. The file names and the use of

Nginx further support this assumption.

Assumed application:

A simple web server application using Nginx to serve static web content or act as a reverse proxy.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: PodRunningState_nginx_pod A

4 Description

The first issue to address is the Pod's restart policy set to 'Never', which means the Pod
will not restart automatically if it fails. This is a critical issue because it can lead to
downtime if the Pod encounters any failure. Therefore, the steady state should ensure
that the Pod is running and available. A measurable output for this steady state is the
number of running Pods. Since there is only one Pod defined in the manifest, the steady

state should verify that this Pod is in the 'Running’ state.

@, Current state inspection

To inspect the PodRunningState_nginx_pod, | will use the K8s API. The reason for
choosing the K8s APl is that it allows us to directly check the status of the Pod within
the Kubernetes cluster. We need to verify that the Pod is in the 'Running' state, which is
a specific status of a Kubernetes resource. The K8s API provides the necessary
functionality to query the current state of the Pod and ensure it is running. The script
will check the Pod's status every second for a duration of 5 seconds, which is sufficient
to confirm the Pod's state within the 1-minute constraint of the Chaos Engineering
experiment.

tool: duration:

Inspection script (Python)

os
time

kubernetes client, config

(namespace, pod_name, duration):
Load Kubernetes configuration based on the environment
os.getenv/():
config.load_incluster_config()

config.load_kube_config()

vl = client.CoreV1Api()

running_count = 0
range (duration):

pod = vl.read_namespaced_pod(name=pod_name, namespace=-n:
pod.status.phase ==
running_count += 1
({pod_name} {pod.status.phase}")
client.exceptions.ApiException e:

¢
time.sleep(1l)

({pod_name} {running_count} {durat
__hame__ ==

argparse

parser = argparse.ArgumentParser (description=

parser.add_argument (, type=int, default=5, help=

args = parser.parse_args()

check_pod_status (namespace= , pod_name= , du
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod was running 5 out of 5 seconds.

> Threshold

The steady state we are considering is the 'PodRunningState_nginx_pod', which
requires the Pod to be in the 'Running' state. The current state shows that the Pod was
running 5 out of 5 seconds, which indicates a stable and consistent running state. To
define a reasonable threshold, we should consider a percentage of time the Pod should
be running within a given duration. Since the current state shows 100% uptime, we can
introduce a small tolerance to account for potential brief fluctuations or delays in status
updates. A reasonable threshold would be that the Pod should be running at least 90%
of the time during the observation period. This allows for some minor fluctuations

while still ensuring the Pod is generally stable and available.

The Pod should be in the 'Running' state at least 90% of the time during the observation

period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will calculate the

percentage of time the Pod is in the 'Running' state during the specified duration. The

threshold is defined as the Pod being in the 'Running' state at least 90% of the time.
Therefore, | will assert that the running percentage is greater than or equal to 90%. This
will ensure that the Pod meets the steady state requirement. The test will loop for the
specified duration, checking the Pod's status every second, and then calculate the

running percentage at the end to perform the assertion.

os
time
argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, pod_name, duration):
super () .__init__()
self.namespace = namespace

self.pod_name pod_name

self.duration = duration

(self):

I
@

running_count

Loop for the specified duration, checking the Pod's status
range (self.duration):

pod = self.vl.read_namespaced_pod(name=self.pod_name
pod.status.phase ==
running_count += 1
({self.pod_name} {pod.status.phas
client.exceptions.ApiException e:
(
time.sleep (1)

Calculate the percentage of time the Pod was running
running_percentage = (running_count / self.duration) * 100
¢ {self.pod_name} {running_count}

Assert that the Pod was running at least 90% of the time
running_percentage >= 90, {self.pod_name}

__hame__ ==
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

Create an instance of the test class and run the test

test = TestPodRunningState(namespace= , pod_name=
test.test_pod_running_state()

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod status: Running
Pod example-pod was running 5 out of 5 seconds.

¥ Steady state #2: ServiceRoutingState_nginx_service

¥ Description

The next issue to address is the 'Single Pod Deployment', which can lead to a single
point of failure. This is a critical issue because if the single Pod fails, the entire service
becomes unavailable. To ensure the system's resiliency, we need to verify that the
Service is able to route traffic to the Pod. A measurable output for this steady state is the
Service's ability to successfully forward requests to the Pod. Since the Service is
configured to expose the Pod on port 80, the steady state should verify that the Service
is able to handle HTTP requests and return a successful response (e.g., HTTP 200 status
code). This will ensure that the Service is functioning correctly and can route traffic to

the Pod, even if there is only one Pod available.

Current state inspection

To inspect the ServiceRoutingState_nginx_service, we need to verify that the Service is
able to route traffic to the Pod and return a successful HTTP response. Since this
involves checking the communication status and response from the service, k6 is the
appropriate tool to use. We will simulate HTTP requests to the service using k6 and
check for successful responses (HTTP 200 status code). The test will run for a short
duration with a few virtual users to ensure the service is functioning correctly.

tool: vus: 1 duration:

Inspection script (Javascript)

http ;
{ check } 5

options = {

l’

b
0O {
res = http. (
(res, {
(r) => r.status === 200,
})s
+
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

v is status 200

checks.........................: 100.00% 14157 out of 14157
data_received..................: 12 MB 2.4 MB/s
data_sent......................: 1.6 MB 311 kB/s
http_req_blocked...............: avg=8.02us min=1.37us med=4.22}
http_req_connecting............: avg=2.2us min=0s med=0s
http_req_duration..............: avg=231.14us min=79.6us med=233.¢
{ expected_response:true }...: avg=231.14us min=79.6us med=233. ¢
http_req_failed................: 0.00% ®@ out of 14157
http_req_receiving.............: avg=67.01pys min=17.18us med=62.2¢
http_req_sending...............: avg=1l7.67ys min=3.9us med=14.7¢
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=146.44pys min=54.61pys med=149.¢
http_regs......................: 14157 2831.146568/s
iteration_duration.............: avg=338.88us min=127.81us med=334.¢
iterations.....................: 14157 2831.146568/s
YUS 00 0000000000003000000000000008 db min=1 max=1
VUS_MAX .t e oo vnneeeeeeeennaeeeeeas 1 min=1 max=1

> Threshold

The steady state we are evaluating is the Service's ability to route traffic to the Pod and
return a successful HTTP response. The k6 test results show that 100% of the requests

received a 200 status code, indicating that the Service is currently functioning correctly.
To define a reasonable threshold, we should consider a success rate that accounts for
minor fluctuations while still ensuring the system is operating normally. Given the
current success rate is 100%, a threshold of 95% success rate for HTTP 200 responses
would be reasonable. This allows for some tolerance in case of transient issues, while

still maintaining a high standard for system availability.

HTTP 200 response success rate >=95%

B Unit test to validate the steady state

To add the threshold check to the k6 script, | will include a 'thresholds' property in the
'options' section. This property will specify that the success rate of HTTP 200 responses
should be at least 95%. This is done by using the 'http_req_failed' metric, which tracks
the percentage of failed requests. By setting the threshold to 'http_req_failed:
['rate<0.05'], we ensure that the success rate is at least 95%, as the failure rate must be
less than 5%.

http 8
{ check } 5

options = {

{

// Ensure that the success rate for HTTP 200 responses is at lec

[1,

I
b
0O {
res = http. (
(res, {
(r) => r.status === 200,
1)
+
Pod has completed
sucessfully.

The inspection script's results (current states) are as follows:

v s status 200

checks.............. vt 100.00% 14790 out of 14790

data_received..................: 13 MB 2.5 MB/s
data_sent......................: 1.6 MB 325 kB/s
http_req_blocked...............: avg=8.42us min=1.33us med=4.:
http_req_connecting............: avg=2.23us min=0s med=0s
http_req_duration..............: avg=213.2us min=82.68us med=20"
{ expected_response:true }...: avg=213.2us min=82.68us med=20"
v http_req_failed................: 0.00% 0 out of 14790
http_req_receiving.............: avg=62.4us min=13.08us med=57.
http_req_sending...............: avg=18.07us min=3.71us med=15.
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=132.72pus min=55.45pus med=127
http_regs......................: 14790 2957.8035/s
iteration_duration.............: avg=323.39us min=124.44ps med=31:
iterations.....................: 14790 2957.8035/s
YUS 00 000000000000000060000000008 db min=1 max=1
VUS_MAX . oo oeennneeeeeennnnnneees 1 min=1 max=1
Fault definition
® Scenario: Cyber Attack Simulation ~

4 Description

Given the system's weaknesses, a cyber attack targeting the availability of the web
server could be highly impactful. The Pod's restart policy set to 'Never' and the single
Pod deployment create vulnerabilities that could lead to downtime if the Pod fails. To
simulate a cyber attack, we can introduce network disruptions and resource exhaustion
to test the system's resilience. First, we will simulate network latency to see if the
Service can still route traffic effectively, which tests the
'ServiceRoutingState_nginx_service'. Then, we will introduce a Pod failure to test the
'PodRunningState_nginx_pod', checking if the system can recover from a Pod failure
without automatic restarts. This sequence simulates a cyber attack by first degrading
network performance and then causing a Pod failure, testing the system's ability to

maintain its steady states under stress.

Fault-injection sequence

({'namespace': 'default’, 'service': 'example-service'}) =

({'namespace': 'default, 'pod": 'example-pod'})

£ Detailed fault parameters

Detailed parameters of ({'namespace': 'default’, 'service': 'example-
service'})

v {
"action" : "delay"
"direction" : "to"

"mode" : "all"

v n

selector" : {
Y "namespaces" : [

0 : "default"

]

¥ "labelSelectors" : {

"app" : "example"

}
}
Y "delay" : {
"latency" : "100ms"
"jitter" : "10ms"
}
}
Detailed parameters of ({'namespace': 'default’, 'pod": 'example-pod'})
v {

"action" : "pod-kill"
"mode" : "one"
Y "selector" : {
Y "namespaces" : [
0 : "default"
1
Y "labelSelectors" : {

"app" : "example"

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints of the experiment needing to be completed within 1 minute, we
need to allocate time efficiently across the three phases: pre-validation, fault-injection,
and post-validation. The pre-validation phase is crucial to ensure that the system isin
its expected steady state before introducing any faults. Since we have two steady states
to validate, we should allocate a short but sufficient time to verify both the Pod's
running state and the Service's routing capability. A reasonable allocation would be 15
seconds for pre-validation. The fault-injection phase is where we introduce the chaos to
observe the system's behavior under stress. Since we have two types of faults to inject
(network delay and pod kill), we should allocate the majority of the time here to
observe the system's response. A 30-second duration for fault injection allows us to
introduce both faults and monitor their effects. Finally, the post-validation phase is
necessary to ensure that the system returns to its steady states after the faults are
removed. We should allocate 15 seconds for post-validation to verify that both the Pod
and Service have returned to their expected states. This allocation ensures that we have
a balanced approach to validating the system's resiliency within the 1-minute

constraint.

Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
states before we proceed with fault injection. Given the two steady states defined, we
will conduct unit tests to verify each of them. The tests will be executed sequentially
within the 15-second time frame allocated for this phase. The first test will verify the
'PodRunningState_nginx_pod', ensuring that the Pod is running at least 90% of the
time. This test will be conducted first because it directly checks the availability of the
Pod, which is critical for the subsequent service routing test. The second test will verify
the 'ServiceRoutingState_nginx_service', ensuring that the Service can successfully
route HTTP requests with a 95% success rate for HTTP 200 responses. This test will

follow immediately after the first test. The sequential execution ensures that we first
confirm the Pod's availability before checking the Service's routing capability, as the
latter depends on the former. Each test is designed to run for a short duration to fit
within the 15-second limit, with a brief grace period to allow for any initial setup or

delays.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack by introducing two types
of faults: network latency and pod failure. The total duration for this phase is 30
seconds, so we need to carefully schedule the fault injections and unit tests to fit within

this timeframe.

First, we will introduce a network delay using NetworkChaos to simulate network
latency. This will help us observe how the system handles degraded network
performance and affects the 'ServiceRoutingState_nginx_service'. We will start this fault
injection immediately at the beginning of the phase and let it run for 15 seconds.

Simultaneously, we will run the unit test for 'ServiceRoutingState_nginx_service' to
verify if the service can still route traffic effectively under network delay conditions. This

test will also start at the beginning and run for 15 seconds.

After the network delay fault injection and the corresponding unit test, we will
introduce a pod failure using PodChaos. This will help us observe the system's behavior
when the pod is killed, affecting the 'PodRunningState_nginx_pod'. We will start this

fault injection at the 15-second mark and let it run for 10 seconds.

Simultaneously, we will run the unit test for 'PodRunningState_nginx_pod' to verify if
the pod remains in the running state at least 90% of the time during the observation
period. This test will start at the 15-second mark and run for 10 seconds.

This staggered approach allows us to observe the system's behavior under each fault

condition separately while ensuring that both steady states are tested within the 30-

second limit.

Verified Steady State #0:
o Workflow Name:

o Grace Period:

o Duration:

Verified Steady State #1:
o Workflow Name:

o Grace Period:

o Duration:

Injected Faults #0:

o Workflow Name:
o Grace Period:

o Duration:
Injected Faults #1:

o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the 15-second time constraint, we will
conduct unit tests to verify each steady state. The tests will be executed sequentially
due to the short duration, ensuring that each steady state is verified independently. The
first test will check the 'PodRunningState_nginx_pod' to confirm that the Pod is running
and available. The second test will verify the 'ServiceRoutingState_nginx_service' to
ensure that the Service can successfully route traffic to the Pod. Each test will have a
brief grace period to allow the system to stabilize after the fault injection, followed by a
short duration to perform the verification. This approach ensures that both steady

states are validated within the available time, confirming the system's recovery.

Verified Steady State #0:
o Workflow Name:

o Grace Period:

o Duration:

Verified Steady State #1:

o Workflow Name:

o Grace Period:

o Duration:

Summary

The Chaos-Engineering-experiment plan is structured into three phases: pre-validation,

fault-injection, and post-validation, all to be completed within a 1-minute timeframe.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are executed
sequentially. The first test, 'PodRunningState_nginx_pod', is conducted with a workflow
named 'pre-unittest-podrunningstatenginxpod". It starts immediately with no delay and
runs for 7 seconds to ensure the Pod is running at least 90% of the time. Following this,
the second test, 'ServiceRoutingState_nginx_service', is executed with the workflow
'pre-unittest-serviceroutingstatenginxservice'. It begins after a 7-second grace period
and runs for 8 seconds to verify that the Service can route HTTP requests with a 95%

success rate for HTTP 200 responses.

The fault-injection phase spans 30 seconds and involves two simultaneous fault
injections and unit tests. At the start of this phase, a network delay is introduced using
'NetworkChaos' with the workflow 'fault-networkchaos', running for 15 seconds.
Concurrently, the 'ServiceRoutingState_nginx_service' unit test is executed with the
workflow 'fault-unittest-serviceroutingstatenginxservice', also for 15 seconds, to assess
the service's routing capability under network delay conditions. At the 15-second mark,
a pod failure is introduced using 'PodChaos' with the workflow 'fault-podchaos’,
running for 10 seconds. Simultaneously, the 'PodRunningState_nginx_pod' unit test is
conducted with the workflow 'fault-unittest-podrunningstatenginxpod', also for 10

seconds, to verify the pod's availability during the fault.

In the post-validation phase, lasting 15 seconds, two unit tests are executed
sequentially to confirm the system's recovery. The first test,
'PodRunningState_nginx_pod', is conducted with the workflow 'post-unittest-
podrunningstatenginxpod". It starts after a 2-second grace period and runs for 6 seconds
to ensure the Pod is running and available. The second test,
'ServiceRoutingState_nginx_service', follows with the workflow 'post-unittest-
serviceroutingstatenginxservice'. It begins after an 8-second grace period and runs for 7
seconds to verify the Service's ability to route traffic to the Pod. This structured
approach ensures a comprehensive assessment of the system's resilience and recovery

within the 1-minute constraint.

Completed the chaos experiment!

Phase 3: Analysis

The Chaos Engineering experiment results indicate several critical failures in the system's ability
to maintain its steady states under the simulated fault conditions. Here's a detailed analysis of the

failures:
1. Failed Test: fault-unittest-podrunningstatenginxpod

o Observation: The test failed because the Pod 'example-pod' was not found during the
fault injection phase, resulting in a 404 error from the Kubernetes API.

o Cause: This failure is directly linked to the 'PodChaos' fault, which involved killing the
Pod. Since the Pod's restart policy is set to 'Never, it did not automatically restart after
being killed, leading to its unavailability.

o Insight: The 'restartPolicy: Never' configuration in the Pod manifest is a significant
vulnerability. In a production environment, this would lead to downtime whenever the
Pod fails, as there is no mechanism to bring it back online automatically.

o Recommendation: Change the Pod's restart policy to 'Always' or 'OnFailure' to ensure it

restarts automatically after a failure, improving resilience against such disruptions.

2. Failed Test: post-unittest-podrunningstatenginxpod

o Observation: Similar to the fault phase, the Pod was not found during the post-
validation phase, resulting in a 404 error.

o Cause: The Pod did not recover after the 'PodChaos' fault due to the same restart policy
issue. Since the Pod was not restarted, it remained unavailable throughout the post-
validation phase.

o Insight: This further emphasizes the critical nature of the restart policy configuration.
Without automatic recovery, the system cannot return to its steady state after a fault.

o Recommendation: Implement a replication strategy using a Deployment or ReplicaSet
to ensure multiple instances of the Pod are running, providing redundancy and

automatic recovery.

3. Failed Test: post-unittest-serviceroutingstatenginxservice

o Observation: The Service failed to route traffic, resulting in connection refused errors
during the post-validation phase.

o Cause: The failure of the Pod meant there were no available endpoints for the Service to
route traffic to, leading to the connection errors.

o Insight: The single Pod deployment is a single point of failure. When the Pod is
unavailable, the Service cannot function, highlighting the need for redundancy.

o Recommendation: Use a Deployment with multiple replicas to ensure that the Service

always has available Pods to route traffic to, even if one or more Pods fail.

Overall, the experiment highlights the critical need for redundancy and automatic recovery
mechanisms in the system. Addressing the identified issues by adjusting the Pod's restart policy
and implementing a Deployment with multiple replicas will significantly enhance the system's
resilience against similar fault scenarios in the future.

Phase 4: Improvement

Reconfiguration ~

To improve the system's resiliency, | will replace the Pod manifest with a Deployment
manifest. This will allow for multiple replicas of the Pod, providing redundancy and
automatic recovery in case of failure. Additionally, | will set the restart policy to 'Always' to

ensure Pods are restarted automatically if they fail.
Modification_type: replace
File name: nginx/pod.yaml

Replace the Pod manifest with a Deployment manifest to provide redundancy and
automatic recovery. Set the restart policy to 'Always' to ensure Pods are restarted

automatically if they fail.

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
labels:
app: example
spec:
replicas: 3
selector:
matchlLabels:
app: example
template:
metadata:

labels:
app: example

spec:

restartPolicy: Always

containers:

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 240ns
- deployment.apps/example-deployment configured
- service/example-service configured
Waiting deployments to stabilize...
- deployment/example-deployment is ready.
Deployments stabilized in 4.095 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel
NAMESPACE NAME READY STATUS REST

default pod/example-deployment-7658c5b56-gfpr9 1/1 Running 0

default pod/example-deployment-7658c5b56-kx6cr 1/1 Running 0]
default pod/example-deployment-7658c5b56-rjxfq 1/1 Running 0
NAMESPACE NAME CLUSTER-IP EXTERNAL-
default service/example-service ClusterIP 10.96.223.211 <none>
NAMESPACE NAME READY UP-TO-DATE AVAIL,
default deployment.apps/example-deployment 3/3 3 3
NAMESPACE NAME DESIRED CURREI
default replicaset.apps/example-deployment-6db6cbcf84 0 0
default replicaset.apps/example-deployment-7658c5b56 3 3

The fault-scope adjustment Completed!

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "delay", "direction": "to", "mode": "all", "selector": {{"namespaces":
["default"], "labelSelectors": {{"app": "example"}}}}, "delay": {{"latency": "100ms", "jitter":
"10ms"

The previous K8s manifests targeted a single Pod with the label 'app: example' for the
NetworkChaos fault injection. In the current manifests, the Pod has been replaced by a
Deployment with 3 replicas, but the label 'app: example' remains the same. Therefore, the scope
of the fault injection should still target all Pods with the label 'app: example' in the 'default’
namespace. The change from a single Pod to a Deployment with multiple replicas does not
require a change in the label selector, as the label remains consistent across all replicas. Thus, the
scope of the fault injection remains appropriate for the current setup.

Next fault injection scope:

MR
Y "namespaces" : [
0 : "default"
]
¥ "labelSelectors" : {

"app" : "example"

}

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],

"labelSelectors": {{"app": "example"}}}}}}

The previous K8s manifests targeted a single Pod with the label 'app: example'. The current
manifests have changed to a Deployment with 3 replicas, but the label 'app: example' remains
the same. Therefore, the scope of the fault injection should still target Pods with the label 'app:
example' in the 'default' namespace. However, since there are now multiple replicas, the 'mode'
of the PodChaos should be adjusted to 'one' to ensure that only one Pod is affected at a time,

maintaining the original goal of the chaos experiment.

Next fault injection scope:

MR
Y "namespaces" : [

0 : "default"
]

Y "labelSelectors" : {

"app" : "example"

Adjusted unittest

The previous unit test targets a Pod resource, specifically checking the running state of a Pod
named 'example-pod". In the reconfigured manifests, the Pod has been replaced by a Deployment
named 'example-deployment’ with 3 replicas. This change means that the unit test should now
target the Deployment instead of a single Pod. The test should verify that all Pods created by the
Deployment are running, rather than just one Pod. Therefore, the unit test requires modification
to account for these changes. The test should iterate over all Pods created by the Deployment and

ensure that each is running at least 90% of the time during the specified duration.

0s
time
argparse

kubernetes client, config

unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, deployment_name, duration):
super () .__init__()
self.namespace = namespace
self.deployment_name = deployment_name

self.duration = duration

(self):

running_count = 0

Loop for the specified duration, checking the Pods' status every .

range (self.duration):

List all Pods with the label app=example
pods = self.vl.list_namespaced_pod(namespace=self.namespace
all_running = all(pod.status.phase == pod [
all_running:
running_count += 1
¢ {self.deployment_name} {[po
client.exceptions.ApiException e:

(
time.sleep(1)

Calculate the percentage of time all Pods were running
running_percentage = (running_count / self.duration) * 100

({self.deployment_name} {ru

Assert that all Pods were running at least 90% of the time

running_percentage >= 90, {self.deployment_name

__hame__ ==
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=

args = parser.parse_args()

Create an instance of the test class and run the test
test = TestDeploymentRunningState(namespace= , deployment_name=
test.test_deployment_running_state()

Adjusted unittest

The target of the unit test is the HTTP service provided by the Kubernetes Service resource, which
remains unchanged in the reconfigured manifests. The Service still points to the same
application, and the endpoint URL used in the test remains valid. However, the underlying Pod

has been changed to a Deployment with 3 replicas, which introduces redundancy. This change is
intended to ensure higher availability and reliability of the service. Since the unit test is focused
on the service's HTTP response and not directly on the Pod or Deployment, the test itself does not
require modification. The threshold for the success rate of HTTP 200 responses remains
appropriate, as the redundancy should help maintain this threshold. Therefore, no changes are

needed for the unit test.

Completed the chaos experiment!

Search Choose namespace

= Q All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml &

The Chaos Engineering cycle described involves a systematic approach to testing the
resilience of a Kubernetes-based system running an Nginx web server. The cycle begins with
understanding the user inputs, which include Kubernetes manifests for a Pod and a Service.
The Pod manifest specifies a single Nginx container with a restart policy of 'Never', while the
Service manifest exposes this Pod on port 80. Two primary resiliency issues are identified:

the Pod's restart policy and the single Pod deployment, both of which pose risks of

downtime and single points of failure.

The hypothesis for the experiment is that the system's steady states will be maintained even
when faults are injected. Two steady states are defined: the Pod should be running at least
90% of the time, and the Service should successfully route HTTP requests with a 95%

success rate. These are tested using Python scripts and K6 JavaScript, respectively.

The fault scenario simulates a cyber attack using Chaos Mesh, introducing network delays
and Pod failures to test the system's resilience. The experiment is divided into three phases:
pre-validation, fault-injection, and post-validation, each with specific tasks and time
allocations to ensure the system's behavior is thoroughly assessed within a 1-minute

timeframe.

In the first experiment attempt, several tests fail, particularly those related to the Pod's
availability, due to the 'Never' restart policy and the single Pod deployment. The analysis
highlights the need for redundancy and automatic recovery mechanisms, recommending
changes to the Pod's restart policy and the use of a Deployment with multiple replicas.

After implementing these improvements, the second experiment attempt shows all tests
passing, indicating that the system can maintain its steady states under fault conditions. The
changes made include replacing the Pod manifest with a Deployment manifest, setting the
restart policy to 'Always', and increasing the number of replicas to ensure redundancy and
resilience.

Download output (.zip)

