
3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation

Supplementary Material

1. Additional Evaluation

Additional Holistic-motion synthesis evaluation: In ad-
dition to comparing against SadTalker [27] and Talk-
show [26], we also conduct additional comparisons against
DiffPoseTalk [22], a closely related concurrent work. To
this end, we perform a qualitative and perceptual study to
evaluate the holistic-motion synthesis and style-similarity.
Specifically, we conducted multiple individual user stud-
ies in the form of A/B tests (see Section 2.7). As we
see from Table 1, our method consistently outperforms
all baselines in generating natural, realistic holistic mo-
tion with highly accurate lip synchronization. In the style-
similarity studies presented in Table 2, our method matches
the performance of Imitator [24] and significantly sur-
passes DiffPoseTalk [22]. Notably, unlike our approach
and DiffPoseTalk [22], Imitator [24] employs a determin-
istic regression method that lacks the ability to produce
diverse samples or offer editing capabilities. Addition-
ally, we performed a motion editing experiment using Diff-
PoseTalk [22] which is shown in the suppl. video.

Holistic synthesis

Method Face Motion (%) Head motion (%)

1 Ours vs SadTalker [27] 88.13 86.43
2 Ours vs TalkShow [26] 90.77 87.96
3 Ours vs DiffPoseTalk* [22] 85.33 90.66

Table 1. User studies evaluating the naturalness of the facial and
head motion. A total of 25 individuals participated in each A/B
user-study. * : represents concurrent work.

Method Style-similarity (%)

1 Ours vs Imitator [24] 55.64
2 Ours vs DiffPoseTalk* [22] 89.33

Table 2. User studies evaluating the style-similarity. A total of
25 individuals participated in each A/B user-study. * : represents
concurrent work.

Impact of Guidance-Scale on facial motion synthesis:
We investigate the impact of the classifier-free-guidance
scale s [10] using the ’Lip-sync’ and DivL metrics on the
non-personalized facial motion synthesis task. Lower guid-
ance values yield animations with significantly more diverse
motion but inferior lip-sync quality. Conversely, higher
guidance values result in high-quality animation with re-
duced diversity. We observe a similar trend in our per-

ceptual evaluation. We find that the guidance scale s is
an effective tool to increase synthesis diversity beyond all
baselines with only a small loss of lip-sync accuracy for
0.3 ≤ s ≤ 1.0.
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Figure 1. Evaluation of the impact of the classifier-free-guidance
s on the facial motion synthesis task.

Impact of Noise: We conducted a noise sensitivity exper-
iment similar to [2, 22, 24], where we added white noise
to the input audio with a negative gain of 36db (low), 24db
(medium), and 12db (high). As reported in Table 3, our
method is robust to low(36db) and medium(24db) noise lev-
els, produces facial motion with comparable quality. Please
refer to the suppl. video for the qualitative results.

Method DivL ↑ Lip-Sync ↓
1 Ours (high noise) 6.41 2.56
2 Ours (med. noise) 2.54 1.97
3 Ours (low noise) 1.85 1.78

Table 3. Robustness to noise study with low, medium and high
noise levels on the VOCAset [2].

Why standard diffusion-based head motion-editing
fails? First, we analyze the standard diffusion based head
motion editing and show why it fails. Then, we demon-
strate how using our proposed Sparsely-Guided diffusion
effectively addresses the issue and enables smoother head-
motion editing. An illustration of a conditional inbetween-
ing of a sequence across various diffusion steps t is shown
in the Figure 2. Looking at the left column of the figure, it
is clear that the standard diffusion mainly focuses on gen-
erating a valid sample from the distribution based on the



Figure 2. Illustration of a conditional head motion inbetweening
of a sequence across various diffusion steps t with and without
Sparsely-guided diffusion.

audio condition. As a result, it starts to ignore the im-
putation signal in the low noise regime, focusing instead
on refining the sequence to produce an improved sample
from the distribution. This approach results in jittery tran-
sitions when the imputation signal is replaced to gener-
ate the final inbetweened sample at the end of the sam-
pling process. Throughout its training, the diffusion model
was only trained to generate a valid sample from the dis-
tribution based on the audio condition, not to align with
the imputation signal. Observing this, we introduced a
sparsely-guided diffusion to incorporate guidance signals
during training. This adjustment ensures that the diffusion
model aligns with the imputation signal while still produc-
ing a sample from the distribution.

Is it possible to unconditionally synthesize and edit mo-

tion? While unconditional motion synthesis has been ex-
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Figure 3. Qualitative illustration of facial motion inbetweening
using our conditional (row 3) and unconditional model (row 5).

tensively applied in the motion synthesis domain [16, 23],
to the best of our knowledge, its application in 3D facial an-
imation synthesis remains widely unexplored. The signif-
icance of an unconstrained facial motion synthesis method
cannot be overstated. It holds substantial potential for var-
ious applications, such as animating background characters
in movies and games. Additionally, it enables targeted edit-
ing of specific facial elements—such as eye blinks and eye-
brow motions—since these non-verbal facial expressions
often exhibit weak or no correlation with audio features.
Moreover, an unconditional model serves as a valuable mo-
tion prior for various downstream tasks, extending its util-
ity beyond synthesis and editing applications. Our demon-
stration of unconditional synthesis and editing are show-
cased in Figure 3, underscoring the potential and versatil-
ity of such unconstrained models for 3D facial animation



synthesis. In Figure 3 (rows 2 and 3), we showcase a se-
quence synthesized conditionally and subsequently refined
using keyframes. In Figure 3 (row 4), we present our un-
conditional synthesis results. As observed from the results,
our model can unconditionally synthesize plausible facial
motion. Additionally, in Figure 3 (row 5), we see that
our method can unconditionally inbetween facial animation
while preserving the speaking style of the target actor. This
progression illustrate our model’s capabilities: from con-
ditional synthesis and keyframe-based editing to uncondi-
tional synthesis and editing, while preserving the target ac-
tor’s speaking style. Please refer to the supplemental video
for the study’s results in motion.

Impact of sparse guidance on Facial 3D animation syn-
thesis: In this section, we evaluate the impact of using
sparsely-guided diffusion (SGDiff) on 3D facial animation
synthesis. To this end, we first trained the face motion
generator with SGDiff, then personalized it with and with-
out SGDiff using the VOCAset [2] test subject ‘0024’ and
report the metrics in Table 4. While the introduction of
sparse guidance improves diversity, it also reduces the lip-
sync accuracy. The combination of window-based train-
ing and replacement of the input signal within the win-
dow acts as data augmentation, increasing the diversity and
complexity of the training distribution. As a result, this
leads to under-fitting, producing more generalized motion
with high-diversity, but poorer lip-sync. As demonstrated
in the main paper, style personalization is critical for 3D
facial motion synthesis. Therefore, in our experiments, we
employ a personalized facial motion model without sparse-
guidance.

Method DivL ↑ Lip-Sync ↓
1 Ours (without SGDiff) 1.35 1.4
2 Ours (with SGDiff) 2.19 2.44

Table 4. Impact of Sparsely-Guided diffusion on the 3D Facial
motion synthesis. Introducing guidance during diffusion improves
the diversity and reduces the lip-sync.

Impact of Personalization on Head-motion synthesis:
We evaluate the impact of personalization on head-motion
synthesis by personalizing the head-motion using the sub-
jects in the HDTF test-set. The metric of this evaluation
is reported in Table 6. From this experiment, we observe
that personalization of the head motion often overfits to the
speech context and cadence, resulting in high beat align-
ment and low diversity metrics. Since, one of our primary
goal of this work is to enable diverse motion synthesis, we
opted for a non-personalized head-motion model. This ap-
proach offers better diversity and more flexible editing ca-
pabilities.

Method BA ↑ DivH ↑
1 Ours w/o. Personalization 0.338 0.007
2 Ours w. Personalization 0.673 0.002

Table 5. Impact of personalization on the head-motion synthesis.

Qualitative comparison against 3D facial motion synthe-
sis methods: As mentioned in the main paper, we evaluate
our method against the state-of-the-art methods VOCA [2],
Faceformer [5], CodeTalker [25], EMOTE [4], FaceDif-
fuser [21] and Imitator [24] on facial motion synthesis task.
A qualitative comparison to the facial motion synthesis
baselines on a test sequence from the VOCAset is shown
in Figure 4, where our method produces expressive facial
animations that match the speaking style of the target sub-
jects.

Quantitative evaluation on the BIWI Dataset: The main
focus of our work is to enable diverse synthesis with pre-
cise control. This made both BIWI [6] and BEAT [14]
incompatible for our study, as they are in different model
spaces compared to the existing face trackers like [3, 7, 30].
This is a key necessity for personalization and subsequently
face motion editing. More details about this is discussed
in Section 2.2. Nevertheless, for completeness, we con-
duct a quantitative evaluation our 3D facial motion synthe-
sis against the state-of-the-art methods trained on BIWI [6],
in addition to the quantitative comparison presented on
VOCA [2] in the main paper. To this end, we adopt the
dataset setup used by [5, 21, 25] and only use the emotional
sequence subset. Specifically, the data is split into a training
set (BIWI-Train) containing 192 sentences and a validation
set (BIWI-Val) with 24 sentences from 6 training subjects.
There are two test sets: BIWI-Test-A, containing 24 sen-
tences from seen subjects, and BIWI-Test-B, containing 32
sentences from 8 unseen subjects. For this experiment, we
perform the qualitative study on the BIWI-Test-A and report
the metric in Table 6. We use the Lip vertex error (LV E)
metric used by the baselines [21, 25] in this experiment.
From the results, we can observe that our method outper-
forms the baselines in terms of producing high-quality lip
motion.

Method LVE ↓
1 VOCA [2] 6.55
2 MeshTalk [18] 5.91
3 FaceFormer [5] 5.3
4 CodeTalker [25] 4.79
5 FaceDiffuser [21] 4.29
6 Ours 3.61

Table 6. Impact of personalization on the head-motion synthesis.
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Figure 4. Qualitative comparison of the facial motion synthesis
model.

2. Implementation

In this section, we provide more details on the diffusion
model, dataset, baselines, and metrics.

2.1. Preliminaries

Denoising Diffusion Probabilistic Models: Our method
is based on the diffusion framework of Sohl et al. [20],
where a training sample x0 gradually transforms into white
noise through the addition of Gaussian noise across T steps.

This transformation is mathematically represented as:

xt ∼ q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), t = 1...T,

(1)
where βt is following a predefined variance schedule.

Following recent work [22, 23], we train a denoising
model θ that can reverse this noisy diffusion and estimate
the original sample x0 from a noised version xt, guided by:
x̂0 = θ(xt, t, C). With θ being the neural network and C
representing additional conditions. The reverse diffusion is
achieved through:

q(xt−1|xt) = N (xt−1;
√
ᾱt−1θ(xt, t, C), (1− ᾱt−1)I) ,

where αt := 1− βt and ᾱt :=
∏t

k=1 αk.
To generate new samples, we start from random noise xT

and apply iterative denoising until reaching t = 0. We in-
troduce diversity in generation using Classifier-Free Guid-
ance (CFG) [10] by combining conditional and uncondi-
tional predictions of the network, controlled by a guidance
scale s:

θs(xt, t, C) := θ(xt, t, ∅) + s · [θ(xt, t, C)− θ(xt, t, ∅)] ,

adjusting s to balance between diversity and adherence to
conditions. Following [11], the inverse diffusion process is
then given through:

q(xt−1|xt) = N (xt−1;
√
ᾱt−1θ(xt, t, C), (1− ᾱt−1)I) ,

(2)
with αt := 1− βt and ᾱt :=

∏t
k=1 αk. For generating new

samples, we randomly sample xT from a Gaussian distribu-
tion and iteratively denoise it until t = 0 is reached.

To add diversity, we employ Classifier-Free Guidance
(CFG) [10] and calculate the output as a weighted sum of
the conditional and unconditional prediction:

θs(xt, t, C) := θ(xt, t, ∅) + s · [θ(xt, t, C)− θ(xt, t, ∅)] ,
(3)

where s is the guidance scale and θ(xt, t, ∅) denotes the un-
conditional prediction in which we set the audio conditions
to zero. Note that while CFG is typically used with a guid-
ance scale > 1 to enhance alignment with the condition,
we set it to values < 1 (0.5 unless specified otherwise) to
increase diversity.

2.2. Dataset

VOCA: We train our facial motion model on the VO-
CAset [2] since it provides high-quality, speech-aligned 3D
face scan sequences. It consists of 12 actors (6 female and 6
male) with 40 sequences each with a length of 3-5 seconds,
resampled at 30fps. Following previous work [24], we use
the train/val/test set split of 8, 2, 2 actors. All 40 sequences
of the training actors are used during training. However,
for the test and validation, only 20 sequences that do not



overlap with the speech scripts of the training sequences
are used. For the style adaption experiment, we split the
40 sequences of the test actors to 18, 2, 20 for train/val/test
sets. The test sequences of the experiments w/ and w/o style
adaptation are identical, allowing a direct comparison of the
scores in the quantitative comparison in the main paper (Ta-
ble 2).

In-the-wild dataset: We evaluate person-specific fine-
tuning on in-the-wild video sequences from Imitator [24].
The provided videos are 2 minutes long which we divide
into 60/30/30 seconds for train/val/test respectively. Similar
to Imitator, we employ the MICA tracker [30] to extract the
face motion tracking for the personalization step.

HDTF: We train our head-motion generator on the
HDTF [28] dataset. The High-definition Talking Face
Dataset (HDTF) is a large in-the-wild audio-visual dataset
for talking face generation. It consists of about 362 different
high-resolution (720P or 1080P) YouTube videos of 15.8
hours in total. Using the download and processing script
provided by the authors, we extracted 352 videos with 246
unique subjects. We additionally crop the video to 30 sec-
onds long and use them for extracting head-poses using the
MICA tracker [30], which provides head poses as global
axis rotation. For our experiments, we split the dataset into
300/20/32 sequences for train/val/test accordingly.

Discussion: In this work, we employ the VOCAset,
HDTF, and Imitator’s in-the-wild dataset to train our
method for generating and editing 3D facial animations
with head motion. The motivation of generating and edit-
ing holistic 3D facial animation made both BIWI [6] and
BEAT [14] incompatible for our study, both BIWI and
BEAT are in different model spaces compared to the exist-
ing face trackers like [3, 7, 30], which is a key necessity for
personalization and subsequently face motion editing. Such
a problem could in theory be addressed by converting the
meshes provided in the dataset to our target FLAME model
space by optimization-based fitting using pre-defined corre-
spondence between the source and target mesh space. How-
ever, for BIWI the noisy surface reconstructions provided
in the dataset and incomplete face models make the fitting
challenging and reduces the quality of the fitted meshes fur-
ther. Similarly, for BEAT, the dependence on ARKit which
produces improper lip-closures and not fully completed face
model, reduces the realism of the reconstructed sequences.
As studied in [24], lip-closures are paramount in conveying
realism for the generated sequences.

2.3. Baselines

Holistic 3D motion synthesis: For TalkShow [26], we
use the pre-trained model provided in their official repos-

itory and extract the predicted facial and head motion pa-
rameters for our evaluation. For SadTalker [27], we use
the pre-trained model provided in the repository to gener-
ate 2D talking face videos and use the MICA tracker [30]
to the face and head motion. For DiffPoseTalk [22], we
use the pre-trained provided in their repository. Similar to
our work, DiffPoseTalk [22] requires 3D reconstructions
of target subjects for style-personalizaton. For 3D recon-
struction, DiffPoseTalk utilize their own customer-tracker,
which, at the time of the submission was not available in
their repository. Hence, we substitute their tracker with
EMOCAv2 [3], a publicly available face tracker in our ex-
periments.

Facial Motion Synthesis: For VOCA [2], Face-
former [5], Imitator [24] and FaceDiffuser [21], we use
the pre-trained model provided in the official repositories.
For CodeTalker [25], we adapt the official implementation
to add the functionality of generating diverse motion.
Especially, we re-train the audio-conditioned codebook
sampling (stage 02) to randomly sample a code from the top
’m’ closest codes instead of always using the closest code.
This process is in spirit close to training the language-based
models, where a new diverse text sequence is generated by
sampling the 2nd or 3rd closest language token over the
token with maximum probability. By adapting this method,
we ensure that CodeTalker can generate diverse samples
for a given audio input. For EMOTE [4], we request the
authors to run their method on the VOCAset [2] and use it
for the qualitative and perceptual user study.

2.4. Training Details

Facial Motion Synthesis: We train our method using
ADAM [13] with a learning rate of 1e-4 for 140K itera-
tions with a batch size of 64. Our diffusion framework is
based on the Gaussian diffusion from Nichol et al. [15],
we set the diffusion step to 500 for our experiments. Dur-
ing training, we randomly crop the sequences to the length
of 30 frames. Our lightweight architecture enables us to
train our model on a single Nvidia Quadro P6000 32GB
within 30 hours. The lightweight architecture is also critical
for person-specific style adaptation with a short reference
video. For person-specific speaking style, we use the same
training setup as from the generalized setting, except that
we only train it for 30K iterations. For evaluating the best
checkpoint, we fix the guidance scale s = 0.99 and evalu-
ate all the saved checkpoints on the validation set. Further,
we fix the best checkpoint and vary the guidance scale from
s=0, 0.1 ... to 1.0 with an increment of 0.1 and find the
best guidance factor. From our experiment, we found the
guidance scale of 0.5 balances the lip-synchronization and
diversity and provides the best results.



Head Motion Synthesis Similar to the Facial motion syn-
thesis pipeline, we train our method using ADAM [13] with
a learning rate of 1e-4 for 100K iterations with a batch size
of 64. During training the sequences are randomly cropped
to 300 frames long. For our inbetweening and keyframing-
based Guided motion model training, we randomly sam-
ple a mask of arbitrary length for imputation signal, using
which the noisy input is replaced with the ground truth im-
putation signal.

2.5. Inference

Our method takes 3.15 sec to produce 1 sec (30 frame) of
facial motion and 1.04 sec to produce 1 sec (30 frame) of
head motion on a single Nvidia GeForce RTX 3090 24GB,
compared to 5.78 sec for the concurrent method FaceDif-
fuser [21]. In total, our method takes 4.19 sec to produce 1
sec (30 frame) of holistic 3D facial animation, compared to
6.78 sec for TalkSHOW [26].

2.6. Metrics

Lip-Sync measures the lip synchronization using Dy-
namic Time Warping to compute the temporal similar-
ity [24].

Diversity metric introduced by Ren et al. [17] measures
the diversity of 3D motions for the same text input. We
employ this metric and propose DivL and DivH to measure
the diversity of lip motion and head motions generated from
the same audio. Given a set of generated 3D facial or head
motions with N sequences generated from the same audio
condition. The diversity can be formalized as:

Diversity =
1

L

N−1∑
i=1

N∑
j=i+1

∥mi −mj∥2 (4)

Where mi represents the i-th motion and L is the total num-
ber of possible combinations in the generated motion set.

Beat alignment (BA) : Similar to DiffPoseTalk [22], we
employ a modified beat alignment BA to measure the syn-
chronization of the head movement beats between the pre-
dicted and ground truth motion, where we calculate the
average temporal distance between beat in predicted head
movement its closest ground truth beat as the Beat Align
Score.

Beat Align Score =
1

|Bg|
∑

tg∈Bg

exp

(
−
mintp∈Bp

∥tp − tg∥22
2σ2

)
,

(5)
Where Bg and Bp record the time of the beats in the ground
truth and predicted head motion respectively, while σ is the
normalized parameter which is set to be 3 in our experiment.

Discussion The L2-based vertex error metrics employed
in previous studies [5, 24, 25] are not apt for our task due to
its preference for solutions that are close to the mean of the
dataset, which penalizes the diversity present in our predic-
tions.

2.7. Perceptual Study

We conducted A/B user studies to assess our method’s per-
ceptual performance. First, we conducted a study to eval-
uate the holistic motion synthesis based on the natural-
ness of the facial and head motion to the input audio. For
this, we sampled 10 sequences from the test set of the
HDTF and 10 external audio from YouTube and synthe-
sized holistic 3D facial motion using our method and the
baselines [22, 26, 27] resulting in a total of 60 A/B com-
parisons including ground truth. For extracting the ground
truth for the YouTube sequences, similar to the HDTF
dataset processing we utilize the MICA tracker [30] to ex-
tract the facial and head motion. Through Amazon Me-
chanical Turk(AMT) and Google forms, we divided the A/B
comparisons into 3 HITs (Human Intelligence Task), each
with 25 individual assignments. For each HIT, users were
instructed to select their preference for a method based nat-
uralness of the head and facial motion with synchroniza-
tion. Second for facial motion synthesis, we sample 20
sequences combined from the VOCAset test set and the
in-the-wild sequences from Imitator, resulting in 100 A/B
comparisons across five baselines. On Amazon Mechan-
ical Turk(AMT), we divided the A/B comparisons into 5
HITs (Human Intelligence Task), each with 25 individual
assignments. For each HIT, users select their preference for
a method based on expressiveness and lip-synchronization.
Finally, we evaluated the speaking style preservation of our
personalized model in comparison to Imitator. To this end,
the AMT users rated the similarity based on a reference
video and the synthesized videos of the VOCA test set. Fig-
ure 5 illustrates an example interface in our user-study.

3. Ethical Impact
We introduce a method for realistic facial animation synthe-
sis and editing that matches the speaking style of any given
target actor. These animations hold promise for driving vir-
tual avatars in AR or VR settings, especially, in immersive
communication technologies. Yet, it is essential to acknowl-
edge the potential pitfalls of such advancements, notably
in the realm of ’DeepFakes.’ By employing voice cloning
techniques, our method can generate 3D facial animations
that drive digital avatar methods like [1, 8, 9, 12, 29],
which could be abused for identity theft, cyberbullying,
and various criminal activities. Advocating for transpar-
ent research practices, we strive to illuminate the risks
associated with technology misuse. Sharing our imple-
mentation aims to foster research in digital multimedia
forensics, particularly in developing synthesis methods



Figure 5. Example of the interface employed for our user-study.

crucial for training data utilized in spotting forgeries [19].
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