Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

® Phase 0: Preprocessing

Cleaning the cluster ... Done

$ kubectl delete
.chaos—-mesh.org

-—-all —-context kind-chaos-eater-cluster —-n chaos

deleted

S kubectl delete workflownode —--all --context kind-chaos-eater-cluster -n cl

workflownode.chaos-mesh.org

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

workflownode.

workflownode

workflownode.
workflownode.
workflownode.

chaos-mesh.
chaos-mesh.
chaos-mesh.
chaos-mesh.
.chaos-mesh
chaos-mesh.
chaos-mesh.
chaos-mesh.
chaos-mesh.
.chaos-mesh
chaos-mesh.
chaos-mesh.
chaos-mesh.
chaos-mesh.
.chaos-mesh
chaos-mesh.
chaos-mesh.
chaos-mesh.

org
org
org

org

.org

org
org
org

org

.org

org
org
org

org

.org

org
org
org

de’
delet:
dele
deleted
deleted
delete:
deleted
deleted

dele
deleted

delet:
deleted
deleted

$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:

No resources

found

$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat

No resources

found

>

$ kubectl delete all --all-namespaces —-context kind-chaos-eater-cluster -1

pod deleted
pod deleted
pod deleted
service deleted

deployment. apps deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Pod
metadata:
name: example-pod
labels:
app: example
spec:
restartPolicy: Never
containers:
- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl
kind: Service
metadata:
name: example-service
spec:
selector:
app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat

No tags generated

Starting test...
Starting deploy...

Loading images into kind cluster nodes...
Images loaded 1in 90ns

- pod/example-pod created

- service/example-service created
Waiting deployments to stabilize...

- pods is ready.
Deployments stabilized in 3.095 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 6s

NAMESPACE NAME CLUSTER-IP EXTERNAL-TI
default service/example-service ClusterIP 10.96.216.95 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod.

e ThePod is named 'example-pod".

e ltincludes metadata with a label 'app: example'.

e The Pod's restart policy is set to 'Never', meaning it won't restart automatically if it fails.
¢ The Pod contains one container named 'example-container’.

e The container uses the 'nginx:1.17.1" image.

e The container exposes port 80 for network traffic.

e This manifest defines a Kubernetes Service.

e The Service is named 'example-service'.

e ltusesthe'vl' APl version.

e The Service selects pods with the label 'app: example'.

e |texposes the Service on port 80 using the TCP protocol.

e The Service forwards traffic to the target port 80 on the selected pods.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Pod Restart Policy

e details: The Pod will not restart automatically if it fails, which can lead to downtime.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never
Issue #1: Single Pod Deployment

e details: Using a single Pod without a controller like Deployment or ReplicaSet can lead to lack

of redundancy and no automatic recovery if the Pod fails.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: kind: Pod
Application of the manifests:
Thoughts:

The manifests provided are for a basic setup of an Nginx web server. The pod.yaml file specifies a
pod running an Nginx container, and the service.yaml file sets up a service to expose this pod on
port 80. The use of the Nginx image and the exposure of port 80, which is the default HTTP port,
strongly suggest that this setup is intended to serve web content. The file names and the use of

Nginx, a popular web server, further support this assumption.
Assumed application:

Web server hosting static or dynamic web content using Nginx.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute.

Phase 1: Hypothesis

Steady-state definition

¥ Steady state #1: example-pod-running A

4 Description

The first issue to address is the Pod's restart policy set to 'Never', which means the Pod
will not restart automatically if it fails. This is a critical issue because it can lead to
downtime if the Pod encounters any failure. Therefore, the steady state should verify
that the Pod is running and has not failed. This can be measured by checking the Pod's

status to ensureitis in the 'Running' state. This steady state is specific to the

'nginx/pod.yaml' manifest, which defines the Pod with the problematic restart policy.

e

Current state inspection

To inspect the 'example-pod-running' state, | will use the K8s API. The reason for
choosing the K8s APl is that it allows us to directly check the status of the Pod within
the Kubernetes cluster. We need to verify that the Pod is in the 'Running' state, which is
a specific status check that can be efficiently performed using the K8s API. The check
will be performed every second for a duration of 5 seconds to ensure the Pod remains in
the desired state.

tool: duration:

Inspection script (Python)

oS
time

kubernetes client, config

(namespace, pod_name, duration):
Load Kubernetes configuration based on the environment
os.getenv():

config.load_incluster_config()
config.load_kube_config()

vl = client.CoreV1Api()
running_count = 0

range (duration):

pod = vl.read_namespaced_pod(name=pod_name, namespace=n:
pod.status.phase ==
running_count += 1
({pod.status.phase}")
client.exceptions.ApiException e:
(
time.sleep(1l)

({running_count} {duration}

__name__ ==
argparse
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()
check_pod_status (namespace= , pod_name= , du

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod was running 5 out of 5 seconds.

> Threshold

The steady state we are considering is that the Pod should be in the 'Running’ state. The
current state shows that the Pod was running 5 out of 5 seconds, which indicates a
100% uptime during the observation period. Given that the Chaos Engineering
experiment must be completed within 1 minute, we can set a threshold that allows for
some minor fluctuations but still ensures high availability. A reasonable threshold
would be that the Pod should be in the 'Running' state at least 90% of the time during
the observation period. This allows for brief interruptions or delays in status updates

while still maintaining a high level of reliability.

The Pod should be in the 'Running' state at least 90% of the time during the observation

period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will calculate the
percentage of time the Pod is in the 'Running' state during the specified duration. The
threshold is set to 90%, meaning the Pod should be running at least 90% of the time. |
will implement a for-loop to check the Pod's status every second for the given duration
and then assert that the running percentage meets or exceeds the threshold. This

ensures that the Pod's availability is within acceptable limits.

0s

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, pod_name, duration):

Pod

super () .__init__()
self.namespace = namespace
self.pod_name = pod_name
self.duration = duration

(self):
running_count = 0
Check the pod status every second for the specified durati
range (self.duration):

pod = self.vl.read_namespaced_pod(name=self.pod_name
pod.status.phase ==
running_count += 1
¢ {pod.status.phase}")
client.exceptions.ApiException e:
(
time.sleep(1)
Calculate the running percentage
running_percentage = (running_count / self.duration) * 100
¢ {running_count} {self.duratic
¢ {running_percentage}%'")
Assert that the running percentage meets the threshold

running_percentage >= 90, {r

__hame__ ==

parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

Create an instance of the test class

test = TestPodRunningState(namespace= , pod_name=

Run the test

test.test_pod_running_state()

has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod
Pod
Pod
Pod
Pod
Pod

status: Running
status: Running
status: Running
status: Running
status: Running
was running 5 out of 5 seconds.

Running percentage: 100.0%

¥ Steady state #2: example-service-availability

& Description

The next issue to address is the lack of redundancy due to the use of a single Pod
without a controller like Deployment or ReplicaSet. This can lead to a lack of automatic
recovery if the Pod fails. To verify the system's resilience, we should define a steady
state that measures the availability of the service provided by the Pod. Since the Service
'‘example-service' is responsible for exposing the Pod, we can measure the service's
availability by checking the response time or success rate of HTTP requests to the
service. This steady state is specific to the 'nginx/service.yaml' manifest, which defines
the Service that forwards traffic to the Pod.

Current state inspection

To inspect the availability of the 'example-service', we need to measure the response
time or success rate of HTTP requests to the service. Since this involves checking the
communication status and metrics, such as request sending and response time, k6 is
the appropriate tool for this task. We will use k6 to send HTTP requests to the service
and verify its availability by checking the response status. The service is exposed on
port 80, and we will use the internal DNS name 'example-
service.default.svc.cluster.local:80' to send requests. We will configure k6 to run with a
small number of virtual users and a short duration to fit within the 1-minute constraint
of the Chaos Engineering experiment.

tool: vus: 1 duration:

Inspection script (Javascript)

http 2
{ check } 5

options = {

1,
s
O {
res = http. ¢
(res, {
(r) => r.status === 200,
s

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

v status is 200

checks.........................: 100.00% 14968 out of 14968
data_received..................: 13 MB 2.5 MB/s
data_sent......................: 1.6 MB 329 kB/s
http_req_blocked...............: avg=7.92us min=1.24us med=4.11}
http_req_connecting............: avg=2.2us min=0s med=0s
http_req_duration..............: avg=216.27us min=80.03us med=218.]
{ expected_response:true }...: avg=216.27us min=80.03us med=218.]
http_req_failed................: 0.00% ®@ out of 14968
http_req_receiving.............: avg=64.56pus min=17.24pus med=58.2"
http_req_sending...............: avg=17.12us min=4.13us med=13. 3¢
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=134.58us min=53.84us med=138.(
http_regs......................: 14968 2993.500375/s
iteration_duration.............: avg=320.27us min=120.11ys med=313.¢
iterations.............cc......: 14968 2993.500375/s
VUS . o ettt e eeneeaeeeoneeennsnns . min=1 max=1
VUS_MAX e e oo vnneeeeeeeennaeeeeeas 1 min=1 max=1

> Threshold

The steady state we are considering is the availability of the 'example-service', which is
measured by the success rate of HTTP requests. The k6 test results show that 100% of
the requests returned a status of 200, indicating that the service is fully available. To
define a reasonable threshold, we should consider a success rate that accounts for
minor fluctuations or transient issues that might occur in a real-world scenario. A
success rate of 99% is a common threshold for availability, allowing for some tolerance
while still ensuring high availability. This threshold is also satisfied by the current state,

which shows a 100% success rate.

HTTP request success rate >=99%

B Unit test to validate the steady state

To add the threshold check to the k6 script, | will include a 'thresholds' property in the
'options' section. This property will specify that the success rate of HTTP requests
should be at least 99%. This is done by using the 'http_req_failed' metric, which tracks

the percentage of failed requests. The threshold will be set to ensure that the

percentage of failed requests is less than or equal to 1%, which corresponds to a

success rate of 99% or higher.

I
I

http 2

{ check } 5

options = {

l)
)
{
// Define a threshold for the success rate of HTTP requests

[1, // This ensures that the fail
0O {

res = http. (

(res, {

(r) => r.status === 200,

1)

Pod

has completed sucessfully.

The inspection script's results (current states) are as follows:

v status is 200

checks................cocee...: 100.00% 14775 out of 14775
data_received..................: 13 MB 2.5 MB/s
data_sent......................: 1.6 MB 325 kB/s
http_req_blocked...............: avg=7.74us min=1.49us med=4.¢
http_req_connecting............: avg=2.18us min=0s med=0s
http_req_duration..............: avg=220.16pys min=84.15us med=21¢
{ expected_response:true }...: avg=220.16pys min=84.15us med=21¢
v http_req_failed................: 0.00% 0 out of 14775
http_req_receiving.............: avg=65.69us min=19.05us med=58.
http_req_sending...............: avg=17.06us min=4.12us med=13.
http_req_tls_handshaking.......: avg=0s min=0s med=0s
http_req_waiting...............: avg=137.4us min=55.79us med=13]
http_regs......................: 14775 2954.803361/s
iteration_duration.............: avg=324.72us min=131.81us med=31<

iterations.....................: 14775 2954.803361/s

VUS .. ¢ttt vttt enooeeneeeeeeeeeennas 1 min=1 max=1

VUS_MAX . e oo eennneeeeeeennnnneees 1 min=1 max=1

Fault definition

® Scenario: Cyber Attack Simulation

4 Description

Given the system's weaknesses, a cyber attack simulation can be impactful. The system
has a single Pod with a 'Never' restart policy, making it vulnerable to downtime if the
Pod fails. Additionally, the lack of redundancy means that any failure in the Pod will
directly affect the service availability. To simulate a cyber attack, we can start by
injecting a 'PodChaos’ fault to kill the Pod, testing the system's ability to maintain the
'example-pod-running' steady state. This will reveal the impact of the Pod's restart
policy and lack of redundancy. Next, we can inject a '"NetworkChaos' fault to introduce
network latency, simulating a DDoS attack, and testing the 'example-service-
availability' steady state. This will reveal how the system handles network disruptions
and whether the service can maintain a high success rate under stress. The sequence of
injecting Pod failure first, followed by network latency, simulates a scenario where an
attacker first disrupts the Pod and then targets the network, maximizing the impact on

the system.

Fault-injection sequence

({'namespace': 'default’, 'pod_name': 'example-pod'}) =
({'namespace': 'default’, 'service_name': 'example-service'})

£ Detailed fault parameters
Detailed parameters of ({'namespace": 'default’, 'pod_name': 'example-pod'})
M

"action" : "pod-kill"

"mode" : "one"

Y "selector" : {

Y "namespaces" : [

0 : "default"

Y "labelSelectors" : {

"app" : "example"

}

Detailed parameters of ({'namespace': 'default’, 'service_name":

'example-service'})

MR
"action" : "delay"
"direction" : "to"
"mode" : "all"
Y "selector" : {
Y "namespaces" : [
0 : "default"
]
¥ "labelSelectors" : {
"app" : "example"
}
}
Y "delay" : {
"latency" : "100ms"
"jitter" : "10ms"
}
}

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

Given the constraints and the nature of the system, we need to design a Chaos
Engineering experiment that fits within a 1-minute timeframe. The experiment will be
divided into three phases: pre-validation, fault-injection, and post-validation. The pre-
validation phase will ensure that the system is in a steady state before any faults are
injected. This involves checking that the Pod is running and the service is available. The

fault-injection phase will simulate a cyber attack by first killing the Pod and then
introducing network latency. This will test the system's resilience to these faults. Finally,
the post-validation phase will verify that the system returns to its steady states after the
faults are removed. Given the 1-minute constraint, a reasonable time allocation would
be 15 seconds for pre-validation, 30 seconds for fault injection, and 15 seconds for post-
validation. This allows enough time to observe the system's behavior during each phase

while staying within the overall time limit.
Total experiment time:

Pre-validation Phase:

Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in its expected steady
states before we proceed with fault injection. Given the constraints, we have 15 seconds
to perform these checks. We have two steady states to verify: 'example-pod-running'
and 'example-service-availability'. To efficiently utilize the time, we will run both unit
tests simultaneously. This approach allows us to maximize the use of the available time
and ensure that both steady states are verified within the 15-second window. The
‘example-pod-running' test will check if the Pod is in the 'Running' state for at least 90%
of the time, while the 'example-service-availability' test will verify that the HTTP
request success rate is at least 99%. By running these tests concurrently, we can quickly

confirm that the system is stable and ready for the fault injection phase.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

In this fault-injection phase, we aim to simulate a cyber attack scenario by injecting two
types of faults: 'PodChaos' and 'NetworkChaos'. The goal is to observe the system's

behavior under these conditions and assess its resilience. Given the 30-second time
constraint for this phase, we need to carefully schedule the fault injections and unit
tests to maximize the insights gained while ensuring the experiment remains within the

allotted time.

The approach is to stagger the fault injections and unit tests to observe the system's
response to each fault type separately. We will start with the 'PodChaos’ fault, which
will kill the Pod, and then follow with the 'NetworkChaos' fault, which introduces

network latency. This sequence simulates an attack where the Pod is disrupted first,

followed by network interference.

The 'PodChaos' fault will be injected at the beginning of the phase, with a short
duration to allow time for the system to react. Immediately after the 'PodChaos' fault,
we will run the unit test for the 'example-pod-running' steady state to verify if the Pod
remains in the 'Running' state despite the fault. This test will help us understand the

impact of the Pod's restart policy and lack of redundancy.

Next, we will inject the 'NetworkChaos' fault, which introduces network latency. After
this fault is injected, we will run the unit test for the 'example-service-availability'
steady state to check if the service can maintain a high success rate under network
stress. This test will reveal how the system handles network disruptions.

By staggering the fault injections and unit tests, we can isolate the effects of each fault
and gain a clearer understanding of the system's resilience. The timing is designed to
ensure that each fault and test fits within the 30-second phase, allowing us to complete
the experiment efficiently.

e \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

o \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

¢ Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:

o Workflow Name:

o Grace Period:

o Duration:

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the 15-second time constraint, we will
conduct unit tests to verify each steady state. The tests will be executed sequentially
due to the short duration, allowing us to focus on one steady state at a time and ensure
accurate validation. The first test will check the 'example-pod-running' steady state,
ensuring the Pod is back in the 'Running' state. The second test will verify the 'example-
service-availability' steady state, ensuring the service is available with a high success
rate. Each test will have a brief grace period to allow the system to stabilize after the
fault injection, followed by a short duration to perform the validation.

o \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The Chaos Engineering experiment is structured into three phases: pre-validation, fault-

injection, and post-validation, all within a 1-minute timeframe.

In the pre-validation phase, which lasts for 15 seconds, two unit tests are executed
simultaneously to verify the system's steady state. The 'example-pod-running' test, with
the workflow name 'pre-unittest-example-pod-running’, and the 'example-service-
availability' test, with the workflow name 'pre-unittest-example-service-availability’,
both start immediately at the beginning of this phase and run for the entire 15 seconds.
These tests ensure that the Pod is running and the service is available before

proceeding to fault injection.

The fault-injection phase spans 30 seconds and involves staggered execution of faults
and unit tests. Initially, the 'PodChaos' fault, with the workflow name 'fault-podchaos’,
is injected at the start of this phase and lasts for 10 seconds. Concurrently, at 10

seconds into the phase, the 'example-pod-running' unit test, with the workflow name

'fault-unittest-example-pod-running', is conducted for 5 seconds to assess the Pod's
resilience. Following this, at 15 seconds, the 'NetworkChaos' fault, with the workflow
name 'fault-networkchaos', is introduced for 10 seconds. Subsequently, at 25 seconds,
the 'example-service-availability' unit test, with the workflow name 'fault-unittest-
example-service-availability', is executed for 5 seconds to evaluate the service's

performance under network stress.

In the post-validation phase, which also lasts 15 seconds, unit tests are performed
sequentially to confirm the system's return to steady states. The 'example-pod-running'
test, with the workflow name 'post-unittest-example-pod-running’, starts immediately
and runs for 7 seconds. Following this, the 'example-service-availability' test, with the
workflow name 'post-unittest-example-service-availability', begins at 7 seconds and
continues for the remaining 8 seconds. This phase ensures that both the Pod and

service have stabilized after the fault injections.

Completed the chaos experiment!

= |Q

Phase 3: Analysis

The Chaos Engineering experiment results indicate a failure in maintaining the steady states

during and after the fault injection phase. Let's analyze the reasons for these failures step by step:

1. Pre-Validation Phase Success: Both pre-unittest-example-pod-running and pre-unittest-
example-service-availability tests passed, confirming that the system was in a steady state
before the fault injection. The Pod was running, and the service was available, as expected.

2. Fault-Unit Test Failures:

o fault-unittest-example-pod-running: This test failed because the Pod was not found
during the fault injection phase. The 'PodChaos’ fault, which involved killing the Pod,
was injected at the start of the fault-injection phase. Since the Pod's restart policy is set
to 'Never!, it did not restart after being killed, leading to a 0% running time during the
test. This directly correlates with the identified issue #0 (Pod Restart Policy) and issue #1
(Single Pod Deployment) in the system configuration.

o fault-unittest-example-service-availability: This test also failed due to the service being
unavailable. The 'PodChaos' fault resulted in the Pod being killed, and since there was
no redundancy (issue #1), the service had no backend Pod to route traffic to, leading to
connection refusals. The subsequent 'NetworkChaos' fault, which introduced network
latency, further compounded the issue by simulating a network disruption, but the

primary cause of failure was the absence of a running Pod.

3. Post-Validation Phase Failures:

o post-unittest-example-pod-running: The Pod was still not found, as indicated by the 404
error. This is expected because the Pod was not configured to restart automatically after
being killed, and no manual intervention or controller (like a Deployment) was in place
to recreate it.

o post-unittest-example-service-availability: The service remained unavailable, as the
Pod was not running, leading to continued connection refusals. This highlights the
critical impact of having a single Pod without redundancy or a restart mechanism.

Insights and Recommendations:

¢ Pod Restart Policy: Change the Pod's restart policy from 'Never' to 'Always' or 'OnFailure' to
ensure it restarts automatically after a failure.

e Redundancy and Scalability: Use a Deployment or ReplicaSet instead of a single Pod to
manage the Nginx container. This will provide redundancy and ensure that if one Pod fails,
others can take over, maintaining service availability.

e Service Resilience: Ensure that the Service is backed by multiple Pods to handle failures and
maintain availability. This can be achieved by scaling the Deployment to have multiple
replicas.

¢ Monitoring and Alerts: Implement monitoring and alerting mechanisms to detect and

respond to Pod failures promptly, ensuring minimal downtime.

By addressing these issues, the system can improve its resilience and maintain steady states even

during fault scenarios.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the system, | will replace the existing Pod manifest with a
Deployment manifest. This will allow for automatic restarts and scaling of the Nginx
container, providing redundancy and ensuring that the service remains available even if one
Pod fails. The Deployment will manage the Pods and ensure that the desired number of

replicas are running at all times.
Modification_type: replace
File name: nginx/pod.yaml

Replace the Pod manifest with a Deployment manifest to provide redundancy and
automatic recovery. The Deployment will manage multiple replicas of the Pod, ensuring that

the service remains available even if one Pod fails.

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
labels:
app: example
spec:
replicas: 3
selector:
matchlLabels:
app: example
template:
metadata:
labels:
app: example
spec:
containers:
- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 180ns
- deployment.apps/example-deployment configured
- service/example-service configured
Waiting deployments to stabilize...
- deployment/example-deployment is ready.
Deployments stabilized in 4.105 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RES
default pod/example-deployment-6977c97c99-7dcbd 1/1 Running
default pod/example-deployment-6977c97c99-7x9gb 1/1 Running
default pod/example-deployment-6977c97c99-gbhxgz 1/1 Running 0
NAMESPACE NAME CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.10.57 <none>
NAMESPACE NAME READY UP-TO-DATE AVAIL,
default deployment.apps/example-deployment 3/3 3 3
NAMESPACE NAME DESIRED CURREI
default replicaset.apps/example-deployment-65968c46f 0 0
default replicaset.apps/example-deployment-6977c97c99 3 3

The fault-scope adjustment Completed!

Current fault injection settings:

Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["default"],

"labelSelectors": {{"app": "example"}}}}}}

The current K8s manifests have changed from a single Pod to a Deployment with 3 replicas. This
means that the system now has redundancy, and killing one Pod will not have the same impact as
before. However, the original goal of the chaos experiment was to test the system's resilience to a
Pod being killed, so we should maintain the same label selector to target one of the Pods in the

Deployment. The namespace remains the same, so no changes are needed there.
Next fault injection scope:

MR
Y "namespaces" : [
0 : "default"
]
Y "labelSelectors" : {

"app" : "example"

}

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "delay", "direction": "to", "mode": "all", "selector": {{"namespaces":

["default"], "labelSelectors": {{"app": "example"}}}}, "delay": {{"latency": "100ms", "jitter":
"10ms"}}}}

The previous K8s manifests targeted a single Pod with the label 'app: example'. The current
manifests have changed to a Deployment with 3 replicas, but the label 'app: example' remains
the same. Therefore, the scope of the fault injection should still target Pods with the label 'app:
example'in the 'default' namespace. The change from a single Pod to a Deployment with
multiple replicas does not require a change in the label selector, as the label remains consistent.
The fault injection will now affect all Pods created by the Deployment that match the label, which

aligns with the original goal of testing the system's resilience under network chaos conditions.

Next fault injection scope:

{

namespaces" : [

0 : "default"

1
Y "labelSelectors" : {

"app" : "example"

Adjusted unittest

The previous unit test targets a Pod resource named 'example-pod". In the reconfigured

manifests, the Pod has been replaced by a Deployment named 'example-deployment' with 3

replicas. This change means that the unit test should now target the Deployment rather than a

single Pod, and it should verify that all Pods created by the Deployment maintain the steady state.

The test should be updated to check the status of all Pods managed by the Deployment and

ensure that the running percentage meets the threshold for the entire set of Pods. The test should

iterate over all Pods with the label 'app: example' and calculate the running percentage for the

entire group.

0s

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, namespace, label_selector, duration):
super () .__init__()
self.namespace = namespace
self.label_selector = label_selector

self.duration = duration

(self):
running_count = 0
total_pods = 0

Check the pod status every second for the specified duration

range (self.duration):

pods = self.vl.list_namespaced_pod(namespace=self.namespace

total_pods = len(pods)

running_pods = [pod pod pods pod.status.phase ==
running_count += len(running_pods)
¢ {len(running_pods) } {total_pod
client.exceptions.ApiException e:

(
time.sleep(1)

Calculate the running percentage

running_percentage = (running_count / (self.duration * total_pods))

¢ {running_count} {self.duration * tu
¢ {running_percentage}%")
Assert that the running percentage meets the threshold

running_percentage >= 90, {running_

name ==

parser = argparse.ArgumentParser (description=

parser.add_argument(, type=int, default=5, help=

args = parser.parse_args()

Create an instance of the test class

test = TestDeploymentRunningState(namespace= , label_selector=
Run the test

test.test_deployment_running_state()

Adjusted unittest

The target of the unit test is the HTTP service provided by the Kubernetes Service resource, which
remains unchanged in the reconfigured manifests. The Service still points to the same
application, now managed by a Deployment instead of a standalone Pod. The reconfiguration
introduces redundancy by scaling the application to 3 replicas, but this does not affect the
endpoint or the HTTP request being tested. The unit test checks the availability and success rate
of HTTP requests to the service, which should still be valid as the service endpoint and port
remain the same. Therefore, the unit test does not require any modification.

Completed the chaos experiment!

Choose namespace]

All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml &

The Chaos Engineering cycle involves a structured approach to testing the resilience of a
Kubernetes-based system, specifically focusing on an Nginx web server setup. The cycle
begins with understanding the user inputs, which include Kubernetes manifests for a Pod
and a Service. The Pod manifest defines a single Nginx container with a 'Never' restart
policy, while the Service manifest exposes this Pod on port 80. Identified weaknesses
include the Pod's restart policy and the lack of redundancy due to a single Pod deployment.

The hypothesis for the experiment is that the system should maintain its steady states even
when faults are injected. Two steady states are defined: the Pod should be running at least
90% of the time, and the Service should have an HTTP request success rate of at least 99%.

These are tested using Python scripts and K6 JavaScript, respectively.

The fault scenario simulates a cyber attack using Chaos Mesh, injecting 'PodChaos' to kill the
Pod and 'NetworkChaos' to introduce network latency. The experiment is divided into three

phases: pre-validation, fault-injection, and post-validation, all within a 1-minute timeframe.

Pre-validation ensures the system is stable, fault-injection tests resilience under attack, and

post-validation checks recovery.

Initially, the experiment fails due to the Pod not restarting after being killed and the Service
becoming unavailable. Analysis reveals the need for a Deployment to manage multiple Pod
replicas, providing redundancy and automatic recovery. After modifying the Pod manifest to
a Deployment with three replicas, the experiment is rerun successfully, with all unit tests

passing, confirming the system's improved resilience.

Download output (.zip)

