1=

Q)

Your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following
options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.htmI[?id=<ID> Replace <ID> with an

available ID: [e3fef6ac-1896-4ce8-bd69-b798f85c6e0b , 3395a43e-2d88-40de-b95f-

€00e1502085b , 510a0d7e-8e83-4193-b483-e27e09ddc34d , 808a2del-laaa-4c25-a9b9-
6612e8f292a38 , 819elfbf-8b7e-4f6d-811f-693534916a8b , 837abl41-399e-4clf-9abc-
bace40296bac , a®a4f044-b040-410d-8ead-4deb446aec7e , d3588630-ad8e-49df-bbd7-

3167f7efb246 , zzz4f044-b040-410d-8ead-4ded446aecTe |

4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with

an available tag: [magic , action, blue, brown, black, sport, formal, red,

green, skin, geek]

6. http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 0: Preprocessing

Cleaning the cluster kind-chaos-eater-cluster ... Done

$ kubectl delete workflow --all --context kind-chaos-eater-cluster -n chaos
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch:
No resources found

[T PN POy, | AT mn A~ -~11 P B S T "R DR B P S O, NPT S P A Ty

>

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

$ kubectl delete services —-all --context kind-chaos-eater-cluster -n chaos
No resources found

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Namespace
metadata:

name: sock-shop

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts
labels:
name: carts
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: carts
template:
metadata:
labels:
name: carts
spec:
containers:
- name: carts
image: weaveworksdemos/carts:0.4.8
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 200Mi
ports:

- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts
annotations:
prometheus.io/scrape:
labels:
name: carts
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: carts

apiVersion: apps/vl
kind: Deployment
metadata:

name: carts-db

labels:
name: carts-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: carts-db
template:
metadata:

labels:
name: carts-db

spec:

containers:

- name: carts-db
image: mongo
ports:

— name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID

readOnlyRootFilesystem:

volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory

nodeSelector:

true

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: carts-db
labels:
name: carts-db

namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:

name: carts-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: catalogue
labels:
name: catalogue
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue
template:
metadata:

labels:
name: catalogue

spec:

containers:

- name: catalogue
image: weaveworksdemos/catalogue:0.3.5
command: [1
args:

- —port=80
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 10O0Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001

capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue
annotations:
prometheus.io/scrape:
labels:
name: catalogue
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:
name: catalogue

apiVersion: apps/vl
kind: Deployment
metadata:

name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: catalogue-db
template:
metadata:
labels:
name: catalogue-db
spec:
containers:
- name: catalogue-db
image: weaveworksdemos/catalogue-db:0.3.0
env:
- name: MYSQL_ROOT_PASSWORD
value: fake_password
- name: MYSQL_DATABASE
value: socksdb
ports:
- name: mysql
containerPort: 3306
nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: catalogue-db
labels:
name: catalogue-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 3306
targetPort: 3306
selector:
name: catalogue-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 1
selector:
matchLabels:
name: front-end
template:
metadata:
labels:
name: front-end
spec:
containers:
- name: front-end

image: weaveworksdemos/front-end:0.3.12

resources:
limits:
cpu: 300m
memory: 10QOMi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value:
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /
port: 8079
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:
httpGet:
path: /

port: 8079

initialDelaySeconds:

periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os:

apiVersion: vl
kind: Service
metadata:

name: front-end

annotations:

prometheus.io/scrape:
labels:
name: front-end
namespace: sock-shop
spec:

type: NodePort

ports:

- port: 80
targetPort: 8079
nodePort: 30001

selector:

name: front-end

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders
labels:
name: orders
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: orders
template:
metadata:
labels:
name: orders
spec:

30

Tinux

containers:
- name: orders
image: weaveworksdemos/orders:0.4.7
env:
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 500m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders
annotations:
prometheus.io/scrape:
labels:
name: orders
namespace: sock-shop
spec:

ports:

the port that this service should serve on
- port: 80

targetPort: 80
selector:

name: orders

apiVersion: apps/vl
kind: Deployment
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: orders-db
template:
metadata:

labels:
name: orders-db

spec:

containers:

- name: orders-db
image: mongo
ports:

- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:

- name: tmp-volume

emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: orders-db
labels:
name: orders-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:
name: orders-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: payment
labels:
name: payment
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: payment
template:
metadata:
labels:
name: payment
spec:
containers:
- name: payment
image: weaveworksdemos/payment:0.4.3

resources:

limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 99m
memory: 10OMi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: payment
annotations:
prometheus.io/scrape:
labels:
name: payment
namespace: sock-shop
spec:
ports:
the port that this service should serve on

- port: 80
targetPort: 80
selector:

name: payment

apiVersion: apps/vl
kind: Deployment
metadata:
name: queue-master
labels:
name: queue-master
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: queue-master
template:
metadata:

labels:
name: queue-master

spec:

containers:

- name: queue-master
image: weaveworksdemos/queue-master:0.3.1
env:

- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: queue-master
annotations:
prometheus.io/scrape:
labels:
name: queue-master
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: queue-master

apiVersion: apps/vl
kind: Deployment
metadata:
name: rabbitmq
labels:
name: rabbitmg
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: rabbitmg
template:
metadata:
labels:
name: rabbitmg
annotations:
prometheus.io/scrape:
spec:
containers:
- name: rabbitmqg
image: rabbitmq:3.6.8-management
ports:
- containerPort: 15672
name: management
- containerPort: 5672
name: rabbitmqg

securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID
- DAC_OVERRIDE
readOnlyRootFilesystem: true
- name: rabbitmg-exporter
image: kbudde/rabbitmg-exporter
ports:
- containerPort: 9090
name: exporter
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: rabbitmg
annotations:
prometheus.io/scrape:
prometheus.io/port:
labels:
name: rabbitmg
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 5672
name: rabbitmqg
targetPort: 5672
- port: 9090
name: exporter
targetPort: exporter
protocol: TCP
selector:
name: rabbitmg

apiVersion: apps/vl
kind: Deployment
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: session-db
template:
metadata:

labels:
name: session-db

annotations:
prometheus.io.scrape:

spec:

containers:

- name: session-db
image: redis:alpine
ports:

- name: redis
containerPort: 6379
securityContext:
capabilities:
drop:
- all
add:
— CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: session-db
labels:
name: session-db
namespace: sock-shop

spec:
ports:
the port that this service should serve on
- port: 6379
targetPort: 6379
selector:

name: session-db

apiVersion: apps/vl
kind: Deployment
metadata:
name: shipping
labels:
name: shipping
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: shipping
template:
metadata:
labels:
name: shipping
spec:
containers:
- name: shipping
image: weaveworksdemos/shipping:0.4.8
env:
- name: ZIPKIN
value: zipkin.jaeger.svc.cluster.local
- name: JAVA_OPTS
value: -Xms64m -Xmx128m -XX:+UseG1lGC -Djava.security.egd=file:/d

resources:
limits:
cpu: 300m
memory: 500Mi
requests:
cpu: 100m

memory: 300Mi
ports:
- containerPort: 80
securityContext:
runAsNonRoot: true

runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: shipping
annotations:
prometheus.io/scrape:
labels:
name: shipping
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: shipping

apiVersion: apps/vl
kind: Deployment
metadata:
name: user
labels:
name: user

namespace: sock-shop

spec:
replicas: 2
selector:
matchlLabels:
name: user
template:
metadata:
labels:
name: user
spec:
containers:
- name: user

image: weaveworksdemos/user:0.4.7

resources:
limits:
cpu: 300m
memory: 200Mi
requests:
cpu: 100m

memory: 100Mi
ports:
- containerPort: 80
env:
-~ name: mongo
value: user-db:27017
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
add:
- NET_BIND_SERVICE
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 300
periodSeconds: 3

readinessProbe:

httpGet:
path: /health
port: 80

initialDelaySeconds: 180

periodSeconds: 3

nodeSelector:
beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user
annotations:
prometheus.io/scrape:
labels:
name: user
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 80
targetPort: 80
selector:

name: user

apiVersion: apps/vl
kind: Deployment
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchLabels:
name: user-db
template:
metadata:
labels:
name: user-db
spec:
containers:
- name: user-db

image: weaveworksdemos/user-db:0.3.0

ports:
- name: mongo
containerPort: 27017
securityContext:
capabilities:
drop:
- all
add:
-~ CHOWN
- SETGID
- SETUID
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

apiVersion: vl
kind: Service
metadata:
name: user-db
labels:
name: user-db
namespace: sock-shop
spec:
ports:
the port that this service should serve on
- port: 27017
targetPort: 27017
selector:

name: user-db

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel
NAMESPACE NAME READY STATUS RESTARTS
sock-shop pod/carts-6b76bb656d-8mhk4 1/1 Running 0]
sock-shop pod/carts-6b76bb656d-xjmxg 1/1 Running 0

sock-shop pod/carts-db-55f5544bd-9wqcq 1/1
sock-shop pod/carts-db-55f5544bd-1v4mn 1/1
sock-shop pod/catalogue-7c584b65cf-hph6b 1/1
sock-shop pod/catalogue-7c584b65cf-phgjd 1/1
sock-shop pod/catalogue-db-85c6bf79db-jpnrj 1/1
sock-shop pod/catalogue-db-85c6bf79db-175fv 1/1
sock-shop pod/front- ~7f9fb85686-nrs6p 1/1
sock-shop pod/orders-7449dbbd44-7s255 1/1
sock-shop pod/orders-7449dbbd44-cghtv 1/1
sock-shop pod/orders-db-5b6bd64894-ktp54 1/1
sock-shop pod/orders-db-5b6bd64894-tszlb 1/1
sock-shop pod/payment-6f6578b5bd-2cx94 1/1
sock-shop pod/payment-6f6578b5bd-r44tk 1/1
sock-shop pod/queue-master-768f9d697c-g4még 1/1
sock-shop pod/queue-master-768f9d697c-mqwkl 1/1
sock-s. .. 8m21ls

sock-shop deployment.apps/user 2/2
sock-shop deployment.apps/user-db 2/2
NAMESPACE NAME

sock-shop replicaset.apps/carts-6b76bb656d
sock-shop replicaset.apps/carts-db-55f5544bd
sock-shop replicaset.apps/catalogue-7c584b65cf
sock-shop replicaset.apps/catalogue-db-85c6bf79db
sock-shop replicaset.apps/front- -7f9fb85686
sock-shop replicaset.apps/orders-7449dbbd44
sock-shop replicaset.apps/orders-db-5b6bd64894
sock-shop replicaset.apps/payment-6f6578b5bd
sock-shop replicaset.apps/queue-master-768f9d697c
sock-shop replicaset.apps/rabbitmgq-557cd854
sock-shop replicaset.apps/session-db-6bdf8d69dd
sock-shop replicaset.apps/shipping-54d8db4bfb
sock-shop replicaset.apps/user-697597c56d
sock-shop replicaset.apps/user-db-55664575c6

Summary of each manifest:

¢ This manifest defines a Kubernetes Namespace.

e The Namespace is named 'sock-shop".

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

DESIRED

N N NN N NN DNMNDNDNBEBEDNDNDDNDNDNDN

© © © © © © © © © © O O o o o

CURRENT

N N NN N NN DNMNDNDEBERDNDNDDNDNDNDN

e Namespaces are used to organize and manage resources within a Kubernetes cluster.

e This manifest defines a Deployment in Kubernetes.

D

N N NN N NN DNMNMDNERERPDNMNMNDNDNDNDNDN

The Deployment is named 'carts' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'carts' application running.
The Deployment uses the Docker image 'weaveworksdemos/carts:0.4.8".

Environment variables are set for Java options to optimize memory usage and disable certain

features.

Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,
and a minimum of 100m CPU and 200Mi memory.

The application listens on port 80 within the container.

Security context is configured to run the container as a non-root user with specific
capabilities.

The root filesystem is set to be read-only for security purposes.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The Service is named 'carts".

Itis annotated to enable Prometheus scraping with 'prometheus.io/scrape: true'.
The Service is labeled with 'name: carts'.

Itis deployed in the 'sock-shop' namespace.

The Service exposes port 80 and directs traffic to the same port on the selected pods.

It uses a selector to target pods with the label 'name: carts".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'carts-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'carts-db' pod running.

The pods are selected based on the label 'name: carts-db".

Each pod runs a single container using the 'mongo' image.

The container exposes port 27017, which is commonly used by MongoDB.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'carts-db".

Itis located in the 'sock-shop' namespace.

The Service is associated with pods that have the label 'name: carts-db".

It exposes port 27017, which is also the target port for the pods.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'catalogue' application running.
The Deployment uses the Docker image 'weaveworksdemos/catalogue:0.3.5".

The application runs with the command '/app' and listens on port 80.

Resource limits are set to 200m CPU and 200Mi memory, with requests for 100m CPU and
100Mi memory.

The container is configured to run as a non-root user with user ID 10001.

Security settings include dropping all capabilities except 'NET_BIND_SERVICE' and using a
read-only root filesystem.

Liveness and readiness probes are configured to check the '/health' endpoint on port 80,

with specific initial delays and periods.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The service is named 'catalogue’.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: catalogue'.

It is deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: catalogue' to route traffic to.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'catalogue-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas (instances) of the 'catalogue-db' pod running.
The pods are selected based on the label 'name: catalogue-db'.

Each pod runs a container named 'catalogue-db' using the image

'weaveworksdemos/catalogue-db:0.3.0".

The container is configured with environment variables for 'MYSQL_ROOT_PASSWORD' and
'MYSQL_DATABASE".

The container exposes port 3306, which is typically used for MySQL databases.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.
The Service is named 'catalogue-db".

Itis located in the 'sock-shop' namespace.
The Service is configured to expose port 3306.
It targets port 3306 on the pods it selects.

The Service uses a selector to match pods with the label 'name: catalogue-db'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'front-end' and is located in the 'sock-shop' namespace.
It specifies that there should be 1 replica of the front-end application running.

The Deployment uses a selector to match pods with the label 'name: front-end".
The pod template includes a single container named 'front-end".

The container uses the image 'weaveworksdemos/front-end:0.3.12".

Resource limits are set for the container: 300m CPU and 1000Mi memory.

Resource requests are set for the container: 100m CPU and 300Mi memory.

The container exposes port 8079.

An environment variable 'SESSION_REDIS' is set to 'true".

Security context is configured to run the container as a non-root user with user 1D 10001.
All Linux capabilities are dropped, and the root filesystem is set to read-only.

A liveness probe is configured to check the root path '/' on port 8079, with an initial delay of

300 seconds and a period of 3 seconds.

A readiness probe is also configured to check the root path '/' on port 8079, with an initial
delay of 30 seconds and a period of 3 seconds.

The node selector ensures that the pod runs on nodes with the operating system labeled as

Linux.

This manifest defines a Kubernetes Service.
The Service is named 'front-end".

Itis located in the 'sock-shop' namespace.

The Service type is 'NodePort', which exposes the service on each Node's IP at a static port.
It listens on port 80 and forwards traffic to target port 8079 on the pods.

The nodePort is set to 30001, which is the port on each node where the service can be
accessed externally.

The Service is configured to select pods with the label 'name: front-end".

An annotation is included to enable Prometheus scraping for monitoring purposes.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'orders' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'orders' application running.
The Deployment uses the Docker image 'weaveworksdemos/orders:0.4.7".

Environment variables are set for Java options to optimize memory usage and disable certain

features.

Resource limits and requests are defined, with a maximum of 500m CPU and 500Mi memory,
and a minimum of 100m CPU and 300Mi memory.

The application listens on port 80 inside the container.

Security context is configured to run the container as a non-root user with specific
capabilities and a read-only root filesystem.

A temporary volume is mounted at '/tmp' using an in-memory empty directory.

The Deployment is scheduled to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.
The Service is named 'orders'".

It is annotated for Prometheus scraping, which means it is set up to be monitored by
Prometheus.

The Service is labeled with 'name: orders".
Itis deployed in the 'sock-shop' namespace.
The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service selects pods with the label 'name: orders' to route traffic to them.

This manifest defines a Deployment in Kubernetes.
The Deployment is named 'orders-db' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'orders-db' pod running.

The pods are selected based on the label 'name: orders-db'.

Each pod runs a single container using the 'mongo' image.
The container exposes port 27017 for MongoDB.

Security settings are applied to drop all capabilities and add specific ones like CHOWN,
SETGID, and SETUID.

The root filesystem of the container is set to read-only for security.
A temporary volume is mounted at '/tmp' using an in-memory emptyDir.

The pods are scheduled to run on nodes with the operating system labeled as 'linux'.

This manifest defines a Kubernetes Service.

The Service is named 'orders-db".

Itis located in the 'sock-shop' namespace.

The Service is configured to expose port 27017.

It targets the same port (27017) on the pods it selects.

The Service uses a selector to find pods with the label 'name: orders-db".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'payment' and is located in the 'sock-shop' namespace.
It specifies that there should be 2 replicas of the 'payment’ application running.
The Deployment uses the Docker image 'weaveworksdemos/payment:0.4.3".

Resource limits are set for the container, with a maximum of 200m CPU and 200Mi memory,

and requests for 99m CPU and 100Mi memory.
The container listens on port 80.

Security settings ensure the container runs as a non-root user with user ID 10001, and the

root filesystem is read-only.

The container has a liveness probe and a readiness probe, both checking the '/health’
endpoint on port 80.

The liveness probe starts after 300 seconds and checks every 3 seconds, while the readiness

probe starts after 180 seconds and also checks every 3 seconds.

The Deployment is configured to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.
The Service is named 'payment’.

It is annotated for Prometheus scraping, which means it is set up to be monitored by
Prometheus.

The Service is labeled with 'name: payment'.

Itis deployed in the 'sock-shop' namespace.
The Service exposes port 80 and directs traffic to the same port on the selected pods.

The Service uses a selector to target pods with the label 'name: payment'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'queue-master' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas (copies) of the 'queue-master' application running.
The Deployment uses a container image 'weaveworksdemos/queue-master:0.3.1".

Environment variables are set for the container, including Java options for memory
management and garbage collection.

Resource limits and requests are defined, with a maximum of 300m CPU and 500Mi memory,

and a minimum of 100m CPU and 300Mi memory.
The container exposes port 80 for network access.

The Deployment is configured to run on nodes with the Linux operating system.

This manifest defines a Kubernetes Service.

The service is named 'queue-master’.

Itis annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: queue-master’.

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: queue-master".

This manifest defines a Deployment for RabbitMQ in Kubernetes.

The Deployment is named 'rabbitmq' and is located in the 'sock-shop' namespace.
It specifies 2 replicas of the RabbitMQ application to be deployed.

The Deployment uses a selector to match pods with the label 'name: rabbitmq".

The pod template includes two containers: one for RabbitMQ and another for RabbitMQ
Exporter.

The RabbitMQ container uses the image 'rabbitmq:3.6.8-management' and exposes ports
15672 (management) and 5672 (RabbitMQ service).

The RabbitMQ container has a security context that drops all capabilities and adds specific
ones like CHOWN, SETGID, SETUID, and DAC_OVERRIDE, and it uses a read-only root
filesystem.

The RabbitMQ Exporter container uses the image 'kbudde/rabbitmg-exporter' and exposes

port 9090 for metrics.

The Deployment specifies a node selector to ensure that the pods run on nodes with the

operating system labeled as Linux.

Annotations are set to prevent Prometheus from scraping metrics from this deployment.

This manifest defines a Kubernetes Service.

The Service is named 'rabbitmq’.

It is annotated for Prometheus scraping on port 9090.

The Service is located in the 'sock-shop' namespace.

It exposes two ports: 5672 for RabbitMQ and 9090 for an exporter.
The Service uses TCP protocol for communication.

It selects pods with the label 'name: rabbitmq".

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'session-db' and is located in the 'sock-shop' namespace.
It specifies 2 replicas of the pod to be created.

The pods are selected based on the label 'name: session-db".

Each pod runs a container using the 'redis

"image.

The container exposes port 6379, which is commonly used by Redis.

Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

The root filesystem of the container is set to be read-only for security purposes.

The pods are scheduled to run on nodes with the operating system labeled as Linux.

This manifest defines a Kubernetes Service.

The Service is named 'session-db".

Itis located in the 'sock-shop' namespace.

The Service listens on port 6379 and forwards traffic to the same port on the target pods.

It uses a selector to target pods with the label 'name: session-db'.

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'shipping' and is located in the 'sock-shop' namespace.
It specifies 2 replicas of the 'shipping' application to be run.

The Deployment uses the Docker image 'weaveworksdemos/shipping:0.4.8".
Environment variables 'ZIPKIN' and 'JAVA_OPTS' are set for the container.

Resource limits are set to 300m CPU and 500Mi memory, with requests for 100m CPU and

300Mi memory.
The container exposes port 80.
Security context is configured to run the container as a non-root user with user ID 10001.

The container has a read-only root filesystem and specific capabilities are dropped and
added.

A temporary volume is mounted at '/tmp' using an in-memory emptyDir volume.

The Deployment is scheduled to run on nodes with the Linux operating system.

This is a Kubernetes Service manifest.

The service is named 'shipping'.

It is annotated for Prometheus scraping with 'prometheus.io/scrape: true'.

The service is labeled with 'name: shipping'.

Itis deployed in the 'sock-shop' namespace.

The service exposes port 80 and directs traffic to the same port on the selected pods.

It selects pods with the label 'name: shipping'

This manifest defines a Deployment in Kubernetes.

The Deployment is named 'user' and is located in the 'sock-shop' namespace.

It specifies that there should be 2 replicas of the 'user' application running.

The Deployment uses the Docker image 'weaveworksdemos/user:0.4.7".

Resource limits are set for the container: 300m CPU and 200Mi memory.

Resource requests are set for the container: 100m CPU and 100Mi memory.

The container exposes port 80.

An environment variable 'mongo’ is set with the value 'user-db:27017".

Security context is configured to run the container as a non-root user with user 1D 10001.
All capabilities are dropped except 'NET_BIND_SERVICE', and the root filesystem is set to
read-only.

A liveness probe is configured to check the '/health' endpoint on port 80, starting after 300

seconds and checking every 3 seconds.

e Areadiness probe is also configured to check the '/health' endpoint on port 80, starting after

180 seconds and checking every 3 seconds.

e The Deploymentis scheduled to run on nodes with the operating system labeled as Linux.

e Thisis a Kubernetes Service manifest.

e Theserviceis named 'user'.

e Itisannotated for Prometheus scraping with 'prometheus.io/scrape: true'.

e Theserviceis labeled with 'name: user".

e Itisdeployed in the 'sock-shop' namespace.

e The service listens on port 80 and forwards traffic to the same port on the selected pods.

e The service selects pods with the label 'name: user'.

¢ This manifest defines a Deployment in Kubernetes.

e The Deploymentis named 'user-db' and is located in the 'sock-shop' namespace.

e It specifies that there should be 2 replicas of the 'user-db' pod running.

e The pods are selected based on the label 'name: user-db'.

e Each pod runs a single container using the image 'weaveworksdemos/user-db:0.3.0".
e The container exposes port 27017, which is typically used by MongoDB.

e Security settings are applied to drop all capabilities and only add CHOWN, SETGID, and
SETUID.

e The container's filesystem is set to be read-only, enhancing security.

e Atemporary volume is mounted at '/tmp' using an in-memory emptyDir, which is useful for
temporary storage needs.

e The pods are scheduled to run on nodes with the operating system labeled as 'linux".

e This manifest defines a Kubernetes Service.

e The Service is named 'user-db'.

e ltislocated in the 'sock-shop' namespace.

e The Service is configured to expose port 27017.
o |ttargets the same port (27017) on the pods.

e The Service selects pods with the label 'name: user-db'.

Resiliency issuses/weaknesses in the manifests:

Issue #0: Missing Resource Requests

e details: Pods may not get scheduled if the cluster is under resource pressure, leading to
potential downtime.

¢ manifests having the issues: ['sock-shop-2/manifests/03-carts-db-dep.yaml, 'sock-shop-
2/manifests/07-catalogue-db-dep.yaml, 'sock-shop-2/manifests/13-orders-db-dep.yaml,
'sock-shop-2/manifests/19-rabbitmqg-dep.yaml’, 'sock-shop-2/manifests/21-session-db-
dep.yaml’, 'sock-shop-2/manifests/27-user-db-dep.yaml']

e problematic config: The deployments for carts-db, catalogue-db, orders-db, rabbitmq,

session-db, and user-db do not specify resource requests.
Issue #1: Single Replica Deployment

o details: The front-end deployment has only one replica, which can lead to downtime if the
pod fails.
¢ manifests having the issues: ['sock-shop-2/manifests/09-front-end-dep.yaml']

e problematic config: spec.replicas: 1
Issue #2: High Initial Delay for Liveness Probe

e details: A high initial delay for the liveness probe can delay the detection of a failed pod,
leading to longer downtime.

¢ manifests having the issues: ['sock-shop-2/manifests/05-catalogue-dep.yaml’, 'sock-shop-
2/manifests/09-front-end-dep.yaml’, 'sock-shop-2/manifests/15-payment-dep.yaml’, 'sock-
shop-2/manifests/25-user-dep.yaml']

e problematic config: livenessProbe.initialDelaySeconds: 300
Issue #3: Missing Port Specification in Service

o details: The service may not function correctly if the port is not specified, leading to
connectivity issues.

e manifests having the issues: ['sock-shop-2/manifests/02-carts-svc.yaml, 'sock-shop-
2/manifests/04-carts-db-svc.yaml', 'sock-shop-2/manifests/06-catalogue-svc.yaml', 'sock-
shop-2/manifests/08-catalogue-db-svc.yaml, 'sock-shop-2/manifests/12-orders-svc.yaml,
'sock-shop-2/manifests/14-orders-db-svc.yaml, 'sock-shop-2/manifests/16-payment-
svc.yaml', 'sock-shop-2/manifests/18-queue-master-svc.yaml', 'sock-shop-2/manifests/22-
session-db-svc.yaml, 'sock-shop-2/manifests/24-shipping-svc.yaml', 'sock-shop-
2/manifests/26-user-svc.yaml', 'sock-shop-2/manifests/28-user-db-svc.yaml']

e problematic config: The services for carts, carts-db, catalogue, catalogue-db, orders, orders-
db, payment, queue-master, session-db, shipping, user, and user-db do not specify the port

that the service should serve on.

Application of the manifests:

Thoughts:

The manifests provided are part of a Kubernetes deployment for a microservices-based
application called 'sock-shop". This is evident from the namespace 'sock-shop' and the naming
conventions used in the manifests, such as 'carts’, 'catalogue’, 'orders', 'payment’, 'shipping,
'user’, and their respective databases. These components are typical of an e-commerce
application, where users can browse a catalogue, add items to a cart, place orders, and make
payments. The use of images like 'weaveworksdemos/carts', 'weaveworksdemos/catalogue’, and
others from the 'weaveworksdemos' repository further supports this assumption, as these are
known to be part of the Sock Shop demo application, which is a microservices reference

architecture for an e-commerce site.
Assumed application:

The Sock Shop application is a microservices-based e-commerce platform that simulates an
online store where users can browse a catalogue of products, add items to a shopping cart, place
orders, and make payments. It is designed to demonstrate the use of microservices in a cloud-

native environment, showcasing how different services interact within a Kubernetes cluster.
Summary of your instructions for Chaos Engineering:
e The Chaos-Engineering experiment must be completed within 1 minute.

¢ When using k6 in steady-state definition, always select a request URL from the following

options (other requests are invalid):

1. http://front-end.sock-shop.svc.cluster.local/

2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10

3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID> Replace <ID> with an

available ID: [A

))
))
))

,]
4. http://front-end.sock-shop.svc.cluster.local/category/

5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG> Replace <TAG> with an

available tag: [, 5 : ; : > :))

)]
6. http://front-end.sock-shop.svc.cluster.local/basket.html

Phase 1: Hypothesis

Steady-state definition

http://front-end.sock-shop.svc.cluster.local/
http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
http://front-end.sock-shop.svc.cluster.local/detail.html?id=
http://front-end.sock-shop.svc.cluster.local/category/
http://front-end.sock-shop.svc.cluster.local/category?tags=
http://front-end.sock-shop.svc.cluster.local/basket.html

¥ Steady state #1: carts-db-replicas

& Description

The first issue to address is 'Missing Resource Requests' in the 'carts-db' deployment.
This is a critical issue because without resource requests, the pods may not get
scheduled if the cluster is under resource pressure, leading to potential downtime. The
'carts-db' deployment is part of the database layer, which is crucial for the application's
functionality. Ensuring that the 'carts-db' pods are running is essential for the system's
steady state. Therefore, a steady state should be defined to ensure that the 'carts-db'’
deployment maintains its desired number of replicas, which is 2, to verify that the
system can handle resource pressure without downtime.

@, Current state inspection

To inspect the 'carts-db-replicas' state, | will use the Kubernetes API to check the
number of replicas for the 'carts-db' deployment. This is because the state involves
verifying the deployment's configuration and ensuring that the desired number of
replicas is maintained. The Kubernetes APl is suitable for this task as it allows us to
directly query the deployment's status and verify the number of replicas. The check will
be performed over a duration of 5 seconds to ensure stability in the replica count.

tool: duration:

Inspection script (Python)

0os
time

kubernetes client, config
(duration) :
Load Kubernetes configuration based on the environment
os.getenv/()
config.load_incluster_config()
config.load_kube_config()
vl = client.AppsV1Api()
namespace =
deployment_name =

range (duration):

deployment = vl.read_namespaced_deployment(deployment_nc

replicas = deployment.status.replicas
ready_replicas = deployment.status.ready_replicas
({replicas} {r
client.exceptions.ApiException e:

¢
time.sleep(1l)

argparse

parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=
args = parser.parse_args()

check_carts_db_replicas(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Desired replicas: Ready replicas:

-

Desired replicas: 2, Ready replicas:

Desired replicas: Ready replicas:

Desired replicas: 2, Ready replicas:

N NN NN
N NN NN

Desired replicas: 2, Ready replicas:

> Threshold

The steady state in question is the number of replicas for the 'carts-db' deployment. The
current state shows that both the desired and ready replicas are consistently at 2, which
is the expected number of replicas as per the deployment configuration. To ensure the
system remains in a steady state, we need to define a threshold that accounts for
potential fluctuations while still maintaining the necessary redundancy for reliability.
Given that the system is expected to handle resource pressure without downtime, the
threshold should ensure that at least 2 replicas are ready at any given time. However, to
account for transient states during scaling or updates, a reasonable tolerance can be
applied. Therefore, the threshold can be set such that at least 2 replicas are ready 95%
of the time during the monitoring period, which is 1 minute as per the chaos

engineering experiment constraints.

At least 2 ready replicas for 'carts-db' must be maintained 95% of the time within a 1-

minute monitoring period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will implement a unit
test that checks if the 'carts-db' deployment maintains at least 2 ready replicas 95% of
the time over a specified duration. This involves counting the number of times the
ready replicas are at least 2 and comparing it to the total number of checks to ensure it
meets the 95% threshold. The test will use a for-loop to check the status every second
for the specified duration, and at the end, it will assert whether the threshold condition

is met.

os

time

argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, duration):
super () .__init__()

self.duration = duration

(self):
namespace =
deployment_name =
vl = client.AppsV1Api()

Initialize counters
total_checks = 0
successful_checks = 0

Check the deployment status for the specified duration
range (self.duration):

deployment = vl.read_namespaced_deployment (deploymer
ready_replicas = deployment.status.ready_replicas
({ready_replicas}")

Increment total checks
total_checks += 1

Check if the ready replicas meet the threshold
ready_replicas >= 2:

successful_checks += 1

client.exceptions.ApiException e:

time.sleep(1)

Calculate the percentage of successful checks
success_rate = (successful_checks / total_checks) * 100
¢ {success_rate}%")

Assert that the success rate meets the 95% threshold

success_rate >= 95, {success_rat

0:
parser = argparse.ArgumentParser (description=

parser.add_argument (, type=int, default=60, help=

args = parser.parse_args()

Create an instance of the test class with the specified durati
test = TestCartsDBReplicas(args.duration)
test.test_carts_db_replicas()

Pod has completed sucessfully.
The inspection script's results (current states) are as follows:
Ready replicas:

Ready replicas:

Ready replicas:

N N NN

Ready replicas:
Ready replicas: 2
Success rate: 100.0%

¥ Steady state #2: front-end-replicas

4 Description

The next issue to address is 'Single Replica Deployment' in the 'front-end' deployment.
This is a critical issue because having only one replica can lead to downtime if the pod

fails. The front-end is a crucial component as it serves as the entry point for users

interacting with the application. Ensuring that the front-end is always available is
essential for the system's steady state. Therefore, a steady state should be defined to
ensure that the 'front-end' deployment maintains its desired number of replicas, which

is 1, to verify that the system can handle failures without downtime.

Current state inspection

To inspect the number of replicas for the 'front-end' deployment in the 'sock-shop'
namespace, the Kubernetes APl is the most appropriate tool. This is because we need to
check the deployment configuration and ensure that the desired state (number of
replicas) is maintained. The K8s API allows us to directly query the deployment's status
and verify the number of replicas. We will use a Python script with the Kubernetes client
library to perform this check, iterating every second for a duration of 5 seconds to
ensure consistency in the deployment's state.

tool: duration:

Inspection script (Python)

0os
time

kubernetes client, config

(namespace, deployment_name, duration):
Load Kubernetes configuration based on the environment
os.getenv/():
config.load_incluster_config()

config.load_kube_config()

vl = client.AppsV1Api()
_ range(duration) :
deployment = vl.read_namespaced_deployment(deployment_n:
replicas = deployment.status.replicas
ready_replicas = deployment.status.ready_replicas
({replicas} {r
client.exceptions.ApiException e:
(
time.sleep (1)

argparse
parser = argparse.ArgumentParser (description=
parser.add_argument(, type=int, default=5, help=

args = parser.parse_args()
check_front_end_replicas(s , args.duratior

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Desired replicas: Ready replicas:

-

Desired replicas: 1, Ready replicas:

Desired replicas: Ready replicas:

Desired replicas: 1, Ready replicas:

L =

-

N e

Desired replicas: Ready replicas:

> Threshold

The steady state in question is the number of replicas for the 'front-end' deployment.
The current state shows that the desired replicas are 1 and the ready replicas are also 1,
which means the system is currently in a stable state. However, having only one replica
is a potential risk for downtime if the pod fails. To ensure the system remains stable and
can handle failures without downtime, the threshold should be set to ensure that at
least 1 replica is always ready. Given the constraints of the chaos engineering
experiment, which must be completed within 1 minute, and the fact that the current
state is stable with 1 ready replica, the threshold should be set to ensure that the 'front-
end' deployment maintains at least 1 ready replica 100% of the time during the
monitoring period. This threshold accounts for the current state and ensures that the
system remains stable under normal conditions.

At least 1 ready replica for the 'front-end' deployment must be maintained 100% of the

time during the 1-minute monitoring period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will implement a unit
test that checks if the 'front-end' deployment maintains at least 1 ready replica 100% of
the time during the specified duration. The test will use a for-loop to check the status
every second for the given duration and will assert that the number of ready replicas is
always at least 1. If the condition is not met at any point, the test will fail. The threshold
is defined as maintaining at least 1 ready replica 100% of the time, which will be

implemented as a ratio of successful checks to total checks.

import os

import time

import argparse

from kubernetes import client, config
from unittest_base import K8sAPIBase

class TestFrontEndReplicas(K8sAPIBase):
def __dnit__(self, namespace, deployment_name, duration):
super () .__init__()
self.namespace = namespace
self.deployment_name = deployment_name
self.duration = duration

def test_steady_state(self):
Initialize variables to track the number of successful che

successful_checks = 0

Loop for the specified duration
for _ in range(self.duration):
try:
Read the deployment status
deployment = self.vl.read_namespaced_deployment(seli

ready_replicas = deployment.status.ready_replicas ot

Check if the number of ready replicas is at least
if ready_replicas >= 1:
successful_checks += 1

except client.exceptions.ApiException as e:
print(f"Exception when calling AppsV1Api->read_names

Wait for 1 second before the next check

time.sleep(1l)

Calculate the success ratio

success_ratio = successful_checks / self.duration

Assert that the success ratio is 100%

assert success_ratio == 1.0, f"Steady state not maintained:

Print success message
print("Steady state maintained 100% of the time'")

def main():
parser = argparse.ArgumentParser (description='Test front-end re;g
parser.add_argument('--duration', type=int, default=60, help="'DL

args = parser.parse_args()

Create an instance of the test class
test = TestFrontEndReplicas(s , args.durat

Run the test
test.test_steady_state()

Pod has failed.

Traceback (most recent call last):

File
ERIN®)
File
test.test_steady_state()
File
deployment = self.vl.read_namespaced_deployment(self.deployment._
AttributeError: object has no attribute
The error occurs because the object does not have a method
. Instead, the should be used to access

deployment-related methods. | will fix the error by changing the API client from
to in the class initialization. This will allow the test

to correctly read the deployment status and check the number of ready replicas.

os
time
argparse
kubernetes client, config
unittest_base K8sAPIBase

(K8sAPIBase) :

(self, namespace, deployment_name, duration):
super () .__init__()
self.namespace = namespace
self.deployment_name = deployment_name
self.duration = duration
Use AppsV1Api for deployment operations
self.apps_vl = client.AppsV1Api ()

(self):

Initialize variables to track the number of successful che
successful_checks = 0

Loop for the specified duration
for _ in range(self.duration):
try:
Read the deployment status
deployment = self.apps_vl.read_namespaced_deployment
ready_replicas = deployment.status.ready_replicas or

Check if the number of ready replicas is at least
if ready_replicas >= 1:

successful_checks += 1

except client.exceptions.ApiException as e:

print(f"Exception when calling AppsV1Api->read_names

Wait for 1 second before the next check

time.sleep(1)

Calculate the success ratio
success_ratio = successful_checks / self.duration

Assert that the success ratio i1s 100%

assert success_ratio == 1.0, f"Steady state not maintained:

Print success message

print("Steady state maintained 100% of the time")

def main():
parser = argparse.ArgumentParser (description="'Test front-end re;g
parser.add_argument('--duration', type=int, default=60, help="'DL
args = parser.parse_args()

Create an instance of the test class

test = TestFrontEndReplicas('sock-shop', 'front-end', args.durat

Run the test
test.test_steady_state()

if __name__ == '_ main__"':

ERIN®)

Pod unittestfront-end-replicasmodi-pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Steady state maintained 100% of the time

Fault definition

¥ Scenario: Black Friday Sale

® Description

During a Black Friday sale, the system is expected to handle a significant increase in
traffic and load. This event will test the system's ability to maintain steady states under
high demand. The primary weaknesses identified are missing resource requests for
critical database components and a single replica for the front-end service. These
weaknesses could lead to resource contention and downtime, respectively. To simulate
the Black Friday event, we will first inject a StressChaos to simulate high CPU and
memory usage on the 'carts-db' deployment, which lacks resource requests. This will
test if the system can maintain the 'carts-db-replicas’ steady state under resource
pressure. Next, we will inject a PodChaos to kill the single replica of the 'front-end'
deployment to test if the system can maintain the 'front-end-replicas' steady state and
recover quickly. This sequence simulates the phenomena of high demand and potential

failures during a Black Friday sale, targeting the system's identified weaknesses.

Fault-injection sequence

({'namespace': 'sock-shop’, 'deployment': 'carts-db'}) —

({'namespace': 'sock-shop’, 'deployment': 'front-end'})

& Detailed fault parameters

Detailed parameters of ({'namespace': 'sock-shop’, 'deployment': 'carts-
db'})

v {
"mode" : "all"

Y vselector" : {

Y "namespaces" : [

0 : "sock-shop"

Y "labelSelectors" : {

"name" : "carts-db"
}
}
Y "stressors" : {
Y cpu" @ {
"workers" : 2
"load" : 100
}
Y "memory" : {
"workers" : 2
"size" : "256MB"
}
}
Y "containerNames" : [
0 : "carts-db"
1
}
Detailed parameters of ({'namespace': 'sock-shop’, 'deployment': 'front-
end'})
v {
"action" : "pod-kill"
"mode" : "one"
Y "selector" : {
Y "namespaces" : [
0 : "sock-shop"
]
¥ "labelSelectors" : {
"name" : "front-end"
}
}
}

Phase 2: Chaos Experiment

CE experiment Planning Completed!

Chaos Engineering Experiment Plan

Time Schedule

The chaos engineering experiment is designed to test the system's resilience under
simulated fault conditions, specifically during a high-demand event like a Black Friday
sale. The experiment is divided into three phases: pre-validation, fault-injection, and
post-validation. Given the constraints that the entire experiment must be completed
within 1 minute, we need to allocate time efficiently across these phases.

1. Pre-validation Phase: This phase ensures that the system is in a steady state before
any faults are injected. We will allocate 15 seconds for this phase. During this time,
we will verify that the 'carts-db' deployment maintains at least 2 ready replicas 95%
of the time and that the 'front-end' deployment maintains at least 1 ready replica
100% of the time. This is crucial to establish a baseline for the system's normal

operation.

2. Fault-injection Phase: This phase involves injecting faults to simulate the Black
Friday event. We will allocate 30 seconds for this phase. The faults include a
StressChaos on the 'carts-db' deployment to simulate high CPU and memory
usage, and a PodChaos to kill the single replica of the 'front-end' deployment. This
phase is critical to observe how the system behaves under stress and failure

conditions.

3. Post-validation Phase: This phase checks if the system returns to its steady state
after the faults are removed. We will allocate 15 seconds for this phase. Similar to
the pre-validation phase, we will verify the steady states of the 'carts-db' and 'front-
end' deployments to ensure that the system can recover and maintain its expected

performance.

The total time for the experiment is 60 seconds, with 15 seconds for pre-validation, 30
seconds for fault injection, and 15 seconds for post-validation. This allocation allows us
to thoroughly test the system's resilience while adhering to the time constraint.

Total experiment time:
Pre-validation Phase:
Fault-injection Phase:

Post-validation Phase:

Pre-validation Phase (15s)

In the pre-validation phase, we need to ensure that the system is in a steady state
before we proceed with fault injection. Given the constraints of a 15-second total time
for this phase, we will focus on verifying the two defined steady states: 'carts-db-
replicas' and 'front-end-replicas'. These checks will be executed sequentially due to the
short time frame, ensuring that each steady state is verified independently. The 'carts-
db-replicas' steady state will be checked first, as it involves verifying that at least 2
replicas are ready 95% of the time within a 1-minute monitoring period. However, for
the pre-validation phase, we will adjust the check to fit within the 15-second window,
ensuring that the system is stable at the start of the experiment. Following this, we will
verify the 'front-end-replicas' steady state, ensuring that at least 1 replica is ready 100%
of the time during the 15-second pre-validation period. This approach ensures that both

critical components are functioning as expected before introducing any faults.

o Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Fault-injection Phase (30s)

The fault-injection phase is designed to simulate a Black Friday sale scenario, which
involves high demand and potential failures. The goal is to test the system's ability to
maintain its steady states under these conditions. Given the constraints of a 30-second
total time for this phase, we need to carefully schedule the fault injections to maximize

the observation of system behavior while ensuring that the faults are impactful.

First, we will inject a fault targeting the deployment. This fault
will simulate high CPU and memory usage, testing the system's ability to maintain the

steady state under resource pressure. This fault will be injected at
the start of the phase (grace period of 0s) and will last for 15 seconds. This duration is
chosen to allow enough time for the system to react to the stress while leaving time for
the next fault.

Next, we will inject a fault targeting the deployment. This fault
will kill the single replica of the service, testing the system's ability to
maintain the steady state and recover quickly. This fault will be

injected with a grace period of 15 seconds, starting immediately after the

fault ends, and will last for 15 seconds. This staggered approach ensures that each fault
is isolated in time, allowing us to observe the system's response to each fault
individually.

The unit tests for verifying the steady states will run concurrently with the fault
injections. The unit test will start at the beginning of the phase and
run for the entire 30 seconds, as it needs to monitor the system's ability to maintain the
required number of replicas under stress. Similarly, the unit test
will also run for the entire 30 seconds, ensuring that the system can maintain at least

one ready replica of the service despite the pod-kill fault.

Verified Steady State #0:
o Workflow Name:

o Grace Period:

o Duration:

e \Verified Steady State #1:
o Workflow Name:

o Grace Period:

o Duration:

e Injected Faults #0:
o Workflow Name:
o Grace Period:
o Duration:

e Injected Faults #1:
o Workflow Name:
o Grace Period:

o Duration:

Post-validation Phase (15s)

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the constraints of a 15-second total time for
this phase, we will focus on quickly verifying the two steady states: 'carts-db-replicas’
and 'front-end-replicas’. The approach is to run the unit tests for each steady state
sequentially, as the time constraint does not allow for simultaneous execution. Each
unit test will have a short grace period to allow the system to stabilize after the fault
injection, followed by a brief duration to verify the steady state. The thought process is
to prioritize the verification of the critical components affected by the fault injection,

ensuring that the system can recover and maintain its expected behavior.

o \Verified Steady State #0:
o Workflow Name:
o Grace Period:
o Duration:

e \Verified Steady State #1:
o Workflow Name:
o Grace Period:

o Duration:

Summary

The chaos engineering experiment is structured into three phases: pre-validation, fault-

injection, and post-validation, all to be completed within a total of 60 seconds.

In the pre-validation phase, which lasts for 15 seconds, the system's steady state is
verified before any faults are introduced. The verification of the 'carts-db-replicas’
steady state is conducted first, with no waiting time before it starts, and it runs for 7
seconds. This is followed by the verification of the 'front-end-replicas' steady state,
which begins immediately after the first verification ends, with a duration of 8 seconds.
This sequential execution ensures that each component is independently verified for
stability.

The fault-injection phase spans 30 seconds and is designed to simulate high-demand
conditions. It begins with the injection of a 'StressChaos' fault on the 'carts-db'
deployment, which starts immediately and lasts for 15 seconds. Following this, a
'PodChaos' fault is injected on the 'front-end' deployment, starting at the 15-second
mark and also lasting for 15 seconds. Concurrently, unit tests for both 'carts-db-
replicas' and 'front-end-replicas' run for the entire 30 seconds, starting at the beginning
of the phase, to monitor the system's ability to maintain steady states under stress.

In the post-validation phase, which also lasts 15 seconds, the system's recovery to
steady states is verified. The 'carts-db-replicas' steady state is checked first, starting
immediately and running for 7 seconds. This is followed by the 'front-end-replicas’
steady state verification, which begins at the 7-second mark and lasts for 8 seconds.
This sequential approach ensures that the system's recovery is thoroughly validated

after the fault conditions are removed.

Completed the chaos experiment!

Choose namespace]

All

Phase 3: Analysis

The chaos engineering experiment aimed to test the system's resilience under simulated high-
demand conditions, specifically focusing on the 'carts-db' and 'front-end' components. The
experiment results indicate that while the 'carts-db' component maintained its steady state
throughout the experiment, the 'front-end' component failed to do so during both the fault-

injection and post-validation phases.

1. Analysis of 'carts-db' Component:

o The 'carts-db' deployment successfully maintained its steady state, with at least 2 ready
replicas 95% of the time, as required. This indicates that the system's configuration for
'carts-db', despite lacking explicit resource requests, was able to handle the simulated
resource pressure from the 'StressChaos' fault. This success suggests that the current
resource allocation and scheduling policies were sufficient to meet the demands placed

on 'carts-db' during the experiment.

2. Analysis of 'front-end' Component:

o The 'front-end' deployment failed to maintain its steady state during the fault-injection
phase, with a success rate of only 43.33%. This failure is directly linked to the 'PodChaos'
fault, which killed the single replica of the 'front-end' deployment. The lack of

redundancy (only one replica) meant that any disruption led to immediate downtime, as
evidenced by the failure to maintain the steady state.

o Inthe post-validation phase, the 'front-end' deployment's success rate improved to
87.5%, indicating partial recovery. However, this was still below the required 100%
threshold, suggesting that the system took longer than expected to recover from the
fault. This delay could be due to factors such as pod scheduling delays or insufficient

resources to quickly bring the 'front-end' back online.

3. Insights and Recommendations:

o Increase Redundancy: The primary issue with the 'front-end' component is the lack of
redundancy. Increasing the number of replicas for the 'front-end' deployment from 1 to
at least 2 would provide the necessary redundancy to handle pod failures without
causing downtime.

o Resource Requests and Limits: While the 'carts-db' component managed to maintain its
steady state, it is still advisable to define resource requests and limits for all
deployments, including 'carts-db’, to ensure consistent performance under varying load
conditions.

o Improved Recovery Mechanisms: Investigate the reasons for the delayed recovery of the
'front-end' component post-fault. This could involve optimizing pod scheduling policies
or ensuring that sufficient resources are available to quickly restart failed pods.

In conclusion, the experiment highlighted the critical need for redundancy in the 'front-end'
component to prevent downtime during high-demand scenarios. Addressing this issue, along
with defining resource requests and improving recovery mechanisms, will enhance the system's

resilience and ability to maintain steady states under fault conditions.

Phase 4: Improvement

Reconfiguration ~

To improve the resiliency of the 'front-end' component and avoid failures during high-
demand scenarios, | will increase the number of replicas for the 'front-end' deployment from
1to 2. This change will provide redundancy, ensuring that the system can handle pod
failures without downtime. Additionally, | will add resource requests to the 'carts-db'

deployment to ensure consistent performance under resource pressure.
Modification_type: replace
File name: sock-shop-2/manifests/09-front-end-dep.yaml

Increase the number of replicas for the 'front-end' deployment from 1 to 2 to provide

redundancy and prevent downtime during pod failures.

apiVersion: apps/vl
kind: Deployment
metadata:
name: front-end
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: front-end
template:
metadata:

labels:
name: front-end

spec:

containers:

- name: front-end
image: weaveworksdemos/front-end:0.3.12
resources:

limits:
cpu: 300m
memory: 1000Mi
requests:
cpu: 100m
memory: 300Mi
ports:
- containerPort: 8079
env:
- name: SESSION_REDIS
value: "true"
securityContext:
runAsNonRoot: true
runAsUser: 10001
capabilities:
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /
port: 8079
initialDelaySeconds: 300
periodSeconds: 3
readinessProbe:
httpGet:
path: /
port: 8079

initialDelaySeconds: 30
periodSeconds: 3
nodeSelector:

beta.kubernetes.io/os: linux

Modification_type: replace
File name: sock-shop-2/manifests/03-carts-db-dep.yaml

Add resource requests to the 'carts-db' deployment to ensure consistent performance under
resource pressure.

apiVersion: apps/vl
kind: Deployment
metadata:
name: carts-db
labels:
name: carts-db
namespace: sock-shop
spec:
replicas: 2
selector:
matchlLabels:
name: carts-db
template:
metadata:

labels:
name: carts-db

spec:

containers:

- name: carts-db
image: mongo
ports:

- name: mongo
containerPort: 27017
resources:
requests:
cpu: 100m
memory: 200Mi
securityContext:
capabilities:
drop:
- all
add:
- CHOWN
- SETGID
- SETUID

readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /tmp
name: tmp-volume
volumes:
- name: tmp-volume
emptyDir:
medium: Memory
nodeSelector:

beta.kubernetes.io/os: linux

Deploying reconfigured resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat:
No tags generated
Starting test...
Starting deploy...
Loading images into kind cluster nodes...
Images loaded 1in 290ns
- namespace/sock-shop unchanged
- Warning: spec.template.spec.nodeSelector[beta.kubernetes.io/os]: depreca
- deployment.apps/carts configured
- service/carts configured
- deployment.apps/carts-db configured
- service/carts-db configured
- deployment.apps/catalogue configured
- service/catalogue configured
- deployment.apps/catalogue-db configured
- service/catalogue-db configured
- deployment.apps/front- configured
- service/front- configured
- deployment.apps/orders configured
- service/orders configured
- deployment.apps/orders-db configured
- service/orders-db configured
- deployment.apps/payment configured
- service/payment configured
- deployment.apps/queue-master configured
- service/queue-master configured
- deployment.apps/rabbitmg configured
- service/rabbitmg configured
- deployment.apps/session-db configured
- service/session-db configured
- deployment.apps/shipping configured
—- service/shipping configured

- deployment.apps/user configured
- service/user configured
- deployment.apps/user-db configured
- service/user-db configured
Waiting deployments to stabilize...
- sock-shop:deployment/carts: waiting rollout to finish: 1 out of 2 ne
- sock-shop:deployment/carts-db: creating container carts-db
- sock-shop:pod/carts-db-5...ueue-master is ready. [10/14 deployment(s)
- sock-shop:deployment/orders is ready. [9/14 deployment(s) still pending]
- sock-shop:deployment/session-db is ready. [8/14 deployment(s) still pend
- sock-shop:deployment/carts-db is ready. [7/14 deployment(s) still pendin
- sock-shop:deployment/carts 1is ready. [6/14 deployment(s) still pending]
- sock-shop:deployment/orders-db 1is ready. [5/14 deployment(s) still pendii
- sock-shop:deployment/rabbitmq: creating container rabbitmqg
- sock-shop:pod/rabbitmg-6c98597b69-qnk96: creating container rabbitmq
- sock-shop:deployment/rabbitmg is ready. [4/14 deployment(s) still pendin
- sock-shop:deployment/front- : waiting rollout to finish: 1 old rep
- sock-shop:deployment/front- is ready. [3/14 deployment(s) still pendil
- sock-shop:deployment/catalogue: creating container catalogue
- sock-shop:pod/catalogue-6846f4b58b-2zwgn: creating container catalogu:
- sock-shop:deployment/payment: waiting rollout to finish: 1 old repli:
- sock-shop:deployment/user: waiting rollout to finish: 1 old replicas
- sock-shop:deployment/payment is ready. [2/14 deployment(s) still pending
- sock-shop:deployment/catalogue is ready. [1/14 deployment(s) still pendil
- sock-shop:deployment/user is ready.
Deployments stabilized in 6 minutes 5.213 seconds
You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTA
sock-shop pod/carts-7fd8594f7-2nm4k 1/1 Running 0
sock-shop pod/carts-7fd8594f7-rfxdn 1/1 Running 0]
sock-shop pod/carts-db-5dbddbcc7b-55x8m 1/1 Running 0]
sock-shop pod/carts-db-5dbddbcc7b-pp9jw 1/1 Running 0
sock-shop pod/catalogue-6846f4b58b-2zwgn 1/1 Running 0
sock-shop pod/catalogue-6846f4b58b-r5bqt 1/1 Running 0
sock-shop pod/catalogue-db-6b77cc59d7-bdp6p 1/1 Running 0
sock-shop pod/catalogue-db-6b77cc59d7-s7s2j 1/1 Running 0
sock-shop pod/front- ~7bc6bf685f-bjhp9 1/1 Running 0
sock-shop pod/front- ~-Tbc6bf685f-mrs7f 1/1 Running 0]
sock-shop pod/orders-86b9477587-4xmfl 1/1 Running 0
sock-shop pod/orders-86b9477587-whn22 1/1 Running 0
sock-shop pod/orders-db-746f657687-6cshd 1/1 Running 0]

sock-shop pod/orders-db-746f657687-f7sr7 1/1 Running

sock-shop pod/payment-8f48c77b9-gv6rf 1/1 Running

sock-shop pod/payment-8f48c77b9-rd8kh 1/1 Running 0
sock-shop pod/queue-master-6697989. .. 9ml8s

sock-shop replicaset.apps/orders-86b9477587 2 2 2
sock-shop replicaset.apps/orders-db-746f657687 2 2 2
sock-shop replicaset.apps/orders-db-784f55785f 0 0 0
sock-shop replicaset.apps/payment-86496f594f 0 0 0
sock-shop replicaset.apps/payment-8f48c77b9 2 2 2
sock-shop replicaset.apps/queue-master-6697989c86 2 2 2
sock-shop replicaset.apps/queue-master-95d8c645d 0 0 0]
sock-shop replicaset.apps/rabbitmg-6c98597b69 2 2 2
sock-shop replicaset.apps/rabbitmg-6f6869fbdf 0 0] 0
sock-shop replicaset.apps/session-db-665b767949 0 0 0]
sock-shop replicaset.apps/session-db-8bf47db5c 2 2 2
sock-shop replicaset.apps/shipping-5df49fcfb7 2 2 2
sock-shop replicaset.apps/shipping-6b7f5fcfcf 0 0] 0
sock-shop replicaset.apps/user-545cf57c87 0 0 0
sock-shop replicaset.apps/user-7d5dd98cdc 2 2 2
sock-shop replicaset.apps/user-db-6db75dbc8f 2 2 2
sock-shop replicaset.apps/user-db-876ff477 0] 0] 0

The fault-scope adjustment Completed!

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"mode": "all", "selector": {{"namespaces": ["sock-shop"], "labelSelectors":
{{"name": "carts-db"}}}}, "stressors": {{"cpu": {{"workers": 2, "load": 100}}, "memory": {{"workers":
2, "size": "256MB"}}}}, "containerNames": ["carts-db"]}}

The current Kubernetes manifests show that the 'carts-db' deployment has not changed in terms
of its namespace or labels. The 'carts-db' deployment still exists in the 'sock-shop' namespace
and retains the label 'name: carts-db'. Therefore, the scope of the fault injection, which targets
the 'carts-db' deployment using these labels and namespace, remains valid. There is no need to

adjust the scope of the fault injection for the current manifests.

Next fault injection scope:

{

v n

namespaces" : [

0 : "sock-shop"
]

Y "labelSelectors" : {

"name" : "carts-db"

}

Current fault injection settings:

e Injected Faults #0:
o Workflow Name:
o Grace Period:

o Duration:

Parameters {{"action": "pod-kill", "mode": "one", "selector": {{"namespaces": ["sock-shop"],

"labelSelectors": {{"name": "front-end"}}}}}}

The current Kubernetes manifests show that the 'front-end' deployment now has 2 replicas
instead of 1. The original chaos experiment targeted the 'front-end' deployment with a PodChaos
to kill a single replica. Since the number of replicas has increased, the scope of the fault injection
should be adjusted to ensure that the experiment still targets only one pod, maintaining the
original goal of testing the system's resilience when a single 'front-end' pod is killed.

Next fault injection scope:

MR
Y "namespaces" : [
0 : "sock-shop"
1
Y "labelSelectors" : {

"name" : "front-end"

}

Adjusted unittest

The unit test is specifically targeting the deployment, which is present in both the
previous and reconfigured manifests. Upon comparing the deployment in both sets of
manifests, the only change observed is the addition of resource requests for CPU and memory in
the reconfigured manifest. This change does not affect the logic of the unit test, which checks for
the number of ready replicas. The test's threshold and logic remain valid as they are based on the
number of replicas, which has not changed. Therefore, the unit test does not require any
modification.

Adjusted unittest

The unit test is targeting the 'front-end' deployment in the 'sock-shop' namespace. In the
reconfigured manifests, the number of replicas for the 'front-end' deployment has been increased
from 1 to 2. This change was likely made to ensure that the steady state is maintained with at
least 1 active pod at all times, even if one pod fails. However, the unit test is designed to check if
there is at least 1 ready replica, which aligns with the intent of maintaining a steady state.
Therefore, the threshold value in the unit test should remain unchanged, as it is still valid to
check for at least 1 ready replica. No modification to the unit test is required.

Completed the chaos experiment!

Search Choose namespace

= Q All

Your k8s yaml already has good resilience!!!

Phase EX: Postprocessing

Summary of your k8s yaml ~

The Chaos Engineering cycle involves a detailed examination and testing of a Kubernetes-
based microservices application, specifically the Sock Shop e-commerce platform. The cycle
begins with understanding the user inputs, which include various Kubernetes manifests that

define the deployment and service configurations for different components of the
application, such as carts, catalogue, orders, payment, and user services, along with their
respective databases.

The system's resiliency issues are identified, including missing resource requests, single
replica deployments, high initial delays for liveness probes, and missing port specifications
in services. These issues could lead to potential downtime or connectivity problems under

certain conditions.

The Chaos Engineering experiment is designed to test the hypothesis that the system can
maintain its steady states even when faults are injected. Two steady states are defined:
ensuring the 'carts-db' deployment maintains at least 2 ready replicas 95% of the time, and

the 'front-end' deployment maintains at least 1 ready replica 100% of the time.

The experiment is divided into three phases: pre-validation, fault-injection, and post-
validation, all to be completed within 1 minute. The pre-validation phase checks the
system's steady state before fault injection. The fault-injection phase simulates a Black
Friday sale scenario using Chaos Mesh, injecting StressChaos on the 'carts-db' deployment
and PodChaos on the 'front-end' deployment. The post-validation phase verifies if the

system returns to its steady state after the faults are removed.

The first experiment attempt revealed that while the 'carts-db' component maintained its
steady state, the 'front-end' component failed to do so during the fault-injection and post-
validation phases. The analysis suggested increasing redundancy for the 'front-end’
deployment and defining resource requests for the 'carts-db' deployment.

After implementing these improvements, the second experiment attempt was successful,
with all unit tests passing, indicating that the system could maintain its steady states under

the simulated fault conditions.

Download output (.zip)

