(] <

ChaosEater demo
Live Q&A Your instructions for Chaos Engineering:
The Chaos-Engineering experiment must be completed within 1 minute.
Settings A
Model (c

Phase 0: Preprocessing

google/gemini-1.5-pro-latest Vv

Cleaning the cluster ... Done
Token
©
S kubectl delete --all --context kind-chaos-eater-cluster -n chaos
. No resources found
Cluster selection
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
kind-chaos-eater-cluster v $ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch

No resources found

$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat
Clean the cluster
No resources found

$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos
@ Clean the cluster before run

@ Clean the cluster after run

. New deployment $ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1

pod deleted
Max # steady states service deleted
3 - o+
K8s manifest(s) to be deployed:
Max retries
3 - +

apiVersion: vl
kind: Pod

42 = | * metadata:

name: example-pod
labels:

app: example

Seed (GPTs only)

Usage: spec:
restartPolicy: Never

Total billing: $0.02 .
containers:

Total tokens: 3.497k
Input tokens: 2.874k
Ouput tokens: 0.623k

Command history

kubectl apply -f v
sandbox/cycle_20241128 _081806/hyp
othesis/k8s_example-pod-
count_pod.yaml --context kind-chaos-

eater-cluster -n chaos-eater

lenihart!l lnae kQcavamnla_nad_canint. v

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

apiVersion: vl
kind: Service
metadata:

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

ports:
- protocol: TCP
port: 80
targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded in 160ns
- pod/example-pod created
- service/example-service created
Waiting deployments to stabilize...
- pods is ready.
Deployments stabilized in 3.086 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME CLUSTER-IP EXTERNAL-IP
default service/example-service ClusterIP 10.96.31.94 <none>

Summary of each manifest:

e This manifest defines a single Pod in Kubernetes.
¢ ThePod'snameis
e Ithasalabel , which can be used to select and manage it.

e The means that if the container inside the pod fails, it won't be

automatically restarted.
e The Pod contains one container named
e This container uses the image, which is a web server.

e The container exposes port 80, which is the standard HTTP port.

e This manifest defines a Kubernetes Service named "example-service".

e Services act as a stable entry point to a set of Pods, which are the smallest deployable units
in Kubernetes.

e This service targets pods with the label "app: example".
e Itexposes port 80 on the service, which maps to port 80 on the target pods.

¢ This allows external traffic to access the application running on the pods through the service.

Resiliency issuses/weaknesses in the manifests:

Issue #0: No Redundancy for Pod

e details: If the pod crashes or the node it's running on fails, the application becomes
unavailable.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: kind: Pod
Issue #1: No Restart Policy for Pod

e details: The pod won't be restarted if the container inside fails. This leads to application

downtime.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: restartPolicy: Never
Issue #2: No Health Checks Defined

o details: The service doesn't check the health of the pod. It might route traffic to an unhealthy
pod, leading to errors.

e manifests having the issues: ['nginx/service.yaml’, 'nginx/pod.yaml']
e problematic config: Absence of livenessProbe or readinessProbe in pod spec and absence of

health checks at the service level.
Application of the manifests:
Thoughts:

The filenames (pod.yaml, service.yaml) and the use of the image suggest a web server
application. The service exposes port 80, further reinforcing this assumption.

Assumed application:

This application provides a basic web server. It uses Nginx to serve static content or act as a
reverse proxy to other services. The service provides a stable endpoint for accessing the Nginx

pod, even if the pod is restarted or rescheduled.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute. (This instruction

should be considered in the experiment phase.)

Phase 1: Hypothesis

Steady-state definition

Steady state #1: example-pod-count 2

® Description

The pod 'example-pod' is defined with . This means if the pod's
container crashes, it won't be restarted automatically, leading to application downtime.
Therefore, the number of running pods corresponding to is an important
steady state to monitor. We'll name this steady state and target it at
the manifest.

@, Current state inspection

I'll use the Kubernetes API (Python) to check the number of running pods with the name

‘example-pod". The script will check the pod count every second for a specified

duration. Since the restartPolicy is 'Never', we expect the pod count to remain at 1
unless an external event terminates the pod. I'll use a short duration (5 seconds) for the
check, as a longer duration isn't necessary for this simple scenario.

tool: duration:

Inspection script (Python)

kubernetes
time
os
kubernetes client, config

argparse

parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

DURATION = min(args.duration, 5) # Limit duration to a maximum of !

Load Kubernetes configuration based on the environment
os.getenv (E
config.load_incluster_config()

config.load_kube_config()
vl = client.CoreV1Api()

results = []
i range (DURATION) :

pods = v1.list_namespaced_pod(namespace= , Llabel_sel
pod_count = len(pods.items)
results.append(pod_count)

({i+1} {pod_count}")
time.sleep(1)

Exception e:

({e}™)
results.append(-1) # Append -1 to indicate an error
time.sleep (1)

()

i, count enumerate(results):
({i+1}: { count == -1 count}'")
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Summary:

> Threshold

The steady state 'example-pod-count' represents the number of running pods with the
label 'app=example" The current state shows that there is consistently 1 pod running.
Since the restart policy is 'Never', we need to ensure that at least 1 pod is running. Given
there is no redundancy, the threshold should be exactly 1. We'll add a small tolerance to
account for potential delays in reporting or very brief restarts, but the core requirement

is 1 pod. Since the experiment duration is short (1 minute), we'll require this condition

to be true for the entire duration of the checks (5 seconds in the provided script).

example-pod-count == 1 for 100% of the 5-second monitoring period

B Unit test to validate the steady state

To add the threshold assertion, | will modify the provided inspection script to include a
check within the loop. This check will verify that the number of 'example-pod' pods is
equal to 1. After the loop, a summary will be printed, and an assertion will be made to
ensure that the threshold was met for the entire duration. The threshold will be
represented as a percentage (100%) to ensure that the condition (pod count == 1) holds

true for all checks.

‘t necessary libraries

kubernetes

time

os

ibernetes client, config

argparse

1ittest_base K8sAPIBase

(K8sAPIBase) :

(self):

Define the namespace and label selector for the pod

namespace =
label_selector =

Define the expected pod count and the threshold percentage
expected_pod_count = 1
threshold_percentage = 100 # 100% of the time

Initialize argparse

parser = argparse.ArgumentParser ()

parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

duration = args.duration

Initialize results list to store pod counts

results = []

Loop for the specified duration, checking the pod count every seco

i range(duration):

List pods matching the label selector in the specified nam
pods = self.vl.list_namespaced_pod(namespace=namespace, labe
pod_count = len(pods.items)
results.append(pod_count)

({i+1} {pod_count}")
time.sleep (1)

Exception e:

({e}™)
results.append(-1) # Append -1 to indicate an error
time.sleep (1)

Print a summary of the results

()

successful_checks = 0

for i, count in enumerate(results):
if count == expected_pod_count:
successful_checks += 1
print(f"Second {i+1}: {'Error' if count == -1 else count}")

Calculate the percentage of successful checks

success_percentage = (successful_checks / len(results)) * 100 if len

Assert that the success percentage meets the threshold
print(f"Success Percentage: {success_percentage:.2f}% over {duration
assert success_percentage >= threshold_percentage, f'"The example-pod

n():

it = SteadyStateCheck()
it.test_example_pod_count()
ime == '_ main__"'":

n()
Pod unittestexample-pod-countmod@-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
main()
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
test.test_example_pod_count()
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
assert success_percentage >= threshold_percentage, f'"The example

AssertionError: The example-pod-count did not meet the threshold of

Summary:

Success Percentage: 0.00% over 0 seconds

The error "AssertionError: The example-pod-count did not meet the threshold of 100%
for the entire duration. Only achieved 0.00%" and the summary showing 0 seconds
indicate that the duration is not being properly passed or handled. The likely culprit is
the missing initialization of duration beforethe argparse setup. Movingthe duration

= args.duration line after parsing the arguments should resolve the issue.

‘mport necessary libraries

ort kubernetes

ort time

ort os

m kubernetes import client, config
ort argparse

m unittest_base import K8sAPIBase

ss SteadyStateCheck (K8sAPIBase):

def test_example_pod_count(self):
Define the namespace and label selector for the pod
namespace = 'default"
label_selector = "app=example"

Define the expected pod count and the threshold percentage
expected_pod_count = 1
threshold_percentage = 100 # 100% of the time

Initialize argparse

parser = argparse.ArgumentParser ()

parser.add_argument('--duration', type=int, default=5, help='Dur
args = parser.parse_args()

duration = args.duration # Initialize duration after parsing arg

Initialize results list to store pod counts
results = []

Loop for the specified duration, checking the pod count every
for i in range(duration):
try:
List pods matching the label selector in the specified
pods = self.vl.list_namespaced_pod(namespace=namespace,
pod_count = len(pods.items)
results.append(pod_count)
print(f"Second {i+1}: Number of example pods: {pod_count
time.sleep(1)
except Exception as e:
print(f"Error checking pod status: {e}")
results.append(-1) # Append -1 to indicate an error
time.sleep (1)

Print a summary of the results
print("\nSummary:")
successful_checks = 0
for i, count in enumerate(results):
if count == expected_pod_count:
successful_checks += 1

print(f"Second {i+1}: {'Error' if count == -1 else count}")

Calculate the percentage of successful checks
success_percentage = (successful_checks / len(results)) * 100 if

Assert that the success percentage meets the threshold
print(f"Success Percentage: {success_percentage:.2f}% over {dura

assert success_percentage >= threshold_percentage, f'The example

main():
test = SteadyStateCheck()
test.test_example_pod_count()

__name__ == " _main__"':

main()

Pod unittestexample-pod-countmodi-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte

Summary:
Success Percentage: 0.00% over 0 seconds
main()
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
test.test_example_pod_count()
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
assert success_percentage >= threshold_percentage, f''The example

AssertionError: The example-pod-count did not meet the threshold of

The previous error was fixed by ensuring the duration is initialized correctly. However,
the current error, "AssertionError: The example-pod-count did not meet the threshold
of 100% for the entire duration. Only achieved 0.00%", suggests that the pod count
check is failing. This could be due to the pod not being ready or available immediately
after deployment. To address this, we'll add a check within the loop to wait for the pod
to become ready before counting it towards the success percentage. We'll use the pod's
status conditions to determine readiness.

Import necessary libraries

import kubernetes

import time

import os

from kubernetes import client, config
import argparse

from unittest_base import K8sAPIBase

class SteadyStateCheck (K8sAPIBase):
def test_example_pod_count(self):
Define the namespace and label selector for the pod
namespace = 'default"

label_selector = "app=example"

Define the expected pod count and the threshold percentage
expected_pod_count = 1
threshold_percentage = 100 # 100% of the time

Initialize argparse

parser = argparse.ArgumentParser ()
parser.add_argument('--duration', type=int, default=5, help-
args = parser.parse_args()

duration = args.duration

Initialize results list to store pod counts

results = []

Loop for the specified duration, checking the pod count e\
for i in range(duration):
try:
List pods matching the label selector in the speci
pods = self.vl.list_namespaced_pod(namespace=namesp:
pod_count = 0 # Initialize pod_count for this iterc
for pod in pods.items:
Check if the pod is in the 'Running' phase anc
if pod.status.phase == "Running'" and any(condit-
pod_count += 1
results.append(pod_count)
print(f"Second {i+1}: Number of example pods: {pod_c
time.sleep (1)
except Exception as e:
print(f"Error checking pod status: {e}")
results.append(-1) # Append -1 to indicate an errot
time.sleep (1)

Print a summary of the results
print("\nSummary:")
successful_checks = 0
for i, count in enumerate(results):
if count == expected_pod_count:
successful_checks += 1

({i+1}: { count == -1 count

Calculate the percentage of successful checks

success_percentage = (successful_checks / len(results)) * 1¢

Assert that the success percentage meets the threshold
({success_percentage:.2f} {

success_percentage >= threshold_percentage,

O:
test = SteadyStateCheck()
test.test_example_pod_count()

__hame__ ==
main()
Pod has failed.
Summary:

Traceback (most recent call last):
File
main()
File
test.test_example_pod_count()
File
assert success_percentage >= threshold_percentage, f
AssertionError: The example-pod-count did not meet the threshold of
Success Percentage: 0.00% over 0 seconds

The previous fix attempted to check pod readiness. However, the error persists,
indicating the pod might still not be ready within the test's timeframe. The duration
being 0 seconds in the error message suggests an issue with how duration is handled or
the loop not running at all. While the previous fix correctly initialized after
parsing arguments, the error output suggests the is still 0. This could be due
to an argparse issue or the argument not being passed correctly. To be sure the loop
runs as expected, we'll add a default value to the duration argument in argparse and
print the duration before the loop starts. This will help diagnose if the duration is being
set correctly.

Import necessary libraries

kubernetes
time
os
kubernetes client, config
argparse
unittest_base K8sAPIBase
(K8sAPIBase) :
(self):

Define the namespace and label selector for the pod
namespace =

label_selector =
Define the expected pod count and the threshold percentage
expected_pod_count = 1

threshold_percentage = 100 # 100% of the time

Initialize argparse

parser = argparse.ArgumentParser ()
parser.add_argument('--duration', type=int, default=5, help-
args = parser.parse_args()

duration = args.duration

print(f"Running test for {duration} seconds") # Print durati

Initialize results list to store pod counts
results = []

Loop for the specified duration, checking the pod count e\
for i in range(duration):
try:
List pods matching the label selector in the speci
pods = self.vl.list_namespaced_pod(namespace=namesp:
pod_count = 0
for pod in pods.items:
if pod.status.phase == "Running'" and any(condit-
pod_count += 1
results.append(pod_count)
print(f"Second {i+1}: Number of example pods: {pod_c
time.sleep (1)
except Exception as e:
print(f"Error checking pod status: {e}")
results.append(-1) # Append -1 to indicate an errot

time.sleep (1)

Print a summary of the results
print("\nSummary:")
successful_checks = 0
for i, count in enumerate(results):
if count == expected_pod_count:
successful_checks += 1
print(f"Second {i+1}: {'Error' if count == -1 else count

Calculate the percentage of successful checks

success_percentage = (successful_checks / len(results)) * 1€

Assert that the success percentage meets the threshold
print(f"Success Percentage: {success_percentage:.2f}% over |

assert success_percentage >= threshold_percentage, f'The ex:

def main():
test = SteadyStateCheck()
test.test_example_pod_count()

if __name__ == '__main__"':

main()

Pod unittestexample-pod-countmod3-pod has failed.

Traceback (most recent call last):
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
main()
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
test.test_example_pod_count()
File "/chaos-eater/sandbox/cycle_20241128_081806/hypothesis/unitte
assert success_percentage >= threshold_percentage, f''The example
AssertionError: The example-pod-count did not meet the threshold of
Running test for 0 seconds

Summary:

Success Percentage: 0.00% over 0 seconds

AssertionError: MAX_MOD_COUNT_EXCEEDED: 3

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, 1in ma
output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state_
unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/1llm_agents/st
assert mod_count < max_mod_loop, f"MAX_MOD_COUNT_EXCEEDED: {max_mod_Tloop}"

