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A  GENERAL FRAMEWORK FOR UNEVEN COMMUNITY SIZES

In this section, we generalize our theory to the community property tests when the community sizes
in Cy and C; are not necessarily even, e.g., Example 1.3. For any z € Cy UC;, denote the community
size ng(z) = {z(i) = k | i € [n]}| for k € [K]. Let
cxk = max max |ng(z) —n/K]|. A.l
K z€CHUCy 1§k§K| k( ) / | ( )
When the community sizes are even, we have cx = 0. In this section, we consider the cases when
ck could be larger than zero. We will show that the shadowing bootstrap method in Section 2.4 can

be applied to test the uneven community property as well. The information-theoretic lower bound is
also similar to the one in Section 4.

A.1 GENERAL SYMMETRIC COMMUNITY PROPERTIES

For the uneven community class, we still need some symmetry property for the assignments in Cy
and C;. When community sizes are even, Definition 2.2 depicts the symmetry via the representative
node set A and the representative assignment z. However, for many community properties of inter-
est, e.g., the community size test in Example 1.3, we cannot find such A and Z. In Example 1.3, we
are interested in testing the community size and thus there is no representative nodes. See Figure 6
for illustration.

Therefore, we define the following generalized symmetric community property pair.

Definition A.1 (Generalized symmetric community property pair). We say two disjoint community
properties Co and C; is a generalized symmetric property pair if for any z,2" € Cy, there exist
permutations o € Sk and 7 € S, such that

(1) Too(z):=(o(2(7(1))),...,0(z(r(n)))) = 2’ and
(2) C; is also closed under such transform 7 o o, i.e., for any 2" € C1, T o o(2") € C;.

Definition A.1 generalizes the concept of symmetric community property in Definition 2.2 via in-
troducing the permutation transform. We can check that Examples 1.1 and 1.2 are still symmetric
by Definition A.1. See Figure 6(a) for an example of choosing ¢ and 7. On the other hand, the
community sizes properties

Co = {z € [K]" : all community sizes = n/K} and C; = Cg, (A2)
are also symmetric by Definition A.1 but not by Definition 2.2. See Figure 6(b) for illustration. In
fact, the following proposition shows that Definition 2.2 is a special case of Definition A.1.

Proposition A.1. If Cy,C; C K" satisty Assumption 2.1, then Cp and C; is a generalized symmetric
property pair. Moreover, the property pairs in (2.1), (2.2) and (A.2) are generalized symmetric
property pairs.

We defer the proof of the proposition to Appendix B.2. In Figure 6, we show how to choose concrete
permutation transforms o and 7 for Examples 1.1 and 1.3.

A.2 SHADOWING BOOTSTRAP FOR GENERAL CASE

We now generalize the testing method proposed in Section 2.4 to the uneven case. A key step is to
generalize the boundary B, in Definition 2.5. Recall that for the even case, our insight is that the
statistic L in (2.6) taking the supremum over C; is asymptotically equal to the Lg in (2.7) taking
the supremum over B, -, which is much smaller than C;. Similar insight applies to the uneven case
using the following generalized definition of boundary.

Definition A.2. For a given zy € Cy, we define the boundary centered at zy with radius r as

B.,(r) = {z € Ci|d(z0,2) < T}.

We illustrate the two types of boundary in Figure 7. From Figure 7(a), we can see that B,, =
B,,(d(Cy,Cy)). Therefore, Definition A.2 is a generalization of Definition 2.5. For the uneven case,
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Community 1

N

Community 2

z1 2 3 45 6 78 910
I |

Community 1

Community 2

z1 3 6 78 2 4 5 910
\ \

Community permutation Community permutation
o:(2,1) = (1,2) o:(1,2) = (1,2)
T T T 7
o(z) 12345 678910 0(2)1367824350910
I I I I I | I I I I I I I
Node permutation Node permutation
T:(4,5,6,7,8,9,10) 7:(3,6,7,8,2,4,5)
— (6,8,4,5,7,10,9) —(2,3,4,5,6,7,8)
L— L — T T I T T
21 23 6 8 457 109 21 23 45 6 7 8 910

(a) Example 1.1 (b) Example 1.3

Figure 6: Permutation of null assignments in Example 1.1 and Example 1.3

Ly is no longer asymptotically equal to L. We need to enlarge B, to B, (r) for some r > d(Co,C1)
and modify the statistic L in (2.7) by taking the supremum over B, (r).

CO Co

(a) Boundary B, in Definition 2.5  (b) Generalized boundary B, (r)

Figure 7: The boundary B, defined previously for even cases is in essence a ball centered at zg
with radius r = d(Cy, C1)

In fact, we can still use the shadowing bootstrap method in Section 2.4 to the uneven case. All

procedures are exactly same as Section 2.4 except that we only need to replace the bootstrap statistic
W, in (2.11) by

W, = sup
2€B:0 (1) 1<i<j<n

(Aij—Epa(Ai)) (1[(i, §) € Ex(20, 2)]—1[(3, ) € Ex(20,2)])eij, (A3)

where r is a tuning parameter to be specified in the following theorem.

Theorem A.2. Suppose Cy and C; are generalized symmetric community property pair and cx =
O(1). Suppose d(Cy,C1) = o(n°') for some constant ¢; < 2, and 1/p,, = o(n'~°2) for some
constant co > 0. We choose the radius 7 in (A.3) as 7 > 7 := d(Co,C1) + c%pK /(2(p — q)) and
r = d(Co,C1) + O(1). If for any zy € Cy, we have |B,,(r)| = O(n®) for some positive constant
co, then

lim sup P(pw < a) =aand lim sup P(reject Hy) = .
n—oo 2* GC() n—oo 2* GCO
Moreover, if d(Co, C1)I(p, q¢) = (n®) for some arbitrarily small constant € > 0, we have
lim inf P(reject Hy) = 1.

n—o0 z*€Cy
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We defer the proof of theorem to Appendix C.2. The scaling assumptions in Theorem A.2 are
similar to Theorem 3.2. The condition | B, ()| = O(n®) for some c¢g > 0 is similar to Assumption
3.1. We need ck in (A.1) to be bounded to prevent a specific community from being too large.
By the theorem, we need to choose r > rx = d(Co,Cy1) + ¢%pK/(2(p — q)), while p,q, cxk
are unknown. In practice, we suggest to choose the radius as r = d(Cy,C1) + CpK /(p — q) for
some sufficiently large C'. In fact, for many concrete examples, even though rx is unknown, we
can directly construct B, (rk). The following proposition shows how to construct B, (rk) for
Examples 1.1-1.3. Moreover, it shows the conditions on d(Cy,C;) and | B,,(rx)| in Theorem A.2
are true for all these examples.

Proposition A.3. For any zy € Co, B,,(r k) can be constructed as follows.

(1) Example 1.1: B, (rx) is composed of all the assignments obtained from reassigning one
node of any zy € Cp in [m] to a different community. See Figure 8(a) for an illustration.
Moreover, we have d(Cy,C1) = n/K and |B,,(rx)| = m(K — 1).

(2) Example 1.2: Suppose m A m’ < ck, B,,(rk) is composed of all the assignments ob-
tained from reassigning nodes m+1,...,m+m’ in any zy € Cy collectively to a different
community. Moreover, we have d(Cy,C1) = n(m A m’)/K and |B,,(rk)| = K — 1.
Suppose m Am’ > ck, B,,(rk) is composed of all the assignments obtained from ex-
changing label of nodes m + 1,...,m + m’ collectively with another m’ nodes from a
different community for any zy € Cy. See Figure 8(b) for an illustration. Moreover, we
have d(Co,C1) = 2m Am/(n/K —m Am’') and | B., (rg)| = O(K (n/K)™"™").

(3) Example 1.3: For an arbitrary zg € Cy, B.,(rk) can be constructed by reassigning any
node of z to a different community. See Figure 8(c) for an illustration. Moreover, we have
d(Co,C1) =n/K and |B,,(rx)| = n(K —1).

We defer the proof to Appendix B.3. The construction of B, (k) is visualized in Figure 8. We
also summarize the results in Table 1.

Community 1 Community 2 Community 1 Community 2 Community 1 Community 2

Move Move Move

(a) Example 1.1 (b) Example 1.2 (c) Example 1.3

Figure 8: Construction of B, in Proposition A.3: (a) Cy is that nodes {1, 2, 3} belong to the same
community; (b) Cy is that the nodes set {1, 2, 3} and {4, 5} belong to the same community; (c) Cy is
that community 1 and community 2 have equal size of 5.

We therefore have the following corollary of Theorem A.2.

Corollary A.4 (Examples 1.1 -1.3). Suppose 1/p,, = o(n'~¢?) for some constant c; > 0 and
cx = O(1). We assume that m Am’ = O(1) in Example 1.2. For Examples 1.1 -1.3, with B, (k)
constructed in Proposition A.3 our test for the hypothesis Hy : z* € Cy versus Hy : 2* € C; is
honest, i.e.,

lim sup P(reject Hy) = au.

N—>00 ,x €Co

Moreover, if I(p, ¢)n/K = Q(n®) for some small positive constant &, we have

lim sup P(reject Hy) = 1.

n—=00 Lx 0y

A.3 GENERAL LOWER BOUND

We can also generalize the information-theoretic lower bound in Theorem 4.1 and Theorem 4.2 to
the uneven case. Similar to the even case, we need to define packing number of B, (r), which
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d(20,C1) | B, (7K )| N (B, (1), V/d(20,C1))
Example 1.1 n/K m(K —1) m
E le 1.2
m)fl;;ﬁeg o nimAm')/K K-1 1
E le 1.2 /
AT S 2mam! (/K —mAm') | O(K (n/K)™ ™) 1
Example 1.3 n/K n(K —1) n

Table 1: Important values for general cases of Examples 1.1-1.3.

follows the same definition of N (B.,,¢) in Definition 4.1. We then have the lower bound of the
general case as follows.

Theorem A.5. Suppose 1/p,, = o(n'~¢) for some constant c; > 0, p < 1 — § for some constant
d > 0and cxk = O(1). If there exists a zgp € Cy and some r = d(z0,C1) + O(1) such that

log N (B.,(7), /d(20,C1)) = O(log n), and

li d(Zo,Cl)I(p, q)
im sup
n—00 logN(BzO (r), d(zo,Cl))

<1, (A.4)

then lim inf r(Co,Cy) > 1/2.
n— oo

Remark A.1. If we choose r = d(z0,C1), as B,, = B,,(d(20,C1)), (A.4) reduces to (4.1). The
relaxed assumption on r = d(z,C;) + O(1) can give us a better lower bound.

We can also generalize Theorem 4.2 to the following theorem.

Theorem A.6. Suppose 0 < ¢ < p < 1— 4 for some constant § > 0 and lim,,, o d(Co, C1)p = 0.
If one of the following conditions:

(1) d(Co,C1)I(p,q) < c for some sufficiently small constant c;

(2) limy 00 d(Co, C1)I(p, q) = o0, but there exists a zg € Cy and some r = d(z,C1) + O(1)
such that lim sup,,_, . d(z0,C1)I(p, q)/log N(B.,(r),0) < 1,

is satisfied, then linlinfr(Co,Cl) >1/2.

We defer the proof of the above two theorems to Appendix D.1.

To apply the general lower bound theorem to Examples 1.1-1.3, we need the following proposition
on the packing number.

Proposition A.7. We have the packing number N (B.,,(rk), v/d(z0,C1)) for three examples as
follows:

» Example 1.1: N(B,,(rk), /d(20,C1)) = m;
 Example 1.2: N(B,,(rx),/d(20,C1)) = 1;
 Example 1.3: N(B,,(rk), /d(z0,C1)) = n.

We defer the proof to Appendix B.4. The results is also summarized in Table 1.

Since rx = d(Co,C1) + cApK/(2(p — q)), where c%pK/(2(p — q)) = O(1) and d(Co,C1) =
d(z9,C1) by the symmetry of Cy, Cy, we have that r = d(z9,C1) + O(1). Applying Theorem A.5
and Proposition A.7, we have the following lower bound of same community test in Example 1.1.

Corollary A.8. For Cy and C; defined in Example 1.1, if 1/p, = o(n'=¢?) for some constant
cg > 0,p < 1— ¢ for some constant § > 0, cx = O(1) and

limsupnl(p,q)/(Klogm) < 1,
n—oo
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we have lim inf r(Co,Cy) > 1/2.

n— oo

Applying Theorem A.6 and Proposition A.7, we have the following lower bound of same community
test for groups in Example 1.2.

Corollary A.9. For Cy and C; defined in (2.2), if np — 00,0 < ¢ < p < 1 — ¢ for some § > 0 and
limsupnl(p,q) < c,

n—oo

for some sufficiently small constant ¢ > 0, we have lim inf (Cy,Cy) > 1/2.
n—oo

For Example 1.3, applying Theorem A.5 and Proposition A.7, we have the following result.

Corollary A.10. For Cy and C; defined in (A.2), if 1/p, = o(n'~¢2) for some constant cy > 0,
p < 1 — ¢ for some constant § > 0 and

limsupnl(p,q)/(Klogn) < 1,

n—oo

we have lim inf r(Co,Cy) > 1/2.
n— oo

B PROOFS OF COMMUNITY PROPERTIES

In this section we mainly focus on the proofs concerning community properties, including the gen-
eralization of symmetric community property pairs from even to uneven cluster sizes, the size of the
ball B,,(rk) in three examples, and the packing number of the ball in each case.

B.1 PROOF OF PROPOSITION 4.3

Example 1.1: In this case, for a given zp € Cp, we have derived the form of B,,. For any
2,25 € P(BZO, d(zo,Cl)), we know from Section 2.4 that they are transformed from z; by
swapping one of the first m nodes with another node from a different cluster. The node among
the first m to be swapped s € [m] cannot be the same for the two assignments, otherwise

|8172(20,Z,‘) N 51,2(2’0,2]'” > ‘gl(ZO,Zi) n 51(20,Zj)| = TL/K -1 > \/d(ZO,Cl). Thus each
z € P(BZO, d(zO,Cl)) corresponds to a different swapped node among the first m nodes, and

we have N (BZD, d(zO,Cl)) < m. On the other hand, for the given assignment 2y, we can
construct the following set {21} ,: we take a set of nodes S = {s1, s, ..., S, } from a cluster
different from the cluster to which the first m nodes of zy belong. Then for each k, we swap the
cluster assignment of node k with node s, k = 1, ..., m, and obtain the corresponding alternative
assignment 2. Then for any two alternative assignments z; and z; obtained this way, we have
|(€172(Zo, Z7) N 5172(207 ZJ)‘ S 4. Thus N(BZO, d(Zo,Cl)) =m.

Example 1.2: For a given 2y € Cy and the corresponding boundary B, , it can be perceived that
N(B.,,/d(z0,C1)) = N(B,,,0) = 1, because any z € B,, involves swapping the set Sy so that
Vzi, Z5 € Bzou |51’2(Z(], Zl) N 8172(2(), Z])| >mAN m'(n/K —mA m’).

B.2 PROOF OF PROPOSITION A.1

To prove that Definition 2.2 is a special case of Definition A.1 when the community size is even, it
suffices for us to construct a concrete community label permutation ¢ and node label permutation
7 satisfying Definition A.1 based on A and z. Here we use Figure 6 to illustrate the construction.
Given any z,2’ € Co, we first construct o. Since zy+ =~ 2, ~ Zar, by Definition 2.2, there must
exist a o € Sk mapping z to 2’ on the support N, i.e., o(zx’) = 2. For example, in Figure 6,
we construct a o swapping communities 1 and 2. After matching the community labels, we now
construct 7 in order to transform o(z) to z’. Since the community size is even and o (zx7) = 2z},
o(z) and 2’ have equal cluster sizes on the support of N'¢. Therefore, there exists 7 € S, such that
T(0(2)are) = Zjre and 7(0(2)nr) = 0(2)nr = 2)r. We can see the example of 7 in Figure 6. Using
o and 7 constructed above, we can check that 7 o o(z) = z’. We now check the last condition in
Definition A.1. For any 2" € Cy, since 7 is invariant on N, we have 7 o o (2}/) = o (2};) =~ 2}/
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By Definition 2.2, the alternative community C; is closed under permutation on the support of A/,
we have 7 o o(2”) € C;. Therefore, we check that Definition 2.2 is a special case of Definition A.1.

Since the property pairs in (2.1) and (2.2) are symmetric property pairs, they are also generalized
symmetric property pairs following the preceding arguments. As for the property pair in (A.2), we
can see from Figure 6(b) that for any two assignments z, z’ € Cy, since they have equal community
sizes, we can take o to be the identity map and there exists 7 € S, such that 7(z) = z’. Then for
any z” € Cy, since 7 does not change the community sizes, we know that 7(z"’) still have uneven
community sizes and 7(z”) € C;. Therefore, by Definition A.1, the property pair in (A.2) is a
generalized symmetric property pair.

B.3 PROOF OF PROPOSITION A.3

Example 1.1: To construct B, (), we need to find all the assignments in C; whose distance from
2o is no larger than d(Cp,C;1) by an extra constant term. To construct assignments in C; closest
to zo, we would pick one node in [m] and reassign it to a different community (see Figure 8 (a)).
Assignments constructed in such ways will satisfy d(zp,21) = d(Co,C1) = n/K. If we make
community changes to any other nodes on the basis of such construction, then d(zg, 21) would
increase by at least n/K — 2, which exceeds the constant level. Thus B, (rx) consists of all
assignments constructed by moving one node of zq in [m] to a different cluster. Since we can pick
m nodes in total and reassign them to K — 1 different clusters, | B,, (rkx)| = (K — 1)m = O(m).

Example 1.2: For an arbitrary zo € Cp, without loss of generality, we assume that m’ < m. Then
when m’ < ¢, to construct assignments in C; that are closest to zg, we need to reassign nodes
m + 1,...,m + m’ collectively to a different community (see Figure 8 (b). Such constructed
assignments have distance d(zg,21) = d(Co,C1) = m/n/K. Similar to the previous example,
any community changes to other nodes on the basis of such construction would result in increase
of d(zg, 21) by at least n/K — m’ — 1. Therefore, B, (rx) consists of those assignments in C;

constructed by reassigning nodes m + 1,...,m + m/. Since there are K — 1 other clusters to
reassign in total, we have |B,,(rk)| = K —1 = O(1). On the other hand, when m’ > cg, then
we cannot reassign nodes m + 1,...,m + m’ collectively without exchanging with other nodes,

otherwise the community size bound will be violated. Then d(Co,C;) and B, (rx) is exactly the
same as the even case and the claim follows.

Example 1.3: As for the ball B, (rx) for an arbitrary zy € Cp, to transform z into an assignment
z1 € Cy, the simplest way is to reassign an arbitrary node to a different community, and d(zo, z1) =
d(Cp,C1) = n/K =< n. Further community changes will result in increasing in d(z, z1) that
exceeds the constant level. Since we can obtain such z; by reassigning any one of the n nodes into
the other K — 1 clusters, we have |B,,(rx)| = n(K — 1) = O(n).

B.4 PROOF OF PROPOSITION A.7

The arguments for Example 1.1 and Example 1.2 are almost the same as in the even cases and are
hence omitted.

Example 1.3: For a given zy € Cp, from previous discussion we can see that the ball B, (r) with
r = d(z0,C1) + O(1) is composed of all the assignments that differ from z; by one mis-aligned

node. Forany z;,z; € P (BZO (), \/d(z0, Cl)) , the misaligned node s cannot be the same, otherwise
|(€172(Zo, Zl) N 51,2(2’0, ZJ)| Z n/K > \/d(ZO,Cl). Thus we have N(BZO(’I"), d(ZO,C1)> S n.
Also since the set {2 }_, where each zj, is obtained by reassigning the node k into another cluster
obviously satisfies the condition that |£1 (20, 2;) N €1(20, 2j)| + |E2(20, 2:) N E2(20,25)| < 1, we
have that N (B., (), v/d(20,C1)) = n.

C PROOF OF INFERENCE RESULTS

In this section, we provide the proofs of the theorems on inference results. We will first prove Propo-
sition 2.3 which implies that the p-value based on the maximal leading term L( can be estimated
without knowing the true assignment, then we prove the main Theorem 3.2 using Proposition 2.3
along with other lemmas. The proof of the technical lemmas will be deferred to Section E.
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In the following part of our paper, we use ¢, C, ¢1, co, C1, Cs, . .. to represent generic constants and
their values may vary in different places.

C.1 PROOF OF PROPOSITION 2.3

To prove Proposition 2.3, we need the following generalized version of Lemma 2.2 stated previously

Lemma C.1 (Shadowing symmetry lemma). For a given z € Cy and a given radius r > 0, we list
the assignments in the ball B, (r) as z1, 22, . . ., 2|_(r)|- Define a | B, (r)|-dimensional vector L as

(Lz)k:g(p,q)< doA- D) Ai]),fork:1,2,...,|BZ(r)|.

(1,5)€E2(2,21) (1,7)€E1(2,21)

Suppose Co and C; satisfy definition A.1, then for any 2, z; € Co, we have | B, (r)| = |B.;(r)| and
Cov(L,) equals to Cov(L,;) up to permutation, i.e., there existing a permutation T € S\_ ()|
such that Cov(L., )k = Cov(L.; )x(r)xq) forall k, 1 =1,...,[B;,(r)|.

We defer the proof of Lemma C.1 to Section E.1. Now we are ready to prove Proposition 2.3. In
fact, the boundary in the definition of L can be generalized to the ball B,(r) with r > rg :=
d(Co,C1) + % pK /(2(p—q)) and r = d(Cp,C1) + O(1). For the true assignment z* € Cy, we have

that
sup {Q(P, o > Ay- Y Aij)}

#€B.= () (i,1)EEa (=" 2x) (1.1)€E1 (2% ,21)

=g(p,q) sup { Z {(Aij —E(Ay)) (1[(,4) € &(2", z1)] — 1[(4,4) € 51(2*>Zk)])}}

2R €B* (1) i<j

Ly

+ 9P, Q)0 + 0n

1
—g.)o0 s {3 (X} + g, a)po + 8.
ke[l B ()] L 00 £

where the vector X ;; € RIB=+ (") and (Xij)k = (AiijE(Aij)) (]l[(i,j) € &z, z1)|—1[(4,5) €

£1(2*, z1)]), n = O(pn), and 0 = \/d(Co,Cl)(p(l —p)+a(l—a)),p0 = d(Co,C1)(g — p).
We can see that for different (4, j), the vector X;; are independent of each other. For a fixed
k € [|B.+ (7)), when (i,j) ¢ &12(2%, 2x), (Xij)x = 0. When (4, j) € & 2(2*, zx), under the
regime 1/p,, = o(n'~) for some positive cy, there exists B, = 1/\/pn = o(n172)/2) such that
|(Xij)k/\/Pn| < By and B2(log2d(Co,Cy1)|B.,(r)])"/n < n=c/2 where d(Co,C1) = o(n?).
Therefore, following a very similar proof as Theorem 2.2 and Corollary 2.1 in Chernozhukov et al.
(2013), we have

9(p,q)  sup {Z(—’(z‘j)k/O’O}i> sup  Zg,

ke[|Bzx (M ~5<5 ke[|B.= (r)l]

where Z ~ N(0,X.-/02), and ¥, = Cov(L.-). Therefore, we have that

P(Lo <t) —P(op sup Zy + 9(p, @)po < t)
ke[| B.=(r)]]

sup
teR

P(Lo <t) —P(og  sup Zi + 9D, @) po + 9, < 1)
ke[| B« (r)|]

< sup
teR

Plog  sup  Zk +9(p,q)po + 00 <t) —P(og  sup  Z +g(p,q)po < t)
kel Bas (0] kel B (0]

+ sup
teR

< o(1) + sup
teR

IP’(\ sup  Zj, — (t— g(p.a)po) /oo| < 5n/oo)
ke[| B2« ()]
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We know that mingc( .. ()| Var(Z) = Qg(p,q)?) = Q(1), log|B.-(r)] = O(logn) and
6n/00 = O(n~'/2). Then by Lemma 2.1 in Chernozhukov et al. (2013), we have

sup

P(|  swp  Zi—(t=g(p.qhuo) /oo| < bu/o0)
teR kel

| B2+ ()]

) P
< n . ; < =14,
S { 2log |B.(r)| + ke[lrgzlfl(T)]Var(Zk)oo/én} <n

And thus we have

P(Lo <t) —P(og sup Zyx+g(p,q)po <1t)
ke[| B« (r)]]

sup =o(1).

teR

Following the same procedure with z* replaced by zp, we also have

=o(1),

sup
teR

PlLo(zo) <8~ P(on _sw (2 +9(p 0o <1)
€| Bz (r

where Z' ~ N (0,3, /o), and ., = Cov(L,,). By Lemma C.1 we know that ¥,. and 3 are
equal up to permutation. Therefore, the claim follows. We may also note that the validity of the proof
does not depend on the values of p, q as long as the regime is 1/p,, = o(n!~¢2) for some constant

¢y > 0, and thus the statement is also true for L := SUp,, ep.. () { 90 ) ( D)8 (s o) Dij —

(i) een (e o) Ais) } with plugged-in estimators P, g.

C.2 PROOF OF THEOREM 3.2

In fact, Proposition A.1 shows that the symmetric community property pairs defined in Section 2 are
general symmetric property pairs under the general framework, and Theorem A.2 is a generalization
of Theorem 3.2 under uneven cluster sizes. Thus we can just prove the more general Theorem A.2
and the proof will also apply to Theorem 3.2.

The proof of the main theorem requires the help of Proposition 2.3 and the following lemma that
shows why the maximizer in the alternative assignment space can be restricted to the ball centered
at the true assignment zy € Cp.

Lemma C.2. We denote z* as the true assignment, and B« (rk) is the ball centered at z* with
radius rx = d(z*,C1) + 2(1;71_((1)0%(, ¢k = O(1). Under the same conditions of Theorem A.2, when
z* e Cy

sup log f(A;2,p,q) = sup  log f(A;2,p,q) + Op(pn); (C.1
z€C1 2€B.« (1K)

Moreover, for any true assignment z*, we have

sup IOg f(A7 271)\’ ZJ\) = log f(Aa Z*7ﬁ7 ZI\) + OP(IOTL)' (Cz)

2€CoUCy

With help of this lemma, instead of taking the supremum over the entire assignment space C;, we
are able to restrict the maximizer to a much smaller set B, (r ) so that the Central Limit Theorem
can be applied. Recall that the boundary B, - defined in Section 2.3 is in essence a ball with radius
d(z*,Cy). We defer the proof of Lemma C.2 to Appendix E.2.

Now we are ready to present the proof of Theorem A.2:

We first define the o quantile of the LRT statistic. Let Cw () be the 1 — o quantile of W, condi-

tioning on A and A, i.e., P(W, < Cw (a)|A\, A) =1 — a. We then estimate the quantile of LRT
by
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then it can be seen that the two events {@ > qo} and {pw < «} are equivalent. Therefore,

it suffices to show that lim,, o sup ¢, P(LRT < o) = . The proof is mainly composed
of three parts. The first part is to briefly illustrate the derivation of L as the leading term of the
log-likelihood ratio, the second part is to control the error caused by plugging in the estimators of
connection probabilities p, ¢, and the third part is to illustrate the multiplier bootstrap as a valid
approximation of the LRT quantile.

C.2.1 DERIVATION OF THE LEADING TERM FOR LRT

For a given true assignment z* € Cy, by Lemma C.2 we have:

Sup,ec, f(A7 272/9\7 Z]\)
SuPzecou61 f(A z 1/7\7 A)

sup log f(A;2,p,q) —log f(A;2%,p,q) + Op(pn)
zeC1

= sup (log f(As2.5,9) — log f(A=".5,9) + Or(pn).
zR€Bx (1)

fﬁzlog

where 7 > 7 := d(Co,C1) + 5 pK /(2(p — q)) and r = d(Cp,C1) + O(1). In practice, due to the
consistency of p, ¢, when we choose the radius r = d(Cy,C1) + CpK/(p — q) for some sufficiently
large C, we can make sure that the conditions on the radius is satisfied with probability 1 — o(1).

Thus we can see that the LRT is essentially the supremum of the log-likelihood difference between
the true assignment z* and the alternative assignments in the ball B,-(r). We further expand the
log-likelihood terms and can write

IRT=  sup {g@,a)( > Ay Y Ay tlos(i L )(nl(z zk>—n2<z*,zk>)}

#€B.= (1) G)Ea(z"z)  (id)E€EL(=" )
+ OP(pn)
= Lo+ 6.

where 8, = sup.,cp. ) {10g (1= 8)/(1 = P) (m (=", ) =ma(=",20)) } + Orlpn) =

OP([)n), and Ly = g(]/?\V Z]\) SUP;, eB,«(r) (Z(z ])652(z JZk) Al] Z(l J)EEL(2*,2k) AU) From
Proposition 2.3 we have that lim,, ;. sup;cp IP(Lo < t) — P(Lo(z0) < t)| = 0 for any z, € Co.

Therefore, it suffices for us to prove that P(ﬁ > qo) = a+ o(1) for one given true assignment
20 € Cy. Now we are ready to prove the validity of multiplier bootstrap for estimating the quantile
based on the leading term.

C.2.2 BOUNDING OF ERROR CAUSED BY PLUGGING IN D, ¢

From previous section we know that

Lo(zo) =9EDo0_sw  {-= ST (X} + 907 Do + Op(pu),

ke[| Bz= (r)]

where (Xij)k: = (A” —E(A”)) (]].[(Z,]) < 52(20, Zk)] — ]].[(Z,]) S 51(2(),Zk)]). For any zp € C(),
we give the following notations:

To = — Xz Ho = — i E/ = = i
‘ ke[\Bzo(T)H{ ; ! } 0 ku’:‘[\BZU r)\]{ Z;{g]}k} 0 kGHBzO 7“)\]{ ;{gj}k}

and denote

Wn = Wn/80 sup S Z ij kezj}
ke[| Bz (r)]] z<]
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where (X;j)x = (Ay — Epa(Asy)) (1[0, 5) € Ea(20,21)] — 1[(i, ) € E(20,21)]) and the ad-
jacency matrix A is generated by p, g, and Gy = \/d(Co,Cl) (p(1 —p) +4q(1 —7q)). &; and @j
are the independent mean zero Gaussian vectors with covariance matrix equal to that of X ;; and

X\ij respectively ({&;;}x = 0if (4,5) ¢ &1,2(%0, 21), and the same for {f:,}k ). {eij}ic; areiid
standard Gaussian. By Corollary 2.1 in Chernozhukov et al. (2013), we have

sup [P (Tp <t) =P (S0 < t)| = o(1);
teER

Also, by Lemma 3.2 and Corollary 3.1 of Chernozhukov et al. (2013) we have

sup ’IP’ <Wn < t\f(i]) -P(Z) < t)‘ =op(1).
teR

We let ©%0 and X0 be the covariance matrix of the vectors {ZZ <j{£ij}k/00}k and

{ZKJ.{@j}k/&O}k respectively. Thus for k, [ € [| B, (r)|] we have:
= 1
Y= 2 Cov(d {&ite Y L&)
0 ij ij

= %COV(Z(XM)MZ(X@)Z)
_ [&2(20,26) N E2(20, 21) (1 = @) + &1 (20, 2) N €1 (20, 21) [p(1 — p)
d(Co,C1)(p(1 = p) +q(1 — q)) '

Accordingly,
= 1 X X
00 = = COV(Z(Xij)kaZ(Xij)l)
0

—|&2(20, 21) N Ea(20, 21)[q(1 — ) + €1 (20, 21) N E1(20, 21)[P(1 — P)

- d(Co, C) (P(1 - P) +a(1 — )

&0, 21) N Ea(20, 21)1a(1 — q) + €1 (20, 21) N E1(20, 21)[p(1 — p) + Op(d(Co,C1)\/Pn /)
a d(Co,C1) (p(1 — p) + (1 — @) + Op(d(Co,C1)/Pn/n)

Then we have

= = Op(d(Cy,C /T = Op(d(Cy,C /N 1
o — e 55 55 < | 010, C1) /) +‘Em o, Coyfm)| _ g, 1,
o o % V2o,

Thus by Lemma 3.1 in Chernozhukov et al. (2013), there exists a constant C' such that

sup [P(So < ) — P (Zh < 1) < CAY® (1Vlog (|B.y (1) /80))** = op(n~1/0-c2/12),
te

and thus
sup [P (2o < t) — P (Zp < t)] = op(1),
teR

and in turn we have

teR

C.2.3 VALIDITY OF MULTIPLIER BOOTSTRAP IN ESTIMATING LRT QUANTILE

Now recall that CWn (o) is the « quantile of W,, conditional on X; 7» and we would like to control

the order of C; () in order to bound the error in estimating the quantile of LRT. Give a constant
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t > \/2cg, we have

> ty/logn|Xy;) = P(Z} > t1/logn) + op(1)
1 ~
< Z P {3—02{@]};@}>t logn | +op(1)
i<j

ke[| Bz, (r)]]
t2
S By (r)le™ 957 + 0p(1) = Op (1 ~"/2) + 0p(1) = 0p (1.

Thus we know that C; (o) = Op(vlogn). We know that ¢o = ¢(p, 7)0Cy; () + 9(P, @) o,
LRT = L¢ + 6,, and also lim,,_, oo sup,ep [P(Lo < t) — P(Lo(20) < t)| = 0. Therefore,

~

P(LRT > ga) = P(Lo + 6, > ga) = P(Lo(20) + 65 > ga) + 0(1)
= P(9(p, @)o0To + 9(P, @) to + 6n = 9(P. Q)00 iy, (@) + 9(P; @)Fo) + o(1)

0o /70_,“0 on
=P|Ty > —C% (o) + - == )—I—ol.
( 0 g0 W"'( ) o0} 9(P,q)o0 M)

We have that [0y — 0| = Op(1/d(Co,C1)/n) and |fig — po| = Op(d(Co,C1)\/pn/n). Therefore,
P(LRT > q,) = IP’(TO > Oy (a) + =220 V(nOl)CWn(O‘) e (Co,C1)y/Pn > o)

o0 oon 9(p,7)o0
—P(TO Z C"“ +01\/10g’ﬂ/ TL pn +02\/ C07cl /n+C’3 (CO Cl)> +O(1)

=P(To > G (@) + An) +0(1),
where A,, = op(n~°) for some positive constant ¢ > 0. Now from previous results we have
[P(LRT > ¢a) — | < [P(Ty > Cgiy (a) + A,) = P(W,, > O (0) + Ay))|
+[P(Wo > Cip (@) + Ay) = P(W,, > Cyp ()] + (1)
< P([Wa — Cy, (a)] < &) +0p(1).

Now we study the distribution of Wn: if we denote Y, = %0 Ziq (/)Eij)keij, then Yk|5(\ ~
N(0,03), where of = 2, (X1)3/8, and sup, [E(0) — 1] < [53/5 — 1| + 0p(1) = op(1).
Also, \( ij)2] < 1. Under the event A = {p = o(1)} N {7 = o(1)} with P(A) = 1 — o(1), by
Bernstein’s 1nequahty, we have

15 352
IF’)A((|J,% — EX(J%H >1/2) < 2exp (_(éil)?f\g> = 2exp ( 140> 7
where Pg and @f{ denotes probability and expectation with p and ¢ fixed and consider only the
randomness of X. Also
Px(minoi <1/2) <) Pg(lof —Exg(of)| > 1/2)
k
52

= 2B, ()| exp ( % ) — op(1),

where the last 0p(1) term is due to the fact that 53 = Qp(np,) = Qp(n?) and | B,, (r)| = O(n).
Then by Lemma 2.1 in Chernozhukov et al. (2013), we have

]P(|Wn —Ci ()| < Ay) :IE’>(|m]?XY;€ - Ci ()| <A, < sup]P’(\maxY;c —z| < Ap)
n n ZGR

—0r (&, { VETRTE, 0]+ floglminf /A, ) = or(1),
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and thus lim,, oo SUP,« ¢, P(ﬁ > o) = .

As for the Type I error, from the preceding proof we see that P(LRT > ¢,) = « + op(1), and the
convergence of the op (1) term is independent of z* € Cy due to the symmetry of Cy. Therefore, we
have

sup P(reject Hy) = sup P(LRT > ¢,) = o+ op(1),
2*€Co z*€Co

and hence the claim follows. As for the Type II error, when the true assignment is z* € Cy, by (C.2)
in Lemma C.2, we have

Supzecl f(Aa Zvl/)\a ZI\)

LRT = log ——
SuszCoucl f(Aa Z,D, q)
_ 1og Supz€C1 f(Aa Z7ﬁ7 Z]\) og f(A7 Z*7ﬁ7 a) — OP(p )
f(A7 Z*7p7 Q) Supzecoucl f(A’ Z, P, Q)

—Qp(n®?) and C (@) = Op(yVlogn), we

And since 7¢ < +/d(Co,C1)p, fio < —d(Co,C1)p =
. Since the convergence is independent of z*, we

have Qo = g(ﬁa ZJ\)EOCWH (Oé) + g(ﬁ> 21\)170 — =
have for any true assignment z; € Cq,

inf P(reject Hy) =1 — sup P(LRT < ¢o) =1—o0p(1).
z*eCy 2*€Cy

D PROOF OF THEOREMS FOR THE LOWER BOUND

In this section, we will prove the theorems for the lower bound. Similar as the upper bound, since
Theorem A.5 and Theorem A.6 are general versions of Theorem 4.1 and Theorem 4.2, we will only
prove the general versions and the proof can be applied to Theorem 4.1 and Theorem 4.2, too. Also,
the proof of Theorem A.5 is actually based on the proof of Theorem A.6 under a stronger regime.
Therefore, we will prove the two theorems together: we will first prove Theorem A.6 under more
general conditions, and then we will apply the proof of Theorem A.6 to the proof of Theorem A.5
under stronger conditions.

D.1 PROOF OF THEOREM A.5 AND THEOREM A.6

The proof proceeds in the following order: we first prove the results under the two conditions of
Theorem A.6, namesly the proof of Theorem A.6 (1) and the proof of Theorem A.6 (2), then we
provide the proof of Theorem A.5.

D.1.1 PROOF OF THEOREM A.6 (1)

As for the minimax rate, we have:

r(€a¢y) = minf supP.(0 = 1)+ supP. (0= 0)}

z€Co z€Cq
> win{ P, (0= 1)+ P (6 = 0) .

where zp and z; are fixed cluster assignments in Cp and C; respectively. For a given adja-
cency matrix A, we know that ¢ is a function of A, and the only information of A relevant
to classification of the true assignment is {A,;, (¢,7) € &1(z0, 21) U&2(20,21)}. Larger size of
&1(z0,21) and & (20, 21) will provide more information and lead to smaller type I and type II er-
ror. Thus, the worst case is when the size of &; (29, 21) and £3(z0, z1) obtains the infimum, i.e.,
d(Zo,Zl) :TLl(Z(),Zl)\/ng(Zo,Zl) :d(CO,Cl). _

To obtain infy, { sup,ce, Po(» = 1) 4 sup,ce, P.(¢¥ = 0)}, the optimal method 1) must be
the mode of the posterior distribution. For the convenience of notations, we denote L(z,A) as
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f(A; z,p,q), and n; as n;(z0, 21), ¢ = 1, 2 for short:

L(z, A) o p>=Geeitzom) Aid (1 — )™= Ltineer o) A g2oeentzo.m) Aid (1 — q)"12 72 neestzom) Al
L(Zh A) X pz(i’ﬂegz(zo’zl) Ay (1 — p)n2_2(i,j)e52(20,21) Aij qz(i,j)efﬂzo«zl) Aij (1 — q)nl_z(i,j)eﬁ(zo,zﬂ Aij
and correspondingly,

~ | 0, if L(z0,A) > L(21,A);

v(A) = { 1. if L(z0, A) < L(z1, A).
Then P, (¢ = 1) = P, (L(20, A) < L(21,A)) and P, (¢ = 0) = P,, (L(20,A) > L(z,A)).
Without loss of generality, we assume that 11 (2o, 21) > n2(z0,21). Then, if we expend the size
of E5(20, 21) to be the same as &1 (20, 21), adding i.i.d entries {A,;, (i,7) € EF (20, 21)\E2(20,21)}
conforming to the same distribution as {A;;, (4, ) € £2(20, 21) }, more information will be provided
and the error rate will decrease, where £2(zo, 21) denotes the set expended on € (o, 21), and we
have:
Aij Aij

Z(Zm A) x pz(i,j)g‘gl(mﬂ) Aij (1 _ p)nl_Z(iwj)ggl(z[)yzl) Ajj qz(i,ﬁeszL(zo,zl) (1 _ q)nl—z:(i‘j)eé‘%‘(zo‘zl)

L(z1,A) x pzu,nesg(zo,zl) Aiﬂ‘(l _ p)”l‘zu,nesg(m,zl) A”'qzu,j)esl(zo.zl) Aw‘(l _ q)"l—Zu,j)esl(zo,zl) Aij
Thus we can obtain lower bound on the minimax rate:

r(1) = Poy(L(20, A) < L(21,A)) + P, (L(20, A) > L(z1, A))

> P.y (L(z0, A) < L(z1, A)) + P, (L(20, A) > L(z1, A))

=P, < Z A < Z Aij) +P,, < Z A > Z Aij)

(4,5)€E1(20,21) (4,5)€EX (20,21) (4,5)€E1(20,21) (4,5)€EX (20,21)

> 2@(%){“ > ZY“)
u=1 u=1

where { X, } Py Ber(q), {Y"} £y Ber(p), and { X*} are independent to {Y™}.
Now n1 = d(Co, C1), and both p and q change with n;. We have E(| X% — Y* — E[X* — Y¥]|?) =<
p(1 —¢q) + q(1 —p). Since 0 < g < p < 1— 4, we have dp < p(1 — q) + q(1 — p) < 2p. Thus
E(|X* -Y* - E[X* - Y"¥]]?) < p. Similarly Var(X* — Y*) < p. Thus,

D B(XY YU —EX"-Y"[)  mpl-g+eql-p)] _ 1

Var (3 {Xu —yuh)?? T (gl - q) +p(1-p))P2 T ymap -0

Therefore, by the Lyapunov’s Central Limit Theorem and the independence of {X“} and {Y*}, as
n — oo, we have Y 0L X% — Sy 4 N(ni(q —p),n1g(1 — q) + nip(1 — p)). Therefore,

PO X > Y v =B X - Y vtz 0) =1 8 ¢p<1@§p+_q2 )+ o).

When lim supniI(p, q) = O(1), we can see that p — ¢ = o(1). We have

n—oo

VP —va)*+(1T-p—VI-4¢)?
I(p,q) = —2log (1 — 5 )

:< (-9 (- q)?
WVP+va)?  (VI-p+vV1-¢)?

)@+ o)

J (p—q)?
2p(1—p)+q(1-q)

v

(1+ o(1)).
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Thus, if limsupniI(p,q) < §®1(3/4)%/2,  namely, limsup,/ni(p -

n— oo n— oo

q)/\/P(1 —p) + q(1 — q) < limsup \/2n11(p,q)/6 < ®~1(3/4), we have

n— oo

B X > SOV > 1 8(yan — )/Ve( —p) a0 ) > 1/4.
u=1 u=1

and

r(Co,C1) > 2(1 = ®(yni(p — q)//p(L — p) + q(1 — q))) > 1/2.

D.1.2 PROOF OF THEOREM A.6 (2)

When d(z9,C1)I(p,q) — o0, if there exists a 29 € Cp and some r = d(z9,C1) + O(1) such
that lim sup,,_, . d(Co,C1)I(p,q)/log N(B,,(r),0) < 1, then we take a 0-packing P(B,,(r),0)
(denoted P(0) for short) of the ball B, (r), and we have:

r(Co,C1) = nbin{sup]}’z(¢ =1)+ supP. (¢ = 0)} > Inwin{]P’ZO(¢ =1)+ sup P.(¢v = 0)}

z€Cop z€Cq ZGP(O)

- Hﬁn{ > (me =1|JA=A)P, (A=A)+ sup P, (¢ =0[A=AP, (A= A))}

A z€P(0)

—mind 37 (100(4) = P (A = ) + 1(5(4) = 0)_sup F.(A=A)) .

A z€P(0)

where the sum over A is the summation over all possible realizations of the adjacency matrix A.
Thus the optimal method ) in this scenario should be:

T(A) — 0, if L(z0,A = A) > sup,ep(g) L(z,A = A);
VIA) =1, i L(z0,A = A) < sup.ep(o) L(z, A = A).

and we have L(zp, A = A) < sup,ep(o) L(2,A = A)
r(Co,C1) > Puy(§ =1) + sup P.(d=0)
z€P(0)

=P (L(Zm A=A)< 221()0) L(z,A = A))

+ sup P, (L(zo,A =A)> sup L(z,A= A))
z€P(0) z€P(0)

= ]P’Z0< sup log L(z,A =A)—logL(z0,A=A) > 0)
z€P(0)

-+ sup IP’Z( sup logL(z, A =A)—logL(z,A=A)< O).
z€P(0) z€P(0)

Similar with the case when d(zq,C1)I(p,q) = O(1), we can expand each (29, ) to £F(zp, 2) (or
E1(20, ) to £ (20, ), we use the former notation for convenience) so that £; (2o, z) and (2o, 2)
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are of equal sizes, and then we have

T‘(CO,Cl)ZIP’ZU(sup( SoA- Y Aij)>o>

z€P(0)

(i,j)egf(zo,z) (,5)€€1(20,2)
+ sup ]Pz( sup ( Z Aij - Z AU) < 0)
2€P(0) 2€P0) (5 j)e€E (20,2) (,1)€E€1 (20,2)
SN SR VED S EY)
2€PO0) (5 j)e€E (20,2) (i,7) €€ (20,2)
n1(z0,2) n1(z0,2)
]P’ZO< sup ( Z X7 - Z YZ“) >0>,
z€P(0) u—1
where {X} "' Ber(q), {Y2*} "% Ber(p), {X%} L {X"},i # j. (Y2} L {Y*},i # j and

{X%} L {Y},Vi,j. By Lemma 5.2 in Zhang & Zhou (2016) we know that there exists n—0
such that

n1(z0,2) n1(z0,2)

IIEED) V> 0) > exp (= (1+0)d(z0,C)I(p,q)-

u=1

When limsup,, . d(z0,C1)I(p,q)/log|P(0)] < 1, for sufficiently large n we have (1 +
n)d(z0,C1)I(p,q) < log|P(0)|, and since = > 1 — (1/2)® for z > 0, we have that for n large
enough

n1(zo,z) n1(20,2)
(Y XU Y Vs 0) z e (- (14 m)d(, COI(0,9))
u=1 u=1
> exp (— log[P(0)]) = 1/P(0)] > 1~ (1/2)"/17),
and thus
n1(zo0,2) n1(20,2) n1(z0,2) n1(20,2)
r(Co,C1) Z]P’ZO< sup ( Z X7 - Z Y“) >O> ZO< sup ( Z Xy - Z Y“) < 0>
z€P(0 eP(0) ot
m(Zo z)  ni(zo0,2)
|P(0)]
=1—-ILep@oP ( Z Xy — Z Y < ) 1/2 1/|7>(0)|} =1/2.
u=1 u=1

The statement is true for any O-packing of the ball B, (), and thus the statement follows.

D.1.3 PROOF OF THEOREM A.5

Under the regime 1/p,, = o(n'~¢?), we take one \/d(29, C1)-packing P(B.,(r), \/d(z0,C1)) (de-
noted P for short) of the ball B, (r), similar with the proof of Theorem 3.2, by Corollary 2.1 in
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Chernozhukov et al. (2013), we have:

n1(20,2) n1(z0,2)
r(Co,C1) > ]P’Zo<sup ( Z Xy - Z qu) > 0)
2eP u=1
d(Z[],Cl) (ZO;CI)
=P, ( sup Z Xu Z qu) > (5n)
ZEP u=1 u=1
d(zo,Cl) d(201cl)
IP’Z(,(sup Z Y+ d(z0,C1)(p — Q)) > d(20,C1)(p— q) + 6n )
zZ€P u=1
,C
on<sup & > 0. = 1) ) + 5”/Ud> o)
z€P 7d
where 4, = sup,.» (Zd(zo :C1) Xy - ZZ(:Z?C” qu) — SUP.p (an(zo ) X7 -

S YY) = 0(1) and oq = (/d(z0,C) (p(1 = p) + g(1 — ), and {£.},p are stan-

dard Gaussian variables with the same covariance matrix as {(Zd(z"’cl) XY - Zz(z?,cl) Y+
(20701)(]9 Q))/Ud}zep

By Lemma 2.1 in Chernozhukov et al. (2013), combined with the fact that d(z9,C;) = Qp(n) and
1/pn = o(n'~°2), we have that

IP’m(Supr > (le_)d(p_q)“"én/o'd) =P, (Supfz > CWM)‘ S % Vlogn = o(1).

zeP z2€P gd

We let {)N(;}uz be i.i.d Ber(q) random variables and {}72“}“72 be i.i.d Ber(p) random variables,
and {)?g}u . and {Y*},, . are independent of each other. Then for each z € P, Zi(jg’cl) Xy —
Zi(jg’cl) Y¥ 4+ d(z9,C1)(p — q) shares the same distribution with Zd(zo’cl) X4 — Zj(j‘;’cl) Yi+
d(z0,C1)(p — q). We let {fz}zep be the corresponding Gaussian analog of {(Zi(zz‘l”cl) Xy —

ZZ(:Z?CI) f@“ + d(20,C1)(p — q))/od}zeﬁ. Then we have:

o 0 ifi=j,
| Cov(&s,, &) — Cov(Es,, &) = { O(\/ﬁ) ifi # J.

Thus by Lemma 3.1 in Chernozhukov et al. (2013), we have Ag = O(1/4/d(2,C1)), and

. (Sulz & > t) — P (Sulzfl > t) | < Cay/(0g [P1/80)*"* = o(1),

teR

zeP zeP
and thus
d(ZO Cl) (Zo,cl)
P (s (30 KES DD V€O~ ) > GO 0))
z€P u=1 u=1
d(Zo,Cl) d(Zo,Cl)
(s (X X S T dCo.C)p ) > deo.Clp - ) + ol
zeP u=1
Then similar with previous proof, we have when lim sup lim,,_, d(20,C1)I(p, q)/ log |’ﬁ| <1,
n1(z0,2) ~ n1(z0,2) _
e zp sw (X REo 3 ) 0) o) 2 124 00)
2€B(rKk) u=1 u=1

Also the results hold for any /d(zg, Cy)-packing of the ball B, (r). Therefore, we proved the
claim.
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E PROOF OF TECHNICAL LEMMAS

Now we will provide proofs for the technical lemmas used for the proof of Theorem A.2.

E.1 PROOF OF LEMMA 2.2

It suffices for us to prove Lemma C.1, the more general version of Lemma 2.2. Due to the structure
of L, it suffices for us to prove that the edge-wise distance between assignments are permutation-
invariant.

For any given zg € Cy and 21, 2} € Cy, we have:
m(zo,z1) = Y, 1(z00) = 20(j), 21(6) # 21(5))
1<j,1,j€[n]
> 1(o(200) = o(20) 0 (21) £ o (210))
i<j,i,j€[n]

> 1(roala0)(6) = mo () (), T o r(21) () £ 7o a(:1)(7(5)))

(i) <t(4)i5€n]

=ny(To0(20),7o0(21)).

Then very similarly we have na (20, 21) = n2(700(20), 700 (21)) and thus d(z0, 21) = n1 (20, 21)V
n2(20,21) = n1(100(20),700(21)) Vna(ro0(2),700(21)) =d(r00(2),7 00 (z1)). This
suggests that the permutation 7 o o does not change the distance between assignments. Also,

1€1(20, 21) N E1(20, 21)| = Z 1(20(i) = 20(5), 21(8) # z1(4), 21.(2) # 21(4))
1<j,t,j€[n]
= > I(roo(z0)(i) =To0(20)(f), 7o 0(21)(i) # T oo (21)(4), T 0 0 (21) (i) # T 0 0(21)(4))
1<j,t,j€[n]
= |51 (TOO’(ZQ),TOO’(Zl)) Né& (Toa(zo),roo(zi)ﬂ.
And similarly,
|E2(20,21) N E2(20,21)| = |E2(T 00 (20), T 0 0(21)) N E2(T 0 0(20), T 0 7(2}))]-

Thus the cardinality of the intersection of the sets &£;,7 = 1, 2 is also invariant under the permutation
TOO.

Now for any zg, 2, € Co, if 7 0 0(29) = 2{, and d(zo, 21) = d(29,C1), from previous results we
have d(z(,T o 0(z1)) = d(z0,C1). If there exists an assignment z; € C; such that d(z{,z1) <
d(z, 7 0 d(21)), then d(29, (T 0 ) ~1(2])) = d(2}, ;) < d(20,C1) due to the fact that T o 7 is a
one to one mapping. Since zg = (7 o o)~ !(z{), we know that C; is closed under (7 o o)~! and
(too)~!(2}) € Cy. This is contradictory to the fact that z; = argmin, .. d(zo,z). Therefore,
d(z(,C1) = d(z{, 70 0(z1)) = d(z0,C1).

Similarly, if z1 € B.,(r), then 7 0 0(21) € By (r). If 21 € B (r), then (T 0 o)~ (2]) € B, ().
Therefore, 7 o o is a one to one mapping from B, (r) to B, (r), and | B, (r)| = | B (r)|.

Now for a given radius r, we find the permutation T € S|, () such that T(z;) = 70 0(2;) = 2;
#0
for z; € B, (r) and 2] € B (r).
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When the true assignment is zo, the (k,)-th entry of the covariance matrix for the vector L., can
be expressed as

Cov (L) = 9(p; q)2<|52(20, zi) N E(20, 21)|a(1 — q) + €1 (20, 21) N E1(20, 21) (1 —p))
= 9(p.0)*(I&2(r 0 0(20), 7 0 0 (21)) N Ea(r 0 0 (z0), 7 0 () (1 — g)

+ & (too(z0), Too(zk)) NE(To0(20),700(z))|p(l — p))
= Cov (9(177 (Y. Ay- Y An) o D) Ay— > Aij))
Ea(t(2h),T(2y,)) E1(T(2p),T(2y,)) Ea(T(2p),T(21)) E1(t(zp),t(27))

= COV(Lzé)T(k)T(l)-

Hence we finish the proof.

E.2 PROOF OF LEMMA C.2

The proof mainly follows from Lemma 2.3 and Lemma 2.6 in Wang & Bickel (2017) with modifi-
cations for the function F(-) and G(-). We provide the sketch of proof as following:
We first define the count statistics as proposed in Wang & Bickel (2017):

Aijl(2(1) = a,2(j) = b) ~ Ber (Hap) ,i # j,a,b € [K].
where Hy p =p = Mippifa=0b,and H, , = g = Aap,, ifa # b. H = p,,S.

Oup(2) =YD 1(2(i) = a,2(j) = b) Ay,

i=1 j#£i

L= Z Z A, pin = nzpn.

i=1 j=i+1

For two assignments z, z’, The confusion matrix is:
n
Ry . (2,2)=n"" Z 1(2(i) =k, 2/ (i) = a).
i=1

By definition, we have |ng(z) — n/K| < ck,Vz € Co UCy,Vk = 1,2,..., K. We let 7i(z) denote
the number of within-cluster edges, and assume

nk(z) = n/K+ak7|ak| < CK7k = 1a25"'7K7

K
Z ap = 0.
k=1

Then
K 2 2 K 2
- Y (n/K+ap)?—n  n?/K—-n Y, a;
n(z) = = +
2 2 2
2 K —
< 71/27n+Kc§(/2.
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Therefore, Vz, 2 € C; we have n(z) + na(z,2') — ni(z,2') = n(2'), |n2(z,2") — ni(z,2")| =
[n(z) — n(z")| < Kc% /2. Thus, we denote 2* as the true assignment, and Vz € Cp U C; we have

~

O,.(2)log 1117%11;) + 71(2) log(1 = p) + (n(n —1)/2 — n(2)) log(1 — q)

1
1 - a,b

-

M= 70~

Oa,b(z) ( log §a,b +log p,, — IOg(l - ﬁa,b))) + C(Z*) + OP(pn)

a,b=1
o (5~ Oui(2)
n a,b I~ *

- 2(@; 2 108800 + Op(pn)}) + 1o pul + O(=") + Op(pn).
where C(2*) = n(z*)log(1 — p) + (n(n — 1)/2 — n(z*)) log(1 — q). We let F(O(z)/pn) =
thzl O“f(z) loglsii{’” and F(RSR'(z)) = Zszl(RSRT( ))asblog = S b where

) n —Happ s b

R(z) = R(z,2*) and RSR' (z) = R(z,2*)SR(z, z ) We denote C C Cy U C; as some subset

of a351gnments and we let Vg denote the set of z € C that maximizes F (RSRT( )). Obviously
F(-) is Lipschitz, for €, — 0 slowly,

\F 2)/ ) = F(RSR (2))|

O11(2)/ i — (RSRT(z)>

k.l

:Op (En) .

We choose some positive d,, — 0 slowly enough such that §,, /¢, — co. We take any Z’ € V¢, then
we define

Js, = {z € [K]" : F(RSR' (2)) - F(RSR'(Z)) < ~0, }.
Then we have

Z 108 f(A;z,9,7) < f(A; AR a\)Kne(jP(,U«nEn)—}Ln(;n/2+Op(pn)

z€Js,
= f(A7 Zlafi a\)OP(l)

For = € C\{Js, UVg}. |F(RSR'(z)) — F(RSR'(Z))] — 0 and ||[RSR'(z) —
RSR'(Z')||.s — 0. Treating R(z) as a vector, choosing z, be such that R(z;) :=
Ming(.q):2oeve |[R(2) — R (20)]|, for a given z € C\ {Js5, U Vg}. Due to the consistency of p, g,

the function F'(-) is a linear function with constant coefficients. We know that with probability
1—o(1):

OF ((1 —ORSR" (2) + eRSRT(z))

D¢ < 0.

e=0"+
Given a matrix A, we denote the matrix maximum norm ||A||. = max;j|A4;,|. Letting z =
min, ;) [0(z) — 21|, and X (2) = O(2)/pin — RSR'(z), we have

P X X zZ—
(ég?;i)ll )~ X ()l > el 221 /n)

sz::lp < max  [|X(2) — X (21)l| o > J:)

z:2=Z,|Z—z1 |=m

< Z 2K Epm K™ +2 exp <meMn) — 0.
n

m=1
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where S(z) = {o(z)|o € Sk}. Since RSR' (Z) — RSR' (21) = Q(|Z — 21 |), we have that
O() O(z1)
,Ufn ,Um

And thus we probability 1 — o(1) uniform on all z, we have

F(OZ)/pn) < F(O(z1)/pin) -

= (1 +0p(1)) (RSRT(E) _ RSR" m)) :

In turn, we have

log f(A;z,p,q) <log f (A;21,p,7) + Op(pn).
Since from Lemma A.1 in Wang & Bickel (2017) the high probability is uniform on all assign-

ments, we have that, with probability 1 — o(1), for any z € C\Vg we can find 2’ € Vg such that
log f(A; z,p,q) =log f(A;2',p,q) + Op(pn), and therefore,

suplog f(A;z,p,q) = sup log f(A;2,p,q) + Op(pn).

z€C z€Vq

Now we consider F(RSR' (2)):
F(RSR'(2)) = E(F(O(2)/))

:i((ﬁ( )+10g/)\\;8 ];;(”2(2*73)(1—?11(2*,2)]3))
- MO=D) e A ) b e (s
= (O +los T a>( 2(2%,2) V(202 = 2) + ol ).

~( “)p+log X7( (n—1)/2 —-n(z*))q, and

where Xl = ﬁ/meQ =q/pnand C1(2*) =
co(z) < AlKC%{/Q,VZ € CyUCls.

Thus when z* € Cy and C = Cy, it can be easily perceived that Vg C B.- (r k) with high probability,

and hence
sup log f(A;2,p,¢q) = sup log f(A;2,p,q) + Op(pn).
z€C1 2€B.« (1K)

Moreover, when z* € C, Ve C B.«(r*) with high probability, where r* = A\ Kc%/{2(\1 —
A2)} = O(1). By Lemma 5.3 in Zhang & Zhou (2016), for any z € B,«(r*), if z # z*, then
d(z*,z) = Q(n). Therefore, B, (r*) = {z*}. In other words, we have

suplog f(A;z,p,q) = log f(A; 2", D, Q) + Op(pn). (E.1)
2eC

More concretely, if we take C= Co U Cq, we have

sup log f(A;z2,p,q) = log f(A;2",D,q) + Op(pn),
2€CoUC,

and if z* € Cy, we have

Sup log f(A;2,p,q) = log f(A;2%,D,q) + Op(pn).
zeC1

E.3 CONSISTENCY OF PROBABILITY ESTIMATION

Recall the estimators p and ¢ 1 gare defined in (2.9), and that = D/ pn and o = d/ pn- The following
lemma shows that )\1 and /\2 are consistent.

Lemma E.1. Under the same condition of Theorem A.2, we have

i — Nl = 0(1/v/n2p,), i=1,2
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Proof. From Lemma 1 and Theorem 2 in Bickel et al. (2013), we know that |log (p/(1 — p)) —
log (p/(1=p))| = O(1/y/n?pn) and |log (§/(1 - )) —log (¢/(1 = )| = O(1/\/npn). We let

v1 and v denote the logit of p and ¢. Then since (v, 1/2) is a one-to-one function of (p, q), we know
the relationship between (71, 7>) and (p, ¢) should be 7; = logp/(1 — p) and 7> = logq/(1 — q).
Then we have

1_)\zpn - 1_)\2pn
= longn —log X\ipp, + log(1 — A\ipy) — log(1 — :\\7pn)

=1 1 —1 14—
og<+ N ) og(+ 1_)\ipn>

/):i -\ (;\\z - )‘i)pn
1 1)) ——F—
+ (14 o1) G

~ :\\z n )\z n
v; —v; = log E lo P

X/)\\i—)\i

and thus by previous results we have

No— M| =01 /n2p,), i=1,2
|
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