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A INITIALIZATION VIA TENSOR METHOD

Following|Zhong et al.[(2017), we define a special outer product, denoted by ®. For any vector v € R and

Z c Rdl Xdz,
do

v@ZzZ(v@zi@)zi+zi®v®zi+zi®zi®v)7 (12)
i=1
where ® is the outer product and z; is the i-th column of Z. Recall that = \/% ZjK:l Tq; Next, we define
the high order momentum in the following way:

M, = E, {y&} € R?, (13)
M; = Eq|y(# © & ~ Ea@@")| € R, (14)
M; =E, [y(i:@)s _ 5®EEQET)} € Rixdxd (15)

where 2®3 := 2 ® z ® z, and E,, is the expectation over x.

Following the same calculate formulas in the Claim 5.2 (Zhong et al.| 2017), there exist some known con-
stants v;,7 = 1, 2, 3, such that

K
My = ¢y - |lw)]2 - w5, (16)
j=1
K
My = by |w}2 - wiw;", (17
j=1
K
My ="t [lw] |- w;**, (18)
j=1

where W} = w} /[|wj]|2 in (I3)-(15) is the normalization of w.

M, M5 and M3 can be estimated through the samples {(:cmyn)}i:;l, and let M\l, ]\72, J/\Zg denote

the corresponding estimates. First, we will decompose the rank-%k tensor M3 and obtain the {ﬁj le. By

applying the tensor decomposition method [Kuleshov et al.|(2015) to M 3, the outputs, denoted by ﬁ; , are the

estimations of {w }JK:1 Next, we will estimate [|wj |2 through solving the following optimization problem:

; 19)

K
—~ Ak
a=arg min : |M —Z oW
gaE]RK ‘ 1 : 1/11 W
Jj=1
From (16) and (I9), we know that |@;| is the estimation of |[w}|2.  Thus, W is given as
~ % ~ % ~x% ]

[avw,, - a5, g W

To reduce the computational complexity of tensor decomposition, one can project M3 to a lower-

dimensional tensor (Zhong et al., [2017). The idea is to first estimate the subspace spanned by {w;‘ }jK:l,
and let V' denote the estimated subspace.
Moreover, we have

My(V,V, V) = Ea [y(VT#)™ — (VI %) 3, (V%) (VT3)")| e REXFK, (20)
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Subroutine 1 Tensor Initialization Method

Input: training data D = {(z,,, )} 1;

Partition D into three disjoint subsets Dy, Ds, Ds;

Calculate M 1 M\g following (13), (T4) using D1, Da, respectively;
Obtain the estimate subspace V of ]\/Z 2

Calculate ﬁg(f/, V, V) through Ds;

Obtain {u;}<, via tensor decomposition method Kuleshov et al.|(2015);
Obtain & by solving optimization problem (I9);

Return: w( ) = ajf/ﬁj,j =1,., K.

R I O o s

Then, one can decompose the estimate M3(‘7 v, ‘7) to obtain unit vectors {Q’Zj}K_l € RX. Since w* lies

in the subspace V', we have VV 1w = = wj. Then, Vuj is an estimate of w’;. The initialization process is
summarized in Subroutine [T}

B NOTATIONS

In this section, we summarize some important notations that will be used in the following proofs. First,
recall that the empirical risk function over data D = {(x,,, y»)}2_; in (2) is defined as

. 1 L1 E 2
foW) = 523 (3 2 elw] @na,) = va) - e
— \K &

In addition, the population risk function, which is the expectation of the empirical risk function over the data
D, is defined as

(22)

where © € R belongs to standard Gaussian distribution, and y = g(W™*; x). Besides these, we use o; to

denote the i-th largest singular value of W*. Then, x is defined as o1 /0, and v = Hfil oi/0K. pis
defined in Property 3.2 (Zhong et al.,2017) and a fixed constant for the ReLU activation function.

Next, to avoid high dimensional tensor in analyzing the second order derivative of the objective function. The
proofs will be based on Vec(W') € RE"_ which is the vectorized W, instead. For notational convenience,
we will still use W in the proofs, but W' is a vector instead of a matrix. Hence, the first order derivative of
the empirical risk function V fp € RE”, and the second order derivative V2 fp € RET*Kr,

Moreover, without special descriptions, a = [af,al, - oL]T

with a; € R". Therefore, we have

stands for any unit vectors that in RX"

K ~
o 2
V2 folls = max " 92 fpall, = max (Y ol $12)" 3)
j=1 J
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Finally, since we focus on order-wise analysis, some constant number will be ignored in majority of the
steps. In particular, we use hi(z) 2 (or <,~)ha(z) to denote there exists some positive constant C' such
that hy(2) > (or <,=)C - ha(z) when z is sufficiently large.

C PROOF OF THEOREM 1]

The main idea in proving Theorem([T]is to use triangle inequality as shown in by bounding the second or-
der derivative of the population risk function and the distance between the empirical risk and population risk
functions. Lemma [3| provides the lower and upper bound for the population risk function, while Lemma
provides the error bound between the second order derivation of empirical risk and population risk functions.

Lemma 2 (Weyl’s inequality, Bhatia| (2013)). Suppose B = A + E be a matrix with dimension m X m.
Let \;(B) and \;(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have
[Ai(B) — A\ (A)| < ||Ell2, Vié€[m]. (24)

Lemma 3. Ler f be the population risk function in (22). Assume W satisfies (0), then the second-order
derivative of f over W is bounded as

(1 —eo)p 2 7

—— S I <V f(W) < 1. 25
11k2yK2" — fW) < K 25

Lemma 4. Let fp and f be the empirical and population risk function in @I) and @Z2), respectively, then

the second-order derivative of fp is colse to its expectation f with an upper bound as:

P rlogd
1V2fp = V2 flla S /5= (26)

Proof of Theorem[Z]. Let ;\n]ax and Xmin denote the largest and smallest eigenvalues of \v& fp, respectively.
Also, Let A\pax and Ap,i, denote the largest and smallest eigenvalues of V2 fp, respectively.

Then, from Lemma[2} we have

Amax < Amax + V2 fo = V2 £z 27)
and

Amin = Amin — [V fp = V2|2 (28)

2

When the sample complexity satisfies N > 1 2p~ 272 K47 log d, then from Lemmad} we have

19200 = V21l < {105 (29)
Then, from 27), and (29), we have
s < 7 (30)
and
Aunin > W 31)
which completes the proof. O
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D PROOF OF THEOREM 2]

The major idea in proving Theorem [2]is to first characterize the gradient descent term as

Vo (W) =fa, (WO) + (fo, (W) ~ fo, (WD)

~ . 32

=(V2fo, (W), WO = W) + (fo, (W) = fo, (W), .
where the last inequality is obtained through intermediate value theorem, and W® lies in the convex hull
of W(®) and W*. The reason that intermediate value theorem is applied on population risk function instead
of empirical risk function is the non-smoothness of the empirical risk functions. Due to the non-smoothness
of ReLLU activation function at zero point, the empirical risk function is not smooth, either. However, the
expectation of the empirical risk function over the Gaussian input « is smooth. Hence, compared with
smooth empirical risk function, i.e., neural networks equipped with sigmoid activation function, we have an

additional lemma to bound V fpt to its expectation V f , which is summarized in Lemma

The momentum term 5(W®) — W (t=1)) plays an important role in determining the convergence rate, and
the recursive rule is obtained in the following way:

|:W(t+1) o W*:| B

w — w+

3 [y e

where A(f3) is a matrix with respect to the value of 3 and defined in (38). Then, we know iterates W (")
converge to the ground-truth with a linear rate which is the largest singlar value of matrix A (). Recall that
AGD reduces to GD with 5 = 0, so our analysis applies to GD method as well. We are able to show the
convergence rate of AGD is faster than GD by proving the largest singluar value of A(f) is smaller than
A(0) for some 5 > 0.

Lemma 5. Let fp and f be the empirical and population risk function in @1) and @2), respectively, then
the first-order derivative of fp is close to its expectation f with an upper bound as:

A logd
IVFp (W) = VEW)2 S 4/ == (IW = W72 +¢). (34)

Proof of Theorem 2] The update rule of W (*) is
wt) —ww @) _ nvfpt(w(t)) + B(W(t) _ W(t—l))

. (335
=W =V W)+ W - WD) (VWD) =V fp, (W)
Since V2 f is a smooth function, by the intermediate value theorem, we have
W) — w® _ w2 f( WO WO — W) + W ® — Wwt=)
. (36)
+n(VIWO) =V o, (W1)),
where W®) lies in the convex hull of W*) and W*.
Next, we have
WD — w1 —gv2 (W) + 81 BI| [ WO —W*
w® —w* | I 0] Wt _w
. (37)
+ {Vf(vv@) - wmw%}
n 0
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Let
2 (¢
A(B) {I Y f(})V( )+ BI 501} ’ (38)
so we have
W(t+1) W W(f) —_W* v W(t) I v £ W(t)
From Lemma 5} we know that
R rlogd N
0 |[VHWO) = o (WO)||| < Cany [ (IW - Wz + ) (40)
for some constant C5 > 0. Then, we have
. rlogd . rlogd
W)~ o < (A + Cany | e JIWO = W+ oy
t t
(41)
N rlogd
=v(B)|W = W|y + Camy [ 2=,
¢
Let V2f(W®) = SAST be the eigendecomposition of V2 f(W®). Then, we define
ST o S 0 I—nA+p51 BI
A(B) = |: 0 ST:| A(B) |:0 S:| = [ 77[ b BO :| (42)
T
Since [‘(S)’ g} {'5;) S(')T] = B ?} , we know A(f) and A(S3) share the same eigenvalues.

Let \; be the i-th eigenvalue of V2 f (f/‘\/(t)), then the corresponding i-th eigenvalue of {@2), denoted by
0:(B), satisfies

v —(1—nXi+B8)6; +8=0. (43)
Then, we have

(I—nXi+B)+ /(0 —nhi+p)?—48

51(3) = 9 “4)
and
(VB it Bz (1- Vi)
= {% (1= + 8) + (T 1\ + 5)2 — 45, otherwise. )

Note that the other root of {#3) is abandoned because the root in (#4) is always larger than or at least equal
to the other root with |1 — n\;| < 1. By simple calculation, we have

6:(0) > 6;(B), for VB e (0,(1—n\)?), (46)

and specifically, §; achieves the minimum §; = |1 — /pX;| when 8 = (1 — \/r])\i)Q.
Let us first assume W (*) satisfies (6), then from Lemma we know that

(1 - Eo) 7
< A < —.
11k%2yK? 'T K
Lety; = 1”1(22_7 510()2 and o = % If we choose /3 such that

B* =max {(1 — /imm1)?, (1 — i2)*}, 47)

17
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then we have 8 > (1 — y/n\;)? for any i and §; = max {|1 — /771, |1 — /772|} for any i.
Letn = ﬁ, then 3* equals to (1 -/ 27712) Then, for any ¢ € (0, 1) we have

1 1—eg
A(B = (B )=1- —_
” ( )”2 max 2,}/2 154[0—1/{27[( 48
. 1-— 3/4 €0 ( )
V154p~1R2yK
Then, let
rlogd €0
C (49)
o Ny 4«/154p—1f<;2’yK
we need N; > g5 2p ' k2y K31 log d.
Combine (@8) and ([@9), we have
1— €o
V() <1 ——— 0 (50)
(5 V154p=1k2y K
While let 5 = 0, we have
1-— 90}
v(0) > [|A0)[l2 =1 — T5dp 12 K (51
and
rlogd 1—2¢g
< =T g TP e
/0) < [AO2 + Cony 2L <1 - 22 (52
it N, > 562;)*1/{27}(47“ log d.
In conclusion, with n = 5— and 8= ( — 2’%)2, we have
(WD - W< (1 ) WO - w20 BN 6y
= V154r2 K

if W+ satisfies (6) and Ny > 5 2k2yK3r log d.
Then, we can start mathematical induction of (33)) over ¢.

Base case: (6) holds for W () naturally from the assumption in Theorem Since (6) holds and the number
of samples exceeds the required bound in (33), we have (53] holds for ¢ = 0.

Induction step: Assume (53) holds for ¢, to make sure the mathematical induction of (53) holds, we need
W (1) satisfies (6). That is

dl d 1-—
og 1) E00K (54)
™ V132k29K 44527}(2
Hence, we need
N; 2 ey 2k K8dlog d. (55)

In addition, with (€) and (33) hold for all ¢ < T, the following equation

H{ r(+)1> w H A, [V‘%ml)_ué;*} {Vf(WW)—UVfo(WWH' (56)

' +n
oo

oo
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holds as well, and || A(3)]|, is bounded by v/(3). Hence, (53) also holds in infinity norm as

rlogd

1
WD W < (1 _ 7) W™ — W™ +2Cn €] (57)

V 154k2y K

In conclusion, when N; > 5 2k%y% K3dlog* d, we know that (53) holds for all 1 < ¢ < T with probability
atleast 1 — K2T - d—1° By s1mple calculation, we can obtain

1—¢ k2vK2rlogd
WO _WHly < (1— —=2 ) (WO Wy + Oy L2757 gl (58)
|| o< (1 wc) || E Nl

for some constant C' > 0.
O

E SUPPLEMENTARY PROOF FOR THE STATEMENT IN SECTION [4.]]

Suppose M (*) to denote the mask matrix by truncating the smallest (1 —r*/d) fraction of entries in iterate
W ®). Let M* denote the ground-truth mask matrix for the teacher network, the following corollary holds
from Theorem 2]

Corollary 1. Suppose the noise || < W,;m and the number of samples satisfies N =
Q(K®dlogdlog(1/e)). Let {W(tl)}z}:l be the iterates generated from Algorithm |I| by setting r = d.

Then, for any Ty > log(W

max/ mlll) we have

M) = M~ (59)

Proof of Corollary[l] From (37), we know that

1—¢ dlogd
WD —we < (1- 70) W — W 420 (60)
H oo < ( ey H n €l.
Hence, we have
1— T dlogd
W W < (1= === ) " [WO = W | + 200 | 2] (61)
\/154Kr2y K
With 7y > log(2W;,, /W), we have
1-— T: wO —w=
(1 B 760) 1 ||W(O) - W*”OO — Wftlln ' u 7Wr>:11n' (62)
/1542y K 4 [W*|oo
Since N = Q(K8dlogdlog(1/e)) and €| < W, we have
1
20 [ “E ] < Wi (63)
From (62) and (63), we know that
W) — W < W;m. (64)

19
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Therefore, for any entry in W,L-<JT-1), if the corresponding entry in augmented ground-truth weights W* is
zero, we have

7(T1) s,
“/vz] | < §Wnlin$ (65)
if the corresponding entry in W is non-zero, we have
Ty T 1 T17* 1 T17%
‘I/I/I(J >| > |l1/L‘]‘ - im/min > ivvmin' (66)
As we know that there are only r* /d fraction of non-zero weights in the ground-truth model, M (7*) = M*
holds. O

F PROOF OF LEMMA [I]

Instead of providing the proof for Lemmal|I] we turn to prove a more general bound for the performance of
tensor initialization method as shown in Lemma [§] One easily verify that Lemma [I] holds naturally from

Lemma@ Also, to guarantee the independence among fp, the data used in the tensor initialization need to
be independent with the data used in AGD.

Lemma 6. Assume the noise level || < Koy and the number of samples N > k8 K®rlog® d, the tensor
initialization method in Subroutine 1 outputs W ©) such that

K4rlogd
L P e G 3) (©7)

with probability at least 1 — d—1°.

F.1 PROOF OF LEMMA [6]

Lemma 7. Suppose M, is defined as in (]ﬂﬂ}:[) and MQ is the estimation of Ms by samples D =
{(x, yn) Y2 . Then, with probability 1 — d—10, we have

— rlogd
|Me = M| 5 4/ 3 (01 + [¢]). (©3)
provided that N > rlog™ d.

Lemma 8. Let V be generated by step 4 in Subroutine 1. Suppose M3(‘7, ‘7, ‘7) is defined as in 20) and
M;3(V, V. V) is the estimation of M3(V,V V) by samples D = {(y,,yn)})_,. Further, we assume

V € R™X is an orthogonal basis of W* and satisfies |[VVT — ‘7‘7T|\ < 1/4. Then, provided that
N> K° log® d, with probability at least 1 — d—1°, we have

~ o~ PNPEPN K3logd
|My(V, V. V) = My(V. V. V)| S | =2 (o1 +[¢]). (69)

Lemma 9. Suppose M, is defined as in @ and ﬁl is the estimation of My by samples D =
{(xn, yn) Y2 . Then, with probability 1 — d—'°, we have

— rlogd
1My = M| S (/= (o1 + k) (70)

20

provided that N > rlog* d.
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Lemma 10 (Tropp|(2012), Theorem 1.6). Consider a finite sequence { Zy, } of independent, random matrices
with dimensions dy X ds. Assume that such random matrix satisfies

E(Z;) =0 and || Zk|| < R almost surely.

ez}

Define

6% := max {H ZE(ZkZZ)
i

Then for all t > 0, we have

Prob{

Lemma 11 (Zhong et al.| (2017), Lemma E.6). Let V € R™K pe an orthogonal basis of W* and V be
generated by step 4 in Subroutine 1. Assume |My — Ms||2 < ok (Mz)/10. Then, we have

| M; — M|
O'K(MQ) )
LemIAna 12 (Zhong et al.[(2017), Lemmas E.13 and E.14). Let V € R™*K pe an orthogonal basis of W*
and 'V be generated b/y\ step 4 in Subroutine 1. Assume Ny can be written in the form of with some
constant 11, and let ]\All be the estimation of My by samples D = {0, yn}_ . Let @ be the optimal
solutions of (19) withw; = Vu,. Then, for each j € {1,2,--- K}, if
1
K2VEK'
Ty = |G, — V7w, < % (72)

#2VEK'
—~ 1
Ty :=||M; — M|z < Z||M1||27

—t2/2 )
62+ Rt/3/°

>z

k

>t} < (d + da) exp (

IvvT —vvT|, < (71)

Ty = |[VVT —VVT|, <

then we have ,
7 = @) < (WK (T + ) + WK Ty )], (73)

where o = |[w}||2.

Proof of Lemma(l} By simple calculation, we have

w; — [a; |Vl
<[lw; = sV + sl Vs - @V |

<l - retava ]+

w;ll2Vau; — |aj\V17jH2

R R (74)
< o [5 = Vsl + [ 2 = 161 Vs
<oi(|w; — VVT®; |2 + VW] — a,ll2) + ‘ijHz — |ay|
=01 (I1 + I3) + I.
From Lemma[T1] we have

Y Sor o5 M, — M|
L = [@ - VO w |y <|[VVT — VPT|, < 1M2= Malla 75
1 Hw] ’u)]”2 —H ||2 — UK(MQ) ) ( )

21
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where the last inequality comes from Lemma[7] Then, from (I7), we know that

ox(Ma2) S érjl,igﬂK |will2 S oK. (76)

From Theorem 3 in (Kuleshov et al.| [2015)), we have

~

~ N N K o~ o~ o~ o~ ~ o~
L =|VT®w; — a2 < ;HMB(Va V., V)= M3V, V., V). (77)

To guarantee the condition in Lemmahold, according to Lemmasand weneed N > k3Krlogd.
Then, from Lemma[T2} we have

Iy = (,#K?’/?(Il VL) + K2KV2| M, — MlH)al. (78)

When r > K, according to Lemmas|7] [8]and[0] we have

PUESPR K3rlogd
lw; = 18|V, |, < n0y/ = (o1 + I¢) (79)

provided that N > rlog® d.

In conclusion, we have

X .~ S~ K*rlogd
W — WO, < VK - |w; — 8|V, S “6\/T(01 + [€1).- (80)
O

G ADDITIONAL PROOF OF THE LEMMAS IN APPENDIX

G.1 PROOF OF LEMMA[3]
The eigenvalues of V2 f at any fixed point W is bounded through the ones at the ground truth W* by using
Lemma[2] The eigenvalues of V2 f at ground truth W* is bounded in (83) and (84).
Lemma 13. Let f be the population risk function in 22)) and W satisfy (6), then we have
< AW =W,

V(W) = VW) < S

81)

Proof of Lemma|[3} Let Amax(W) and Amin(W) denote the largest and smallest eigenvalues of V2 fp at
point W, respectively. Then, from Lemma[2] we have

Amax(W) < )\max(W*) + ||v2f(W) - VQf(W*)”Q’

* 2 2 * (82)
and /\Inin(W) 2 Amin(‘/‘/ ) - ||v f(W) - v f(W )HQ

22
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Next, we provide the the lower bound of Hessian of population function at ground truth W*. For any

a=[af,al, - ak]T witha; € R", we have

K
1 2
: T2 * - T 0 s,
min o’ Vo f(W"a mirilEm(jE_la] z;¢' (w; w]))

lalla=1 " K? |
1 K 2
- min ]E( alzd' m%)
K2 |&]la=1, supp(G;)= supp(}) ; s @0 () (83)

K
1 : ~1 oty
i g e 977)
p
>__ 7
T11K2AK?2’
where a € RE with aj € R?, and the last inequality comes from Lemma D.6 (Zhong et al., 2017).

Next, the upper bound of Hessian of population function at ground truth W* can be bounded in the following
way. For any o, we have

e

K K
IV (WHa = %Ew(Zafwj¢’(w;ij)>2 < 22 ‘Eg Z (a?mjgb’(w;‘T:cj)f
j=1

j=1

2
E, (a;‘-r:l:jd(w;T:Ej))

I
5[t
[

j=1 (84)
2 & 3
<Y (Balaf ;) Eal¢'|*)
j=1
2 6
<2 K.3=_—.
<% K-3 %
Then, from Lemma when W satisfies (6)), we have that
2 2 * €op
W) — w < . 85
IV2F(W) = V25 (W) < 2% (85)
Hence, from (82) and (83)), we have that
(1 —eo0)p 2 7
~— 2 I< wW)< —1I. 86
11k2y K2 <V )_K (86)
O

G.2 PROOF OF LEMMA 4]

We first show that the second order derivative of fp is a sum of several random sub-exponential variables
as shown in (93). Then, by concentration theory, i.e., Chernoff bound, we can show that the error bound of

V2 fp to its expectation.

Definition 1 (Definition 5.7, [Vershynin! (2010)). A random variable X is called a sub-Gaussian random
variable if it satisfies

(E|X[P)Y/P < e1/p (87)

23
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for all p > 1 and some constant c; > 0. In addition, we have
Ees(X—EX) < ec2HXHi,2s2 (88)

for all s € R and some constant co > 0, where || X ||, is the sub-Gaussian norm of X defined as || X ||y, =
sup,>1 p~ /2 (E[X[P) /.

Moreover, a random vector X € R? belongs to the sub-Gaussian distribution if one-dimensional marginal
o X is sub-Gaussian for any a € RY, and the sub-Gaussian norm of X is defined as || X |y, =
SUP||al2=1 ||04TX||w2-

Definition 2 (Definition 5.13,|Vershynin| (2010)). A random variable X is called a sub-exponential random
variable if it satisfies

(BIX|P)/P < egp (89)
forall p > 1 and some constant cg > 0. In addition, we have
Ees(X—EX) < eC4|‘X‘|ils2 90)

for s < 1/||X||y, and some constant c4 > 0, where || X||y, is the sub-exponential norm of X defined as
X1l = sup,sy p~" (EIX[7) /7.

Proof of Lemma[d Recall the definition of f and f in (22) and (Z1), we have
*f  fp

8'wj1 8’(1)]‘2 awjl 8’(1}]'2

N 91)
:Em [(bl(wjjl :EQ_,'l )d) (wT me )wﬂn ,51;72 N Z d) w wn 25, )¢/(wj7;mn7ﬂ-72 )$n,(2_7~1 $7’111¢Q.i2i| ’
n=1
For any o, we have
I92f = V*fpllz = Hrrﬁax a7 (v — V2 fp)al
e I e T
Jj1= 1]2 1 ‘OLHQ ! S awhawjz 8’wjla'wjé 2
92)

T / T T T
2 Z Z ”maX Eg { (wjlwﬂjl)¢ (wj2w9j2)aj1mﬂjlaj2w9j2
Ji1=1j2=

T T T T
-~ Z d(wj, Tn 04y )¢/(wj2mn79j2)aj1mnyﬂj1ajgmnaﬂjé} .

Then, define Z,(j1,j2) = (b(wj:’; IEn7Qj1)¢/(w};$n7Qj2)a}1 $n7lea£$n7Qj2, and we say Z belongs to
sub-Exponential distribution. According to Definition 2] we have
p) 1/p

2p 1/(2p)
S <E‘ (az meh) > . (E‘ (Oé?; mn,sz)

<Ce V20 Cu/2p

:2()3J p

©12,7)" <(E| (o 200 - (@ 2n)

2p 1/(2p)
) 93)
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Then, we have

Eznes(Z"’EZ") < e’CS2 (94)
for some constant C' > 0 and any s € R. From Chernoff bound, we have
1 & e 0
P b{’— Zn—EZ,)| <t} <1- 95
roby | 7 ;( )<ty < e 95)
Let us select t = 4/ “fvgd and s = & - ¢, then we have
N
1 rlogd
— Z,—EZ,)| < 6
\ N sV 96)
with probability at least 1 — d~¢.
Hence, we have
2 2 f log d
T o € e PO PV O
[|ax]l2=1 8wj18wj2 8’1.03‘1 8’[1)]‘2 N
and
A rlogd
IV2FW) = V2 fa(W)ll2 S | = (98)
with probability at least 1 —d~". O
H PROOF OF LEMMA
Proof of Lemmal[3] The first-order derivative of the empirical risk function is written as
. N K
0 1 1
aiuz :ﬂ Z (yn - E Z ¢(wfx7L,Qj)>x7l,Qj d),(wlzmn,ﬁj)
N K
p(w} a0, (b(ijwn’Qj))wmQj ¢ (W} Tn.0,) 99)

n=1j=1

K

Define z,,(j,k) = (gb(w;'fTa:mQJ) - qﬁ(ijwn,Qj))(b’(wk Tp,0;)Tn,0,. Then, for any a; € R”, we have

p_l (Ew‘asznV)) =p! (Ew (a?wn,ﬂj) ¢(ijwn Q; ) ¢(wfwn,ﬂj))d)/(wgwn,ﬂj)’p) v

(

<! (Eal (0] 200, (6w} 00,) — 6] @n)) ")
)
)

L 100
7 (Ealo(w; enn,) - o wna) M) O

1
_ 5 2 2p
<p ! (Balo wn.0,[7) % - (Ea| (] —0;) 700, ") "
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Following similar steps in (93)), by Chernoff bound, we have

N
< rlogd

n_Emn
(zn = Eaza)||, S/

wj — w2 (101)

>

with probability at least 1 — d~". Also, we know that z,, o, ¢’ (Wit x,,,0,;) belongs to sub-Gaussian distri-
bution as well. Then, by Chernoff bound, we have
.

N
1
‘2 §\§| : HN Z xn,de)/(w]Twn,Qj)
n=1

N
1
H N Z {nmn,ﬂj (;S’(wjrscn@j)
n=1 (102)
rlogd
<l€] -

with probability at least 1 — d™". O

I PROOF OF LEMMA [13]

Proof of Lemmal[I3} Recall the definition of population risk function, we have

2 *

K2 w¢ (w_]l mQJl)(ZS (wj2 be)mthng

awjl 6wj2
and
2 f(W 1
D0 Ow (5w)_ =77 Bed (W], 20, )¢ (W], 0, )aj, 20y, (104)
J1 J2

Then, we have

PFW™)  Pf(W)

aw.jl 8wj2 awjl awjz

=Zc3Be {¢> (wil xo;,)¢ (Wi Ta,,) — ¢’(w£wﬂj1)¢’(wj7;wﬂj2)]wﬂjlw?;jz
1 N . *

:ﬁEw {d) (wleijl)(¢/(wj2Tij2) - ¢/(w;;wﬂj2)) + ¢/(W£$Q]2)(¢ (wleijl) ¢/(wjjlw9j1))i|x9j1w£jg
1

+ Eod (w],xj,) (¢ (w) zas,) — ¢ (w], wnjl))wﬂjlngz}

5 [Ead (] 20;,) (¢ (w;T wa,) — ¢/ (w]20;,)) 20,2,

1
_ﬁ(ﬂ + I).

(105)
For any a;, and ar;, € R", we have
T
ma; o o
oy llzs vy, lla=1 7177
T T T T T
= max  Eud'(w] zaj,) (¢ (W], ®aj,) — &' (w),®a),)) - (), a;) - (af,za5,)  (106)

lleejy [l2, ]l [l2=1

< ”rrﬁaxle¢> (@*Tw) (¢' (ﬁjo:c) gzﬁ'(ﬁjTQw)) (a’x)?,
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where a € R%. Let I = ¢/ (w;l'z) (¢'(w;l ) — ¢/ (w],2)) - (a”x)?. Itis easy to verify there exists a basis
such that B = {a,b,c,ay,--- a7} with {a, b, c} spans a subspace that contains a, w;, and w},. Then,

. T
for any @, we have aunique z = [27 22 --- 24| such that

a::zla+22b+23c+-~'—|—zdaf[.

Also, since  ~ N (0, I;), we have z ~ N(0, I;). Then, we have
I=E, ., 23|¢/( ~T ) ¢’ (UN)LTZC)\ : |aTm|2
/ |¢ (’IB;';TQEN . |CLT(I}|2 . fZ(Zh 22, Zg)d21d22d2’3,

where € = z1a + 20b + z3¢ and fz(z1, 22, 23) is probability density function of (21, 22, 23). Next, we
consider spherical coordinates with z1 = rcos¢1, ze = rsing;sings, z3 = 2o = rsing;cosos. Hence,

I =/|¢’(ajT2m) — ¢ (w;fx)|- [rcosdr|® - fz(r, 1, ¢2)r” sin prdrderdes. (107)
It is easy to verify that ¢’ (ij2 :n) only depends on the direction of  and
1 23+ed+af 1 2
r, ¢1, = e 2 = e
fz(r,¢1,¢2) @n)? 2n)?

only depends on 7. Then, we have
1(i2,j2) /|¢ wj, w/r)) (~*T(£E/7"))| - |r cos ¢1\2 - fz(r)r? sin gy drdeprdeo

:/0 rif(r)dr / /2W|COS¢>1|2 sin gy - ¢ (w], (x/r)) — ¢ (@) (@/r))|ddrdes

\[/ riLn) dr/ /%Slwl Wy, (/1)) — ¢ (w;) (x/r))|dd1d (108)

2B o @) — 0 (5T

BB (@) - o (7).

Define a set A, = {x|(w}) «)(w],x) < 0}. If € Ay, then w}] 2 and @], x have different signs, which
means the value of ¢/ (w, :c) and ¢ (w3Ta) are different. This is equlvalent to say that

1o T sk T - 1, ifx e Ay

whe) - ow, ol ={ oS (109)

Moreover, if € A;, then we have
w, x| <|w; z — wh x| < ||w], —wy,| - |. (110)

Define a set A, such that
wilx wi — w; W — Ww;
Ay :{az |w ‘ < | 32~* JzH } _ {Gw,wi‘ e | < ”32~7*32H} (111)
\le2||||w|| w3, 72 72 [w?, |
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Hence, we have that

Eeld/ (wha) — ¢/ (Wi )|> =Eo|¢/ (W), x) — ¢/ (W) x)

=Prob(z € A;) (112)
<Prob(x € Az).

Since  ~ N (0, I), 9m,w;2 belongs to the uniform distribution on [—m, 7], we have

T — arccos e, ~ 55 | 5
a7, T 1 [[w], — ws ||
Prob(x € As) = <— tan(m — arccos —H———mr—)
T m ||'wj2 [
1 wi — w;
=— cot(arccos | ”N* A )
d (w3, (113)
2 |5, — @,
T [Jw}, |l
2w,
T [Jwl, |l
Hence, (108) and (113) suggest that
wl —w,;
o O, — il -
™ w2
The same bound that shown in (114)) holds for I, as well. O
J ADDITIONAL PROOFS OF LEMMAS IN APPENDIX [H
J.1 ERROR BOUND FOR THE SECOND-ORDER MOMENT
Proof of Lemmal[/] Let us define
| X
= 72 ; 0. (115)
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Then, for J/\/Ig — M5, we have
M, — M,

N
= Z U (Zn @ Ty, — BEp@L ) — By y( @ & — Baz")

Z\H

¢ w mn Q; + fn) (mn & mn - Emn T)

Mx

i’: 1

N
g:l
K
1 - o (116)
—E, 74 ¢(w;7TmQj)(w @z — Ezz’)
j=1
N K
—— sz( W @y 0, )@ ® Ty — EBn@L) — g dlw e, )(%@%—]E%iT))
n=1j=1

N

nl

Following the notations in Lemma E.2 of [40], we denote
K

By (x,) := Z(b'w Tn0,) (X, @ T, — Ex,2 ) (117)
j 1

Following the similar calculations of (I) - (II) in Lemma E.2 [40], we know that

| Ba()|l2 < oarlog* d.
|ExB2(x)|2 S o1, (118)
|Es B3 ()2 S oir
hold with probability at least 1 — d~19.

Define Z,,, = + (Ba(xn) — Ex Bz (x)) for ,, with n € [N], and it is obvious Z,, is zero mean. Also, we
have

Ry =

1 3
< 7 (IBa(@n)ll2 + | ExBa()[l2) SN~ orrlog? d, (119)

and

IA

|3 5 (2B3te - (e

N( [EB3 (@) 2 + [EBs () 3)

<N~ toir.

N 2
52 = H > EZ||
n=1

2
(120)

Next, let t = O(o14/ %Ngd). To make sure 65 > Rot/3, we need N > 7 log4 d. Then, by Lemma , we

have
2

> t} <2 exp (52+2}ét/3) 2 exp (%). (121)

Prob{ H Z Zyn ,
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That is

rlogd
<
o, ~ 1 N

(122)

N
H Z Z2,n
n=1

with probability at least 1 — d~'°. Because Z,, belongs to the sub-Gaussian distribution, we know that

‘ < rlogd
2 ™ N

(123)

L
n=1
with probability at least 1 — d—10.

In conclusion, we have

rlogd
N

with probability at least 1 — d~ provided that N > r log? d. O

| Mz — M| < (o1 + [€]) (124)

J.2 ERROR BOUND FOR THE THIRD-ORDER MOMENT

K
~Ea > o(w; xo) [(VIE) — (VIZ)EVZ) (V! Z))] (125)

Following the notations in Lemma E.8 of [40], we define

K
1 ~ . ~ ~
T(x) := e Zgz)(w;T:cn,Qj) ((VTz,)®? — (V) @EV 2,) (V) )]. (126)
j=1
Then, B;(z) € REXK * is defined as flattening the tensor T (x) along the first dimension. Hence, we have

|Bs(@)ll> S max|wia, |- (V7 @all} + 3KV 2,2
b (127)
<o1K?2log? d
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with probability at least 1 — d—10.

Following the similar calculations of (II) and (II) in Lemma E.8 of [40], we know that

[ExBs ()2 < o1,
(128)

27

maX{HEw[Bs(wFBg(sc)]l Em[Bs(wFBg(m)mQ} < K202,

Define Z3,, = + (Bs(xn) — E¢Bs(x)) for (z,,,y,) € D, and it is obvious Zj,, is zero mean. Also, we
have

1
Ry = || Z3 02 SN(HB?)(%)Hz + |[EoBs(z)|2)

<Nlo1K?% log? d,

(129)

and

N
, H EZs, 2T,
n=1

N
1
% ={| X 5z0,21, | < FUEBS @l + 5B 1)
n=1

(130)

<N'K?0}.
Similar to (IZI)), by applying Lemma|[I0] we have

N

K2log d
H§ Zyn|| <ouy/ Bl (131)
= 2 N

with probability at least 1 — d~1° provided that N > K log® d.

~

Similar to (T27), we define B by flattening the tensor >0 _, [(VT2)®3 — (VIZ)@(E(VTE)(VTE)T)]

along the first dimension. Then, we know that
3
Klogd\? Klogd
< 3K

Nl

N R 3 N .
1B < H§ V'E, 2+3KH N VTE,
n=1 n=1

< Klogd §+ K3logd\ 2 (132)
~\ N N
3
< K3logd
~ N )

provided that N 2 K logd.

In conclusion, we have

~ A PPN K3logd
MV V. V) = My (V.Y V)| 5 (004 fel)y S (133)

with probability at least 1 — d~¢ provided that N > K? log6 d.

31



Under review as a conference paper at ICLR 2021

J.3 ERROR BOUND FOR THE FIRST-ORDER MOMENT

Proof of Lemma[9 For ]/\/.71 — M, we have

N
—~ 1 ~ ~
My = My == > ynin — Eq &

n=1
1 ol 1 X T K 1 T
-~ nzz:l (? jz::l ¢(w;‘ Tno,) + En)in — E, ; E(zﬁ(w; xq, )T (134)
1 KX 1 N
“K-N Z Z (qﬁ('w] Tn,0;)Tn — Ex ¢(w]” xa)) ) + N Z &n - Tp

By (x)]2 < alrlog% d;
[
[Ee By ()2 < 013 (135)

|Eo(B1;(2) Bu@)]|, } <ot

{I1E2 By (@) B (2)7]] .

Next, define Z; ,, = (31 j(n) — ]EmBQ(a;)) for (x,,, yn) € D, by calculation, we can obtain

Ri = Ziull2 S N 'orrlog? d, (136)
and
N 5| N
52 — H T T < N-152r.
2 max{ > EZ,.Z], 2, > Z!,Z .|t SN oir (137)
n=1 n=1
By applying Lemma|[I0] we have
rlogd
=01 Ng (138)

with probability at least 1 — d—'0 provided that N > rlog® d. Since & € R” belongs to the Gaussian
distribution, we have

N

1555, 2
with probability at least 1 — d—10.
In conclusion, we have
12, — M| S (o + ey e (140)
with probability at least 1 — d~C, provided that N > rlog® d. O
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