
A Implementation of PS-CD Algorithm

In the following, we provide a simple PyTorch [71] implementation of Step 6 in Algorithm 1,
where we directly differentiate through log(mean(exp(·))) for the first term and perform stop
gradient operation on the self-normalized importance weight (exp(−γEθ(x−i))) for the second term.
Mathematically, these two implementations are equivalent and we use different implementations
here to illustrate the difference between their derivations. We further apply L2 regularization on the
outputs of the energy function to stabilize training.

def logmeanexp(inputs):
// Stable version log(mean(exp(inputs)))
return inputs.max() + (inputs - inputs.max()).exp().mean().log()

def softmax(inputs):
// Stable version softmax(inputs)
exp_inputs = torch.exp(inputs - inputs.max())
return exp_inputs / exp_inputs.sum()

def update_step(x_pos, x_neg, model_e, optim_e, l2_reg, gamma):
// x_pos and x_neg are samples from p_data and q_theta.
// model_e is the neural network for the energy function.
// optim_e is the optimizer for model_e
// e.g. optim_e = torch.optim.Adam(model_e.parameters())
e_pos, e_neg = model_e(x_pos), model_e(x_neg)
importance_weight = softmax(- gamma * e_neg)
loss = - 1 / gamma * logmeanexp(- gamma * e_pos) - \

torch.sum(e_neg * importance_weight.detach())
loss += l2_reg * ((e_pos ** 2).mean() + (e_neg ** 2).mean())
optim_e.zero_grad()
loss_e.backward()
optim_e.step()

16

B Proofs for Section 3

B.1 Proof for Theorem 2

In this section, we provide two different ways to prove Theorem 2. The first one is more straight-
forward and directly differentiates through the term log(‖qθ‖γ+1). The second one leverages a
variational representation of log(‖qθ‖γ+1), where the optimal variational distribution happens to take
an analytical form of r∗θ(x) ∝ qθ(x)γ+1, thus avoiding the minimax optimization in other variational
frameworks for KL and f -divergences [89, 11, 12] and revealing the elegance of PS-CD.
Theorem 2. For an energy-based distribution qθ ∝ qθ = exp(−Eθ), the gradient of the negative
γ-score Lγ(θ; p) = −Sγ(p, qθ) with respect to θ can be written as:

∇θLγ(θ; p) = − 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
− Erθ(x)[∇θEθ(x)] (20)

where the auxiliary distribution rθ is also an energy-based distribution defined as:

rθ(x) :=
qθ(x)γ+1∫

X qθ(x)γ+1dx
=

exp(−(γ + 1)Eθ(x))∫
X exp(−(γ + 1)Eθ(x))dx

.

Proof. First proof: direct differentiation. From Equation (17), we have:

∇θLγ(θ; p) = ∇θ
(
− 1

γ
log
(
Ep(x)[qθ(x)γ]

)
+ log(‖qθ‖γ+1)

)
= − 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
+

1

γ + 1
∇θ log

(∫
X

exp(−(γ + 1)Eθ(x))dx

)
= − 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
+

1

γ + 1

∫
X exp(−(γ + 1)Eθ(x)) · (−(γ + 1)∇θEθ(x))dx∫

X exp(−(γ + 1)Eθ(x))dx

= − 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
−
∫
X

exp(−(γ + 1)Eθ(x))∫
X exp(−(γ + 1)Eθ(y))dy

∇θEθ(x)dx

= − 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
− Erθ(x)[∇θEθ(x)]

Second proof: a variational representation with optimal variational distribution taking analyt-
ical form. The main challenge is that the log ‖qθ‖γ+1 term in Lγ(θ; p) is generally intractable to
compute. To solve this issue, we introduce the following variational representation:

Lemma 1. Let ∆X denote the set of all normalized probability density functions on sample space X .
With Fenchel duality, we have:

(γ + 1) log(‖q‖γ+1) = log

(∫
X
q(x)γ+1dx

)
= max
r∈∆X

∫
X
r(x) log

(
q(x)γ+1

)
dx−

∫
X
r(x) log r(x)dx

(21)

where the maximum is attained at r∗(x) = q(x)γ+1∫
X q(x)γ+1dx

.

Proof. With Jensen’s inequality, we have:

log

(∫
X
q(x)γ+1dx

)
= log

(∫
X
r(x)

q(x)γ+1

r(x)
dx

)
≥
∫
X
r(x) log

(
q(x)γ+1

r(x)

)
dx

The equality holds if and only if:

r∗(x) ∝ q(x)γ+1

As r∗ ∈ ∆X is a normalized distribution, we have:

r∗(x) =
q(x)γ+1∫

X q(x)γ+1dx

17

Now, suppose we parametrize the energy-based model distribution as qθ = exp(−Eθ) and the
variational distribution as rψ. By plugging the variational representation in Lemma 1 into γ-score
(Equation (15)), we obtain the following minimax formulation to minimize the negative γ-score:

ψ∗(θ) = arg max
ψ

Lγ(θ,ψ; p) θ∗ = arg min
θ

max
ψ
Lγ(θ,ψ; p) = arg min

θ
Lγ(θ,ψ∗(θ); p)

where the game value function Lγ(θ,ψ; p) is defined as (s.t. Lγ(θ,ψ∗(θ); p) = −Sγ(p, qθ)):

Lγ(θ,ψ; p) = − 1

γ
log
(
Ep(x)[qθ(x)γ]

)
︸ ︷︷ ︸

L1(θ)

+
1

γ + 1

(
Erψ(x)[log

(
qθ(x)γ+1

)
]− Erψ(x)[log rψ(x)]

)
︸ ︷︷ ︸

L2(θ,ψ)

By Lemma 1, we know that rψ∗(θ) ∝ qγ+1
θ .

The first term in Equation (20) is simply∇θL1(θ). For the second term, since L2(θ,ψ) is a function
of both θ and ψ, and the optimal variational parameter ψ∗(θ) depends on θ, the total derivative of
L2(θ,ψ∗(θ)) with respect to θ is:

dL2(θ,ψ∗(θ))

dθ
=
∂L2(θ,ψ∗(θ))

∂θ
+
∂L2(θ,ψ∗(θ))

∂ψ∗(θ)

dψ∗(θ)

dθ

Because ψ∗(θ) is the optimum of L2(θ,ψ) (Lemma 1), the second term in above equation is zero:

∂L2(θ,ψ∗(θ))

∂ψ∗(θ)
=

1

γ + 1

(∫
X
∇ψrψ(x) log

(
qθ(x)γ+1

)
−∇ψrψ(x) log rψ(x)− rψ(x)

rψ(x)
∇ψrψ(x)dx

) ∣∣∣∣∣
ψ=ψ∗(θ)

=
1

γ + 1

(∫
X

(logZψ∗(θ) − 1)∇ψrψ(x)dx

) ∣∣∣∣∣
ψ=ψ∗(θ)

=
1

γ + 1

(
(logZψ∗(θ) − 1)∇ψ

∫
X
rψ(x)dx

)
= 0

where Zψ∗(θ) is the partition function of rψ∗(θ).

Thus we have:
dL2(θ,ψ∗(θ))

dθ
=
∂L2(θ,ψ∗(θ))

∂θ
= −Erψ∗(θ)(x)[∇θEθ(x)]

B.2 Proof for Theorem 3

Theorem 3 (Consistent Gradient Estimation). Let x+
1 , . . . ,x

+
N be i.i.d. samples from p(x) and

x−1 , . . . ,x
−
N be i.i.d. samples from qθ(x) ∝ exp(−Eθ(x)). Define the gradient estimator as:

̂∇θLNγ (θ; p) = −∇θ
1

γ
log

(
1

N

N∑
i=1

exp(−γEθ(x+
i))

)
−
∑N
i=1 ωθ(x−i)∇θEθ(x−i)∑N

i=1 ωθ(x−i)
(22)

where the self-normalized importance weight ωθ(x−i) := rθ(x−i)/qθ(x−i) = exp(−γEθ(x−i)).
Then the gradient estimator converges to the true gradient in probability:

∀ε > 0, lim
N→∞

P
(∥∥∥ ̂∇θLNγ (θ; p)−∇θLγ(θ; p)

∥∥∥ ≥ ε) = 0

Proof. First, let us write ̂∇θLNγ (θ; p) and∇θLγ(θ; p) as:

∇θLγ(θ; p) =
Ep(x)[exp(−γEθ(x))∇θEθ(x)]

Ep(x)[exp(−γEθ(x))]
− Erθ(x)[∇θEθ(x)] (23)

̂∇θLNγ (θ; p) =
1
N

∑N
i=1 exp(−γEθ(x+

i))∇θEθ(x+
i)

1
N

∑N
i=1 exp(−γEθ(x+

i))
−

1
N

∑N
i=1 exp(−γEθ(x−i))∇θEθ(x−i)

1
N

∑N
i=1 exp(−γEθ(x−i))

(24)

18

For the first term in Equation (24), since {x+
i }Ni=1 are i.i.d. samples from p(x), by weak law of

large numbers, the numerator and denominator of the first term in Equation (24) converges to the
numerator and denominator of the first term in Equation (23) in probability. By Slutsky’s theorem
(i.e., for random variables XN , X, YN , Y , if XN

p→ X,YN
p→ Y and X , Y are constants, then

XN/YN
p→ X/Y), the first term of Equation (24) converges to the first term of Equation (23) in

probability.

Let us use Zr and Zq to denote the partition function for rθ and qθ . The second term of Equation (24)
can be written as:

1
N

∑N
i=1 exp(−γEθ(x−i))∇θEθ(x−i)

1
N

∑N
i=1 exp(−γEθ(x−i))

=

1
N

∑N
i=1

exp(−(γ+1)Eθ(x−i)/Zr

exp(−Eθ(x−i))/Zq
∇θEθ(x−i)

1
N

∑N
i=1

exp(−(γ+1)Eθ(x−i)/Zr

exp(−Eθ(x−i))/Zq

(25)

Since {x−i }Ni=1 are i.i.d. samples from qθ(x), the numerator of Equation (25) converges to
Erθ(x)[∇θEθ(x)] in probability, while the denominator of Equation (25) converges to 1 in probability
(Eqθ(x)[rθ(x)/qθ(x)] = 1). By Slutsky’s theorem, the second term of Equation (24) converges to
the second term of Equation (23) in probability. Furthermore, since convergence in probability is also
preserved under addition transformation, the gradient estimator in Equation (24) converges to the true
gradient in Equation (23) in probability.

19

B.3 Connections to Maximum Likelihood Estimation and Extension to γ < 0

Lemma 2. Let Dγ(p, q) be the divergence corresponding to γ-scoring rule. Then, we have:
lim
γ→0

Dγ(p, q) = DKL(p‖q)

Proof. As introduced in Equation (9) in Section 2.3, the divergence corresponding to the γ-scoring
rule is:
Dγ(p, q) = Sγ(p, p)− Sγ(p, q)

=
1

γ
log
(
Ep(x)[p(x)γ]

)
− log(‖p‖γ+1)− 1

γ
log
(
Ep(x)[q(x)γ]

)
+ log(‖q‖γ+1)

= − 1

γ
log

(∫
X
p(x)q(x)γdx

)
+

1

γ + 1
log

(∫
X
q(x)γ+1dx

)
+

1

γ(γ + 1)
log

(∫
X
p(x)γ+1dx

)
When γ → 0, with Taylor series, we know that:

qγ = 1 + γ log(q) +O(γ2)

pγ = 1 + γ log(p) +O(γ2)

Therefore, we have:

lim
γ→0

Dγ(p, q) = lim
γ→0
− 1

γ
log

(∫
X
p(x)(1 + γ log q(x) +O(γ2))dx

)
+

1

γ + 1
log

(∫
X
q(x)(1 + γ log q(x) +O(γ2))dx

)
+

1

γ(γ + 1)
log

(∫
X
p(x)(1 + γ log p(x) +O(γ2))dx

)
= lim
γ→0
− 1

γ
log

(
1 + γ

∫
X
p(x) log q(x)dx+O(γ2)

)
+

1

γ + 1
log

(
1 + γ

∫
X
q(x) log q(x)dx+O(γ2)

)
+

1

γ(γ + 1)
log

(
1 + γ

∫
X
p(x) log p(x)dx+O(γ2))

)
= lim
γ→0
−
∫
X
p(x) log q(x)dx+

1

γ + 1

∫
X
p(x) log p(x)dx+O(γ)

=

∫
X
p(x) log

p(x)

q(x)
= DKL(p‖q)

The above lemma implies that the KL divergence minimization (maximum likelihood estimation) is a
special case of γ-divergence minimization when γ → 0, which also implies the following corollary:
Corollary 1. When γ → 0, the gradient of pseudo-spherical contrastive divergence is equal to the
gradient of contrastive divergence:

lim
γ→0
∇θLγ(θ; p) = ∇θLMLE(θ; p)

Proof. This is a direct consequence of Lemma 2. It can also be verified by checking the PS-CD
gradient in Equation (18) (when γ → 0, rθ = qθ ∝ exp(−Eθ)):

lim
γ→0
∇θLγ(θ; p) = lim

γ→0
− 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
− Erθ(x)[∇θEθ(x)]

= lim
γ→0
− 1

γ

−γEp(x)[exp(−γEθ(x))∇θEθ(x)]

Ep(x)[exp(−γEθ(x))]
− Erθ(x)[∇θEθ(x)]

= Ep(x)[∇θEθ(x)]− Eqθ(x)[∇θEθ(x)] = ∇θLMLE(θ; p)

20

Inspired by [86, 56] that generalize Rényi divergence beyond its definition to negative orders, we
consider the extension of γ-scoring rule with γ < 0 (although it is no longer strictly proper for these
γ values) and show that maximizing such scoring rule is equivalent to maximizing a lower bound of
logarithm scoring rule (MLE) with an additional Rényi entropy regularization.
Lemma 3. When −1 ≤ γ < 0, we have:

Sγ(p, q) ≤ Ep(x)[log q(x)] +
γ

γ + 1
Hγ+1(q)

whereHγ+1(q) is the Rényi entropy of order γ + 1.

Proof. As a generalization to Shannon entropy, the Rényi entropy of order α is defined as:

Hα(q) =
α

1− α
log(‖q‖α)

With Jensen’s inequality, for −1 ≤ γ < 0, we have:

Sγ(p, q) =
1

γ
log(Ep(x)[q(x)γ])− log(‖q‖γ+1)

≤ 1

γ
Ep(x)[γ log(q(x))] +

γ

γ + 1

(
γ + 1

−γ
log(‖q‖γ+1)

)
= Ep(x)[log q(x)] +

γ

γ + 1
Hγ+1(q)

C Theoretical Analysis

In this section, we provide a theoretical analysis on the sample complexity of the gradient estimator,
as well as the convergence property of stochastic gradient descent with consistent (but biased given
finite samples) gradient estimators as presented in Algorithm 1.

C.1 Sample Complexity

We start with analyzing the sample complexity of the consistent gradient estimator, that is how fast it
approaches the true gradient value or how many samples we need in order to empirically estimate the
gradient at a given accuracy with a high probability.

We first make the following assumption, which is similar to the one used in [4, 47]:
Assumption 1. The energy function is bounded by K and the gradient is bounded by L (with K > 0
and L > 0):

∀x ∈ X , θ ∈ Θ, |Eθ(x)| ≤ K, ‖∇θEθ(x)‖ ≤ L.

The assumption is typically easy to enforce in practice. For example, in the experiments we use
L2 regularization on the outputs of the energy function, as well as normalized inputs and spectral
normalization [60] for the neural network that realizes the energy function.
Theorem 4. Under Assumption 1, given any constants ε > 0 and δ ∈ (0, 1), when the number of
samples N satisfies:

N ≥ 32L2e8γK (1 + 4 log(2/δ))

ε2

we have:

P
(∥∥∥ ̂∇θLNγ (θ; p)−∇θLγ(θ; p)

∥∥∥ ≤ ε) ≥ 1− δ

Proof. For notation simplicity, we use pN to denote the empirical distribution of {xi}Ni=1 i.i.d.
sampled from a distribution p, i.e., EpN (x)[f(x)] = 1

N

∑N
i=1 f(xi). Similarly, EqNθ (x)[f(x)] =∑N

i=1 f(xi) when {xi}Ni=1 are i.i.d. samples from qθ.

21

First, we observe that:

Erθ(x)[∇θEθ(x)] =
Eqθ(x)[

rθ(x)
qθ(x)∇θEθ(x)]

Eqθ(x)[
rθ(x)
qθ(x)]

=
Eqθ(x)[exp(−γEθ(x))∇θEθ(x)]

Eqθ(x)[exp(−γEθ(x))]

where the partition functions of rθ and qθ cancel out. Based on Equation (23) and (24), with triangle
inequality, the estimation error can be upper bounded as:∥∥∥ ̂∇θLNγ (θ; p)−∇θLγ(θ; p)

∥∥∥
≤
∥∥∥∥Ep(x)[exp(−γEθ(x))∇θEθ(x)]

Ep(x)[exp(−γEθ(x))]
−

EpN (x)[exp(−γEθ(x))∇θEθ(x)]

EpN (x)[exp(−γEθ(x))]

∥∥∥∥︸ ︷︷ ︸
∆p

+ (26)

∥∥∥∥∥Eqθ(x)[exp(−γEθ(x))∇θEθ(x)]

Eqθ(x)[exp(−γEθ(x))]
−

EqNθ (x)[exp(−γEθ(x))∇θEθ(x)]

EqNθ (x)[exp(−γEθ(x))]

∥∥∥∥∥︸ ︷︷ ︸
∆qθ

Define functions:

fθ(x) := exp(−γEθ(x)), hθ(x) := exp(−γEθ(x))∇θEθ(x)

From Assumption 1, we know that:

∀x ∈ X ,θ ∈ Θ, fθ(x) ∈ [e−γK , eγK], ‖hθ(x)‖ ≤ LeγK (27)

Let us examine the first term ∆p in Equation (26):

∆p =

∥∥∥∥Ep(x)[hθ(x)]

Ep(x)[fθ(x)]
−

EpN (x)[hθ(x)]

EpN (x)[fθ(x)]

∥∥∥∥
=

1

Ep(x)[fθ(x)] · EpN (x)[fθ(x)]

∥∥EpN (x)[fθ(x)] · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · EpN (x)[hθ(x)]
∥∥

≤ e2γK
∥∥EpN (x)[fθ(x)] · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · EpN (x)[hθ(x)]

∥∥ (28)

Now we introduce the following lemma that will provide us a probability upper bound that an
empirical mean of independent random variables deviates from its expected value more than a certain
amount.

Lemma 4 (Vector Bernstein Inequality [47, 32]). Let X1, . . . ,XN be independent vector-valued
random variables. Assume that each one is centered, uniformly bounded and the variance is also
bounded:

∀i,E[Xi] = 0 and ‖Xi‖ ≤ µ and E[‖Xi‖2] ≤ σ2

DefineX := 1
N (X1 + . . .+XN). Then we have for 0 < t < σ2/µ:

P(‖X‖ ≥ t) ≤ exp

(
−Nt

2

8σ2
+

1

4

)
We then define the following vector-valued random variable:

Xi :=fθ(xi) · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · hθ(xi)

X :=
1

N

N∑
i=1

fθ(xi) · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · 1

N

N∑
i=1

hθ(xi)

=EpN (x)[fθ(x)] · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · EpN (x)[hθ(x)]

From Equation (27), we know that:

‖Xi‖ = ‖fθ(xi) · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · hθ(xi)‖
≤ ‖fθ(xi) · Ep(x)[hθ(x)]‖+ ‖Ep(x)[fθ(x)] · hθ(xi)‖ ≤ 2Le2γK

‖Xi‖2 ≤ 4L2e4γK

22

With σ2 := 4L2e4γK , from Lemma 4, we know that:

P
(
e2γK

∥∥EpN (x)[fθ(x)] · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · EpN (x)[hθ(x)]
∥∥ ≥ ε

2

)
≤ exp

(
− Nε2

128L2e8γK
+

1

4

)
(29)

To obtain a sample complexity bound such that the probability bound in Equation (29) is less than
1−
√

1− δ, we need to solve for N :

exp

(
− Nε2

128L2e8γK
+

1

4

)
≤ 1−

√
1− δ (30)

Solving Equation (30) gives us:

N ≥
32L2e8γK

(
1− 4 log

(
1−
√

1− δ
))

ε2
(31)

Because 1 + 4 log(2/δ) > 1−4 log(1−
√

1− δ) for δ ∈ (0, 1], we use the following slightly weaker
bound such that it looks cleaner:

N ≥ 32L2e8γK (1 + 4 log(2/δ))

ε2
(32)

Since Equation (28) is an upper bound of ∆p, we know that when the sample size satisfies Equa-
tion (32), we have:

P
(

∆p =

∥∥∥∥Ep(x)[hθ(x)]

Ep(x)[fθ(x)]
−

EpN (x)[hθ(x)]

EpN (x)[fθ(x)]

∥∥∥∥ ≤ ε

2

)
≥ P

(
e2γK

∥∥EpN (x)[fθ(x)] · Ep(x)[hθ(x)]− Ep(x)[fθ(x)] · EpN (x)[hθ(x)]
∥∥ ≤ ε

2

)
≥
√

1− δ

Similarly, we can obtain the same sample complexity bound for ∆qθ such that:

P

(
∆qθ =

∥∥∥∥∥Eqθ(x)[hθ(x)]

Eqθ(x)[fθ(x)]
−

EqNθ (x)[hθ(x)]

EqNθ (x)[fθ(x)]

∥∥∥∥∥ ≤ ε

2

)
≥
√

1− δ (33)

From Equation (26), we know that ∆p + ∆qθ is an upper bound of the gradient estimation error. Also
note that the event ∆p ≤ ε

2 and the event ∆qθ ≤ ε
2 are independent from each other (the samples

for pN and the samples for qNθ are independent samples from p and qθ respectively). Thus when the
sample size satisfies Equation (32), we have:

P
(
‖ ̂∇θLNγ (θ; p)−∇θLγ(θ; p)‖ ≤ ε

)
≥ P (∆p + ∆qθ ≤ ε)

≥ P
(

∆p ≤
ε

2
and ∆qθ ≤

ε

2

)
= P

(
∆p ≤

ε

2

)
· P
(

∆qθ ≤
ε

2

)
≥ 1− δ

C.2 Convergence of Pseudo-Spherical Contrastive Divergence Algorithm

In this section, we analyze the convergence property of the PS-CD algorithm presented in Algorithm 1.
For notation simplicity, we define g as the true gradient in Equation (18) and ĝ as the gradient
estimator in Equation (19). We further use L(θ) to denote the loss function Lγ(θ,ψ∗(θ); p) =
−Sγ(p, qθ).

23

Let us consider the following stochastic gradient descent (SGD) update rule:

θt+1 = θt − ηtĝt, t = 1, 2, . . . , T (34)

where ηt is the step size at step t, T is the total number of steps and ĝt := ̂∇θLNγ (θ; p)
∣∣
θ=θt

is the
consistent (but biased) gradient estimation of gt at step t. Note that θt and ĝt are random variables
that depend on the previous history ĝ1, . . . , ĝt−1. For brevity, in the following we will omit such
dependency in the notations.

Most works for analyzing the convergence behavior of SGD relies on the assumption that the gradient
estimator ĝt is asymptotically unbiased, e.g., [63, 52, 78, 24, 74], while in our case the gradient
estimator is not unbiased but consistent (see Section 1.2 in [8] for a detailed discussion on the
distinctions between unbiasedness and consistency). Therefore, in this work we generalize the theory
developed in [24] and [8] to analyze the convergence rate for PS-CD.

Besides Assumption 1 used for analyzing the sample complexity of the gradient estimator, we further
make the following assumption:

Assumption 2. The loss function L(θ) is M -smooth (with M > 0):

∀θ1,θ2 ∈ Θ, ‖∇L(θ1)−∇L(θ2)‖ ≤M‖θ1 − θ2‖.

This is a common assumption used for analyzing first-order optimization methods, which is also
used in [24, 8]. Also note that this is a relatively mild assumption since we do not require the loss
function to be convex in θ. Since in non-convex optimization, the convergence criterion is typically
measured by gradient norm, following [64, 24], we use ‖∇L(θ)‖ ≤ ξ to judge whether a solution θ
is approximately a stationary point.

Now, let us consider Algorithm 2, which is a variant of SGD that allows early stopping before
reaching the iteration limit T according to some probability distribution pZ over iteration indexes
[T] := {1, . . . , T}.

Algorithm 2 Randomized Stochastic Gradient Descent

1: Input: Initial parameter θ1, iteration limit T , step sizes {ηt}Tt=1, distribution pZ over [T].
2: Sample an iteration number Z from pZ (defined in Equation (35)).
3: for t = 1, . . . , Z do
4: Obtain the gradient estimator ĝt with a sample batch size of Nt.
5: Update the parameter: θt+1 = θt − ηtĝt.
6: end for
7: Output: θZ .

Note that this is equivalent (more efficient in terms of computation) to running the algorithm to the
iteration limit T and then selecting the final solution from {θ1, . . . ,θT } according to distribution pZ .

We have the following theorem that characterizes the convergence property of Algorithm 2:

Theorem 5. Under Assumptions 1 and 2, for arbitrary constants α ∈ (0, 1) and δ ∈ (0, 1), suppose
that the step sizes satisfy ηt < 2(1− α)/M and the probability distribution over iteration indexes is
chosen to be:

pZ(t) :=
2(1− α)ηt −Mη2

t∑T
t=1(2(1− α)ηt −Mη2

t)
, t = 1, . . . , T (35)

and the sample size Nt used for estimating ĝt satisfies:

Nt ≥
32L2e8γK(1 + 4 log(2T/δ))

α2‖gt‖2
(36)

Denote by L∗ the minimum value of L(θ). Then with probability at least 1− δ, we have:

EpZ [‖∇L(θZ)‖2] <
2(L(θ1)− L∗) + 12αML2e4γK

∑T
t=1 η

2
t∑T

t=1(2(1− α)ηt −Mη2
t)

(37)

24

Proof. First, with Assumption 1 (|Eθ(x)| ≤ K, ‖∇θEθ(x)‖ ≤ L), we can bound the norm of the
true gradient as:

‖g‖ ≤
∥∥∥∥Ep(x)[exp(−γEθ(x))∇θEθ(x)]

Ep(x)[exp(−γEθ(x))]

∥∥∥∥+ ‖Erψ∗(θ)(x)[∇θEθ(x)]‖

≤ Le2γK + L < 2Le2γK (38)

From Theorem 4, we know that when sample size at each step satisfies Equation (36), we have:

P(‖ĝt − gt‖ ≤ α‖gt‖) ≥ 1− δ/T
Therefore, we have:

P(‖ĝ1 − g1‖ ≤ α‖g1‖ and . . . and ‖ĝT − gT ‖ ≤ α‖gT ‖) ≥
T∏
t=1

(1− δ/T) ≥ 1− δ

Thus, with probability at least 1− δ, we have:

‖ĝ1 − g1‖ ≤ α‖g1‖ and . . . and ‖ĝT − gT ‖ ≤ α‖gT ‖ (39)

A similar condition was also adopted in [38] and [8]. When Equation (39) is satisfied, we have the
following lemma:

Lemma 5 (Lemma 11 in [8]). If ‖ĝt − gt‖ ≤ α‖gt‖, then we have:

(1− α)‖gt‖ ≤ ‖ĝt‖ ≤ (1 + α)‖gt‖

Next we introduce the following property of M -smooth function:

Lemma 6. For an M -smooth function L(θ), we have:

∀θ1,θ2 ∈ Θ, L(θ2) ≤ L(θ1) + 〈∇L(θ1),θ2 − θ1〉+
M

2
‖θ2 − θ1‖2

From Assumption 2 and Lemma 6, we know that:

L(θt+1) ≤ L(θt) + 〈∇L(θt),θt+1 − θt〉+
M

2
‖θt+1 − θt‖2

From the SGD update rule in Equation (34) (θt+1 = θt − ηtĝt), Equation (39) and Lemma 5, we
know that:

L(θt+1) ≤ L(θt)− ηt〈gt, ĝt〉+
Mη2

t ‖ĝt‖2

2

≤ L(θt)− ηt(1− α)‖gt‖2 +
Mη2

t (1 + α)2‖gt‖2

2
Rearranging the above equation, using the gradient norm bound in Equation (38) and the fact that
α ∈ (0, 1), we get:(

(1− α)ηt −
M

2
η2
t

)
‖∇L(θt)‖2 ≤ L(θt)− L(θt+1) +

(
αMη2

t +
α2

2
Mη2

t

)
‖gt‖2

< L(θt)− L(θt+1) + 6αML2e4γKη2
t

where the condition ηt < 2(1− α)/M is used to ensure (1− α)ηt −Mη2
t /2 > 0.

Summing up the above inequalities from t = 1 to T , we get:
T∑
t=1

((
(1− α)ηt −

M

2
η2
t

)
‖∇L(θt)‖2

)
<

T∑
t=1

(L(θt)− L(θt+1)) + 6αML2e4γK
T∑
t=1

η2
t

= L(θ1)− L(θT) + 6αML2e4γK
T∑
t=1

η2
t

≤ L(θ1)− L∗ + 6αML2e4γK
T∑
t=1

η2
t

25

where the last inequality is due to the fact that L∗ ≤ L(θT+1).

Dividing both sides by
∑T
t=1((1− α)ηt −Mη2

t /2), we get:

T∑
t=1

(
2(1− α)ηt −Mη2

t∑T
t=1(2(1− α)ηt −Mη2

t)
‖∇L(θt)‖2

)
<

2(L(θ1)− L∗) + 12αML2e4γK
∑T
t=1 η

2
t∑T

t=1(2(1− α)ηt −Mη2
t)

By definition of pZ in Equation (35), which is used to select a final solution among {θ1, . . . ,θT },
we know that:

EpZ [‖∇L(θZ)‖2] =

T∑
t=1

(pZ(t)‖∇L(θt)‖2)

=

T∑
t=1

(
2(1− α)ηt −Mη2

t∑T
t=1(2(1− α)ηt −Mη2

t)
‖∇L(θt)‖2

)

<
2(L(θ1)− L∗) + 12αML2e4γK

∑T
t=1 η

2
t∑T

t=1(2(1− α)ηt −Mη2
t)

Now, let us consider a simple case where we use a constant step size, which gives us the following
corollary:
Corollary 2. Under the conditions in Theorem 5 except that we use constant step sizes:

ηt = min

{
1− α
M

,
1√
T

}
, t = 1, . . . , T (40)

then with probability at least 1− δ, we have:

EpZ [‖∇L(θZ)‖2] <
2M(L(θ1)− L∗)

(1− α)2T
+

2(L(θ1)− L∗) + 12αML2e4γK

(1− α)
√
T

Proof. Since we are using a constant step size, by Theorem 5, we know that:

EpZ [‖∇L(θZ)‖2] <
2(L(θ1)− L∗) + 12αML2e4γKTη2

1

Tη1(2(1− α)−Mη1)

By Equation (40), we have:

2(L(θ1)− L∗) + 12αML2e4γKTη2
1

Tη1(2(1− α)−Mη1)
≤ 2(L(θ1)− L∗) + 12αML2e4γKTη2

1

T (1− α)η1

=
2(L(θ1)− L∗)
T (1− α)η1

+
12αML2e4γKη1

1− α

≤ 2(L(θ1)− L∗)
T (1− α)

max

{
M

1− α
,
√
T

}
+

12αML2e4γK

(1− α)
√
T

<
2M(L(θ1)− L∗)

(1− α)2T
+

2(L(θ1)− L∗) + 12αML2e4γK

(1− α)
√
T

Note that an alternative result for constant step sizes can also be obtained from Theorem 6 in [8]:
Theorem 6. Under Assumptions 1 and 2, for arbitrary constants α ∈ (0, 1) and δ ∈ (0, 1), suppose
we use constant step sizes:

ηt =

√
2(L(θ1)− L∗)

(1 + α)2Le2γK
√
MT

(41)

26

and the sample size Nt used for estimating ĝt satisfies Equation (36), then with probability at least
1− δ, we have:

min
t=1,...,T

‖∇L(θt)‖2 ≤
(1 + α)2Le2γK

√
2M(L(θ1)− L∗)

(1− α)
√
T

(42)

Although both Corollary 2 and Theorem 6 give a convergence rate of O(1/
√
T), the strategy in

Theorem 6 requires extra computational effort to compute ‖∇L(θt)‖ for t = 1, . . . , T in order to
select the solution with the minimum gradient norm. Since ‖∇L(θ)‖ cannot be computed exactly,
Monte Carlo estimation will incur additional approximation error. By contrast, the strategy in our
analysis does not have such issues and Theorem 5 provides a general analysis on the convergence
rate of the randomized SGD algorithm with consistent but biased gradient estimators, which allows
using different step sizes.

For example, starting from Equation (37) and with the fact that:

T∑
t=1

t = O(T 2),

T∑
t=1

√
t = O(T

3
2),

T∑
t=1

t−
1
4 = O(T

3
4),

T∑
t=1

t−
1
2 = O(T

1
2)

one can easily verify that using the following increasing step sizes:

ηt = min

{
1− α
M

,

√
t

T

}
, t = 1, . . . , T

or decreasing step sizes:

ηt = min

{
1− α
M

,
1

(tT)1/4

}
, t = 1, . . . , T

will give us a similar convergence rate of O(1/
√
T).

Finally, if we would like to make a stronger assumption that the loss function L(θ) is strongly convex,
then we can obtain a stronger result that θT converges to the optimal solution θ∗ in L2-norm with a
convergence rate of O(1/T).
Assumption 3. The loss function L(θ) is J-strongly convex (with J > 0):

∀θ1,θ2 ∈ Θ,L(θ2)− L(θ1) ≥ 〈∇L(θ1),θ2 − θ1〉+
J

2
‖θ2 − θ1‖2.

and the unique optimum of L(θ) is θ∗.
Theorem 7. Under Assumptions 1 and 3, for arbitrary constant δ ∈ (0, 1), suppose that J ≤
2Le2γK/‖θ1 − θ∗‖ and we use decreasing step sizes:

ηt =
1

(J − J/(2T))t
, t = 1, . . . , T (43)

and the sample size Nt used for estimating ĝt satisfies:

Nt ≥
128L2T 2e8γK(1 + 4 log(2T/δ))

J2‖gt‖2
(44)

then with probability at least 1− δ, we have:

‖θT − θ∗‖ ≤
4L2e4γK

T

[
(2 + J/T)2 + J2(2− 1/T)

J2(2− 1/T)2

]
(45)

Intuitively, Theorem 7 implies that when the loss function L(θ) is strongly convex in θ with θ∗ being
the optimal solution, then under some conditions on the sample sizes for estimating the gradients and
step sizes for updating the parameters, the output of the SGD algorithm θT will converge to θ∗ with
a convergence rate of O(1/T).

When the loss function L(θ) is convex but not strongly convex, we have the following theorem
showing a typical convergence rate of O(1/

√
T):

27

Assumption 4. The loss function L(θ) is convex and the parameter space has finite diameter D:
supθ1,θ2∈Θ ‖θ1‖ = D. Let θ∗ ∈ arg minθ∈Θ L(θ).

Theorem 8. Under Assumptions 1 and 4, for arbitrary constant δ ∈ (0, 1), suppose we use decreasing
step sizes ηt = 1/

√
t for t = 1, . . . , T and the sample size Nt used for estimating ĝt satisfies:

Nt ≥
32L2Te8γK(1 + 4 log(2T/δ))

‖gt‖2
(46)

then with probability at least 1− δ, we have:

f(θT)− f(θ∗) ≤ 1√
T

[
D2 + 2L2e4γK

(
1 +

(
1 +

1√
T

)2
√

1 +
1

T

)]

where θT := 1
T

∑T
t=1 θt.

The above theorems follow from the sample complexity bound in Theorem 4 and the results in
[8] (Theorem 2 with constant ρ = J/2 and Theorem 5 with constants ρ = 1, c = 1), which we
refer to for a detailed proof. Note that the condition on J in Theorem 7 is optional and without the
condition, we can obtain the same convergence rate at the cost of a cumbersome form in the R.H.S.
of Equation (45).

28

D Additional Experimental Details

D.1 2-D Synthetic Data Experiments

Da
ta

Cosine SwissRoll Moon MoG Funnel Rings

CD

Cosine SwissRoll Moon MoG Funnel Rings

PS
-C

D

Cosine SwissRoll Moon MoG Funnel Rings

Figure 2: Histograms of samples from the data distribution (top), CD (middle) and PS-CD (bottom).

Table 3: Maximum mean discrepancy (MMD, multiplied by 104) results on six 2-D synthetic
datasets. Lower is better. CD denotes contrastive divergence algorithm, and PS-CD denotes the
pseudo-spherical contrastive divergence algorithm (with γ = 1.0).

Method Cosine Swiss Roll Moon MoG Funnel Rings

CD 1.20± 0.45 3.39± 0.48 0.64± 0.11 3.01± 0.58 1.56± 0.65 2.79± 0.63
PS-CD 0.86± 0.12 0.89± 0.39 0.12± 0.04 1.78± 0.35 2.34± 0.45 2.02± 0.32

D.2 Understanding the Effects of Different γ Values in 1-D Examples

In this section, we aim to provide insights on the effects of different γ values with 1-D toy experi-
ments. Specifically, we use an EBM with a quadratic energy function (corresponding to a Gaussian
distribution):

Eµ,σ(x) =
(x− µ)2

2σ2
, qµ,σ(x) ∝ exp(−Eµ,σ(x)) (47)

where µ and σ are two trainable parameters.

First, we show that when the real data distribution is also a Gaussian distribution such that the model
is well-specified, then different γ values will induce the same optimal distribution since they are
strictly proper. To verify this property, we visualize the objective landscape in Figure 3.

Second, we use the same quadratic energy function to fit a mixture of Gaussians. We visualize
the objective landscapes in Figure 4, which shows that when the model is mis-specified, different
objectives will exhibit different modeling preferences (inducing different solutions). This corresponds
to the practical scenarios, where such property enables us to flexibly specify different inductive biases
to make tradeoff among various modeling factors such as diversity/quality.

29

(a) γ = −0.5 (b) γ = 0 (c) γ = 0.1

(d) γ = 0.5 (e) γ = 1.0 (f) γ = 2.0

Figure 3: Visualization of different objective landscapes for model well-specified scenarios. γ = 0
corresponds to the logarithm scoring rule (MLE) and other values correspond to the γ-scoring rules.

(a) γ = −0.5 (b) γ = 0 (c) γ = 0.1

(d) γ = 0.5 (e) γ = 1.0 (f) γ = 2.0

Figure 4: Visualization of different objective landscapes for model mis-specified scenarios. γ = 0
corresponds to the logarithm scoring rule (MLE) and other values correspond to the γ-scoring rules.

D.3 Understanding the Effects of Different γ Values in Image Generation

Although FID has been the most popular evaluation metric for image generative models, it is
problematic since it summarizes the difference between two distributions into a single number and
fails to separate important aspects such as fidelity and diversity [61]. To better demonstrate the
modeling flexibility brought by the proposed PS-CD framework, we conduct experiments on CIFAR-
10 dataset using a set of more indicative and reliable metrics proposed by [61] to evaluate the effects
of γ from various perspectives.

30

Table 4: Effects of γ on CIFAR-10 image generation. We use the same image embeddings (activations
of a pre-trained inception network) to compute these metrics and FID to ensure consistency. We
briefly introduce these metrics here and refer to [61] for accurate descriptions and mathematical
definitions. Denote data distribution as P (X) and model distribution as Q(X). Based on manifold
estimation, Precision is defined as the portion of Q(X) that can be generated by P (X) and Recall
is symmetrically defined as the portion of P (X) that can be generated by Q(X); Density improves
upon Precision to count how many real-sample neighbourhood spheres contain a certain fake sample;
Coverage improves upon Recall to measure the fraction of real samples whose neighbourhoods
contain at least one fake sample.

Density Coverage Precision Recall FID

CD (γ = 0) 0.693 0.601 0.798 0.368 37.90
PS-CD (γ = −0.5) 0.906 0.691 0.848 0.360 27.95
PS-CD (γ = 0.5) 0.772 0.634 0.819 0.352 35.02
PS-CD (γ = 1.0) 0.929 0.694 0.853 0.341 29.78
PS-CD (γ = 2.0) 0.932 0.652 0.861 0.351 33.19

From Table 4, we have some interesting observations: (1) PS-CD with γ = −0.5 and γ = 1.0 get
best FID scores because they can simultaneously achieve good balance among these metrics (e.g.,
high Density and Coverage score); (2) By contrast, PS-CD with γ = 2.0 achieves the highest Density
score but a relatively low Coverage score, which potentially leads to a slightly worse FID; (3) Many
members in the PS-CD family showed superior performance over traditional contrastive divergence
in most metrics, demonstrating the potential of our method. Just like various f -divergences used in
generative modeling, different members in the PS-CD family can represent complicated inductive bias
in practice (although being strictly proper in model well-specified case). Since these single-valued
evaluation metrics measure the generative performance in a complicated way, we think it is normal
that the change of γ is not monotone to the change of each metric. For specific application scenarios,
we may mainly care about a certain metric and we should choose γ accordingly.

We would like to emphasize that, a major contribution of our paper is opening the door to a new
family of EBM training objectives and enabling us to flexibly specify modeling preferences, without
introducing additional computational cost compared to CD (unlike adversarial training in f -EBM).

D.4 Image Generation Samples for PS-CD

Figure 5: MNIST, CIFAR-10 and CelebA samples for PS-CD (γ = 1.0).

31

D.5 Training Details

3x3 Conv2d, 128

ResBlock Down 128

ResBlock 128

ResBlock Down 256

ResBlock 256

ResBlock Down 256

ResBlock 256

Global Sum Pooling

Dense→ 1

(a) CIFAR-10 (32× 32)

3x3 Conv2d, 64

4x4 Conv2d, 128

4x4 Conv2d, 256

4x4 Conv2d, 512

4x4 Conv2d, 512

4x4 Conv2d, 1

(b) CelebA (64× 64)

Figure 6: Network architectures.

To keep a fair comparison, all the compared methods use the
same architecture to implement the energy function, except that f -
EBMs require an additional variational function that uses the same
architecture as the energy function. The architectures used for
CIFAR-10 (32× 32) and CelebA (64× 64) datasets are shown in
Figure 6. We use leaky-ReLU non-linearity with default leaky fac-
tor 0.2 throughout the architectures (between all the convolution
layers). Following [17, 89], we apply spectral normalization/L2

regularization (on the outputs of the models) with coefficient 1.0
to improve the stability.

For CIFAR-10, to keep a fair comparison, we use the same sam-
pling strategy as [17, 89], where a sample replay buffer is em-
ployed to improve the mixing of Langevin dynamics. Specifically,
we use 60 steps Langevin dynamics together with a sample replay
buffer of size 10000 to produce samples in the training phase. In
each Langevin step, we use a step size of 10.0 and a random noise
with standard deviation of 0.005.

For CelebA, which has a higher data dimension, we use the sam-
pling strategy in [66] to improve the efficiency of sampling, where
we always start the Markov chains from a fixed uniform distri-
bution and run a fixed number of Langevin steps (100) with a
constant step size.

For all the experiments, we use Adam optimizer to optimize the
parameters of the energy function. In each training iteration, we
use a batch size of 128 for CIFAR-10 and 64 for CelebA. We
run the PS-CD algorithms for about 50K iterations of parameter
updates for CIFAR-10 and about 100K iterations for CelebA.

For computational cost, the CIFAR-10 experiments take about 48
hours on 4 Titan Xp GPUs, while the CelebA experiments take
about 16 hours since we learn non-convergent short-run MCMC.

D.6 OOD Detection & Robustness to Data Contamination

Table 5: OOD Detection results (AUROC score) for models trained on CIFAR-10.

OOD Dataset PixelCNN++ Glow CD PS-CD

SVHN 0.32 0.24 0.43 0.56
Textures 0.33 0.27 0.36 0.44
Uniform/Gaussian 1 1 1 1
CIFAR-10 Interpolation 0.71 0.59 0.63 0.68
CelebA / / 0.51 0.58

Table 6: Training EBMs under data contamination on CIFAR-10. We measure the change of FID
score after training with the contaminated dataset.

Pretrained Model CD 1000 Steps CD 2000 Steps PS-CD 1000 Steps PS-CD 2000 Steps

FID 68.77 95.56 300.89 59.78 57.24

To show the practical advantage of PS-CD in face of data contamination, we further conduct experi-
ments on MNIST and CIFAR-10 datasets, where we use random uniform noise as the contamination
distribution and the contamination ratio is 0.1 (i.e. 10% images in the training set are replaced with

32

Figure 7: Samples after training with the contaminated dataset on MNIST and CIFAR-10.

random noise). After a warm-up pretraining (when the model has some OOD detection ability), we
train the model with the contaminated data and measure the training progress of CD and PS-CD.

As shown in Figure 7, CD gradually generates more and more random noise and diverge after a few
training steps, while PS-CD is very robust. In particular, as shown in Table 6, for a slightly pretrained
unconditional CIFAR-10 model (a simple 5-layer CNN with FID of 68.77), we observe that the
performance of CD degrades drastically in terms of FID, while PS-CD can continuously improve the
model even using the contaminated data.

We believe that robustness to data contamination is a valuable property for modern deep generative
models and there is actually a natural interpretation for the robustness of PS-CD. Compared to CD,
there is an extra weight term before the gradient of the energy: exp(−γEθ(xi))∑

j exp(−γEθ(xj)
∇θEθ(xi) (the

first term in Eq. (19)). Suppose xi ∼ ω is a noise data from the contaminated distribution p̃ in a
batch of samples, for a model with OOD detection ability, it will assign a much higher energy to xi
than normal data and the weight before ∇θEθ(xi) will be close to zero. In short, PS-CD naturally
integrates the OOD detection ability of EBMs into the training process, which then leads to robustness
to data contamination.

33

