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Abstract

Individual preference (IP) stability, introduced by Ahmadi et al. (ICML 2022),1

is a natural clustering objective inspired by stability and fairness constraints. A2

clustering is α-IP stable if the average distance of every data point to its own3

cluster is at most α times the average distance to any other cluster. Unfortunately,4

determining if a dataset admits a 1-IP stable clustering is NP-Hard. Moreover,5

before this work, it was unknown if an o(n)-IP stable clustering always exists, as6

the prior state of the art only guaranteed an O(n)-IP stable clustering. We close this7

gap in understanding and show that an O(1)-IP stable clustering always exists for8

general metrics, and we give an efficient algorithm which outputs such a clustering.9

We also introduce generalizations of IP stability beyond average distance and give10

efficient near optimal algorithms in the cases where we consider the maximum and11

minimum distances within and between clusters.12

1 Introduction13

In applications involving and affecting people, socioeconomic concepts such as game theory, stability,14

and fairness are important considerations in algorithm design. Within this context, Ahmadi et al. [1]15

(ICML 2022) introduced the notion of individual preference stability (IP stability) for clustering.16

At a high-level, a clustering of an input dataset is called 1-IP stable if, for each individual point, its17

average distance to any other cluster is larger than the average distance to its own cluster. Intuitively,18

each individual prefers its own cluster to any other, and so the clustering is stable.19

There are plenty of applications of clustering in which the utility of each individual in any cluster20

is determined according to the other individuals who belong to the same cluster. For example, in21

designing personalized medicine, the more similar the individuals in each cluster are, the more22

effective medical decisions, interventions, and treatments can be made for each group of patients.23

Similarly, stability guarantees are desired in designing personalized learning environments or market-24

ing campaigns to ensure that no individual wants to deviate from their assigned cluster. Furthermore25

the focus on individual utility in IP stability (a clustering is only stable if every individual is “happy”)26

enforces a notion of individual fairness in clustering.27

In addition to its natural connections to cluster stability, algorithmic fairness, and Nash equilibria,28

IP stability is also algorithmically interesting in its own right. While clustering is well-studied with29

respect to global objective functions (e.g. the objectives of centroid-based clustering such as k-means30

or correlation/hierarchical clustering), less is known when the goal is to partition the dataset such that31

every point in the dataset is individually satisfied with the solution. Thus, IP stability also serves as a32

natural and motivated model of individual preferences in clustering.33
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1.1 Problem Statement and Preliminaries34

The main objective of our clustering algorithms is to achieve IP stability given a set P of n points35

lying in a metric space (M,d) and k, the number of clusters.36

Definition 1.1 (Individual Preference (IP) Stability [1]). The goal is to find a disjoint k-clustering37

C = (C1, · · · , Ck) of P such that every point, on average, is closer to the points of its own cluster38

than to the points in any other cluster. Formally, for all v ∈ P , let C(v) denote the cluster that39

contains v. We say that v ∈ P is IP stable with respect to C if either C(v) = {v} or for every C ′ ∈ C40

with C ′ ̸= C,41

1

|C(v)| − 1

∑
u∈C(v)

d(v, u) ≤ 1

|C ′|
∑
u∈C′

d(v, u). (1)

The clustering C is 1-IP stable (or simply IP stable) if and only if every v ∈ P is stable with respect42

to C.43

Ahmadi et al. [1] showed that an arbitrary dataset may not admit an IP stable clustering. This can be44

the case even when n = 4. Furthermore, they proved that it is NP-hard to decide whether a given a45

set of points have an IP stable k-clustering, even for k = 2. This naturally motivates the study of the46

relaxations of IP stability.47

Definition 1.2 (Approximate IP Stability). A k-clustering C = (C1, · · · , Ck) of P is α-approximate48

IP stable, or simply α-IP stable, if for every point v ∈ P , the following holds: either C(v) = {v} or49

for every C ′ ∈ C and C ′ ̸= C,50

1

|C(v)| − 1

∑
u∈C(v)

d(v, u) ≤ α

|C ′|
∑
u∈C′

d(v, u). (2)

The work of [1] proposed algorithms to outputting IP stable clusterings on the one-dimensional line51

for any value of k and on tree metrics for k = 2. The first result implies an O(n)-IP stable clustering52

for general metrics, by applying a standard O(n)-distortion embedding to one-dimensional Euclidean53

space. In addition, they give a bicriteria approximation that discards an ε-fraction of the input points54

and outputs a O
(

log2 n
ε

)
-IP stable clustering for the remaining points.55

Given the prior results, it is natural to ask if the O(n) factor for IP stable clustering given in [1] can56

be improved.57

1.2 Our Results58

New Approximations. Improving on the O(n)-IP stable algorithm in [1], we present a deterministic59

algorithm which for general metrics obtains an O(1)-IP stable k-clustering, for any value of k. Note60

that given the existence of instances without 1-IP stable clusterings, our approximation factor is61

optimal up to a constant factor.62

Theorem 1.3. (Informal; see Theorem 3.1) Given a set P of n points in a metric space (M,d) and63

a number of desired clusters k ≤ n, there exists an algorithm that computes an O(1)-IP stable64

k-clustering of P in polynomial time.65

Our algorithm outputs a clustering with an even stronger guarantee that we call uniform (approximate)66

IP stability. Specifically, for some global parameter r and for every point v ∈ P , the average distance67

from v to points in its own cluster is upper bounded by O(r) and the average distance from v to68

points in any other cluster is lower bounded by Ω(r). Note that the general condition of O(1)-IP69

stability would allow for a different value of r for each v.70

We again emphasize that Theorem 1.3 implies that an O(1)-IP stable clustering always exists, where71

prior to this work, only the O(n) bound from [1] was known for general metrics.72

Additional k-center clustering guarantee. The clustering outputted by our algorithm satisfies73

additional desirable properties beyond O(1)-IP stability. In the k-center problem, we are given n74

points in a metric space, and our goal is to pick k centers as to minimize the maximal distance of75

any point to the nearest center. The clustering outputted by our algorithm from Theorem 1.3 has the76
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added benefit of being a constant factor approximation to the k-center problem in the sense that if the77

optimal k-center solution has value r0, then the diameter of each cluster outputted by the algorithm78

is O(r0). In fact, we argue that IP stability is more meaningful when we also seek a solution that79

optimizes some clustering objective. If we only ask for IP stability, there are instances where it is easy80

to obtain O(1)-IP stable clusterings, but where such clusterings do not provide insightful information81

in a typical clustering application. Indeed, as we will show in Appendix B, randomly k-coloring the82

nodes of an unweighted, undirected graph (where the distance between two nodes is the number of83

edges on the shortest path between them), gives an O(1)-IP stable clustering when k ≤ O
( √

n
logn

)
.84

Our result on trees demonstrates the idiosyncrasies of individual objectives thus our work raises85

further interesting questions about studying standard global clustering objectives under the restriction86

that the solutions are also (approximately) IP stable.87

Max and Min-IP Stability. Lastly, we introduce a notion of f -IP stability, generalizing IP stability.88

Definition 1.4 (f -IP Stability). Let (M,d) be a metric space, P a set of n points of M , and k the89

desired number of partitions. Let f : P × 2P → R≥0 be a function which takes in a point v ∈ P , a90

subset C of P , and outputs a non-negative real number. we say that a k-clustering C = (C1, · · · , Ck)91

of P is f -IP stable if for every point v ∈ P , the following holds: either C(v) = {v} or for every92

C ′ ∈ C and C ′ ̸= C,93

f (v, C(v) \ {v}) ≤ f (v, C ′) . (3)

Note that the standard setting of IP stability given in Definition 1.1 corresponds to the case where94

f(v, C) = (1/|C|)×
∑

v′∈C d(v, v′). The formulation of f -IP stability, therefore, extends IP stability95

beyond average distances and allows for alternative objectives that may be more desirable in certain96

settings. For instance, in hierarchical clustering, average, minimum, and maximum distance measures97

are well-studied.98

In particular, we focus on max-distance and min-distance in the definition of f -IP stable clustering in99

addition to average distance (which is just Definition 1.1), where f(v, C) = maxv′∈C d(v, v′) and100

f(v, C) = minv′∈C d(v, v′). We show that in both the max and min distance formulations, we can101

solve the corresponding f -IP stable clustering (nearly) optimally in polynomial time. We provide the102

following result:103

Theorem 1.5 (Informal; see Theorem 4.1 and Theorem 4.2). In any metric space, Min-IP stable104

clustering can be solved optimally and Max-IP stable clustering can be solved approximately within105

a factor of 3, in polynomial time.106

We show that the standard greedy algorithm of k-center, a.k.a, the Gonzalez’s algorithm [15], yields a107

3-approximate Max-IP stable clustering. Moreover, we present a conceptually clean algorithm which108

is motivated by considering the minimum spanning tree (MST) to output a Min-IP stable clustering.109

This implies that unlike the average distance formulation of IP stable clustering, a Min-IP stable110

clustering always exists. Both algorithms work in general metrics.

Metric Approximation Factor Reference Remark
1D Line metric 1 [1]
Weighted tree 1 [1] Only for k = 2
General metric O(n) [1]
General metric O(1) This work

Table 1: Our results on IP stable k-clustering of n points. All algorithms run in polynomial time.

111

Empirical Evaluations. We experimentally evaluate our O(1)-IP stable clustering algorithm112

against k-means++, which is the empirically best-known algorithm in [1]. We also compare k-113

means++ with our optimal algorithm for Min-IP stability. We run experiments on the Adult data set1114

used by [1]. For IP stability, we also use four more datasets from UCI ML repositoriy [11] and a115

synthetic data set designed to be a hard instance for k-means++. On the Adult data set, our algorithm116

performs slightly worse than k-means++ for IP stability. This is consistent with the empirical results117

1https://archive.ics.uci.edu/ml/datasets/adult; see [18].
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of [1]. On the hard instance2, our algorithm performs better than k-means++, demonstrating that the118

algorithm proposed in this paper is more robust than k-means++. Furthermore for Min-IP stability,119

we empirically demonstrate that k-means++ can have an approximation factors which are up to a120

factor of 5x worse than our algorithm. We refer to Section 5 and Appendix C for more details.121

1.3 Technical Overview122

The main contribution is our O(1)-approximation algorithm for IP stable clustering for general123

metrics. We discuss the proof technique used to obtain this result. Our algorithm comprises two124

steps. We first show that for any radius r, we can find a clustering C = (C1, . . . , Ct) such that (a)125

each cluster has diameter O(r), and (b) the average distance from a point in a cluster to the points of126

any other cluster is Ω(r).127

Conditions (a) and (b) are achieved through a ball carving technique, where we iteratively pick centers128

qi of distance > 6r to previous centers such that the radius r ball B(qi, r) centered at qi contains a129

maximal number of points, say si. For each of these balls, we initialize a cluster Di containing the si130

points of B(qi, r). We next consider the annulus B(qi, 3r) \B(qi, 2r). If this annulus contains less131

than si points, we include all points from B(qi, 3r) in Di. Otherwise, we include any si points in Di132

from the annulus. We assign each unassigned point to the first center picked by our algorithm and is133

within distance O(r) to the point. This is a subtle but crucial component of the algorithm as the more134

natural “assign to the closest center” approach fails to obtain O(1)-IP stability.135

One issue remains. With this approach, we have no guarantee on the number of clusters. We solve136

this by merging some of these clusters while still maintaining that the final clusters have radius O(r).137

This may not be possible for any choice of r. Thus the second step is to find the right choice of r. We138

first run the greedy algorithm of k-center and let r0 be the minimal distance between centers we can139

run the ball carving algorithm r = cr0 for a sufficiently small constant c. Then if we assign each140

cluster of C to its nearest k-center, we do indeed maintain the property that all clusters have diameter141

O(r), and since c is a small enough constant, all the clusters will be non-empty. The final number142

of clusters will therefore be k. As an added benefit of using the greedy algorithm for k-center as a143

subroutine, we obtain that the diameter of each cluster is also O(r0), namely the output clustering is144

a constant factor approximation to k-center.145

1.4 Related Work146

Fair Clustering. One of the main motivations of IP stable clustering is its interpretation as a notion147

of individual fairness for clustering [1]. Individual fairness was first introduced by [12] for the148

classification task, where, at high-level, the authors aim for a classifier that gives “similar predictions”149

for “similar” data points. Recently, other formulations of individual fairness have been studied for150

clustering [17, 2, 7, 8], too. [17] proposed a notion of fairness for centroid-based clustering: given151

a set of n points P and the number of clusters k, for each point, a center must be picked among its152

(n/k)-th closest neighbors. The optimization variant of it was later studied by [19, 20, 24].[7] studied153

a pairwise notion of fairness in which data points represent people who gain some benefit from being154

clustered together. In a subsequent work, [6] introduced a stochastic variant of this notion. [2] studied155

the setting in which the output is a distribution over centers and “similar” points are required to have156

“similar” centers distributions.157

Stability in Clustering. Designing efficient clustering algorithms under notions of stability is a158

well-studied problem3. Among the various notion of stability, average stability is the most relevant159

to our model [4]. In particular, they showed that if there is a ground-truth clustering satisfying the160

requirement of Equation (1) with an additive gap of γ > 0, then it is possible to recover the solution161

in the list model where the list size is exponential in 1/γ. Similar types of guarantees are shown in the162

work by [9]. While this line of research mainly focuses on presenting faster algorithms utilizing the163

strong stability conditions, the focus of IP stable clustering is whether we can recover such stability164

properties in general instances, either exactly or approximately.165

2The construction of this hard instance is available in the appendix of [1].
3For a comprehensive survey on this topic, refer to [3].
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Hedonic Games. Another game-theoretic study of clustering is hedonic games [10, 5, 13]. In a166

hedonic game, players choose to form coalitions (i.e., clusters) based on their utility. Our work differs167

from theirs, since we do not model the data points as selfish players. In a related work, [23] proposes168

another utility measure for hedonic clustering games on graphs. In particular, they define a closeness169

utility, where the utility of node i in cluster C is the ratio between the number of nodes in C adjacent170

to i and the sum of distances from i to other nodes in C. This measure is incomparable to IP stability.171

In addition, their work focuses only on clustering in graphs while we consider general metrics.172

2 Preliminaries and Notations173

We let (M,d) denote a metric space, where d is the underlying distance function. We let P denote a174

fixed set of points of M . Here P may contain multiple copies of the same point. For a given point175

x ∈ P and radius r ≥ 0, we denote by B(x, r) = {y ∈ P | d(x, y) ≤ r}, the ball of radius r176

centered at x. For two subsets X,Y ⊆ P , we denote by d(X,Y ) = infx∈X,y∈Y d(x, y). Throughout177

the paper, X and Y will always be finite and then the infimum can be replaced by a minimum. For178

x ∈ P and Y ⊆ P , we simply write d(x, Y ) for d({x}, Y ). Finally, for X ⊆ P , we denote by179

diam(X) = supx,y∈X d(x, y), the diameter of the set X . Again, X will always be finite, so the180

supremum can be replaced by a maximum.181

3 Constant-Factor IP Stable Clustering182

In this section, we prove our main result: For a set P = {x1, . . . , xn} of n points with a metric d183

and every k ≤ n, there exists a k-clustering C = (C1, . . . , Ck) of P which is O(1)-approximate IP184

stable. Moreover, such a clustering can be found in time Õ(n2T ), where T is an upper bound on the185

time it takes to compute the distance between two points of P .186

Algorithm Our algorithm uses a subroutine, Algorithm 1, which takes as input P and a radius r ∈ R187

and returns a t-clustering D = (D1, . . . , Dt) of P with the properties that (1) for any 1 ≤ i ≤ t, the188

maximum distance between any two points of Di is O(r), and (2) for any x ∈ P and any i such that189

x /∈ Di, the average distance from x to points of Di is Ω(r). These two properties ensure that D190

is O(1)-approximate IP stable. However, we have no control on the number of clusters t that the191

algorithm produces. To remedy this, we first run a greedy k-center algorithm on P to obtain a set192

of centers {c1, . . . , ck} and let r0 denote the maximum distance from a point of P to the nearest193

center. We then run Algorithm 1 with input radius r = cr0 for some small constant c. This gives a194

clustering D = (D1, . . . , Dt) where t ≥ k. Moreover, we show that if we assign each cluster of D to195

the nearest center in {c1, . . . , ck} (in terms of the minimum distance from a point of the cluster to196

the center), we obtain a k-clustering C = (C1, . . . , Ck) which is O(1)-approximate IP stable. The197

combined algorithm is Algorithm 2.198

We now describe the details of Algorithm 1. The algorithm takes as input n points x1, . . . , xn of a199

metric space (M,d) and a radius r. It first initializes a set Q = ∅ and then iteratively adds points200

x from P to Q that are of distance greater than 6r from points already in Q such that |B(x, r)|,201

the number of points of P within radius r of x, is maximized. This is line 5–6 of the algorithm.202

Whenever a point qi is added to Q, we define the annulus Ai := B(qi, 3r) \B(qi, 2r). We further let203

si = |B(qi, r)|. At this point the algorithm splits into two cases. If |Ai| ≥ si, we initialize a cluster204

Di which consists of the si points in B(x, r) and any arbitrarily chosen si points in Ai. This is line205

8–9 of the algorithm. If on the other hand |Ai| < s, we define Di := B(qi, 3r), namely Di contains206

all points of P within distance 3r from qi. This is line 10 of the algorithm. After iteratively picking207

the points qi and initializing the clusters Di, we assign the remaining points as follows. For any point208

x ∈ P \
⋃

i Di, we find the minimum i such that d(x, qi) ≤ 7r and assign x to Di. This is line 13–16209

of the algorithm. We finally return the clustering D = (D1, . . . , Dt).210

We next describe the details of Algorithm 2. The algorithm iteratively pick k centers c1, . . . , ck from211

P for each center maximizing the minimum distance to previously chosen centers. For each center212

ci, it initializes a cluster, starting with Ci = {ci}. This is line 4–7 of the algorithm. Letting r0 be213

the minimum distance between pairs of distinct centers, the algorithm runs Algorithm 1 on P with214

input radius r = r0/15 (line 8–9). This produces a clustering D. In the final step, we iterate over215

the clusters D of D, assigning D to the Ci for which d(ci, D) is minimized (line 11–13). We finally216

return the clustering (C1, . . . , Ck).217
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Algorithm 1 BALL-CARVING

1: Input: A set P = {x1, . . . , xn} of n points with a metric d and a radius r > 0.
2: Output: Clustering D = (D1, . . . , Dt) of P .
3: Q← ∅, i← 1
4: while there exists x ∈ P with d(x,Q) > 6r do
5: qi ← argmaxx∈P :d(x,Q)>6r |B(x, r)|
6: Q← Q ∪ {qi}, si ← |B(qi, r)|, Ai ← B(qi, 3r) \B(qi, 2r)
7: if |Ai| ≥ si
8: Si ← any set of si points from Ai

9: Di ← B(qi, r) ∪ Si

10: else Di ← B(qi, 3ri)
11: i← i+ 1
12: end while
13: for x ∈ P assigned to no Di do
14: j ← min{i | d(x, qi) ≤ 7r}
15: Dj ← Dj ∪ {x}
16: end for
17: t← |Q|
18: return D = (D1, . . . , Dt)

Algorithm 2 IP-CLUSTERING

1: Input: Set P = {x1, . . . , xn} of n points with a metric d and integer k with 2 ≤ k ≤ n.
2: Output: k-clustering C = (C1, . . . , Ck) of P .
3: S ← ∅
4: for i = 1, . . . , k do
5: ci ← argmaxx∈P {d(x, S)}
6: S ← S ∪ {ci}, Ci ← {ci}
7: end for
8: r0 ← min{d(ci, cj) | 1 ≤ i < j ≤ k}
9: D ← BALL-CARVING(P, r0/15)

10: for D ∈ D do
11: j ← argmini{d(ci, D)}
12: Cj ← Cj ∪D
13: end for
14: return C = (C1, . . . , Ck)

Analysis We now analyze our algorithm and provide its main guarantees.218

Theorem 3.1. Algorithm 2 returns an O(1)-approximate IP stable k clustering in time O(n2T +219

n2 log n). Furthermore, the solution is also a constant factor approximation to the k-center problem.220

In order to prove this theorem, we require the following lemma on Algorithm 1.221

Lemma 3.2. Let (D1, . . . , Dt) be the clustering output by Algorithm 1. For each i ∈ [t], the diameter222

of Di is at most 14r. Further, for x ∈ Di and j ̸= i, the average distance from x to points of Dj is at223

least r
4 .224

Given Lemma 3.2, we can prove the the main result.225

Proof of Theorem 3.1. We first argue correctness. As each ci was chosen to maximize the minimal226

distance to points cj already in S, for any x ∈ P , it holds that min{d(x, ci) | i ∈ [k]} ≤ r0.227

By Lemma 3.2, in the clusteringD output by BALL-CARVING(P, r0/15) each cluster has diameter at228

most 14
15r0 < r0, and thus, for each i ∈ [k], the cluster D ∈ D which contains ci will be included in229

Ci in the final clustering. Indeed, in line 11 of Algorithm 2, d(ci, D) = 0 whereas d(cj , D) ≥ 1
15r0230

for all j ̸= i. Thus, each cluster in (C1, . . . , Ck) is non-empty. Secondly, the diameter of each cluster231

is at most 4r0, namely, for each two points x, x′ ∈ Ci, they are both within distance r0 + 14
15r0 < 2r0232

of ci. Finally, by Lemma 3.2, for x ∈ Di and j ̸= i, the average distance from x to points of Dj is233

at least r0
60 . Since, C is a coarsening of D, i.e., each cluster of C is the disjoint union of some of the234
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clusters in D, it is straightforward to check that the same property holds for the clustering C. Thus C235

is O(1)-approximate IP stable.236

We now analyze the running time. We claim that Algorithm 2 can be implemented to run in237

O(n2T + n2 log n) time, where T is the time to compute the distance between any two points in the238

metric space. First, we can query all pairs to form the n×n distance matrix A. Then we sort A along239

every row to form the matrix A′. Given A and A′, we easily implement our algorithms as follows.240

First, we argue about the greedy k-center steps of Algorithm 2, namely, the for loop on line 4. The241

most straightforward implementation computes the distance from every point to new chosen centers.242

At the end, we have computed at most nk distances from points to centers which can be looked up243

in A in time O(nk) = O(n2) as k ≤ n. In line 8, we only look at every entry of A at most once so244

the total time is also O(n2). The same reasoning also holds for the for loop on line 10. It remains to245

analyze the runtime.246

Given r, Alg. 1 can be implemented as follows. First, we calculate the size of |B(x, r)| for every247

point x in our dataset. This can easily be done by binary searching on the value of r along each of248

the (sorted) rows of A′, which takes O(n log n) time in total. We can similarly calculate the sizes of249

|B(x, 2r)| and |B(x, 3r)|, and thus the number of points in the annulus |B(x, 3r) \B(x, 2r)| in the250

same time to initialize the clusters Di. Similar to the k-center reasoning above, we can also pick the251

centers in Algorithm 1 which are > 6r apart iteratively by just calculating the distances from points252

to the chosen centers so far. This costs at most O(n2) time, since there are at most n centers. After253

initializing the clusters Di, we finally need to assign the remaining unassigned points (line 13–16).254

This can easily be done in time O(n) per point, namely for each unassigned point x, we calculate its255

distance to each qi assigning it to Di where i is minimal such that d(x, qi) ≤ 7r. The total time for256

this is then O(n2). The k-center guarantees follow from our choice of r0 and Lemma 3.2.257

Remark 3.3. We note that the runtime can possibly be improved if we assume special structure about258

the metric space (e.g., Euclidean metric). See Appendix A for a discussion.259

We now prove Lemma 3.2.260

Proof of Lemma 3.2. The upper bound on the diameter of each cluster follows from the fact that for261

any cluster Di in the final clustering D = {D1, . . . , Dt}, and any x ∈ Di, it holds that d(x, qi) ≤ 7r.262

The main challenge is to prove the lower bound on the average distance from x ∈ Di to Dj where263

j ̸= i.264

Suppose for contradiction that, there exists i, j with i ̸= j and x ∈ Di such that the average distance265

from x to Dj is smaller than r/4, i.e., 1
|Dj |

∑
y∈Dj

d(x, y) < r/4. Then, it in particular holds that266

|B(x, r/2) ∩Dj | > |Dj |/2, namely the ball of radius r/2 centered at x contains more than half the267

points of Dj . We split the analysis into two cases corresponding to the if-else statements in line 7–10268

of the algorithm.269

Case 1: |Aj | ≥ sj: In this case, cluster Dj consists of at least 2sj points, namely the sj points in270

B(qj , r) and the set Sj of sj points in Aj assigned to Dj in line 8–9 of the algorithm. It follows from271

the preceding paragraph that, |B(x, r/2) ∩Dj | > sj . Now, when qj was added to Q, it was chosen272

as to maximize the number of points in B(qj , r) under the constraint that qj had distance greater than273

6r to previously chosen points of Q. Since |B(x, r)| > |B(x, r/2)| > |B(qj , r)|, at the point where274

qj was chosen, Q already contained some point qj0 (with j0 < j) of distance at most 6r to x and thus275

of distance at most 7r to any point of B(x, r/2). It follows that B(x, r/2) ∩Dj contains no point276

assigned during line 13– 16 of the algorithm. Indeed, by the assignment rule, such a point y would277

have been assigned to either Dj0 or potentially an even earlier initialized cluster of distance at most278

7r to y. Thus, B(x, r/2)∩Dj is contained in the set B(qj , r)∪Sj . However, |B(qj , r)| = |Sj | = sj279

and moreover, for (y1, y2) ∈ B(qj , r) × Sj , it holds that d(y1, y2) > r. In particular, no ball of280

radius r/2 can contain more than sj points of B(qj , r) ∪ Sj . As |B(x, r/2) ∩Dj | > sj , this is a281

contradiction.282

Case 2: |B(qj , r)| < sj: In this case, Dj includes all points in B(qj , 3r). As x /∈ Dj , we must283

have that x /∈ B(qj , 3r) and in particular, the ball B(x, r/2) does not intersect B(qj , r). Thus,284

|Dj | ≥ |B(x, r/2) ∩Dj |+ |B(qj , r) ∩Dj | > |Dj |/2 + sj ,
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so |Dj | > 2sj , and finally, |B(x, r/2) ∩Dj | > |Dj |/2 > sj . Similarly to case 1, B(x, r/2) ∩Dj285

contains no points assigned during line 13– 16 of the algorithm. Moreover, B(x, r/2) ∩B(qj , 3r) ⊆286

Aj . In particular, B(x, r/2)∩Dj ⊆ Sj , a contradiction as |Sj | = sj but |B(x, r/2)∩Dj | > sj .287

4 Min and Max-IP Stable Clustering288

The Min-IP stable clustering aims to ensure that for any point x, the minimum distance to a point289

in the cluster of x is at most the minimum distance to a point in any other cluster. We show that a290

Min-IP stable k-clustering always exists for any value of k ∈ [n] and moreover, can be found by a291

simple algorithm (Algorithm 3).292

Algorithm 3 MIN-IP-CLUSTERING

1: Input: Pointset P = {x1, . . . , xn} from a metric space (M,d) and integer k with 2 ≤ k ≤ n.
2: Output: k-clustering C = (C1, . . . , Ck) of P .
3: L← {(xi, xj)}1≤i<j≤n sorted according to d(xi, xj)
4: E ← ∅
5: while G = (P,E) has > k connected components do
6: e← an edge e = (x, y) in L with d(x, y) minimal.
7: L← L \ {e}
8: if e connects different connected components of G then E ← E ∪ {e}
9: end while

10: return the connected components (C1, . . . , Ck) of G.

The algorithm is identical to Kruskal’s algorithm for finding a minimum spanning tree except that293

it stops as soon as it has constructed a forest with k connected components. First, it initializes a294

graph G = (V,E) with V = P and E = ∅. Next, it computes all distances d(xi, xj) between295

pairs of points (xi, xj) of P and sorts the pairs (xi, xj) according to these distances. Finally, it goes296

through this sorted list adding each edge (xi, xj) to E if it connects different connected components297

of G. After computing the distances, it is well known that this algorithm can be made to run in298

time O(n2 log n), so the total running time is O(n2(T + log n)) where T is the time to compute the299

distance between a single pair of points.300

Theorem 4.1. The k-clustering output by Algorithm 3 is a Min-IP stable clustering.301

Proof. Let C be the clustering output by the algorithm. Conditions (1) and (2) in the definition of a302

min-stable clustering are trivially satisfied. To prove that (3) holds, let C ∈ C with |C| ≥ 2 and x ∈ C.303

Let y0 ̸= x be a point in C such that (x, y0) ∈ E (such an edge exists because C is the connected304

component of G containing x) and let y1 be the closest point to x in P \ C. When the algorithm305

added (x, y0) to E, (x, y1) was also a candidate choice of an edge between connected components306

of G. Since the algorithm chose the edge of minimal length with this property, d(x, y0) ≤ d(x, y1).307

Thus, we get the desired bound:308

min
y∈C\{x}

d(x, y) ≤ d(x, y0) ≤ d(x, y1) = min
y∈P\C

d(x, y).

Theorem 4.2. The solution output by the greedy algorithm of k-center is a 3-approximate Max-IP309

stable clustering.310

Proof. To recall, the greedy algorithm of k-center (aka Gonzalez algorithm [15]) starts with an311

arbitrary point as the first center and then goes through k − 1 iterations. In each iteration, it picks a312

new point as a center which is furthest from all previously picked centers. Let c1, · · · , ck denote the313

selected centers and let r := maxv∈P d(v, {c1, · · · , ck}). Then, each point is assigned to the cluster314

of its closest center. We denote the constructed clusters as C1, · · · , Ck. Now, for every i ̸= j ∈ [k]315

and each point v ∈ Ci, we consider two cases:316

• d(v, ci) ≤ r/2.317

max
ui∈Ci

d(v, ui) ≤ d(v, ci) + d(ui, ci) ≤ 3r/2,

max
uj∈Cj

d(v, uj) ≥ d(v, cj) ≥ d(ci, cj)− d(v, ci). ≥ r/2
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• d(v, ci) > r/2.318

max
ui∈Ci

d(v, ui) ≤ d(v, ci) + d(ui, ci) ≤ 3d(v, ci),

max
uj∈Cj

d(v, uj) ≥ d(v, cj) ≥ d(v, ci).

In both cases, maxui∈Ci d(v, ui) ≤ 3maxuj∈Cj d(v, uj).319

5 Experiments320

While the goal and the main contributions of our paper are mainly theoretical, we also implement our321

optimal Min-IP clustering algorithm as well as extend the experimental results for IP stable clustering322

given in [1]. Our experiments demonstrate that our optimal Min-IP stable clustering algorithm is323

superior to k-means++, the strongest baseline in [1], and show that our IP clustering algorithm for324

average distances is practical on real world datasets and is competitive to k-means++ (which fails325

to find good stable clusterings in the worst case [1]). We give our experimental results for Min-IP326

stability and defer the rest of the empirical evaluations to Section C. All experiments were performed327

in Python 3. The results shown below are an average of 10 runs for k-means++.328

Metrics We measure the quality of a clustering using the same metrics used in [1] for standard-329

ization. Considering the question of f -IP stability (Definition 1.4), let the violation of a point x be330

defined as Vi(x) = maxCi ̸=C(x)
f(x,C(x)\{x})

f(x,Ci)
.331

For example, setting f(x,C) =
∑

y∈C d(x, y)/|C| corresponds to the standard IP stability objective332

and f(x,C) = miny∈C d(x, y) is the Min-IP formulation. Note point x is stable iff Vi(x) ≤ 1.333

We measure the extent to which a k-clustering C = (C1, . . . , Ck) of P is (un-)stable by comput-334

ing MaxVi = maxx∈P Vi(x) (i.e. maximum violation) and MeanVi =
∑

x∈P Vi(x)/|P | (mean335

violation).336

Results For Min-IP stability, we have an optimal algorithm; it always return a stable clustering for337

all k. We see in Figures 1 that for the max and mean violation metrics, our algorithm outperforms338

k-means++ by up to a factor of 5x, consistently across various values of k. k-means ++ can return a339

much worse clustering under Min-IP stability on real data, motivating the use of our theoretically-340

optimal algorithm in practice.341
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Figure 1: Maximum and mean violation for Min-IP stability for the Adult dataset, as used in [1];
lower values are better.

6 Conclusion342

We presented a deterministic polynomial time algorithm which provides an O(1)-approximate343

IP stable clustering of n points in a general metric space, improving on prior works which only344

guaranteed an O(n)-approximate IP stable clustering. We also generalized IP stability to f -stability345

and provided an algorithm which finds an exact Min-IP stable clustering and a 3-approximation for346

Max-IP stability, both of which hold for all k and in general metric spaces.347
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A Discussion on the Runtime of Algorithm 2412

We remark that the runtime of our O(1)-approximate IP-stable clustering algorithm can potentially413

be improved if we assume special structure about the metric space, such as a tree or Euclidean metric.414

In special cases, we can improve the running time by appealing to particular properties of the metric415

which allow us to either calculate distances or implement our subroutines faster. For example for416

tree metrics, all distances can be calculated in O(n2) time, even though T = O(n). Likewise for the417

Euclidean case, we can utilize specialized algorithms for computing the all pairs distance matrix,418

which obtain speedups over the naive methods [16], or use geometric point location data structures to419

quickly compute quantities such as |B(x, r)| [22]. Our presentation is optimized for simplicity and420

generality so detailed discussions of specific metric spaces are beyond the scope of the work.421

B Random Clustering in Unweighted Graphs422

In this appendix, we show that for unweigthed, undirected, graphs (where the distance d(u, v) between423

two vertices u and v is the length of the shortest path between them), randomly k-coloring the nodes424

gives an O(1)-approximate IP-stable clustering whenever k = O(n1/2/ log n).425

We start with the following lemma.426

Lemma B.1. Let γ = O(1) be a constant. There exists a constant c > 0 (depending on γ) such427

that the following holds: Let T = (V,E) be an unweighted tree on n nodes rooted at vertex428

r. Suppose that we randomly k-color the nodes of T . Let Vi ⊆ V be the nodes of color i, let429

Xi =
∑

v∈Vi
d(r, v), and let X =

∑
v∈V d(r, v). If k ≤ c

√
n

logn , then with probability 1−O(n−γ),430

it holds that X/2 ≤ kXi ≤ 2X for all i ∈ [k].431

Proof. We will fix i, and prove that the bound X/2 ≤ Xi ≤ 2X holds with probability 1−O(n−γ−1).432

Union bounding over all i then gives the desired result. Let ∆ = maxv∈V d(r, v) be the maximum433

distance from the root to any vertex of the tree. We may assume that ∆ ≥ 5 as otherwise the result434

follows directly from a simple Chernoff bound. Since the tree is unweighted and there exists a node v435

of distance ∆ to r, there must also exist nodes of distances 1, 2, . . . ,∆− 1 to r, namely the nodes on436

the path from r to v. For the remaining nodes, we know that the distance is at least 1. Therefore,437

∑
v∈V

d(r, v) ≥ (n−∆− 1) +

∆∑
j=1

j = n+

(
∆

2

)
− 1 ≥ n+

∆2

3
,

and so µi = E[Xi] ≥ n+∆2/3
k . Since the variables (d(r, v)[v ∈ Vi])v∈V sum to Xi and are indepen-438

dent and bounded by ∆, it follows by a Chernoff bound that for any 0 ≤ δ ≤ 1,439

Pr[|Xi − µi| ≥ δµi] ≤ 2 exp

(
−δ2µi

3∆

)
.

By the AM-GM inequality,440

µi

∆
≥ 1

k

(
n

∆
+

∆

3

)
≥ 2
√
n√
3k

.

Putting δ = 1/2, the bound above thus becomes441

Pr[|Xi − µi| ≥
µi

3
] ≤ 2 exp

(
−
√
n

6
√
3k

)
≤ 2 exp

(
−
√
n

11k

)
≤ 2n− 1

11c ,

where the last bound uses the assumption on the magnitude of k in the lemma. Choosing c = 1
11(γ+1) ,442

the desired result follows.443

Next, we state our result on the O(1)-approximate IP-stability for randomly colored graphs.444

12



Theorem B.2. Let γ = O(1) and k ≤ c
√
n

logn for a sufficiently small constant c. Let G = (V,E)445

be an unweighted, undirected graph on n nodes, and suppose that we k-color the vertices of G446

randomly. Let Vi denote the nodes of color i. With probability at least 1− n−γ , (V1, . . . , Vk) forms447

an O(1)-approximate IP-clustering.448

Proof. Consider a node u and let Xi =
∑

v∈Vi\{u} d(u, v). Node that the distances d(u, v) are449

exactly the distances in a breath first search tree rooted at v. Thus, by Lemma B.1, the Xi’s are all450

within a constant factor of each other with probability 1−O(n−γ−1). Moreover, a simple Chernoff451

bound shows that with the same high probability, |Vi| = n
k +O

(√
n logn

k

)
= Θ

(
n
k

)
for all i ∈ [k].452

In particular, the values Yi =
Xi

|Vi\{u}| for i ∈ [k] also all lie within a constant factor of each other453

which implies that u is O(1)-stable in the clustering (V1, . . . , Vk). Union bounding over all nodes u,454

we find that with probability 1−O(n−γ), (V1, . . . , Vk) is an O(1)-approximate IP-clustering.455

Remark B.3. The assumed upper bound on k in Theorem B.2 is necessary (even in terms of log n).456

Indeed, consider a tree T which is a star S on n−k log k vertices along with a path P of length k log k457

having one endpoint at the center v of the star. With probability Ω(1), some color does not appear on458

P . We refer to this color as color 1. Now consider the color of the star center. With probability at459

least 9/10, say, this color is different from 1 and appears Ω(log k) times on P with average distance460

Ω(k log k) to the star center v. Let the star center have color 2. With high probability, each color461

appears Θ(n/k) times in S. Combining these bounds, we find that with constant probability, the462

average distance from v to vertices of color 1 is O(1), whereas the average distance from v to vertices463

of color 2 is Ω
(
1 + k2(log k)2

n

)
. In particular for the algorithm to give an O(1)-approximate IP-stable464

clustering, we need to assume that k = O
( √

n
logn

)
.465

C Additional Empirical Evaluations466

We implement our O(1)-approximation algorithm for IP-clustering. These experiments extend those467

of [1] and confirm their experimental findings: k-means++ is a strong baseline for IP-stable clustering.468

Nevertheless, our algorithm is competitive with it while guaranteeing robustness against worst-case469

datasets, a property which k-means++ does not posses.470

Our datasets are the following. There are three datasets from [11] used in [1], namely, Adult,471

Drug [14], and IndianLiver. We also add two additional datasets from UCI Machine Learning472

Repository [11], namely, BreastCancer and Car. For IP-clustering, we also consider a synthetic473

dataset which is the hard instance for k-means++ given in [1].474

Our goal is to show that our IP-clustering algorithm is practical and in real world datasets, is475

competitive with respect to k-means++, which was the best algorithm in the experiments in [1].476

Furthermore, our algorithm is robust and outperform k-means++ for worst case datasets.477

As before, all experiments were performed in Python 3. We use the k-means++ implementation of478

Scikit-learn package [21]. We note that in the default implementation in Scikit-learn, k-means++ is479

initiated many times with different centroid seeds. The output is the best of 10 runs by default. As we480

want to have control of this behavior, we set the parameter n_init=1 and then compute the average481

of many different runs.482

Additionally to the metrics used in the main experimental section, we also compute the number483

of unstable points, defined as the size of the set U = {x ∈ M : x is not stable}. In terms of484

clustering qualities, we additionally measure three quantities. First, we measure “cost”, which485

is the average within-cluster distances. Formally, Cost =
∑k

i=1
1

(|Ci|
2 )

∑
x,y∈Ci,x ̸=y d(x, y). We486

then measure k-center costs, defined as the maximum distances from any point to its center. Here,487

centers are given naturally from k-means++ and our algorithm. Finally, k-means costs, defined as488

k-means-cost =
∑k

i=1
1

|Ci|
∑

x,y∈Ci,x ̸=y d(x, y)
2.489
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C.1 Hard Instance for k-means++ for IP-Stability490

We briefly describe the hard instance for k-means++ for the standard IP-stability formulation given491

in [1]; see their paper for full details. The hard instance consists of a gadget of size 4. In the seed-492

finding phase of k-means++, if it incorrectly picks two centers in the gadget, then the final clustering493

is not β-approximate IP-stable, where β is a configurable parameter. The instance for k-clustering is494

produced by concatenating these gadgets together. In such an instance, with a constant probability,495

the clustering returned by k-means++ is not β-approximate IP-stable and in particular. We remark496

that the proof of Theorem 2 in [1] easily implies that k-means++ cannot have an approximation factor497

better than nc for some absolute constant c > 0, i.e., we can insure β = Ω(nc). Here, we test both498

our algorithm and k-means++ in an instance with 8,000 points (for k = 2, 000 clusters).499

IP-Stability results We first discuss five real dataset. We tested the algorithms for the range of k500

up to 25. The result in Figures 2 and 3 is consistent with the experiments in the previous paper as we501

see that k-means++ is a very competitive algorithm for these datasets. For small number of clusters,502

our algorithm sometimes outperforms k-means++. We hypothesize that on these datasets, especially503

for large k, clusters which have low k-means cost separate the points well and therefore are good504

clusters for IP-stability.505

Next we discuss the k-means++ hard instance. The instance used in Figure 3 was constructed with506

β = 50. We vary k but omit the results for higher k values since the outputs from both algorithms are507

stable. We remark that the empirical results with different β gave qualitatively similar results. For508

maximum and mean violation, our algorithm outperforms k-means++ (Figure 3).509

D Future Directions510

There are multiple natural open questions following our work.511

• Note that in some cases, α-IP stable clusterings for α < 1 may exist. On the other hand, in512

the hard example on n = 4 from [1], we know that there some constant C > 1 such that513

no C-IP stable clutering exists. For a given input, let α∗ be the minimum value such that514

a α∗-IP stable clustering exists. Is there an efficient algorithm which returns an O(α∗)-IP515

stable clustering? Note that our algorithm satisfies this for α = Ω(1). An even stronger516

result would be to find a PTAS which returns a (1 + ε)α∗-IP stable clustering.517

• For what specific metrics (other than the line or tree metrics with k = 2) can we get 1-IP518

stable clusterings efficiently?519

• In addition to stability, it is desirable that a clustering algorithm also achieves strong global520

welfare guarantee. Our algorithm gives constant approximation for k-center. What about521

other metrics, such as k-means?522
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Figure 2: Experiment results on three datasets used in [1].

15



Figure 3: Additional experiment results on two real datasets and the synthetic dataset.
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