(] <

ChaosEater demo

Live Q&A

Settings ~
Model (<

anthropic/claude-3-5-son... Vv

Token

Cluster selection

kind-chaos-eater-cluster v

Clean the cluster

@ Clean the cluster before run
@ Clean the cluster after run

@ New deployment

Max # steady states

3 -+
Max retries

3 -+

Seed (GPTs only)

42 -+

Usage:

Total billing: $0.03
Total tokens: 3.997k
Input tokens: 3.001k
Ouput tokens: 0.996k

Command history

kubectl apply -f v
sandbox/cycle_20241128 075141/hyp
othesis/k8s_ExamplePodRunningAndR
eady_pod.yaml --context kind-chaos-

eater-cluster -n chaos-eater

levihart! laae v

Your instructions for Chaos Engineering:

The Chaos-Engineering experiment must be completed within 1 minute.

Phase 0: Preprocessing

Cleaning the cluster

... Done

S kubectl delete --all --context kind-chaos-eater-cluster -n chaos
No resources found
$ kubectl delete workflownode --all --context kind-chaos-eater-cluster -n cl
No resources found
$ kubectl delete deployments --all --context kind-chaos-eater-cluster -n ch
No resources found
$ kubectl delete pods --all --context kind-chaos-eater-cluster -n chaos-eat
No resources found
$ kubectl delete services --all --context kind-chaos-eater-cluster -n chaos
No resources found

$ kubectl delete all --all-namespaces --context kind-chaos-eater-cluster -1

pod deleted
pod deleted
pod deleted
service deleted

deployment. apps deleted

K8s manifest(s) to be deployed:

apiVersion: vl
kind: Pod
metadata:

name: example-pod

labels:
app: example

spec:

restartPolicy: Never

containers:

- name: example-container
image: nginx:1.17.1
ports:

- containerPort: 80

http://localhost:8502/ChaosEater_demo
http://localhost:8502/Live_Q&A

metadata:

name: example-service
spec:

selector:

app: example

ports:
- protocol: TCP
port: 80

targetPort: 80

Deploying resources... Done

$ skaffold run --kube-context kind-chaos-eater-cluster -1 project=chaos-eat
No tags generated
Starting test...
Starting deploy...

Loading images into kind cluster nodes...
Images loaded in 221ns

- pod/example-pod created

- service/example-service created
Waiting deployments to stabilize...

- pods is ready.
Deployments stabilized in 3.087 seconds

You can also run [skaffold run --tail] to get the logs

Resource statuses

$ kubectl get all --all-namespaces --context kind-chaos-eater-cluster --sel

NAMESPACE NAME READY STATUS RESTARTS AGE

default pod/example-pod 1/1 Running 0 5s

NAMESPACE NAME CLUSTER-IP EXTERNAL-I
default service/example-service ClusterIP 10.96.173.52 <none>

Summary of each manifest:

e This manifest defines a Kubernetes Pod

e The Podis named 'example-pod'

e Ithasalabel'app: example'

e The Pod's restart policy is set to 'Never'

e ltcontains a single container:
o The container is named 'example-container’
o Itusesthe nginximage version 1.17.1
o The container exposes port 80

e This Pod can be used to run a simple nginx web server

e This manifest defines a Kubernetes Service resource
e The Service is named 'example-service'
e Itselects pods with the label 'app: example'

e The Service exposes port 80 and forwards traffic to port 80 on the selected pods

e Ituses TCP protocol for communication

e This Service allows other resources within the cluster to access the selected pods using a
stable network endpoint

Resiliency issuses/weaknesses in the manifests:

Issue #0: Single Pod Deployment

e details: Using a single Pod without a Deployment or ReplicaSet can lead to downtime if the

Pod fails or the node it's running on becomes unavailable.
e manifests having the issues: ['nginx/pod.yaml']

e problematic config: Kind: Pod is used instead of a Deployment or ReplicaSet
Issue #1: Restart Policy Set to Never

e details: With restartPolicy set to Never, the Pod will not be restarted if it crashes or
terminates, leading to potential downtime.
e manifests having the issues: ['nginx/pod.yaml']

e problematic config: spec.restartPolicy: Never
Issue #2: No Resource Limits

e details: Without resource limits, the container could consume excessive CPU or memory,

potentially affecting other workloads on the node or causing OOM Kkills.
e manifests having the issues: ['nginx/pod.yaml']

e problematic config: No resources.limits specified in the container spec
Issue #3: No Liveness or Readiness Probes

o details: Without health checks, Kubernetes cannot determine if the container is functioning

correctly, potentially leading to serving traffic to a malfunctioning Pod.
¢ manifests having the issues: ['nginx/pod.yaml']

e problematic config: No livenessProbe or readinessProbe specified in the container spec
Issue #4: No Service Type Specified

e details: Without a specified service type, the default ClusterlP is used, which may not be
suitable if external access is required.
¢ manifests having the issues: ['nginx/service.yaml']

e problematic config: No spec.type specified in the Service
Issue #5: No Session Affinity

o details: Without session affinity, client requests may be distributed across different Pods,
potentially causing issues for stateful applications.
¢ manifests having the issues: ['nginx/service.yaml']

e problematic config: No spec.sessionAffinity specified in the Service

Application of the manifests:

Thoughts:

Based on the provided manifests and their file names (nginx/pod.yaml and nginx/service.yaml),
it's clear that this application is using Nginx. The pod specification includes an Nginx container
image, and the service is set up to expose port 80, which is the default HTTP port. This strongly
suggests that the application is a web server or web application using Nginx as the web server or

reverse proxy.

Assumed application:

This appears to be a simple web server or web application using Nginx. The application offers
HTTP services to users, likely serving static content or acting as a reverse proxy for other backend
services. It provides a basic web hosting environment that can be easily scaled and managed

within a Kubernetes cluster.
Summary of your instructions for Chaos Engineering:

e The Chaos-Engineering experiment must be completed within 1 minute. (This instruction is
relevant to the Experiment phase, where the time constraint for injecting failures and

monitoring the system's response is specified.)

Phase 1: Hypothesis

Steady-state definition

@ steady state #1: ExamplePodRunningAndReady 2

& Description

Given the system's configuration and the identified issues, the most critical steady state
to define first would be related to the availability of the single Pod. Since there's only
one Pod without any replication, and its restart policy is set to 'Never', the system's
availability is highly vulnerable. Therefore, we should define a steady state that checks
if the Pod is running and ready to serve traffic.

@, Current state inspection

To inspect the 'ExamplePodRunningAndReady' state, we need to check if the 'example-
pod' is running and ready. Since this involves checking the status of a Kubernetes
resource, we'll use the Kubernetes API. We'll create a Python script that uses the
Kubernetes client library to query the pod's status every second for a short duration.
This will give us a good snapshot of the pod's state without exceeding the 1-minute
time constraint for the entire experiment.

tool: duration:

Inspection script (Python)

os
kubernetes client, config
time

argparse

(duration) :
Load Kubernetes configuration based on the environment
os.getenv ():
config.load_incluster_config()

config.load_kube_config()

vl = client.CoreV1Api()
pod_name =

namespace =

start_time = time.time()
end_time = start_time + duration
status_counts = { . 0, . 0, : 0,

time.time() < end_time:
pod = vl.read_namespaced_pod(name=pod_name, namespace=n:
pod_status = pod.status.phase
pod_status == :
status_counts|[] += 1

status_counts|[] += 1

pod.status.conditions:

ready_condition = next((c c pod.status.condit
ready_condition ready_condition.status ==
status_counts|] +=1
status_counts|] +=1
status_counts|] +=1
client.exceptions.ApiException e:
(
status_counts|[] +=1
status_counts|] += 1

time.sleep(1l)

total_checks = sum(status_counts.values()) // 2 # Divide by 2 [

¢ {duration})
({status_counts[]/total_checks*100:.2f]
¢ {status_counts|[]/total_checks*x100:.2f}

__hame__ ==

parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=5, help=
args = parser.parse_args()

check_pod_status(args.duration)

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status over 5 seconds:
Running: 100.00% of the time
Ready: 100.00% of the time

> Threshold

Given the current state of the system and the identified issues, we need to define a
threshold for the ExamplePodRunningAndReady steady state that accounts for the
single Pod deployment and its vulnerability to failures. The current state shows that the
Pod is running and ready 100% of the time over a 5-second period. However, we should
allow for some fluctuations and potential brief periods of unavailability, considering the
lack of redundancy and the 'Never' restart policy.

Given that:

1. There's only one Pod without replication.

2. Therestart policy is set to 'Never', which means the Pod won't automatically
recover from failures.

3. The Chaos Engineering experiment must be completed within 1 minute.

We should set a threshold that allows for some downtime but ensures the Pod is
running and ready for the majority of the time. A reasonable threshold would be to
require the Pod to be running and ready for at least 90% of the time over a 1-minute
period. This allows for up to 6 seconds of downtime, which could account for brief

network issues or other transient problems.

The example-pod must be in a Running state and Ready condition for at least 90% of

the time over a 1-minute monitoring period.

B Unit test to validate the steady state

To add the threshold assertion to the inspection Python script, | will modify the existing
code to create a unit test that inherits from the K8sAPIBase class. The test will run for a
specified duration (default 60 seconds) and check if the example-pod is in a Running
state and Ready condition for at least 90% of the time. I'll use argparse to allow users to
specify a custom duration. The test will collect status information every second,
calculate the percentages, and assert that they meet or exceed the 90% threshold.

argparse
time
unittest_base K8sAPIBase

(K8sAPIBase) :
(self, duration):
Define the pod details
pod_name =

namespace =

Define the threshold (90%)
threshold = 0.9

Initialize counters
status_counts = { . 0, : 0}
total_checks = 0

Start the test loop
start_time = time.time()
end_time = start_time + duration

time.time() < end_time:

Get the pod status
pod = self.vl.read_namespaced_pod(name=pod_name, nan

Check if the pod is running
pod.status.phase ==

status_counts|] +=1

Check if the pod is ready
pod.status.conditions:
ready_condition = next((c c pod.status.cc
ready_condition ready_condition.status =-

status_counts|] +=1

total_checks += 1

Exception e:

({e

Wait for 1 second before the next check
time.sleep (1)

Calculate percentages
running_percentage = status_counts| 1 / total_checks

ready_percentage = status_counts|] / total_checks

Print summary

¢ {duration})
({running_percentage: .2%})
¢ {ready_percentage: .2%})

Assert that the percentages meet or exceed the threshold
running_percentage >= threshold, {r
ready_percentage >= threshold, {ready

Ok
parser = argparse.ArgumentParser ()
parser.add_argument (, type=int, default=60, help=
args = parser.parse_args()

test = TestPodStatus()
test.test_pod_running_and_ready(args.duration)

__hame__ ==

main()

Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

Pod status over 5 seconds:
Running: 100.00% of the time
Ready: 100.00% of the time

Test passed: Pod was running and ready above the threshold

Steady state #2: ExampleServiceEndpointAvailable 2

® Description

Given the existing steady state and the system's configuration, the next most critical
aspect to monitor would be the Service's ability to route traffic to the Pod. Since we
have a single Pod and a Service that's supposed to direct traffic to it, we should ensure
that the Service is correctly selecting and routing traffic to the Pod. This is particularly
important because if the Service fails to route traffic, even if the Pod is running, the
application would be inaccessible. Therefore, we'll define a steady state for the
Service's endpoint availability.

@, Current state inspection

To inspect the ExampleServiceEndpointAvailable state, we need to check if the Service

is correctly routing traffic to the Pod. Since this involves testing network

communication, we'll use k6 to send HTTP requests to the Service endpoint and verify

its availability. We'll use the internal DNS name of the Service to send requests, as this is

how other components within the cluster would access it.

tool: vus: 1 duration:

Inspection script (Javascript)

http g
{ check, sleep } H

options = {
vus: 1,
duration: 5
thresholds: {

"http_req_failed': [

1,

// Less than 1% of requests s

'http_req_duration': [1 // 95% of requests should be
}
+s
O {
res = http. (
(res, {
"'status is 200': (r) => r.status === 200,
'body contains nginx': (r) => r.body. ()
1)
(1)
}
Pod has completed sucessfully.

The inspection script's results (current states) are as follows:

v status is 200
v body contains nginx

checks.......oiiiiiiiiii it
data_received..................:
data_sent...........t
http_req_blocked...............:
http_req_connecting............:

v http_req_duration..............:
{ expected_response:true }...:

v http_req_failed................:
http_req_receiving.............:
http_req_sending...............:
http_req_tls_handshaking.......:
http_req_waiting...............:
[EEP_FEEIS 0 0 0 0 0000000000000 000008
iteration_duration.............:

iterations..........

100.00% 10 out of 10
4.3 kB 848 B/s

550 B 110 B/s
avg=608.17us min=4.08us
avg=52.46us min=0s
avg=601.43us min=414.1us
avg=601.43us min=414.1us
0.00% 0 out of 5
avg=119.66us min=62.64us
avg=62.36us min=11.99us
avg=0s min=0s
avg=419.39us min=281.12us
5 0.997875/s

avg=1ls min=1s

) 0.997875/s

1 min=1 max=1
1 min=1 max=1

med=7.¢
med=0s

med=58¢
med=58¢

med=77.
med=26.
med=0s

med=48¢

med=1s

> Threshold

Based on the current state and the system configuration, we need to define a threshold
for the ExampleServiceEndpointAvailable steady state. The k6 test results show that the
service is currently performing well, with 100% of checks passing, 0% failed requests,
and response times well under 500ms. However, we should allow for some fluctuations
in performance while still maintaining a high standard of availability and

responsiveness.
Considering that:

1. The system has only one pod, making it more susceptible to downtime.

2. Therestart policy is set to 'Never', which could lead to extended downtime if the

pod fails.

3. There are no resource limits or health checks in place.

We should set a threshold that is slightly more lenient than the current perfect
performance, but still ensures high availability and responsiveness.

The ExampleServiceEndpointAvailable steady state is considered maintained if:

At least 99% of requests return a 200 status code.

At least 99% of response bodies contain the word 'nginx'.

1
2
3. The 95th percentile of response times is below 750ms.
4. Lessthan 1% of requests fail.

5

These conditions must be met over a 1-minute rolling window, with checks
performed every 10 seconds.

B Unit test to validate the steady state

To verify if the steady state satisfies the threshold, we need to modify the existing k6
script by adding new thresholds and adjusting the test duration. We'll add thresholds
for the success rate of status checks, the presence of 'nginx' in the response body, and
adjust the existing thresholds for response time and failed requests. We'll also increase
the test duration to 1 minute to match the specified rolling window, and set the
iteration interval to 10 seconds.

http H
{ check, sleep } H

options = {
vus: 1,
duration: 5
iterations: 6, // Run every 10 seconds for 1 minute
thresholds: {
// Check if at least 99% of requests return a 200 status code

"checks{status is 200}": [1,

// Check if at least 99% of response bodies contain the word 'nc

"checks{body contains nginx}": [1,

// Check if the 95th percentile of response times is below 750ms
"http_req_duration": [1,

// Check if less than 1% of requests fail
"http_req_failed": []

}
15

export default function () {
const res = http.get('http://example-service.default.svc.cluster.]

check(res, {
'status is 200': (r) => r.status === 200,
'body contains nginx': (r) => r.body.includes('nginx"')

s

sleep(10); // Sleep for 10 seconds between iterations

Pod unittestexampleserviceendpointavailablemod®-pod has failed.

time="2024-11-28T07:54:07Z" level=error msg="unable to validate thre

The error occurs because the threshold expression for the 'body contains nginx' check
is not correctly formatted. In k6, when referencing check metrics in thresholds, we need
to use square brackets and quotes for the check name. Also, we should remove the fixed
number of iterations to support variable durations. Here's how we can fix these issues:

import http from 'k6/http';
import { check, sleep } from 'ké';

export const options = {
vus: 1,
duration: '1lm',
thresholds: {
// Check if at least 99% of requests return a 200 status code
"checks['status is 200']": ["rate>0.99"],

// Check if at least 99% of response bodies contain the word 'nc

"checks['body contains nginx']": ["rate>0.99"],

// Check if the 95th percentile of response times is below 750ms
"http_req_duration": ["p(95)<750"],

// Check if less than 1% of requests fail
"http_req_failed": ["rate<0.01"]
}
+s

export default function () {
const res = http.get('http://example-service.default.svc.cluster.]

check(res, {
'status is 200': (r) => r.status === 200,
'body contains nginx': (r) => r.body.includes('nginx"')

1)

sleep(10); // Sleep for 10 seconds between iterations

Pod unittestexampleserviceendpointavailablemodl-pod has failed.

time="2024-11-28T07:54:24Z" level=error msg="1invalid threshold defir

The error occurs because k6 doesn't recognize the check names with spaces when
defined in the thresholds. To fix this, we need to use the exact metric names that k6
generates for checks. These are in the format 'checks{checkName}'. We'll update the
threshold definitions to use this format.

import http from 'k6/http';
import { check, sleep } from 'ké';

export const options = {
vus: 1,
duration: '1m',
thresholds: {
// Check if at least 99% of requests return a 200 status code
"checks{status is 200}": ["rate>0.99"],

// Check if at least 99% of response bodies contain the word 'nc
"checks{body contains nginx}": ["rate>0.99"],

// Check if the 95th percentile of response times is below 750ms
"http_req_duration": ["p(95)<750"],

// Check if less than 1% of requests fail
"http_req_failed": ["rate<0.01"]

}
3

export default function () {
const res = http.get('http://example-service.default.svc.cluster.]

check(res, {
'status is 200': (r) => r.status === 200,
'body contains nginx': (r) => r.body.includes('nginx"')

1)

sleep(10); // Sleep for 10 seconds between iterations

Pod unittestexampleserviceendpointavailablemod2-pod has failed.

time="2024-11-28T07:54:38Z" level=error msg="unable to validate thre

The error persists because the check names contain spaces, which are not allowed in k6
metric names. To resolve this, we need to modify the check names to remove spaces
and use camelCase or snake_case. We'll update both the check definitions and the
corresponding threshold definitions to use consistent, space-free names.

import http from 'k6/http';
import { check, sleep } from 'k&';

export const options = {
vus: 1,
duration: 'Im',
thresholds: {
// Check if at least 99% of requests return a 200 status code

"checks{statusIs200}": ["rate>0.99"],

// Check if at least 99% of response bodies contain the word 'nc
"checks{bodyContainsNginx}": ["rate>0.99"],

// Check if the 95th percentile of response times is below 750ms
"http_req_duration": ["p(95)<750"],

// Check if less than 1% of requests fail
"http_req_failed": ["rate<0.01"]
}
}s

export default function () {
const res = http.get('http://example-service.default.svc.cluster.]

check(res, {
statusIs200: (r) => r.status === 200,

bodyContainsNginx: (r) => r.body.includes('nginx"')

1)

sleep(10); // Sleep for 10 seconds between iterations

Pod unittestexampleserviceendpointavailablemod3-pod has failed.

time="2024-11-28T07:54:54Z" level=error msg="unable to validate thre

AssertionError: MAX_MOD_COUNT_EXCEEDED: 3

Traceback:

File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/s
exec(code, module.__dict__)

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 431, in <m
main()

File "/workspace/app/projects/chaos-eater/ChaosEater_demo.py", line 397, in ma
output = st.session_state.chaoseater.run_ce_cycle(

File "/workspace/app/projects/chaos-eater/chaos_eater/chaos_eater.py", line 14
hypothesis_logs, hypothesis = self.hypothesizer.hypothesize(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/hypothesizer.
steady_state_logs, steady_states = self.steady_state_definer.define_steady

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/steady_state
unittest_log, unittest = self.unittest_agent.write_unittest(

File "/workspace/app/projects/chaos-eater/chaos_eater/hypothesis/1llm_agents/st
assert mod_count < max_mod_loop, f"MAX_MOD_COUNT_EXCEEDED: {max_mod_Tloop}"

