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A INITIALIZATION VIA TENSOR METHOD

Following Zhong et al. (2017), we define a special outer product, denoted by ⊗̃. For any vector v ∈ Rd1 and
Z ∈ Rd1×d2 ,

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (12)

where⊗ is the outer product and zi is the i-th column ofZ. Recall that x̃ = 1√
K

∑K
j=1 xΩj Next, we define

the high order momentum in the following way:

M1 = Ex{yx̃} ∈ Rd, (13)

M2 = Ex
[
y
(
x̃⊗ x̃− Exx̃x̃T

)]
∈ Rd×d, (14)

M3 = Ex
[
y
(
x̃⊗3 − x̃⊗̃Exx̃x̃T

)]
∈ Rd×d×d, (15)

where z⊗3 := z ⊗ z ⊗ z, and Ex is the expectation over x.

Following the same calculate formulas in the Claim 5.2 (Zhong et al., 2017), there exist some known con-
stants ψi, i = 1, 2, 3, such that

M1 =

K∑
j=1

ψ1 · ‖w∗j ‖2 ·w∗j , (16)

M2 =

K∑
j=1

ψ2 · ‖w∗j ‖2 ·w∗jw∗Tj , (17)

M3 =

K∑
j=1

ψ3 · ‖w∗j ‖2 ·w∗⊗3
j , (18)

where w∗j = w∗j /‖w∗j ‖2 in (13)-(15) is the normalization of w∗j .

M1, M2 and M3 can be estimated through the samples
{

(xn, yn)
}N
n=1

, and let M̂1, M̂2, M̂3 denote
the corresponding estimates. First, we will decompose the rank-k tensor M3 and obtain the {w∗j}Kj=1. By

applying the tensor decomposition method Kuleshov et al. (2015) to M̂3, the outputs, denoted by ŵ
∗
j , are the

estimations of {w∗j}Kj=1. Next, we will estimate ‖w∗j ‖2 through solving the following optimization problem:

α̂ = arg min
α∈RK

:
∣∣∣M̂1 −

K∑
j=1

ψ1αjŵ
∗
j

∣∣∣, (19)

From (16) and (19), we know that |α̂j | is the estimation of ‖w∗j ‖2. Thus, W (0) is given as[
α̂1ŵ

∗
1, · · · , α̂jŵ

∗
j , · · · , α̂Kŵ

∗
K

]
.

To reduce the computational complexity of tensor decomposition, one can project M̂3 to a lower-
dimensional tensor (Zhong et al., 2017). The idea is to first estimate the subspace spanned by {w∗j }Kj=1,
and let V̂ denote the estimated subspace.

Moreover, we have

M3(V̂ , V̂ , V̂ ) = Ex
[
y
(
(V̂ T x̃)⊗3 − (V̂ T x̃)⊗̃Ex(V̂ T x̃)(V̂ T x̃)T

)]
∈ RK×K×K , (20)
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Subroutine 1 Tensor Initialization Method
1: Input: training data D = {(xn, yn)}Nn=1;
2: Partition D into three disjoint subsets D1, D2, D3;
3: Calculate M̂1, M̂2 following (13), (14) using D1, D2, respectively;
4: Obtain the estimate subspace V̂ of M̂2;
5: Calculate M̂3(V̂ , V̂ , V̂ ) through D3;
6: Obtain {ûj}Kj=1 via tensor decomposition method Kuleshov et al. (2015);
7: Obtain α̂ by solving optimization problem (19);
8: Return: w(0)

j = α̂jV̂ ûj , j = 1, ...,K.

Then, one can decompose the estimate M̂3(V̂ , V̂ , V̂ ) to obtain unit vectors {ûj}Kj=1 ∈ RK . Since w∗ lies
in the subspace V , we have V V Tw∗j = w∗j . Then, V̂ ûj is an estimate of w∗j . The initialization process is
summarized in Subroutine 1.

B NOTATIONS

In this section, we summarize some important notations that will be used in the following proofs. First,
recall that the empirical risk function over data D = {(xn, yn)}Nn=1 in (2) is defined as

f̂D(W ) =
1

2N

N∑
n=1

( 1

K

K∑
j=1

φ(wT
j xn,Ωj )− yn

)2

. (21)

In addition, the population risk function, which is the expectation of the empirical risk function over the data
D, is defined as

f(W ) = EDf̂D(W ) =ED
1

2N

N∑
n=1

( 1

K

K∑
j=1

φ(wT
j xn,Ωj )− yn

)2

=Ex
1

2

( 1

K

K∑
j=1

φ(wT
j xΩj )− y

)2

,

(22)

where x ∈ Rd belongs to standard Gaussian distribution, and y = g(W ∗;x). Besides these, we use σi to
denote the i-th largest singular value of W ∗. Then, κ is defined as σ1/σK , and γ =

∏K
i=1 σi/σK . ρ is

defined in Property 3.2 (Zhong et al., 2017) and a fixed constant for the ReLU activation function.

Next, to avoid high dimensional tensor in analyzing the second order derivative of the objective function. The
proofs will be based on Vec(W ) ∈ RKr, which is the vectorized W , instead. For notational convenience,
we will still use W in the proofs, but W is a vector instead of a matrix. Hence, the first order derivative of
the empirical risk function∇f̂D ∈ RKr, and the second order derivative ∇2f̂D ∈ RKr×Kr.

Moreover, without special descriptions, α = [αT1 ,α
T
2 , · · · ,αTK ]T stands for any unit vectors that in RKr

with αj ∈ Rr. Therefore, we have

‖∇2f̂D‖2 = max
α
‖αT∇2f̂Dα‖2 = max

α

( K∑
j=1

αTj
∂f̂D
∂wj

)2

. (23)
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Finally, since we focus on order-wise analysis, some constant number will be ignored in majority of the
steps. In particular, we use h1(z) & ( or .,h)h2(z) to denote there exists some positive constant C such
that h1(z) ≥ ( or ≤,=)C · h2(z) when z is sufficiently large.

C PROOF OF THEOREM 1

The main idea in proving Theorem 1 is to use triangle inequality as shown in (27) by bounding the second or-
der derivative of the population risk function and the distance between the empirical risk and population risk
functions. Lemma 3 provides the lower and upper bound for the population risk function, while Lemma 4
provides the error bound between the second order derivation of empirical risk and population risk functions.

Lemma 2 (Weyl’s inequality, Bhatia (2013)). Suppose B = A + E be a matrix with dimension m ×m.
Let λi(B) and λi(A) be the i-th largest eigenvalues ofB andA, respectively. Then, we have

|λi(B)− λi(A)| ≤ ‖E‖2, ∀i ∈ [m]. (24)

Lemma 3. Let f be the population risk function in (22). Assume W satisfies (6), then the second-order
derivative of f overW is bounded as

(1− ε0)ρ

11κ2γK2
I ≤ ∇2f(W ) ≤ 7

K
I. (25)

Lemma 4. Let f̂D and f be the empirical and population risk function in (21) and (22), respectively, then
the second-order derivative of f̂D is colse to its expectation f with an upper bound as:

‖∇2f̂D −∇2f‖2 .

√
r log d

N
. (26)

Proof of Theorem 1 . Let λ̂max and λ̂min denote the largest and smallest eigenvalues of∇2f̂D, respectively.
Also, Let λmax and λmin denote the largest and smallest eigenvalues of∇2fD, respectively.

Then, from Lemma 2, we have
λ̂max ≤ λmax + ‖∇2f̂D −∇2f‖2 (27)

and
λ̂min ≥ λmin − ‖∇2f̂D −∇2f‖2. (28)

When the sample complexity satisfies N & ε−2
1 ρ−2κ4γ2K4r log d, then from Lemma 4, we have

‖∇2f̂D −∇2f‖2 ≤
ε1ρ

11κ2γK2
. (29)

Then, from (27), (28) and (29), we have

λ̂max ≤
8

K
, (30)

and

λ̂min ≥
(1− ε0 − ε1)ρ

11κ2γK2
, (31)

which completes the proof.
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D PROOF OF THEOREM 2

The major idea in proving Theorem 2 is to first characterize the gradient descent term as

∇f̂Ωt(W
(t)) =fΩt(W

(t)) +
(
f̂Ωt(W

(t))− fΩt(W
(t))
)

=〈∇2fΩt(Ŵ
(t)),W (t) −W ∗〉+

(
f̂Ωt(W

(t))− fΩt(W
(t))
)
,

(32)

where the last inequality is obtained through intermediate value theorem, and Ŵ (t) lies in the convex hull
ofW (t) andW ∗. The reason that intermediate value theorem is applied on population risk function instead
of empirical risk function is the non-smoothness of the empirical risk functions. Due to the non-smoothness
of ReLU activation function at zero point, the empirical risk function is not smooth, either. However, the
expectation of the empirical risk function over the Gaussian input x is smooth. Hence, compared with
smooth empirical risk function, i.e., neural networks equipped with sigmoid activation function, we have an
additional lemma to bound∇f̂Dt to its expectation∇f , which is summarized in Lemma 5.

The momentum term β(W (t) −W (t−1)) plays an important role in determining the convergence rate, and
the recursive rule is obtained in the following way:[

W (t+1) −W ∗

W (t) −W ∗

]
= A(β)

[
W (t) −W ∗

W (t−1) −W ∗

]
, (33)

where A(β) is a matrix with respect to the value of β and defined in (38). Then, we know iterates W (t)

converge to the ground-truth with a linear rate which is the largest singlar value of matrixA(β). Recall that
AGD reduces to GD with β = 0, so our analysis applies to GD method as well. We are able to show the
convergence rate of AGD is faster than GD by proving the largest singluar value of A(β) is smaller than
A(0) for some β > 0.

Lemma 5. Let f̂D and f be the empirical and population risk function in (21) and (22), respectively, then
the first-order derivative of f̂D is close to its expectation f with an upper bound as:

‖∇f̂D(W )−∇f(W )‖2 .

√
r log d

N

(
‖W −W ∗‖2 + ξ

)
. (34)

Proof of Theorem 2. The update rule ofW (t) is

W (t+1) =W (t) − η∇f̂Dt(W (t)) + β(W (t) −W (t−1))

=W (t) − η∇f(W (t)) + β(W (t) −W (t−1)) + η(∇f(W (t))−∇f̂Dt(W (t)))
(35)

Since∇2f is a smooth function, by the intermediate value theorem, we have

W (t+1) = W (t) − η∇2f(Ŵ (t))(W (t) −W ∗) + β(W (t) −W (t−1))

+ η
(
∇f(W (t))−∇f̂Dt(W (t))

)
,

(36)

where Ŵ (t) lies in the convex hull ofW (t) andW ∗.
Next, we have [

W (t+1) −W ∗

W (t) −W ∗

]
=

[
I − η∇2f(Ŵ (t)) + βI βI

I 0

] [
W (t) −W ∗

W (t−1) −W ∗

]
+ η

[
∇f(W (t))−∇f̂Dt(W (t))

0

] (37)
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Let

A(β) =

[
I − η∇2f(Ŵ (t)) + βI βI

I 0

]
, (38)

so we have∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
2

= ‖A(β)‖2

∥∥∥∥[ W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
2

+ η

∥∥∥∥[∇f(W (t))−∇f̂Dt(W (t))
0

]∥∥∥∥
2

. (39)

From Lemma 5, we know that

η
∥∥∥∇f(W (t))−∇f̂Dt(W (t))

∥∥∥
2
≤ C5η

√
r log d

Nt

(
‖W −W ∗‖2 + |ξ|

)
(40)

for some constant C5 > 0. Then, we have

‖W (t+1) −W ∗‖2 ≤
(
‖A(β)‖2 + C5η

√
r log d

Nt

)
‖W (t) −W ∗‖2 + C5η

√
r log d

Nt
|ξ|

:=ν(β)‖W (t) −W ∗‖2 + C5η

√
r log d

Nt
|ξ|.

(41)

Let ∇2f(Ŵ (t)) = SΛST be the eigendecomposition of∇2f(Ŵ (t)). Then, we define

A(β) :=

[
ST 0
0 ST

]
A(β)

[
S 0
0 S

]
=

[
I − ηΛ + βI βI

I 0

]
(42)

Since
[
S 0
0 S

] [
ST 0
0 ST

]
=

[
I 0
0 I

]
, we knowA(β) andA(β) share the same eigenvalues.

Let λi be the i-th eigenvalue of ∇2f(Ŵ (t)), then the corresponding i-th eigenvalue of (42), denoted by
δi(β), satisfies

ν2
i − (1− ηλi + β)δi + β = 0. (43)

Then, we have

δi(β) =
(1− ηλi + β) +

√
(1− ηλi + β)2 − 4β

2
, (44)

and

|δi(β)| =

{√
β, if β ≥

(
1−
√
ηλi
)2
,

1
2

∣∣∣(1− ηλi + β) +
√

(1− ηλi + β)2 − 4β
∣∣∣ , otherwise.

(45)

Note that the other root of (43) is abandoned because the root in (44) is always larger than or at least equal
to the other root with |1− ηλi| < 1. By simple calculation, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
, (46)

and specifically, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.
Let us first assumeW (t) satisfies (6), then from Lemma 3, we know that

0 <
(1− ε0)

11κ2γK2
≤ λi ≤

7

K
.

Let γ1 = ρ(1−ε0)
11κ2γK2 and γ2 = 7

K . If we choose β such that

β∗ = max
{

(1−√ηγ1)2, (1−√ηγ2)2
}
, (47)
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then we have β ≥ (1−
√
ηλi)

2 for any i and δi = max
{
|1−√ηγ1|, |1−

√
ηγ2|

}
for any i.

Let η = 1
2γ2

, then β∗ equals to
(

1−
√

γ1
2γ2

)2

. Then, for any ε0 ∈ (0, 1
2 ) we have

‖A(β∗)‖2 = max
i
δi(β

∗) = 1−
√

γ1

2γ2
=1−

√
1− ε0

154ρ−1κ2γK

≤1− 1− 3/4 · ε0√
154ρ−1κ2γK

.

(48)

Then, let

C5η

√
r log d

Nt
≤ ε0

4
√

154ρ−1κ2γK
, (49)

we need Nt & ε−2
0 ρ−1κ2γK3r log d.

Combine (48) and (49), we have

ν(β∗) ≤ 1− 1− ε0√
154ρ−1κ2γK

. (50)

While let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1− 1− ε0

154ρ−1κ2γK
(51)

and

ν(0) ≤ ‖A(0)‖2 + C5η

√
r log d

Nt
≤ 1− 1− 2ε0

154ρ−1κ2γK
(52)

if Nt & ε−2
0 ρ−1κ2γK4r log d.

In conclusion, with η = 1
2γ2

and β =
(
1− γ1

2γ2

)2
, we have

‖W (t+1) −W ∗‖2 ≤
(

1− 1− ε0√
154κ2γK

)
‖W (t) −W ∗‖2 + 2Cη

√
r log d

Nt
|ξ|. (53)

ifW (t+1) satisfies (6) and Nt & ε−2
0 κ2γK3r log d.

Then, we can start mathematical induction of (53) over t.

Base case: (6) holds forW (0) naturally from the assumption in Theorem 2. Since (6) holds and the number
of samples exceeds the required bound in (53), we have (53) holds for t = 0.

Induction step: Assume (53) holds for t, to make sure the mathematical induction of (53) holds, we need
W (t+1) satisfies (6). That is

η

√
d log d

Nt
.

1− ε0√
132κ2γK

· ε0σK
44κ2γK2

. (54)

Hence, we need
Nt & ε−2

0 κ8γ3K6d log d. (55)

In addition, with (6) and (53) hold for all t ≤ T , the following equation∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
∞

= ‖A(β)‖2

∥∥∥∥[ W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
∞

+ η

∥∥∥∥[∇f(W (t))−∇f̂Dt(W (t))
0

]∥∥∥∥
∞

(56)
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holds as well, and ‖A(β)‖2 is bounded by ν(β). Hence, (53) also holds in infinity norm as

‖W (t+1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)
‖W (t) −W ∗‖∞ + 2Cη

√
r log d

Nt
|ξ|. (57)

In conclusion, when Nt & ε−2
0 κ9γ3K8d log4 d, we know that (53) holds for all 1 ≤ t ≤ T with probability

at least 1−K2T · d−10. By simple calculation, we can obtain

‖W (T ) −W ∗‖2 ≤
(

1− 1− ε0√
132κ2γK

)T
‖W (0) −W ∗‖2 + C

√
κ2γK2r log d

Nt
· |ξ|. (58)

for some constant C > 0.

E SUPPLEMENTARY PROOF FOR THE STATEMENT IN SECTION 4.1

Suppose M (t) to denote the mask matrix by truncating the smallest (1− r∗/d) fraction of entries in iterate
W (t). Let M∗ denote the ground-truth mask matrix for the teacher network, the following corollary holds
from Theorem 2.
Corollary 1. Suppose the noise |ξ| ≤ Ŵ ∗min and the number of samples satisfies N =

Ω
(
K8d log d log(1/ε)

)
. Let {W (t1)}T1

t1=1 be the iterates generated from Algorithm 1 by setting r = d.
Then, for any T1 ≥ log(Ŵ ∗max/Ŵ

∗
min), we have

M (T1) = M∗. (59)

Proof of Corollary 1. From (57), we know that

‖W (t+1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)
‖W (t) −W ∗‖∞ + 2Cη

√
d log d

Nt
|ξ|. (60)

Hence, we have

‖W (T1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)T1

‖W (0) −W ∗‖∞ + 2Cη

√
d log d

Nt
|ξ|. (61)

With T1 ≥ log(2Ŵ ∗max/Ŵ
∗
min), we have(

1− 1− ε0√
154κ2γK

)T1

‖W (0) −W ∗‖∞ ≤
1

4
Ŵ ∗min ·

‖W (0) −W ∗‖∞
‖W ∗‖∞

≤ 1

4
Ŵ ∗min. (62)

Since N = Ω
(
K8d log d log(1/ε)

)
and |ξ| ≤ Ŵ ∗min, we have

2Cη

√
d log d

Nt
|ξ| ≤ 1

4
Ŵ ∗min. (63)

From (62) and (63), we know that

‖W (T1) −W ∗‖∞ ≤
1

2
Ŵ ∗min. (64)
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Therefore, for any entry in W (T1)
i,j , if the corresponding entry in augmented ground-truth weights W̃ ∗ is

zero, we have

|W (T1)
i,j | ≤

1

2
Ŵ ∗min; (65)

if the corresponding entry in W̃ ∗ is non-zero, we have

|W (T1)
i,j | ≥ |Ŵ

∗
i,j | −

1

2
Ŵ ∗min ≥

1

2
Ŵ ∗min. (66)

As we know that there are only r∗/d fraction of non-zero weights in the ground-truth model,M (T1) = M∗

holds.

F PROOF OF LEMMA 1

Instead of providing the proof for Lemma 1, we turn to prove a more general bound for the performance of
tensor initialization method as shown in Lemma 6. One easily verify that Lemma 1 holds naturally from
Lemma 6. Also, to guarantee the independence among f̂D, the data used in the tensor initialization need to
be independent with the data used in AGD.

Lemma 6. Assume the noise level |ξ| ≤ Kσ1 and the number of samples N & κ8K8r log6 d, the tensor
initialization method in Subroutine 1 outputsW (0) such that

‖W (0) −W ∗‖2 . κ6

√
K4r log d

N
(σ1 + |ξ|) (67)

with probability at least 1− d−10.

F.1 PROOF OF LEMMA 6

Lemma 7. Suppose M2 is defined as in (14) and M̂2 is the estimation of M2 by samples D =
{(xn, yn)}Nn=1. Then, with probability 1− d−10, we have

‖M̂2 −M2‖ .
√
r log d

N
(σ1 + |ξ|), (68)

provided that N & r log4 d.

Lemma 8. Let V̂ be generated by step 4 in Subroutine 1. Suppose M3(V̂ , V̂ , V̂ ) is defined as in (20) and
M̂3(V̂ , V̂ , V̂ ) is the estimation of M3(V̂ , V̂ , V̂ ) by samples D = {(xn, yn)}Nn=1. Further, we assume
V ∈ Rr×K is an orthogonal basis of W ∗ and satisfies ‖V V T − V̂ V̂ T ‖ ≤ 1/4. Then, provided that
N & K5 log6 d, with probability at least 1− d−10, we have

‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖ .
√
K3 log d

N
(σ1 + |ξ|). (69)

Lemma 9. Suppose M1 is defined as in (13) and M̂1 is the estimation of M1 by samples D =
{(xn, yn)}Nn=1. Then, with probability 1− d−10, we have

‖M̂1 −M1‖ .
√
r log d

N
(σ1 + |ξ|) (70)

provided that N & r log4 d.
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Lemma 10 (Tropp (2012), Theorem 1.6). Consider a finite sequence {Zk} of independent, random matrices
with dimensions d1 × d2. Assume that such random matrix satisfies

E(Zk) = 0 and ‖Zk‖ ≤ R almost surely.
Define

δ2 := max
{∥∥∥∑

k

E(ZkZ
∗
k)
∥∥∥,∥∥∥∑

k

E(Z∗kZk)
∥∥∥}.

Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t
}
≤ (d1 + d2) exp

( −t2/2
δ2 +Rt/3

)
.

Lemma 11 (Zhong et al. (2017), Lemma E.6). Let V ∈ Rr×K be an orthogonal basis of W ∗ and V̂ be
generated by step 4 in Subroutine 1. Assume ‖M̂2 −M2‖2 ≤ σK(M2)/10. Then, we have

‖V V T − V̂ V̂ T ‖2 ≤
‖M2 − M̂2‖
σK(M2)

. (71)

Lemma 12 (Zhong et al. (2017), Lemmas E.13 and E.14). Let V ∈ Rr×K be an orthogonal basis of W ∗

and V̂ be generated by step 4 in Subroutine 1. Assume M1 can be written in the form of (16) with some
constant ψ1, and let M̂1 be the estimation of M1 by samples D = {xn, yn}Nn=1. Let α̂ be the optimal
solutions of (19) with ŵj = V̂ ûj . Then, for each j ∈ {1, 2, · · · ,K}, if

T1 := ‖V V T − V̂ V̂ T ‖2 ≤
1

κ2
√
K
,

T2 := ‖ûj − V̂ Twj‖2 ≤
1

κ2
√
K
,

T3 := ‖M̂1 −M1‖2 ≤
1

4
‖M1‖2,

(72)

then we have ∣∣∣α∗j − α̂j∣∣∣ ≤ (κ4K
3
2

(
T1 + T2

)
+ κ2K

1
2T3

)
|α∗j |, (73)

where α∗j = ‖w∗j ‖2.

Proof of Lemma 1. By simple calculation, we have

‖w∗j − |α̂j |V̂ ûj‖2

≤
∥∥∥w∗j − ‖wj‖2V̂ ûj + ‖wj‖2V̂ ûj − |α̂j |V̂ ûj

∥∥∥
2

≤
∥∥∥w∗j − ‖wj‖2V̂ ûj∥∥∥

2
+
∥∥∥‖wj‖2V̂ ûj − |α̂j |V̂ ûj∥∥∥

2

≤‖w∗j ‖2‖w∗j − V̂ ûj‖2 +
∣∣∣‖wj‖2 − |α̂j |∣∣∣‖V̂ ûj‖2

≤σ1

(
‖w∗j − V̂ V̂ Tw∗j‖2 + ‖V̂ Tw∗j − ûj‖2

)
+
∣∣∣‖wj‖2 − |α̂j |∣∣∣

:=σ1

(
I1 + I2

)
+ I3.

(74)

From Lemma 11, we have

I1 = ‖w∗j − V̂ V̂ Tw∗j‖2 ≤‖V V T − V̂ V̂ T ‖2 ≤
‖M̂2 −M2‖2
σK(M2)

, (75)
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where the last inequality comes from Lemma 7. Then, from (17), we know that

σK(M2) . min
1≤j≤K

‖wj‖2 . σK . (76)

From Theorem 3 in (Kuleshov et al., 2015), we have

I2 =‖V̂ Tw∗j − ûj‖2 .
κ

σK
‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖2. (77)

To guarantee the condition (72) in Lemma 12 hold, according to Lemmas 7 and 8, we needN & κ3Kr log d.
Then, from Lemma 12, we have

I3 =
(
κ4K3/2(I1 + I2) + κ2K1/2‖M̂1 −M1‖

)
σ1. (78)

When r � K, according to Lemmas 7, 8 and 9, we have

∥∥w∗j − |α̂j |V̂ ûj∥∥2
. κ6

√
K3r log d

N
(σ1 + |ξ|) (79)

provided that N & r log4 d.

In conclusion, we have

‖W ∗ −W (0)‖2 ≤
√
K ·

∥∥w∗j − |α̂j |V̂ ûj∥∥2
. κ6

√
K4r log d

N
(σ1 + |ξ|). (80)

G ADDITIONAL PROOF OF THE LEMMAS IN APPENDIX C

G.1 PROOF OF LEMMA 3

The eigenvalues of∇2f at any fixed pointW is bounded through the ones at the ground truthW ∗ by using
Lemma 2. The eigenvalues of∇2f at ground truthW ∗ is bounded in (83) and (84).

Lemma 13. Let f be the population risk function in (22) andW satisfy (6), then we have

‖∇2f(W )−∇2f(W ∗)‖2 ≤
4‖W ∗ −W ‖2

σK
. (81)

Proof of Lemma 3. Let λmax(W ) and λmin(W ) denote the largest and smallest eigenvalues of ∇2fD at
pointW , respectively. Then, from Lemma 2, we have

λmax(W ) ≤ λmax(W ∗) + ‖∇2f(W )−∇2f(W ∗)‖2,
and λmin(W ) ≥ λmin(W ∗)− ‖∇2f(W )−∇2f(W ∗)‖2.

(82)
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Next, we provide the the lower bound of Hessian of population function at ground truth W ∗. For any
α = [αT1 ,α

T
2 , · · · ,αTK ]T with αj ∈ Rr, we have

min
‖α‖2=1

αT∇2f(W ∗)α =
1

K2
min
‖α‖2=1

Ex
( K∑
j=1

αTj xjφ
′(w∗Tj xj)

)2

=
1

K2
min

‖α̃‖2=1, supp(α̃j)= supp(w̃∗j )
Ex
( K∑
j=1

α̃Tj xφ
′(w̃∗Tj x)

)2

≥ 1

K2
min
‖α̃‖2=1

Ex
( K∑
j=1

α̃Tj xφ
′(w̃∗Tj x)

)2

≥ ρ

11κ2λK2
,

(83)

where α̃ ∈ RKd with α̃j ∈ Rd, and the last inequality comes from Lemma D.6 (Zhong et al., 2017).

Next, the upper bound of Hessian of population function at ground truthW ∗ can be bounded in the following
way. For any α, we have

αT∇2f(W ∗)α =
1

K2
Ex
( K∑
j=1

αTj xjφ
′(w∗j

Txj)
)2

≤ 2

K2
· Ex

K∑
j=1

(
αTj xjφ

′(w∗j
Txj)

)2

=
2

K2

K∑
j=1

Ex
(
αTj xjφ

′(w∗j
Txj)

)2

≤ 2

K2

K∑
j=1

(
Ex(αTj xj)

4Ex|φ′|4
) 1

2

≤ 2

K2
·K · 3 =

6

K
.

(84)

Then, from Lemma 13, whenW satisfies (6), we have that

‖∇2f(W )−∇2f(W ∗)‖2 ≤
ε0ρ

11κ2γ
. (85)

Hence, from (82) and (85), we have that
(1− ε0)ρ

11κ2γK2
I ≤ ∇2f(W ) ≤ 7

K
I. (86)

G.2 PROOF OF LEMMA 4

We first show that the second order derivative of f̂D is a sum of several random sub-exponential variables
as shown in (93). Then, by concentration theory, i.e., Chernoff bound, we can show that the error bound of
∇2f̂D to its expectation.
Definition 1 (Definition 5.7, Vershynin (2010)). A random variable X is called a sub-Gaussian random
variable if it satisfies

(E|X|p)1/p ≤ c1
√
p (87)
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for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖
2
ψ2
s2 (88)

for all s ∈ R and some constant c2 > 0, where ‖X‖φ2
is the sub-Gaussian norm of X defined as ‖X‖ψ2

=

supp≥1 p
−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional marginal
αTX is sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of X is defined as ‖X‖ψ2 =
sup‖α‖2=1 ‖αTX‖ψ2

.
Definition 2 (Definition 5.13, Vershynin (2010)). A random variable X is called a sub-exponential random
variable if it satisfies

(E|X|p)1/p ≤ c3p (89)
for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖
2
ψ1
s2 (90)

for s ≤ 1/‖X‖ψ1
and some constant c4 > 0, where ‖X‖ψ1

is the sub-exponential norm of X defined as
‖X‖ψ1 = supp≥1 p

−1(E|X|p)1/p.

Proof of Lemma 4. Recall the definition of f and f̂ in (22) and (21), we have

∂2f

∂wj1∂wj2
− ∂2f̂D
∂wj1∂wj2

=Ex
[
φ′(wT

j1xΩj1
)φ′(wT

j2xΩj2
)xΩj1

xTΩj2 −
1

N

N∑
n=1

φ(wT
j1xn,Ωj1 )φ′(wT

j2xn,Ωj2 )xn,Ωj1x
T
n,Ωj2

]
.

(91)

For any α, we have

‖∇2f −∇2f̂D‖2 = max
‖α‖2=1

∣∣∣αT (∇2f −∇2f̂D)α
∣∣∣

=

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣∣∣αTj1( ∂2f

∂wj1∂wj2
− ∂2f̂D
∂wj1∂wj2

)
αj2

∣∣∣∣∣
=

1

K2

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

Ex
[
φ′(wT

j1xΩj1)φ′(wT
j2xΩj2)αTj1xΩj1α

T
j2xΩj2

− 1

N

N∑
n=1

φ(wT
j1xn,Ωj1)φ′(wT

j2xn,Ωj2)αTj1xn,Ωj1α
T
j2xn,Ωj2

]
.

(92)

Then, define Zn(j1, j2) = φ(wT
j1
xn,Ωj1)φ′(wT

j2
xn,Ωj2)αTj1xn,Ωj1α

T
j2
xn,Ωj2 , and we say Z belongs to

sub-Exponential distribution. According to Definition 2, we have(
E|Zn|p

)1/p ≤(E∣∣∣∣(αTj1xn,Ωj1) · (αTj2xn,Ωj2)∣∣∣∣p)1/p

≤
(
E
∣∣∣(αTj1xn,Ωj1)∣∣∣2p)1/(2p)

·
(
E
∣∣∣(αTj2xn,Ωj2)∣∣∣2p)1/(2p)

≤Cx ·
√

2p · Cx
√

2p

=2C2
x · p.

(93)
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Then, we have
EZnes(Zn−EZn) ≤ e−Cs

2

(94)
for some constant C > 0 and any s ∈ R. From Chernoff bound, we have

Prob
{∣∣∣ 1

N

N∑
n=1

(Zn − EZn)
∣∣∣ < t

}
≤ 1− e−Cs

2

est
. (95)

Let us select t =
√

r log d
N and s = C

2 · t, then we have

∣∣∣ 1

N

N∑
n=1

(Zn − EZn)
∣∣∣ .√r log d

N
(96)

with probability at least 1− d−C .

Hence, we have

max
‖α‖2=1

∣∣∣∣∣αTj1( ∂2f

∂wj1∂wj2
− ∂2f̂Ω

∂wj1∂wj2

)
αj2

∣∣∣∣∣ .
√
r log d

N
, (97)

and

‖∇2f(W )−∇2f̂Ω(W )‖2 .

√
r log d

N
(98)

with probability at least 1− d−r.

H PROOF OF LEMMA 5

Proof of Lemma 5. The first-order derivative of the empirical risk function is written as

∂f̂D
∂wk

=
1

K ·N

N∑
n=1

(
yn −

1

K

K∑
j=1

φ(wT
j xn,Ωj )

)
xn,Ωjφ

′(wT
k xn,Ωj )

=
1

K2 ·N

N∑
n=1

K∑
j=1

(
φ(w∗Tj xn,Ωj )− φ(wT

j xn,Ωj )
)
xn,Ωjφ

′(wT
k xn,Ωj )

+
1

K2 ·N

K∑
j=1

ξnxn,Ωjφ
′(wT

k xn,Ωj )

(99)

Define zn(j, k) =
(
φ(w∗Tj xn,Ωj )− φ(wT

j xn,Ωj )
)
φ′(wT

k xn,Ωj )xn,Ωj . Then, for any αj ∈ Rr, we have

p−1
(
Ex
∣∣αTj zn∣∣p) 1

p

=p−1
(
Ex
∣∣(αTj xn,Ωj )(φ(w∗Tj xn,Ωj )− φ(wT

j xn,Ωj )
)
φ′(wT

k xn,Ωj )
∣∣p) 1

p

≤p−1
(
Ex
∣∣(αTj xn,Ωj )(φ(w∗Tj xn,Ωj )− φ(wT

j xn,Ωj )
)∣∣p) 1

p

≤p−1
(
Ex|αTj xn,Ωj |2p

) 1
2p ·

(
Ex
∣∣φ(w∗Tj xn,Ωj )− φ(wT

j xn,Ωj )
∣∣2p) 1

2p

≤p−1
(
Ex|αTj xn,Ωj |2p

) 1
2p ·

(
Ex
∣∣(w∗j −wj)Txn,Ωj ∣∣2p) 1

2p

≤2‖w∗j −wj‖2.

(100)
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Following similar steps in (95), by Chernoff bound, we have∥∥∥ 1

N

N∑
n=1

(zn − Exzn)
∥∥∥

2
.

√
r log d

N
· ‖w∗j −wj‖2 (101)

with probability at least 1 − d−r. Also, we know that xn,Ωjφ
′(WT

k xn,Ωj ) belongs to sub-Gaussian distri-
bution as well. Then, by Chernoff bound, we have∥∥∥ 1

N

N∑
n=1

ξnxn,Ωjφ
′(wT

j xn,Ωj )
∥∥∥

2
.|ξ| ·

∥∥∥ 1

N

N∑
n=1

xn,Ωjφ
′(wT

j xn,Ωj )
∥∥∥

2

.|ξ| ·
√
r log d

N

(102)

with probability at least 1− d−r.

I PROOF OF LEMMA 13

Proof of Lemma 13. Recall the definition of population risk function, we have

∂2f(W ∗)

∂wj1∂wj2
=

1

K2
Exφ′(w∗Tj1 xΩj1)φ′(w∗Tj2 xΩj2)xΩj1x

T
Ωj2

(103)

and
∂2f(W )

∂wj1∂wj2
=

1

K2
Exφ′(wT

j1xΩj1)φ′(wT
j2xΩj2)xΩj1x

T
Ωj2

(104)

Then, we have

∂2f(W ∗)

∂wj1∂wj2
− ∂2f(W )

∂wj1∂wj2

=
1

K2
Ex
[
φ′(w∗Tj1 xΩj1)φ′(w∗Tj2 xΩj2)− φ′(wT

j1xΩj1)φ′(wT
j2xΩj2)

]
xΩj1x

T
Ωj2

=
1

K2
Ex
[
φ′(w∗Tj1 xΩj1)

(
φ′(w∗Tj2 xΩj2)− φ′(wT

j2xΩj2)
)

+ φ′(wT
j2xΩj2)

(
φ′(w∗Tj1 xΩj1)− φ′(wT

j1xΩj1)
)]
xΩj1x

T
Ωj2

=
1

K2

[
Exφ′(w∗Tj1 xΩj1)

(
φ′(w∗Tj2 xΩj2)− φ′(wT

j2xΩj2)
)
xΩj1x

T
Ωj2

+ Exφ′(wT
j2xΩj2)

(
φ′(w∗Tj1 xΩj1)− φ′(wT

j1xΩj1)
)
xΩj1x

T
Ωj2

]
:=

1

K2
(I1 + I2).

(105)

For any αj1 and αj2 ∈ Rr, we have

max
‖αj1‖2,‖αj2‖2=1

αTj1I1αj2

= max
‖αj1‖2,‖αj2‖2=1

Exφ′(w∗Tj1 xΩj1)
(
φ′(w∗Tj2 xΩj2)− φ′(wT

j2xΩj2)
)
· (αTj1xΩj1) · (αTj2xΩj2)

≤ max
‖a‖2=1

Exφ′(w̃∗Tj1 x)
(
φ′(w̃∗Tj2 x)− φ′(w̃T

j2x)
)
· (aTx)2,

(106)
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where a ∈ Rd. Let I = φ′(w̃∗Tj1 x)
(
φ′(w̃∗Tj2 x)−φ′(w̃T

j2
x)
)
· (aTx)2. It is easy to verify there exists a basis

such that B = {a, b, c,a⊥4 , · · · ,a⊥d } with {a, b, c} spans a subspace that contains a,wj2 and w∗j2 . Then,

for any x, we have a unique z = [z1 z2 · · · zd]
T such that

x = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Also, since x ∼ N (0, Id), we have z ∼ N (0, Id). Then, we have

I =Ez1,z2,z3 |φ′
(
w̃T
j2x
)
− φ′

(
w̃∗Tj2 x

)
| · |aTx|2

=

∫
|φ′
(
w̃T
j2x
)
− φ′

(
w̃∗Tj2 x

)
| · |aTx|2 · fZ(z1, z2, z3)dz1dz2dz3,

where x = z1a + z2b + z3c and fZ(z1, z2, z3) is probability density function of (z1, z2, z3). Next, we
consider spherical coordinates with z1 = rcosφ1, z2 = rsinφ1sinφ2, z3 = z2 = rsinφ1cosφ2. Hence,

I =

∫
|φ′
(
w̃T
j2x
)
− φ′

(
w̃∗Tj2 x

)
| · |r cosφ1|2 · ·fZ(r, φ1, φ2)r2 sinφ1drdφ1dφ2. (107)

It is easy to verify that φ′
(
wT
j2
x
)

only depends on the direction of x and

fZ(r, φ1, φ2) =
1

(2π)
3
2

e
x21+x22+x23

2 =
1

(2π)
3
2

e
r2

2

only depends on r. Then, we have

I(i2, j2) =

∫
|φ′
(
w̃T
j2(x/r)

)
− φ′

(
w̃∗Tj2 (x/r)

)
| · |r cosφ1|2 · fZ(r)r2 sinφ1drdφ1dφ2

=

∫ ∞
0

r4fz(r)dr

∫ π

0

∫ 2π

0

| cosφ1|2 · sinφ1 · |φ′
(
w̃T
j2(x/r)

)
− φ′

(
w̃∗Tj2 (x/r)

)
|dφ1dφ2

≤
√

8

π

∫ ∞
0

r2fz(r)dr

∫ π

0

∫ 2π

0

sinφ1 · |φ′
(
w̃T
j2(x/r)

)
− φ′

(
w̃∗Tj2 (x/r)

)
|dφ1dφ2

=

√
8

π
Ez1,z2,z3

∣∣φ′(w̃T
j2x
)
− φ′

(
w̃∗Tj2 x

)
|

=

√
8

π
Ex
∣∣φ′(w̃T

j2x
)
− φ′

(
w̃∗Tj2 x

)
|.

(108)

Define a set A1 = {x|(w̃∗Tj2 x)(w̃T
j2
x) < 0}. If x ∈ A1, then w̃∗Tj2 x and w̃T

j2
x have different signs, which

means the value of φ′(w̃T
j2
x) and φ′(w̃∗Tj2 x) are different. This is equivalent to say that

|φ′(wT
j2x)− φ′(w∗j2

Tx)| =
{

1, if x ∈ A1

0, if x ∈ Ac1
. (109)

Moreover, if x ∈ A1, then we have

|w∗j2
Tx| ≤|w̃∗Tj2 x− w̃

T
j2x| ≤ ‖w̃

∗
j2 − w̃j2‖ · ‖x‖. (110)

Define a set A2 such that

A2 =
{
x
∣∣∣ |w̃∗Tj2 x|‖w̃∗j2‖‖x‖

≤
‖w̃∗j2 − w̃j2‖
‖w̃∗j2‖

}
=
{
θx,w∗j2

∣∣∣| cos θx,w̃∗j2
| ≤
‖w̃∗j2 − w̃j2‖
‖w̃∗j2‖

}
. (111)
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Hence, we have that

Ex|φ′(w̃T
j2x)− φ′(w̃∗Tj2 x)|2 =Ex|φ′(w̃T

j2x)− φ′(w̃∗Tj2 x)|
=Prob(x ∈ A1)

≤Prob(x ∈ A2).

(112)

Since x ∼ N (0, I), θx,w∗j2 belongs to the uniform distribution on [−π, π], we have

Prob(x ∈ A2) =
π − arccos

‖w̃∗j2−w̃j2‖
‖w̃∗j2‖

π
≤ 1

π
tan(π − arccos

‖w̃∗j2 − w̃j2‖
‖w̃∗j2‖

)

=
1

π
cot(arccos

‖w̃∗j2 − w̃j2‖
‖w̃∗j2‖

)

≤ 2

π

‖w̃∗j2 − w̃j2‖
‖w̃∗j2‖

=
2

π

‖w∗j2 −wj2‖
‖w∗j2‖

.

(113)

Hence, (108) and (113) suggest that

I ≤ 6

π

‖w∗j2 −wj2‖2
‖w∗j2‖2

. (114)

The same bound that shown in (114) holds for I2 as well.

J ADDITIONAL PROOFS OF LEMMAS IN APPENDIX F

J.1 ERROR BOUND FOR THE SECOND-ORDER MOMENT

Proof of Lemma 7. Let us define

x̃n =
1√
K

K∑
j=1

xn,Ωj . (115)
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Then, for M̂2 −M2, we have

M̂2 −M2

=
1

N

N∑
n=1

yn(x̃n ⊗ x̃n − Ex̃nx̃Tn )− Ex y(x̃⊗ x̃− Ex̃x̃T )

=
1

N

N∑
n=1

( 1

K

K∑
j=1

φ(w∗j
Txn,Ωj + ξn

)
(x̃n ⊗ x̃n − Ex̃nx̃Tn )

− Ex
1

K

K∑
j=1

φ(w∗j
TxΩj )(x̃⊗ x̃− Ex̃x̃T )

=
1

K ·N

N∑
n=1

K∑
j=1

(
φ(w∗j

Txn,Ωj )(x̃n ⊗ x̃n − Ex̃nx̃Tn )− Ex φ(w∗j
TxΩj )(x̃⊗ x̃− Ex̃x̃T )

)

+
1

N

N∑
n=1

ξn(x̃n ⊗ x̃n − Ex̃nx̃Tn )

(116)

Following the notations in Lemma E.2 of [40], we denote

B2(xn) :=
1

K

K∑
j=1

φ(w∗j
Txn,Ωj )(x̃n ⊗ x̃n − Ex̃nx̃Tn ). (117)

Following the similar calculations of (I) - (III) in Lemma E.2 [40], we know that

‖B2(x)‖2 . σ1r log
3
2 d,

‖ExB2(x)‖2 . σ1,

‖ExB2
2(x)‖2 . σ2

1r

(118)

hold with probability at least 1− d−10.

Define Z2,n = 1
N

(
B2(xn)− ExB2(x)

)
for xn with n ∈ [N ], and it is obvious Zn is zero mean. Also, we

have

R2 = ‖Z2,n‖2 ≤
1

N

(
‖B2(xn)‖2 + ‖ExB2(x)‖2

)
.N−1σ1r log

3
2 d, (119)

and

δ2
2 =

∥∥∥ N∑
n=1

EZ2
2,n

∥∥∥2

2
≤
∥∥∥ N∑
n=1

1

N2

(
EB2

2(xn)−
(
EB2(xn)

)2)∥∥∥
2

≤ 1

N

(
‖EB2

2(xn)‖2 + ‖EB2(xn)‖22
)

.N−1σ2
1r.

(120)

Next, let t = Θ(σ1

√
r log d
N ). To make sure δ2

2 ≥ R2t/3, we need N & r log4 d. Then, by Lemma 10, we
have

Prob
{∥∥∥∑

n

Z2,n

∥∥∥
2
≥ t
}
≤2r exp

( −t2/2
δ2 +Rt/3

)
≤ 2r exp

(−t2
4δ2

)
. (121)
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That is ∥∥∥ N∑
n=1

Z2,n

∥∥∥
2
. σ1

√
r log d

N
(122)

with probability at least 1− d−10. Because x̃n belongs to the sub-Gaussian distribution, we know that∥∥∥ 1

N

N∑
n=1

(x̃n ⊗ x̃n − Ex̃nx̃Tn )
∥∥∥

2
.

√
r log d

N
(123)

with probability at least 1− d−10.

In conclusion, we have

‖M̂2 −M2‖ . (σ1 + |ξ|)
√
r log d

N
(124)

with probability at least 1− d−C provided that N & r log4 d.

J.2 ERROR BOUND FOR THE THIRD-ORDER MOMENT

Proof of Lemma 8. For M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ ), we have

M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )

=
1

N

N∑
n=1

yn
[
(V̂ T x̃n)⊗3 − (V̂ T x̃n)⊗(E(V̂ T x̃n)(V̂ T x̃n)T )

]
− Ex y

[
(V̂ T x̃)⊗3 − (V̂ TxT )⊗E(V̂ T x̃n)(V̂ T x̃n)T

]
=

1

N

N∑
n=1

( 1

K

K∑
j=1

φ(w∗j
Txn,Ωj ) + ξn

)
·
[
(V̂ T x̃n)⊗3 − (V̂ T x̃n)⊗(E(V̂ T x̃n)(V̂ T x̃n)T )

]
− Ex

1

K

K∑
j=1

φ(w∗j
TxΩj )

[
(V̂ T x̃)⊗3 − (V̂ T x̃)⊗(E(V̂ T x̃)(V̂ T x̃)T )

]
=

1

K ·N

N∑
n=1

K∑
j=1

[
φ(w∗j

Txn,Ωj ) ·
[
(V̂ T x̃n)⊗3 − (V̂ T x̃n)⊗(E(V̂ T x̃n)(V̂ T x̃n)T )

]
− Exφ(w∗j

TxΩj )
[
(V̂ T x̃)⊗3 − (V̂ T x̃)⊗(E(V̂ T x̃)(V̂ T x̃)T )

]]
+

1

N

N∑
n=1

ξn
[
(V̂ T x̃)⊗3 − (V̂ T x̃)⊗(E(V̂ T x̃)(V̂ T x̃)T )

]

(125)

Following the notations in Lemma E.8 of [40], we define

T (x) :=
1

K

K∑
j=1

φ(w∗j
Txn,Ωj ) ·

[
(V̂ Txn)⊗3 − (V̂ Txn)⊗(E(V̂ Txn)(V̂ Txn)T )

]
. (126)

Then,B3(x) ∈ RK×K2

is defined as flattening the tensor T (x) along the first dimension. Hence, we have

‖B3(x)‖2 .max
j
|w∗jxΩj | ·

(
‖V̂ Txn‖32 + 3K‖V̂ Txn‖2

)
.σ1K

3
2 log

5
2 d

(127)
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with probability at least 1− d−10.

Following the similar calculations of (II) and (III) in Lemma E.8 of [40], we know that

‖ExB3(x)‖2 . σ1,

max

{∥∥Ex[B3(x)TB3(x)]
∥∥

2
,
∥∥Ex[B3(x)TB3(x)]

∥∥
2

}
. K2σ2

1 .
(128)

Define Z3,n = 1
N

(
B3(xn) − ExB3(x)

)
for (xn, yn) ∈ D, and it is obvious Z3,n is zero mean. Also, we

have

R3 = ‖Z3,n‖2 ≤
1

N

(
‖B3(xn)‖2 + ‖ExB3(x)‖2

)
.N−1σ1K

3
2 log

5
2 d,

(129)

and

δ2
3 =

{∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2
,
∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2

}
≤ 1

N

(
‖EB2

3(xn)‖2 + ‖EB3(xn)‖22
)

.N−1K2σ2
1 .

(130)

Similar to (121), by applying Lemma 10, we have

∥∥∥ N∑
n=1

Z3,n

∥∥∥
2
. σ1

√
K2 log d

N
(131)

with probability at least 1− d−10 provided that N & K3 log6 d.

Similar to (127), we define B by flattening the tensor
∑N
n=1

[
(V̂ T x̃)⊗3 − (V̂ T x̃)⊗(E(V̂ T x̃)(V̂ T x̃)T )

]
along the first dimension. Then, we know that

‖B‖2 ≤
∥∥∥ N∑
n=1

V̂ T x̃n

∥∥∥3

2
+ 3K

∥∥∥ N∑
n=1

V̂ T x̃n

∥∥∥
2
.

(
K log d

N

) 3
2

+ 3K

(
K log d

N

) 1
2

.

(
K log d

N

) 1
2

+

(
K3 log d

N

) 1
2

.

√
K3 log d

N
,

(132)

provided that N & K log d.

In conclusion, we have∥∥∥M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )
∥∥∥ . (σ1 + |ξ|)

√
K3 log d

N
(133)

with probability at least 1− d−C provided that N & K3 log6 d.
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J.3 ERROR BOUND FOR THE FIRST-ORDER MOMENT

Proof of Lemma 9. For M̂1 −M1, we have

M̂1 −M1 =
1

N

N∑
n=1

ynx̃n − Ex yx̃

=
1

N

N∑
n=1

( 1

K

K∑
j=1

φ(w∗j
Txn,Ωj ) + ξn

)
x̃n − Ex

K∑
j=1

1

K
φ(w∗j

TxΩj )x̃

=
1

K ·N

K∑
j=1

N∑
n=1

(
φ(w∗j

Txn,Ωj )x̃n − Ex φ(w∗j
TxΩj )x̃

)
+

1

N

N∑
n=1

ξn · x̃n.

(134)

DefineB1(x) := 1
K

∑K
j=1 φ(w∗j

Txn,Ωj )x̃n, then we have

‖B1(x)‖2 . σ1r log
3
2 d;

‖ExB1(x)‖2 . σ1;{∥∥Ex[B1(x)B1(x)T ]
∥∥

2
,
∥∥Ex[B1,j(x)TB1(x)]

∥∥
2

}
. σ2

1 .

(135)

Next, define Z1,n = 1
N

(
B1,j(xn)− ExB2(x)

)
for (xn, yn) ∈ D, by calculation, we can obtain

R1 = ‖Z1,n‖2 . N−1σ1r log
3
2 d, (136)

and

δ2
1 = max

{∥∥∥ N∑
n=1

EZ1,nZ
T
1,n

∥∥∥2

2
,

∣∣∣∣ N∑
n=1

ZT1,nZ1,n

∣∣∣∣} . N−1σ2
1r. (137)

By applying Lemma 10, we have ∥∥∥∥∥
N∑
n=1

Z1,n

∥∥∥∥∥
2

. σ1

√
r log d

N
(138)

with probability at least 1 − d−10 provided that N & r log4 d. Since x ∈ Rr belongs to the Gaussian
distribution, we have ∥∥∥ 1

N

N∑
n=1

x̃
∥∥∥

2
.

√
r log d

N
(139)

with probability at least 1− d−10.

In conclusion, we have

‖M̂1 −M1‖ . (σ1 + |ξ|)
√
r log d

N
(140)

with probability at least 1− d−C , provided that N & r log4 d.
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