
SUPPLEMENTARY MATERIAL
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity

Characterization

A Detailed Proofs

A.1 Proof of Theorem 1

Proof. We first note that for any s > 0 and matrix A ∈ Rd×d we have det(sA) = sdA. Then,
log det(sI−W ◦W)−d log s = log(sd det(I−s−1W ◦W))−d log s = log det(I−s−1W ◦W).
Moreover, since W ∈Ws, we have that s > ρ(W ◦W) or equivalently 1 > ρ(s−1W ◦W). Thus,
in the sequel of the proof we set s = 1 w.l.o.g.

Item (ii). The gradient expression follows from standard matrix calculus [47]. From Lemma 2, it
follows thatW is an stationary point of hs=1

ldet(W), i.e.,∇hs=1
ldet(W) = 0, if and only ifW corresponds

to a DAG.

Item (i). From the item above, we characterized the stationary points of hs=1
ldet . Moreover, from

Proposition 1, we know that for any W ∈Ws, the gradient ∇hs=1
ldet is well-defined since I −W ◦W

is an M-matrix and, thus, its inverse exists. Finally, note that at the boundary of Ws, we have that
hs=1

ldet(W)→∞. From these observations, we have that the global minima of hs=1
ldet must be in the

interior of Ws and will correspond to the set of stationary points. Hence, DAGs are local and global
minima of hs=1

ldet .

We conclude by noting that if W is a DAG then we have det(I −W ◦W) = 1 and the equality
hs=1

ldet(W) = 0 holds immediately. Since DAGs are global minima, this implies that for all W ∈Ws

we have hs=1
ldet(W) ≥ 0.

A.2 Proof of Lemma 1

Proof. Item (i). The proof follows directly from the fact that the weighted adjacency matrix W of
any DAG is a nilpotent matrix. Since W ◦W is also a nilpotent matrix, its spectral radius is zero, i.e.,
ρ(W ◦W) = 0. Thus, for any s > 0, if W is a DAG then W ∈Ws.

Item (ii). Recall that a space X is path-connected if, for any two points x, y ∈ X , there exists a
continuous function (path) φ : [0, 1] → X such that φ(0) = x and φ(1) = y. Note that since the
d × d zero matrix, 0, has spectral radius zero, it clearly follows that 0 ∈ Ws for any s > 0. We
prove path-connectedness of Ws by showing that for any W ∈Ws there exist a path φ to 0. Then,
for any W ∈ Ws, define φ(t) = (1 − t)W . It is clear that φ is a continuous function on t, where
φ(0) = W ∈Ws and φ(1) = 0 ∈Ws. Now we need to show that φ(t) ∈Ws for all t ∈ (0, 1). Let
t1 be an arbitrary number in (0, 1), by the nonnegativity of W ◦W and by (1− t1)2 < 1, we have
that (1− t1)2W ◦W < W ◦W . Finally, by Perron-Frobenius theory on nonnegative matrices, we
have that ρ

(
(1− t1)2W ◦W

)
< ρ (W ◦W) < s, where the last inequality follows by W ∈ Ws,

which implies that φ(t1) ∈Ws. As the choice of t1 was arbitrary, we conclude the proof.

Item (iii). The proof follows immediately by the definition of Ws.

A.3 Proof of Lemma 2

Proof. First, recall that ∇hsldet(W) = 2(sI − W ◦ W)−> ◦ W . Second, since (sI − W ◦ W)
is an M-matrix, by Proposition 1, we have that (sI −W ◦W)−> ≥ 0. By the latter, whenever
[∇hsldet(W)]i,j 6= 0, we have that sign([∇hsldet(W)]i,j) = sign(Wi,j). Finally, from the series
expansion of the inverse we have:

(sI −W ◦W)−1 =
1

s
I +

1

s2
(W ◦W) +

1

s3
(W ◦W)2 + · · · ,

by taking the transpose, that implies that the i, j entry [(sI − W ◦ W)−>]i,j is nonzero if and
only if there exists a directed walk from j to i. By taking the Hadamard product, we have that
[(sI −W ◦W)−> ◦W]i,j is nonzero if and only if Wi,j 6= 0 and [(sI −W ◦W)−>]i,j 6= 0, i.e.,
there must exist a closed walk of the form i→ j i. Which concludes the proof.

A.4 Proof of Lemma 3

Proof. We use the Magnus-Neudecker convention [28] for calculating the Hessian. Then, by taking
differentials and vectorizing, we obtain:

∂(∇h(W)) = 2 ∂N> ◦W + 2 N> ◦ ∂W
vec(∂(∇h(W))) = 2 vec(∂N> ◦W) + 2 vec(N> ◦ ∂W)

= 2 Diag(vec(W))vec(∂N>) + 2 Diag(vec(N>))vec(∂W). (7)

Recall that N = (sI −W ◦W)−1, we now derive the expression for vec(∂N>),

vec(∂N>) = −(N ⊗N>) vec(∂(sI −W ◦W)>)

= 2 (N ⊗N>) vec(W> ◦ ∂W>)

= 2 (N ⊗N>) Diag(vec(W>))vec(∂W>)

= 2 (N ⊗N>) Diag(vec(W>))Kdd vec(∂W),

plugging in the last equality into eq.(7), we have

∇2h(W) =
∂ vec(∇h(W))

∂ vec(W)

= 4 Diag(vec(W))(N ⊗N>) Diag(vec(W>))Kdd + 2 Diag(vec(N>)),

which concludes the proof.

A.5 Proof of Lemma 4

Proof. The comparison between hexpm and hpoly is straightforward by looking at the coefficients of
their series expansions. Recall that, hexpm(W) =

∑∞
k=0

1/k! Tr((W ◦W)k)− d and hpoly(W) =∑d
k=0

(d
k)/dk Tr((W ◦W)k) − d. Since 1/k! ≥ (d

k)/dk, it is clear that hexpm(W) ≥ hpoly(W). To
prove that hs=1

ldet(W) ≥ hexpm(W), we use the fact that every square matrix has a Jordan canonical
form. Let W ◦W = Q−1JQ, where Q is an invertible matrix and J is in Jordan normal form (i.e.,
a block diagonal matrix with 1s in the super-diagonal), we have that Tr(eW◦W) = Tr(eJ). Let
Λ(W ◦W) be the set of distinct generalized eigenvalues of W ◦W , and mλ be the multiplicity
corresponding to λ ∈ Λ(W ◦W). Then, we have that

hexpm(W) = Tr(eW◦W)− d =
∑

λ∈Λ(W◦W)

mλ(eλ − 1).

From hs=1
ldet(W) we have,

hs=1
ldet(W) = − log det(I −W ◦W) =

∑
λ∈Λ(W◦W)

mλ(− log(1− λ)),

where log denotes the principal branch of the complex logarithm. For any complex λ, we have the
Taylor series:

eλ − 1 =

∞∑
k=1

λk

k!
, − log(1− λ) =

∞∑
k=1

λk

k
,

where both series converges precisely for all complex numbers |λ| ≤ 1, λ 6= 1, which is the case
as W ∈ Ws=1. From the latter, it is clear to see that hexpm(W) ≤ hs=1

ldet(W), which conludes the
proof.

16

A.6 Proof of Lemma 5

Proof. First let us write the gradients for the different acyclicity characterizations. Then, we have
∇hexpm(W) = 2(eW◦W)> ◦W , ∇hpoly(W) = 2((I + 1

dW ◦W)d−1)> ◦W , and ∇hs=1
ldet(W) =

2((I−W ◦W)−1)> ◦W . When taking absolute values, it is clear that they differ due to the left-hand
side of each Hadamard product. Thus, we need to look at the entries of: |eW◦W |, |(I+ 1

dW ◦W)d−1|,
and |(I −W ◦W)−1|. From their series expansions we have:

eW◦W =

∞∑
k=0

1

k!
(W ◦W)k,

(I +
1

d
W ◦W)d−1 =

d−1∑
k=0

(
d−1
k

)
(d− 1)k

(W ◦W)k,

(I −W ◦W)−1 =

∞∑
k=0

(W ◦W)k.

Since W ◦W is nonnegative, each power (W ◦W)k is also nonnegative. Therefore, by noting that
(d−1

k)/(d−1)k ≤ 1/k! ≤ 1 for all k, the statement follows.

A.7 Proof of Lemma 6

Proof. The proof follows by noting that at the limit of the central path (µ(t) → 0) we solve the
following problem:

θ̂ = arg min
θ

hsldet(W (θ)).

Then, by the invexity property of hsldet (see Corollary 3), it follows that the solution W (θ̂) must be a
DAG.

A.8 Proof of Corollary 1

Proof. For any W ∈Ws, from Lemma 2, we know that the nonzeros of∇hsldet(W) have the same
sign as the corresponding entries in W . Then, let Y = W − a∇hsldet(W) for a small value a such
that |Y | ≤ |W |. It follows that Y ◦ Y ≤W ◦W . Since Y ◦ Y and W ◦W are nonnegative matrices,
by Perron-Frobenius, we have that ρ(Y ◦ Y) ≤ ρ(W ◦W). The latter implies that Y ∈ Ws, thus,
the negative gradient, −∇hsldet, must point towards the interior of Ws.

A.9 Proof of Corollary 2

Proof. Given the Hessian expression in Lemma 3, the expressions for its entries follow by simple
algebraic manipulation. From the argument in the proof of Lemma 2 (see Apeendix A.3), we have
that Ni,j > 0 if and only if there exist a directed walk from i to j. By the latter, the signs and cycle
interpretations follow.

A.10 Proof of Corollary 3

Proof. Follows from Theorem 1.

B Additional Discussions

B.1 Additional Example for Section 3.1

In Figure 1, we provided an example of a two-node graph to visualize the properties of hldet. In Figure
7, we present another example for a three-node graph with three edges (parameters). Specifically, the

graph is parameterized by W =

0 w1 0
0 0 w2

0 w3 0

. Here note that for W to be a DAG at least one of

w2 or w3 must be zero.

17

Graph with 3 parameters

DAG with w2 = 0

DAG with w3 = 0

Figure 7: The curved manifolds represent the level sets of hs=1
ldet . The arrows represent the vector field

∇hs=1
ldet . The yellow plane represents DAGs where w2 = 0, while the cyan plane represents DAGs

where w3 = 0. Similar to Figure 1, we observe that the negative gradients point towards the interior
of Ws=1 and that DAGs are stationary points (attractors) of hs=1

ldet .

B.2 Further Details for Section 3.2

In this section, we expand the discussion given in Section 3.2

Argument (i). hsldet does not diminish cycles of any length. Let htinv(W) = Tr((I − W ◦
W)−1) =

∑∞
k=0 Tr((W ◦ W)k) − d. We note that htinv is another acyclicity characterization,

previously considered by Zheng et al. [58]. From its series expansion, the reader might wonder if
simply considering htinv(W) would be a better alternative than hldet(W), hexpm(W), and hpoly(W).
The answer is no: While this alternative characterization does not suffer from the dimishing cycle
problem, it is prone to numerical instability, which was already noted in [58]. This numerical
instability is mainly due to the exploding gradients of Tr((I −W ◦W)−1), which we discuss in our
next argument.
Argument (ii). hsldet has better behaved gradients. Let us write the gradients of the different
acyclicity characterizations. We have:

∇hexpm(W) = 2(eW◦W)> ◦W, ∇hpoly(W) = 2((I +
1

d
W ◦W)d−1)> ◦W,

∇htinv(W) = 2((I −W ◦W)−2)> ◦W, ∇hsldet(W) = 2((sI −W ◦W)−1)> ◦W.
From the series expansion for (I −W ◦W)−2 we obtain:

(I −W ◦W)−2 =

∞∑
k=0

(k + 1)(W ◦W)k.

Then,∇htinv is numerically unstable whenever W ◦W has walks of moderate weight since all walks
of length k are now weighted by k+ 1, thus, being prone to exploding gradients. Similar to argument
(i), we have the following series expansions:

eW◦W =

∞∑
k=0

1

k!
(W ◦W)k, (I +

1

d
W ◦W)d−1 =

d−1∑
k=0

(
d−1
k

)
(d− 1)k

(W ◦W)k,

18

and

(sI −W ◦W)−1 =

∞∑
k=0

1

sk+1
(W ◦W)k.

One can observe that for s = 1, the gradient of the log-determinant weights equally all cycles of any
length, whereas ∇hexpm and ∇hpoly are again susceptible to the vanishing cycle problem and, thus,
they might suffer from vanishing gradients. The plot in Figure 2 shows how the gradients of hexpm

and hpoly decay at a very fast rate as the cycle graph has more nodes.

Argument (iii). Computing hsldet and∇hsldet is empirically faster. In Figure 3, we compared the
runtimes of hsldet, hexpm and hpoly for randomly generated matrices. We used the benchmarking
library from PyTorch for better runtime estimates over single threads. Experiments were conducted
on an Intel Xeon processor E5 v4 with 2.40 GHz frequency.
The reason that computing hsldet and∇hsldet is faster is that it involves computing a log-determinant
and a matrix inverse respectively, and both of these problems enjoy the large body of work on
optimized libraries for matrix factorizations (e.g., LU decomposition) and linear-system solvers. In
contrast, computing hexpm relies on a truncated Taylor series of the exponential whose degree is
typically estimated using scaling [22, 1], and this requires several matrix-matrix multiplications. The
matrix exponential is also a notoriously tricky object to compute [33]. Similar to hexpm, computing
hpoly also requires several matrix-matrix multiplications and, thus, both attain similar performances.

C Detailed Experiments

Computing. All experiments were conducted on an 8-core Intel Xeon processor E5-2680v4 with
2.40 GHz frequency, and 32GB of memory. Each experiment had a wall time of 36 hours.

Graph Models. Each simulation in our experiments samples a graph from two well-known random
graph models:

• Erdos-Rényi (ER) graphs: These are random graphs whose edges are added independently
with equal probability. We use the notation ERk to indicate that the graph model is an ER
graph with kd edges in expectation.

• Scale-free (SF) graphs: These are random graphs simulated according to the preferential
attachment process [4]. We use the notation SFk to indicate that the graph model is an
SF graph with kd edges in expectation and β = 1, where β is the exponent used in the
preferential attachment process. It is worth noting that since we consider directed graphs,
this particular model corresponds to Price’s model, a classical graph model for the growth
of citation networks

Note that ER graphs are random undirected graphs. To produce a DAG, we draw a random permuta-
tion of numbers from 1 to d and orient the edges respecting this vertex ordering. For the case of SF
graphs, the edges are oriented each time a new node is attached, thus, the sampled graph is a DAG.
Once the ground-truth DAG is generated, we need to simulate the structural equation model, where
we provide experiments for linear and nonlinear SEMs.

Remark 4. It is worth noting that the experimental settings by Zheng et al. [58, 59] consider graph
models such as ER1, ER2, ER4, SF1, SF2, and SF4. Here we mainly focus in the hardest settings,
that is, ER4 and SF4.

Metrics. We evaluate the performance of each algorithm with the following four metrics:

• Structure Hamming distance (SHD): A standard measurement for structure learning that
counts the total number of edges additions, deletions, and reversals needed to convert the
estimated graph into the true graph.

• True Positive Rate (TPR): Measures the proportion of correctly identified edges with
respect to the total number of edges in the ground-truth DAG.

• False Positive Rate (FPR): Measures the proportion of incorrectly identified edges with
respect to the total number of absent edges in the ground-truth DAG.

19

• Runtime: Measures how much time the algorithm takes to run, we use it to measure the
speed of the algorithms.

Remark 5. Consistent with previous work in this area (e.g. NOTEARS and its follow-ups), we have
not performed any hyperparameter optimization: This is to avoid presenting unintentionally biased
results. As a concrete example, for each of the following SEM settings, we simply chose a reasonable
value for the `1 penalty coefficient and used that same value for all ER and SF graphs across many
different numbers of nodes.

C.1 SEM: Linear Setting

In the linear case, the functions fj in (1) are directly parameterized by the weighted adjacency matrix
W . That is, we have the following set of equations:

Xj = w>j X + Zj ,

where W = [w1 | · · · |wd] ∈ Rd×d, and Zj ∈ R represents the noise. Here W encodes the graphical
structure, i.e., there is an edge Xk → Xj if and only if Wk,j 6= 0.

Then, given the ground-truth DAG B ∈ {0, 1}d×d from one of the two graph models ER or SF, we
assigned edge weights independently from Unif

(
[−2,−0.5] ∪ [0.5, 2]

)
to obtain a weight matrix

W ∈ Rd×d. Given W , we sampled X = W>X + Z ∈ Rd according to the following three noise
models:

• Gaussian noise: Zj ∼ N (0, 1),∀j ∈ [d].
• Exponential noise: Zj ∼ Exp(1),∀j ∈ [d].
• Gumbel noise: Zj ∼ Gumbel(0, 1),∀j ∈ [d].

Based on these models, we generated random datasets X ∈ Rn×d by generating the rows i.i.d. ac-
cording to one of the models above. For each simulation, we generated n = 1000 samples, unless
otherwise stated.

To measure the quality of a model, we use the least-square loss

Q(W ;X) =
1

2n
‖X−XW‖2F , (8)

where ‖·‖F denotes the Frobenius norm. The coefficient β1 used for `1 regularization, and other
parameters required for DAGMA (see Algorithm 1), are later specified for each figure.

The implementation details of the baselines are listed below:

• GES (specifically, the FGES algorithm in [48]) and PC [51] are standard baselines for
structure learning. Their implementation is based on the py-causal package, available
at https://github.com/bd2kccd/py-causal. The exact set of hyperparameters
used are:

– For PC: testId = ‘fisher-z-test’, depth = 3, fasRule = 2,
dataType = ‘continuous’, conflictRule = 1, concurrentFAS
= True, useMaxPOrientationHeuristic = True.

– For GES: scoreId = ‘cg-bic-score’, maxDegree = 5, dataType
= ‘continuous’,
faithfulnessAssumed = False.

• The NOTEARS method in Zheng et al. [58] was implemented using the author’s Python
code available at: https://github.com/xunzheng/notears. Its score function
is also the least square as defined in eq.(8). For the `1 coefficient, for a fair comparison, we
use the same value used for DAGMA. For the rest of hyperparameters, we use their default
values.

• The GOLEM method in Ng et al. [37] was implemented using the author’s Python and
Tensorflow code available at: https://github.com/ignavierng/golem. Here
we use their default set of hyperparameters, that is, λ1 = 0.02 and λ2 = 5, for other details
of their method we refer the reader to Appendix F of Ng et al. [37].

20

https://github.com/bd2kccd/py-causal
https://github.com/xunzheng/notears
https://github.com/ignavierng/golem

C.1.1 Small to Moderate Number of Nodes

Following the aforementioned process to generate data, in this section, we test the methods for
graphs with number of variables d ∈ {20, 30, 50, 80, 100}. We use the following setting for DAGMA
(Algorithm 1): Number of iterations T = 4, initial central path coefficient µ(0) = 1, decay factor
α = 0.1, `1 coefficient β1 = 0.05, log-det parameter s = {1, .9, .8, .7}. For each problem in line 3
of Algorithm 1, we implement an adaptive gradient method using the ADAM optimizer [24]. The
hyperparameters for ADAM are: Learning rate of 3 × 10−4, and (β1, β2) = (0.99, 0.999). For
t = {0, 1, 2}, we run ADAM for 2× 104 iterations or until the loss converges, whichever comes first.
For t = 3, we run ADAM for 7× 104 iterations or until the loss converges, whichever comes first.
We consider that the loss converges if the relative error between subsequent iterations is less than
10−6. Finally, as in previous work including the baseline methods [58, 59, 37], a final thresholding
step is performed as it was shown to help reduce the number of false discoveries. For all cases, we
use a threshold of 0.3.

The results for different graph models (ER4, SF4), and different noise distributions (Gaussian,
Gumbel, exponential), are shown in Figure 8. In Table 1, we average the SHDs and runtimes across
graph and noise types, for the competitive methods. Here we note in particular that for d = 100,
DAGMA obtains an improvement of 74.9% and 76.5% in SHD against GOLEM and NOTEARS,
respectively; also, DAGMA runs 7.7 and 19.1 times faster than GOLEM and NOTEARS, respectively.
Finally, we note that DAGMA performs much better than GOLEM besides the latter being tailored to
linear Gaussian models.

Table 1: Summary of performances (SHD and runtime) of the most competitive methods. Each
metric was averaged across different graph and noise types. Finally, the errors denote 95% confidence
intervals on 10 repetitions.

Method d SHD Runtime (seconds)

DAGMA

20 6.78±1.64 6.54± 0.42
30 11.05±2.50 8.99± 0.62
50 12.03±3.42 16.88±0.98
80 13.92±4.44 41.55±3.30
100 17.80±5.72 59.36±4.80

GOLEM

20 4.28±1.38 154.64±2.50
30 9.48±3.10 177.21±5.62
50 19.60±7.30 231.53±3.58
80 33.68±12.87 324.41±7.10
100 70.95±26.11 458.94±8.62

NOTEARS

20 10.53±1.58 32.41±3.72
30 22.70±6.04 104.76±20.43
50 34.82±7.96 278.13±40.14
80 52.22±13.49 640.95±89.24
100 75.87±13.97 1129.10±120.74

C.1.2 Large Number of Nodes

In this section, we test DAGMA, GOLEM, and NOTEARS for graphs with number of variables
d ∈ {200, 300, 500, 800, 1000}. We do not test PC and GES as they are not competitive in terms of
accuracy, as shown in Figure 8. We follow the same setting for DAGMA given in Section C.1.1.

The results for different graph models (ER4, SF4), and different noise distributions (Gaussian,
Gumbel, exponential), are shown in Figure 9. In Table 2, we average the SHDs and runtimes across
graph and noise types. Here we note in particular that for d = 800, DAGMA obtains an improvement
of 90.2% and 65.5% in SHD against GOLEM and NOTEARS, respectively; also, DAGMA runs
6.2 and 25 times faster than GOLEM and NOTEARS, respectively. For d = 1000, we observe
that NOTEARS takes more than 36 hours, which is the reason we could not report its performance.
Finally, we note that once again DAGMA performs much better than GOLEM besides the latter being
tailored to linear Gaussian models.

21

ER4 SF4

E
xponential

G
aussian

G
um

bel
20 40 60 80 100 20 40 60 80 100

1

3

10

30

100

300

1

3

10

30

100

300

3
5

10

30
50

100

300

5

10

30
50

100

300
500

5

10

30
50

100

300
500

3
5

10

30
50

100

300
500

d (number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

ER4 SF4

E
xponential

G
aussian

G
um

bel

20 40 60 80 100 20 40 60 80 100

1

3

10

30

100

300

1

3

10

30

100

300

1000

1

3

10

30

100

300

1000

1

3

10

30

100

300

1000

1

3

10

30

100

300

1000

1

3

10

30

100

300

1000

d (number of nodes)

R
un

tim
e

(s
ec

on
ds

)

ER4 SF4

E
xponential

G
aussian

G
um

bel

20 40 60 80 100 20 40 60 80 100

20

30

40

50

60

70

80

90

100

20

30

40

50

60

70

80

90

100

20

30

40

50

60

70

80

90

100

10
20
30
40
50
60
70
80
90

100

10
20
30
40
50
60
70
80
90

100

10
20
30
40
50
60
70
80
90

100

d (number of nodes)

Tr
ue

 P
os

ite
 R

at
e

(%
)

ER4 SF4

E
xponential

G
aussian

G
um

bel

20 40 60 80 100 20 40 60 80 100

0
5

10
15
20
25
30
35
40

0

10

20

30

40

0

10

20

30

40

50

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

d (number of nodes)

Fa
ls

e
D

is
co

ve
ry

 R
at

e
(%

)

Methods DAGMA NOTEARS GOLEM PC GES

Figure 8: SHD, Runtime, TPR and FDR of all methods for different graph types (ER4, SF4) and
different noise types (Gaussian, Gumbel, exponential). In all cases, lower is better except for the TPR.
Error bars represent standard errors over 10 simulations. More details are given in Section C.1.1, and
a summary is provided in Table 1.

C.1.3 DAGMA vs GOLEM in Sparser Graphs

We note that in the work by Ng et al. [37], the authors performed experiments on large number
of nodes only for ER2 graphs, that is, sparser graphs. It was reported in Ng et al. [37] that their

22

Table 2: Summary of performances (SHD and runtime) of the most competitive methods. Each
metric was averaged across different graph and noise types. Finally, the errors denote 95% confidence
intervals on 10 repetitions.

Method d SHD Runtime (hours)

DAGMA

200 37.77±8.80 0.06± 0.00
300 86.65±19.63 0.13± 0.00
500 211.68±78.88 0.37±0.02
800 285.90±56.89 1.15±0.06

1000 473.70±101.63 2.09±0.08

GOLEM

200 215.68±66.91 0.32±0.00
300 552.72±113.60 0.73±0.02
500 1390.43±213.77 2.32±0.04
800 2919.14±191.38 7.13±0.10

1000 4083.03±157.58 12.50±0.22

NOTEARS

200 105.58±24.19 1.28±0.14
300 217.73±48.30 3.42±0.28
500 441.72±93.01 10.84±0.62
800 829.08±118.10 28.79±1.22

1000 − > 36

GOLEM method performed reasonably well for large number of nodes. However, as shown in
Figure 9, for denser graphs such as ER4 and SF4, the performance of GOLEM degrades very fast
as d increases. In this section, we experiment with the same graph model as in [37], i.e., ER2,
for d ∈ {200, 300, 500, 800, 1000, 2000}We note that even though GOLEM is competitive in this
regime, DAGMA still obtains significant improvements.

DAGMA was run under the same setting described in Section C.1.1. The results are reported in
Figure 10. Here we note in particular that for d = 1000, DAGMA obtains an improvement of 22.5%
in SHD, and runs 8.5 times faster than GOLEM, even though the latter is customized for linear
models. For d = 2000, GOLEM took more than 36 hours per simulation, hence, we could not report
its performance.
C.1.4 DAGMA vs NOTEARS and GOLEM in Denser Graphs
For completeness, we run experiments on a denser graph type such as ER6 with Gaussian noise,
for d ∈ {20, 40, 60, 80, 100}. DAGMA was run under the same setting described in Section C.1.1.
The results are reported in Figure 11. Here we note in particular that for d = 100, DAGMA obtains
an improvement of 73.1% and 44.5% in SHD against GOLEM and NOTEARS, respectively; also,
DAGMA runs 4.8 and 20.6 times faster than GOLEM and NOTEARS, respectively. Finally, we note
that even in the regime of small number of variables, GOLEM’s performance degrades very fast for
denser graphs, while DAGMA’s performance remains the best among the three methods.

C.2 SEM: Non-Linear Setting

C.2.1 Logistic Model

Given the ground-truth DAG B ∈ {0, 1}d×d from an ER4 graph, we assigned edge weights inde-
pendently from Unif

(
[−2,−0.5] ∪ [0.5, 2]

)
to obtain a weight matrix W ∈ Rd×d. Given W , we

sampled Xj = Bernoulli(exp(w>j X)/(1 + exp(w>j X))),∀j ∈ [d]. Based on this model, we gener-
ated random datasets X ∈ Rn×d by generating the i.i.d. rows. For each simulation, we generated
n = 5000 samples for graphs with d ∈ {20, 40, 60, 80, 100, 200, 400, 600, 800, 1000} nodes.

To measure the quality of a model, we use the log-likelihood loss

Q(f,X) =
1

n

d∑
i=1

1>n
(
log(1n + exp(fi(X)))− xi ◦ fi(X)

)
. (9)

The implementation details of the baselines are listed below:

23

ER4 SF4

E
xponential

G
aussian

G
um

bel
200 400 600 800 1000 200 400 600 800 1000

10

30
50

100

300
500

1000

3000
5000

5
10

30
50

100

300
500

1000

3000
5000

10

30
50

100

300
500

1000

3000
5000

50

100

200
300
500

1000

2000
3000
5000

100

200
300
500

1000

2000
3000
5000

50

100

200
300
500

1000

2000
3000
5000

d (number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

ER4 SF4

E
xponential

G
aussian

G
um

bel

200 400 600 800 1000 200 400 600 800 1000

0.05
0.10

0.30
0.50
1.00

3.00
5.00

10.00

30.00

0.05
0.10

0.30
0.50
1.00

3.00
5.00

10.00

30.00

0.05
0.10

0.30
0.50
1.00

3.00
5.00

10.00

30.00

0.05
0.10

0.30
0.50
1.00

3.00
5.00

10.00

30.00

0.05
0.10

0.30
0.50
1.00

3.00
5.00

10.00

30.00

0.1

0.3
0.5
1.0

3.0
5.0

10.0

30.0

d (number of nodes)

R
un

tim
e

(h
ou

rs
)

ER4 SF4

E
xponential

G
aussian

G
um

bel

200 400 600 800 1000 200 400 600 800 1000

20

30

40
50
60
70
80

100

20

30

40
50
60
70
80

100

20

30

40

50
60
70
80

100

20

30

40

50
60
70
80

100

20

30

40

50
60
70
80

100

20

30

40

50
60
70
80

100

d (number of nodes)

Tr
ue

 P
os

ite
 R

at
e

(%
)

ER4 SF4

E
xponential

G
aussian

G
um

bel

200 400 600 800 1000 200 400 600 800 1000

0.3
0.5
1.0

3.0
5.0

10.0

30.0
50.0

0.3
0.5
1.0

3.0
5.0

10.0

30.0
50.0

0.5

1.0

2.0
3.0
5.0

10.0

20.0
30.0
50.0

3

5
7

10

20

30

50
70

4
5
7

10

20

30
40
50
70

5
7

10

20

30
40
50
70

d (number of nodes)

Fa
ls

e
D

is
co

ve
ry

 R
at

e
(%

)

Methods DAGMA NOTEARS GOLEM

Figure 9: SHD, Runtime, TPR and FDR of competitive methods for different graph types (ER4, SF4)
and different noise types (Gaussian, Gumbel, exponential). In all cases, lower is better except for
the TPR. Error bars represent standard errors over 10 simulations. More details are given in Section
C.1.2, and a summary is provided in Table 2.

• GES (specifically, the FGES algorithm in [48]) and PC [51] are standard baselines for
structure learning. Their implementation is based on the py-causal package, available
at https://github.com/bd2kccd/py-causal. The exact set of hyperparameters
used are:

24

https://github.com/bd2kccd/py-causal

ER2

G
aussian

200 400 600 800 1000 2000
0

20

40

60

80

100

120

140

d (number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

ER2

G
aussian

200 400 600 800 1000 2000

0

2

4

6

8

10

12

d (number of nodes)

R
un

tim
e

(h
ou

rs
)

ER2

G
aussian

200 400 600 800 1000 2000

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

d (number of nodes)

Tr
ue

 P
os

ite
 R

at
e

(%
)

ER2

G
aussian

200 400 600 800 1000 2000

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d (number of nodes)

Fa
ls

e
D

is
co

ve
ry

 R
at

e
(%

)

Methods DAGMA GOLEM

Figure 10: SHD, Runtime, TPR and FDR of DAGMA and GOLEM for a graph type ER2 with
Gaussian noise. In all cases, lower is better except for the TPR. Error bars represent standard errors
over 10 simulations. More details are given in Section C.1.3

ER6

G
aussian

20 40 60 80 100
0

100

200

300

400

500

600

700

d (number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

ER6

G
aussian

20 40 60 80 100

10

30

50

100

300

500

1000

d (number of nodes)

R
un

tim
e

(s
ec

on
ds

)

ER6

G
aussian

20 40 60 80 100

30

40

50

60

70

80

90

d (number of nodes)

Tr
ue

 P
os

ite
 R

at
e

(%
)

ER6

G
aussian

20 40 60 80 100

10

20

30

40

50

60

d (number of nodes)

Fa
ls

e
D

is
co

ve
ry

 R
at

e
(%

)

Methods DAGMA NOTEARS GOLEM

Figure 11: SHD, Runtime, TPR and FDR of DAGMA, GOLEM, and NOTEARS for a graph type
ER6 with Gaussian noise. In all cases, lower is better except for the TPR. Error bars represent
standard errors over 10 simulations. More details are given in Section C.1.4

25

ER4

Logistic

20 40 60 100 200 600 1000

30

50
70

100

200

300

500
700

1000

2000

d (number of nodes)
S

tr
uc

tu
ra

l H
am

m
in

g
D

is
ta

nc
e

ER4

Logistic
20 40 60 100 200 600 1000

1e−03

1e−02

1e−01

1e+00

1e+01

d (number of nodes)

R
un

tim
e

(h
ou

rs
)

ER4

Logistic
20 40 60 100 200 600 1000

25

30

35

40

45

50

55

60

65

70

75

80

d (number of nodes)

Tr
ue

 P
os

ite
 R

at
e

(%
)

ER4

Logistic

20 40 60 100 200 600 1000

0

5

10

15

20

25

30

35

40

45

50

55

d (number of nodes)
Fa

ls
e

D
is

co
ve

ry
 R

at
e

(%
)

Methods DAGMA NOTEARS PC GES

Figure 12: SHD, Runtime, TPR and FDR of all methods for a graph type ER4 and logistic model. In
all cases, lower is better except for the TPR. Error bars represent standard errors over 10 simulations.
More details are given in Section C.2.1

– For PC: testId = ‘disc-bic-test’, depth = 4, fasRule = 2,
dataType = ‘discrete’, conflictRule = 1, concurrentFAS =
True, useMaxPOrientationHeuristic = True.

– For GES: scoreId = ‘bdeu-score’, maxDegree = 5, dataType =
‘discrete’,
faithfulnessAssumed = False.

• The NOTEARS method in Zheng et al. [58] was implemented using the author’s Python code
available at: https://github.com/xunzheng/notears. Its score function is also
the log-likelihood loss as defined in eq.(9). For the `1 coefficient, for a fair comparison, we
use the same value used for DAGMA. For the rest of hyperparameters, we use their default
values.

We use the following setting for DAGMA (Algorithm 1): Number of iterations T = 4, initial central
path coefficient µ(0) = 10, decay factor α = 0.1, `1 coefficient β1 = 0.01, log-det parameter
s = {1, .9, .8, .7}. For each problem in line 3 of Algorithm 1, we implement an adaptive gradient
method using the ADAM optimizer [24]. The hyperparameters for ADAM are: Learning rate of
3× 10−4, and (β1, β2) = (0.99, 0.999). For t = {0, 1, 2}, we run ADAM for 104 iterations or until
the loss converges, whichever comes first. For t = 3, we run ADAM for 5× 104 iterations or until
the loss converges, whichever comes first. We consider that the loss converges if the relative error
between subsequent iterations is less than 10−6. Finally, as in [58, 59, 37], a final thresholding step is
performed as it was shown to help reduce the number of false discoveries. For all cases, we use a
threshold of 0.3.

The results are shown in Figure 12. We note that for d = 1000, DAGMA obtains an improvement
of 60% in SHD and runs 4.8 times faster than NOTEARS. Finally, we note that GOLEM is not
considered for the nonlinear models as it only works for linear ones.

26

https://github.com/xunzheng/notears

Neural Networks

E
R

4
S

F
4

20 40 60 80 100

20

40

60

80

100

50

100

150

200

d (number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

Neural Networks

E
R

4
S

F
4

20 40 60 80 100

10

20
30
50

100

200

5

10

20
30
50

100

200

d (number of nodes)

R
un

tim
e

(m
in

ut
es

)

Neural Networks

E
R

4
S

F
4

20 40 60 80 100

77
78
79
80
81
82
83

60

65

70

75

d (number of nodes)

Tr
ue

 P
os

ite
 R

at
e

(%
)

Neural Networks

E
R

4
S

F
4

20 40 60 80 100

5

6

7

8

9

5

10

15

20

25

d (number of nodes)

Fa
ls

e
D

is
co

ve
ry

 R
at

e
(%

)

Methods DAGMA NONLINEAR NOTEARS

Figure 13: SHD, Runtime, TPR and FDR of all methods for a graph type ER4 and logistic model. In
all cases, lower is better except for the TPR. Error bars represent standard errors over 10 simulations.
More details are given in Section C.2.2

C.2.2 Neural Network Model

We mainly follow the nonlinear setting of Zheng et al. [59]. That is, given a ground-truth graph G,
we simulate the SEM:

Xj = fj(Xpa(j)) + Zj ,∀j ∈ [d],

where Zj ∼ N (0, 1) is a standard Gaussian noise. Here fj is a randomly initialized multilayer
perceptron (MLP) with one hidden layer of size 100 and sigmoid activation. Similar to previous
experiments, we generate a dataset X ∈ Rn×d, with n = 1000 i.i.d. samples.

For this setting, we only compare to NONLINEAR NOTEARS [59]. We refer the reader to [59] for a
comprehensive comparison with other baselines. For NONLINEAR NOTEARS and DAGMA, each
fθ is modeled by a MLP with one hidden layer of size 10 and sigmoid activation. In contrast to the
original implementation of NONLINEAR NOTEARS [59] which uses the square loss, we use the
log-likelihood as in [9] as we observe better performances for both methods.

We use the following setting for DAGMA (Algorithm 1): Number of iterations T = 4, initial central
path coefficient µ(0) = 0.1, decay factor α = 0.1, `1 coefficient β1 = 0.02, log-det parameter
s = 1. For each problem in line 3 of Algorithm 1, we implement an adaptive gradient method
using the ADAM optimizer [24]. The hyperparameters for ADAM are: Learning rate of 2× 10−4,
and (β1, β2) = (0.99, 0.999). For t = {0, 1, 2}, we run ADAM for 7 × 104 iterations or until the
loss converges, whichever comes first. For t = 3, we run ADAM for 8 × 104 iterations or until
the loss converges, whichever comes first. We consider that the loss converges if the relative error
between subsequent iterations is less than 10−6. Finally, as in [58, 59, 37], a final thresholding step is
performed as it was shown to help reduce the number of false discoveries. For all cases, we use a
threshold of 0.3.

The results are shown in Figure 13. We note that DAGMA and NOTEARS obtain similar performances
in SHD; however, DAGMA can obtain 3x to 10x speedups over NONLINEAR NOTEARS. Finally,
we note that GOLEM is not considered for the nonlinear models as it only works for linear ones.

27

D Broader Impacts

A potential misuse of this type of work would be to purposely (or not) run the method proposed
on a dataset that is biased. Since we do not formally deal with inherent biases in the dataset (e.g.,
unfairness due to selection bias), it is possible to learn relationships that are not present in reality.
A user can then (un)intentionally report a result incorrectly claiming to have found the cause of a
certain variable, thus, creating misinformation.

28

	Introduction
	Related work

	Notation and background
	A new characterization of acyclicity via log-determinant and M-matrices
	Properties of hldets(W)
	Why the log-determinant regularizer is preferable to existing acyclicity regularizers

	Optimization
	Practical Considerations

	Experiments
	Final Remarks
	Detailed Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3

	Additional Discussions
	Additional Example for Section 3.1
	Further Details for Section 3.2

	Detailed Experiments
	SEM: Linear Setting
	Small to Moderate Number of Nodes
	Large Number of Nodes
	DAGMA vs GOLEM in Sparser Graphs
	DAGMA vs NOTEARS and GOLEM in Denser Graphs

	SEM: Non-Linear Setting
	Logistic Model
	Neural Network Model

	Broader Impacts

