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ABSTRACT

Generative models must ensure both privacy and fairness for Trustworthy AI.
While these goals have been pursued separately, recent studies propose to combine
existing privacy and fairness techniques to achieve both goals. However, naı̈vely
combining these techniques can be insufficient due to privacy-fairness conflicts,
where a sample in a minority group may be represented in ways that support
fairness, only to be suppressed for privacy. We demonstrate how these conflicts
lead to adverse effects, such as privacy violations and unexpected fairness-utility
tradeoffs. To mitigate these risks, we propose PFGuard, a generative framework
with privacy and fairness safeguards, which simultaneously addresses privacy,
fairness, and utility. By using an ensemble of multiple teacher models, PFGuard
balances privacy-fairness conflicts between fair and private training stages and
achieves high utility based on ensemble learning. Extensive experiments show
that PFGuard successfully generates synthetic data on high-dimensional data while
providing both DP guarantees and convergence in fair generative modeling.

1 INTRODUCTION

Recently, generative models have shown remarkable performance in various applications including
vision (Wang et al., 2021b) and language tasks (Brown et al., 2020), while also raising significant
ethical concerns. In particular, privacy and fairness concerns have emerged as generative models
aim to mimic their training data. On the privacy side, specific training data can be memorized,
allowing the leakage of personal sensitive information (Hilprecht et al., 2019; Sun et al., 2021). On
the fairness side, any bias in the training data can be learned, resulting in biased synthetic data and
unfair downstream performances across demographic groups (Zhao et al., 2018; Tan et al., 2020).

Although privacy and fairness are both essential for generative models, previous research has primarily
tackled them separately. Differential Privacy (DP) techniques (Dwork et al., 2014), which provide
rigorous privacy guarantees, have been developed for private generative models (Xie et al., 2018;
Jordon et al., 2018); various fair training techniques, which remove data bias and generate more
balanced synthetic data, have been proposed for fair generative models (Xu et al., 2018; Choi et al.,
2020). To achieve both objectives, harnessing these techniques has emerged as a promising direction.
For example, Xu et al. (2021) combine a fair pre-processing technique (Celis et al., 2020) with a
private generative model (Chanyaswad et al., 2019) to train both fair and private generative models.
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Figure 1: Privacy-fairness conflict. Privacy techniques
prefer the left-hand scenario to prevent privacy risk of a
certain data sample, while fairness techniques prefer the
right-hand scenario to balance learning w.r.t. groups.

However, we contend that naı̈vely com-
bining developed techniques for privacy
and fairness can lead to a worse privacy-
fairness-utility tradeoff, where utility is a
model’s ability to generate realistic syn-
thetic data. We first illustrate how privacy
and fairness can conflict in Fig. 1. Given
the data samples M1, M2, M3, and m1

where M and m denote the majority and
minority data groups, respectively, DP and
fairness techniques play a tug-of-war re-
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Figure 2: Overview of PFGuard. PFGuard integrates fairness and privacy into generative models
through a two-stage process. In the fair training stage (blue), we train fair teacher models by sampling
balanced mini-batches from biased data partitions. In the private training stage (red), we aggregate
the teacher outputs with random noise to ensure Differential Privacy (DP). After training, only the
trained DP generator is publicly released, safeguarding the privacy of all other components (e.g., the
teacher ensemble). Through these training stages, PFGuard not only ensures fairness and privacy but
also achieves high utility by leveraging ensemble learning of teacher models – resulting in unbiased,
private, and high-quality synthetic data. More details on the framework are presented in Sec. 4.

garding the use of minority data point m1; DP techniques limit its use to prevent privacy risks such as
memorization, while fairness techniques increase its use to promote more balanced learning w.r.t.
groups given the biased data. As a result, fairness techniques may undermine privacy by overusing
m1, while DP techniques may undermine fairness by limiting m1’s usage. Moreover, combining
different techniques can introduce new technical constraints, reducing the effectiveness of original
methods. For instance, the fair preprocessing technique used by Xu et al. (2021) hinders the utility of
the DP generative model by requiring data binarization, which incurs significant information loss
on high-dimensional data such as images – restricting their overall framework only applicable to
low-dimensional structural data.

Therefore, we design a generative framework that simultaneously addresses fairness and privacy
while achieving utility for high-dimensional synthetic data generation. To this end, we propose
PFGuard: a generative framework with Privacy and Fairness Safeguards. As illustrated in Fig. 2,
the key component is an ensemble of intermediate teacher models, which balances privacy-fairness
conflicts between fair training and private training stages. In the fair training stage, we design a new
sampling technique to train fair teachers, which provides a theoretical convergence guarantee to the
fair generative modeling. In the private training stage, we employ the Private Teacher Ensemble
Learning (PTEL) approach (Papernot et al., 2016; 2018), which aggregates each teacher’s knowledge
with random DP noise (e.g., noisy voting), to privatize the knowledge transfer to the generator. As
a result, PFGuard provides a unified solution to train both fair and private generative models by
transferring the teachers’ fair knowledge in a privacy-preserving manner.

Compared to simple sequential approaches, PFGuard is carefully designed to address privacy-fairness
conflicts. Recall that fairness techniques can incur privacy breaches by overusing minority data; in
contrast, PFGuard prevents privacy breaches by decoupling fairness and privacy with intermediate
teacher models. Although fair sampling can still compromise privacy in teacher models by potentially
overusing minority data, PFGuard ensures privacy in the generator – our target model – by training it
solely with the privatized teacher output, as shown in Fig. 2. Also, recall that privacy techniques can
lead to fairness cancellation by suppressing the use of minority data; in contrast, PFGuard avoids
fairness cancellation through teacher-level privacy bounding using PTEL approaches. Compared
to sample-level privacy bounding methods like gradient clipping (Abadi et al., 2016), teacher-level
bounding leaves room for teachers to effectively learn balanced knowledge via fair training. As a
result, PFGuard provides strict DP guarantees for the generator and better preserves fairness compared
to the combination of fairness-only and privacy-only techniques – see more analyses in Sec. 3.

Moreover, PFGuard is compatible with a wide range of existing private generative models and
preserves their utility. PTEL is widely adopted in private generative models as it provides prominent
privacy-utility tradeoff (Jordon et al., 2018; Chen et al., 2020; Long et al., 2021; Wang et al., 2021a).
PFGuard can extend any of these models with a fair training stage as shown in Fig. 2, which requires
a simple modification in the minibatch sampling process. Since additional fair sampling can be
advantageous in maintaining optimization complexity compared to say adding a loss term for fairness,
PFGuard preserves the privacy-utility tradeoff of PTEL as well while improving fairness. We also
provide guidelines to control the fairness-privacy-utility tradeoff – see more details in Sec. 4.
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Experiments in Sec. 5 show that PFGuard successfully generates high-dimensional synthetic data
while ensuring both privacy and fairness; to our knowledge, PFGuard is the first framework that
works on high-dimensional data including images. Our results also reveal two key findings: (1)
existing private generative models can produce highly-biased synthetic data in real-world scenarios
even with simple bias settings, and (2) a naı̈ve combination of individual techniques may fail to
achieve either privacy or fairness even with simple datasets – highlighting PFGuard’s effectiveness
and the need for a better integration of privacy and fairness in generative models.

Summary of Contributions 1) We identify how privacy and fairness conflict with each other, which
complicates the development of responsible generative models. 2) We propose PFGuard, which is to
our knowledge the first generative framework that supports privacy and fairness for high-dimensional
data. 3) Through extensive experiments, we show the value of integrated solutions to address the
privacy-fairness-utility-tradeoff compared to simple combinations of individual techniques.

2 PRELIMINARIES

Generative Models We focus on Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014), which are widely-used generative models that leverage adversarial training of two networks to
generate realistic synthetic data: 1) a generator that learns the underlying training data distribution
and generates new samples and 2) a discriminator that distinguishes between real and generated data.
The discriminator can be considered as the teacher model of the generator, as the generator does not
have access to the real data and only learns from the discriminator via the GAN loss function.

Differential Privacy To privatize generative models, we use Differential Privacy (DP) (Dwork et al.,
2014), a gold standard privacy framework that enables quantified privacy analyses. DP measures
how much an adversary can infer about one data sample based on differences in two outputs of an
algorithmM, using two adjacent datasets that differ by one sample as defined below.
Definition 2.1. ((ε, δ)-Differential Privacy (Dwork et al., 2006a)) A randomized mechanismM :
D → R with rangeR satisfies (ε, δ)-differential privacy if for any two adjacent datasets D,D′ and
for any subset of outputs O ⊆ R, the following holds:

Pr(M(D) ∈ O ≤ eε Pr(M(D′) ∈ O) + δ,

where ε is the upper bound of privacy loss, and δ is the probability of breaching DP constraints.

We can enforce DP in an algorithm in two steps (Dwork et al., 2014). Given a target algorithm f to
enforce DP and a dataset D, we first bound sensitivity (Def. 2.2), which captures the maximum influ-
ence of a single data sample on the output of f . We then add random noise with a scale proportional
to the sensitivity value. A common way to add noise is to utilizing a Gaussian mechanism (Dwork
et al., 2014) (Thm. 2.1), which uses Gaussian random noise with a scale proportional to l2-sensitivity.
Definition 2.2. (Sensitivity (Dwork et al., 2014)) The lp-sensitivity for a d-dimensional function
f : X → Rd is defined as ∆p

f = max
D,D′
∥f(D)− f(D′)∥p over all adjacent datasets D,D′.

Theorem 2.1. (Gaussian mechanism (Dwork et al., 2014; Mironov, 2017)) Let f : X → Rd

be an arbitrary d-dimensional function with l2-sensitivity ∆2
f . The Gaussian mechanism Mσ,

parameterized by σ, adds Gaussian noise into the output, i.e.,Mσ(x) = f(x) +N (0, σ2I), and
satisfies (ε, δ)-DP for σ ≥

√
2 ln(1.25/δ)∆2

f/ε.

Fairness We consider a generative model to be fair if two criteria are satisfied: 1) the model
generates similar amounts of data for different demographic groups with similar quality, and 2) the
generated data can be used to train a fair downstream model w.r.t. traditional group fairness measures.
For 1), we measure the size and image quality disparities between the groups using the Fréchet
Inception Distance (FID) score (Heusel et al., 2017; Choi et al., 2020) to assess image quality. For 2),
we use two prominent group fairness measures: equalized odds (Hardt et al., 2016) where the groups
should have the same label-wise accuracies; and demographic parity (Feldman et al., 2015) where the
groups should have similar positive prediction rates.

3 PRIVACY-FAIRNESS CONFLICTS IN EXISTING TECHNIQUES

In this section, we examine the practical challenges of integrating privacy-only and fairness-only
techniques to train both private and fair generative models. Based on Fig. 1’s intuition on how
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privacy and fairness conflict, we analyze how existing approaches for DP generative models and fair
generative models can technically conflict with each other using standard DP and fairness techniques:
DP-SGD (Abadi et al., 2016) and reweighting (Choi et al., 2020). Let g(x) denote the gradient of the
data sample x, and pbal and pbias denote balanced and biased data distributions, respectively.

• DP-SGD is a standard DP technique Chen et al. (2020) for converting non-DP algorithms to
DP algorithms by modifying traditional stochastic gradient descent (SGD). Compared to SGD,
DP-SGD 1) applies gradient clipping to limit the individual data point’s contribution, where g(x)
is clipped to g(x)/max(1, ||g(x)||2/C) (the sensitivity becomes the clipping threshold C), and
2) uses a Gaussian mechanism (Thm. 2.1) to add sufficient noise to ensure DP.

• Reweighting is a traditional fairness method (Horvitz & Thompson, 1952) widely used in gener-
ative modeling (Choi et al., 2020; Kim et al., 2024), which assigns greater weights to minority
groups for a “balanced” loss during SGD. In particular, setting the sample weight to the likelihood
ratio h(xi)=pbal(xi)/pbias(xi) produces an unbiased estimate of Ex∼pbal [g(x)] as follows:

Ex∼pbias [g(x) · h(x)] = Ex∼pbias

[
g(x)

pbal(x)

pbias(x)

]
= Ex∼pbal [g(x)]. (1)

Naı̈vely Adding Fairness Can Worsen Privacy Ensuring fairness in DP generative models can
significantly increase sensitivity (Def. 2.2), leading to invalid DP guarantees. Sensitivity, which
measures a data sample’s maximum impact on an algorithm, is crucial in DP generative models
because the noise amount required for DP guarantees is often determined by this sensitivity value.
However, integrating fairness techniques in DP generative models can invalidate their sensitivity
analyses by adjusting model outputs for fairness purposes. One example is the aforemetioned
reweighting technique. To balance model training across groups, reweighting technique amplifies
the impact of certain data samples (e.g., minority data samples), particularly by amplifying their
gradients. However, performing reweighting on top of DP-SGD can incur privacy breaches, as
gradient amplified beyond C can cancel the gradient clipping in DP-SGD, invalidating the sensitivity
C provided from DP-SGD. Other examples include directly feeding data attributes such as class labels
or sensitive attributes (e.g., race, gender) to a generator for more balanced synthetic data (Xu et al.,
2018; Sattigeri et al., 2019; Yu et al., 2020), which can cause large fluctuations in the generator output
and similarly end up increasing sensitivity. This increased sensitivity by fairness techniques requires
more noise to maintain the same privacy level, compromising the original DP guarantees unless
modifying DP techniques to add more noise. However, this modification is also not straightforward
as assessing the increased sensitivity by fairness techniques can be challenging (Tran et al., 2021b).

Naı̈vely Adding Privacy Can Worsen the Fairness-Utility Tradeoff Another direction is to ensure
privacy in fair generative models, but configuring an appropriate privacy bound can be challenging,
which can lead to unexpected and unstable fairness-utility tradeoffs.
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Figure 3: Fairness-utility tradeoff caused by DP-
SGD when used on top of reweighting. Depending
on the choice of C, DP-SGD may compromise
utility (left) or fairness (right).

In contrast to the previous demonstration, we
can ensure privacy in reweighting-based fair gen-
erative models by replacing SGD to DP-SGD,
guaranteeing a fixed sensitivity value C via gra-
dient clipping; however, finding C that balances
fairness and utility can be challenging. Gradient
clipping now undoes the fairness adjustments,
as reweighted gradients g(x)·h(x) are clipped
to g(x)·h(x)/max(1, ||g(x)·h(x)||2/C), and
Eq. 1 does not hold if C ≤ g(x)·h(x). Here,
one solution is to use a larger C such that
C ≥ g(x)·h(x). However, increasing C also
increases the noise required for DP, which re-
duces utility as illustrated in Fig. 3. Therefore,
selecting a C that balances fairness and utility may necessitate extensive hyperparameter tuning (Bu
et al., 2024), complicating the systematic integration of DP into fair generative models.

Overall, we show that a naı̈ve combination of existing fairness-only and privacy-only techniques
can be insufficient to achieve both objectives. While we have not exhaustively covered all possible
combinations, one can see how privacy breaches and unexpected fairness-utility tradeoffs can easily
occur without a careful design. To avoid these downsides in naı̈ve combinations, we emphasize the
need for a unified design that integrates both privacy and fairness into generative models.
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Remark 1. We emphasize the need for a framework tailored to generative settings. There are notable
fairness-privacy techniques for classification, but directly extending them to data generation can be
challenging due to the fundamentally different goals of the two settings – see more details in Sec. A.

4 FRAMEWORK

We now propose PFGuard, the first generative framework that simultaneously achieves statistical
fairness and DP on high-dimensional data, such as images. As shown in Fig. 2, PFGuard balances
privacy-fairness conflicts between fair and private training stages using an ensemble of teacher models
as a key component. In Sec. 4.1, we first explain the fair training stage, which trains a fair teacher
ensemble. In Sec. 4.2, we then explain the private training stage, which transfers the knowledge of
this teacher ensemble to the generator with DP guarantees and ultimately trains a generator that is
both fair and private. In Sec. 4.3, we lastly discuss how PFGuard’s integrated design offers advantages
in terms of fairness, utility, and privacy compared to the naı̈ve approaches discussed in Sec. 3.

4.1 FAIR TRAINING WITH BALANCED MINIBATCH SAMPLING

Intuition We ensure fairness in the teachers by balancing the minibatches used for training. Here
we assume a general training setup of stochastic gradient descent, where we iteratively pick a subset B
of the training data (i.e., minibatches) to update model parameters more efficiently. Since generative
models then only learn the underlying data distribution through B, using balanced mini-batches
B ∼ pbal will result in modeling pbal even if we have biased training data D ∼ pbias. While another
approach is to debias the training data itself by acquiring more minority data, this approach is costly
and often infeasible for private domains with limited publicly-available data (Jordon et al., 2018).

Theoretical Foundation To develop a fair minibatch sampling technique with a convergence
guarantee, we leverage Sampling-Importance Resampling (SIR) (Rubin, 1988; Smith & Gelfand,
1992) as the theoretical foundation. SIR is a statistical method for drawing random samples from a
target distribution π(x) by using a proposal distribution ψ(x). SIR proceeds in two steps: 1) we draw
a set of n independent random samplesR1={xi}ni=1 from ψ(x) and 2) we resample a smaller set of
m independent random samplesR2={xi}mi=1 fromR1. Here, the resampling probability w(xi) is set
proportional to h(xi)=π(xi)/ψ(xi), which is the likelihood ratio of a sample xi in π(x) and ψ(x).
Then, the resulting samples inR2 are approximately distributed according to π(x) as follows:

Pr(x ≤ t) =
∑

i:xi≤tw(xi) =
∑

i:xi≤t
h(xi)∑
i h(xi)

=

∑
i 1{xi ≤ t}π(xi)/ψ(xi)∑

i π(xi)/ψ(xi)
(2)

→
n→∞

∫
1{x ≤ t}{π(x)/ψ(x)}ψ(x)dx∫
{π(x)/ψ(x)}ψ(x)dx

=

∫
1{x ≤ t}π(x)dx (3)

where 1(·) is the indicator function. The distribution becomes exact when n→∞.

Methodology We now present our sampling technique, which samples B ∼ pbal based on SIR.
We first make the following reasonable assumptions: 1) each data sample has a uniquely defined
sensitive attribute s ∈ S (e.g., race); 2) target pbal is a uniform distribution over s; 3) following Choi
et al. (2020), the same relevant input features are shared for each group s between the balanced and
biased datasets (e.g., pbal(x|s=s) = pbias(x|s=s)), and similarly between the training dataset D and
any subset Di (e.g., pD(x|s=s) = pDi

(x|s=s)). We now outline the technique step-by-step below.

(1) We set the target distribution to pbal(x) and the proposal distribution to pbias(x), as our goal is
to sample a balanced minibatch B ∼ pbal from the biased training dataset D ∼ pbias.

(2) We divide D into nT disjoint subsets {Di}nT
i=1 to train teacher models {Ti}nT

i=1, such that
each Di is used for Ti and retains the same distribution of s as D using the s labels (i.e.,
pDi

(s=s) = pD(s=s)). Then, we can deriveDi∼pbias using assumption 3) above as follows:
pDi

(x) = ΣspDi
(x|s=s)pDi

(s=s) = ΣspD(x|s=s)pD(s=s) = pbias(x) (4)

(3) We sample B from Di with a resampling probability w(x) that is proportional to h(x) =
pbal(x)/pbias(x), which is computed as follows:

h(x) =
pbal(x)

pbias(x)
=

pbal(x|s=s)pbal(s=s)

pbias(x|s=s)pbias(s=s)
=

pbal(s=s)

pbias(s=s)
≃ 1/|S|
|{x∈D|s=s}|/|D|

(5)
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where the second and third equality follows from assumption 1) and 3) above, respectively,
and the last approximation follows from assumption 2) above and D ∼ pbias.

A sample B from the above procedure is approximately distributed according to pbal based on SIR;
we sample Di from pbias and resample B from Di, where the resampling probability is proportional to
h(x) = pbal(x)/pbias(x). Since a large number of minibatch samplings is needed to train generative
models, the B distribution eventually converges to pbal, leading to a fair generative modeling of pbal.

Extensions Our fair sampling technique is also extensible to private settings where the label of
sensitive attribute s is unavailable, for example due to privacy regulations (Jagielski et al., 2019;
Mozannar et al., 2020; Tran et al., 2022). In such settings, we can employ a binary classification
approach to estimate h(x) like Choi et al. (2020). While their work focuses on non-private settings
and assumes an unbiased public reference data on the order of 10%–100% of |D| for the estimation,
this assumption can be unrealistic in private domains due to the lack of public data. Our empirical
study in Sec. 5.3 shows that we can achieve fairness with only 1–10% of the data, leveraging the
ensemble learning of multiple-teacher structure, which can further reduce the estimation error. Note
that in this extension, the convergence guarantee may not hold, as Di ∼ pbias in step (2) might not be
true in practice if the dataset is randomly partitioned without considering sensitive attribute labels.

4.2 PRIVATE TRAINING WITH PRIVATE TEACHER ENSEMBLE LEARNING

Intuition Although the fair sampling technique in Sec. 4.1 can enhance fairness, it can also
introduce privacy risks due to inherent privacy-fairness conflicts (Sec. 3). Specifically, repeated
resampling of certain data samples during teacher training can lead to memorization, compromising
privacy in teacher models and ultimately affecting the generator during knowledge transfer. To
address this privacy risk, we privatize knowledge transfer rather than the teacher models themselves,
ensuring DP solely in the generator. Since the generator is only needed after training for synthetic
data generation, we can only release DP generator to the public (Chen et al., 2020; Long et al., 2021).

Privacy Guarantee We utilize Private Teacher Ensemble Learning (PTEL) (Papernot et al., 2016;
2018) to ensure DP during knowledge transfer. Unlike non-private ensemble learning, PTEL 1) trains
each teacher model on a disjoint data subset and 2) adds noise proportional to the sensitivity of the
aggregated knowledge (e.g., class labels (Papernot et al., 2018), gradients (Chen et al., 2020), etc.).
Although aggregated knowledge can differ, sensitivity is commonly derived from data disjointness,
where a single data point affects at most one teacher. For instance, GNMax aggregator (Papernot
et al., 2018) aggregates predicted class label for a query input x̄ from teachers {Ti}nT

i=1 as follows:

GNMax(x̄) = argmax
j
{nj(x̄) +N (0, σ2)} for j = 1, ..., c (6)

where nj denotes the vote count for the j-th class (i.e., nj(x̄) = |{i : Ti(x̄)=j}|), and N (0, σ2)

denotes random Gaussian noise. Here, the l2-sensitivity (Def. 2.2) is
√
2, as a single data point affects

at most one teacher, increasing the vote counts by 1 for one class and decreasing the count by 1
for another class (see a more detailed analysis in Sec. B.2). Consequently, the GNMax aggregator
satisfies (ε, δ)-DP for σ ≥

√
8 ln(1.25/δ)/ε based on the Gaussian mechanism (Thm. 2.1).

Methodology PFGuard edits existing PTEL-based generative models to achieve both privacy and
fairness by simply modifying the minibatch sampling process as described in Sec. 4.1. PTEL has been
widely used to train DP generators (Jordon et al., 2018; Chen et al., 2020; Long et al., 2021; Wang
et al., 2021a), resulting in various sensitivity analyses. While integrating fair training techniques can
invalidate these analyses as discussed in Sec 3, PFGuard preserves any sensitivity value as long as
PTEL enforce data disjointness; even with fair sampling, a single data point still affects only one
teacher. PFGuard thus enhances fairness of various PTEL-based generative models, while preserving
their own DP guarantees. We present formal DP guarantees and the training algorithm in Sec. C.

Number of Teachers We provide guidelines on how to set the number of teachers nT for PFGuard,
which affects the privacy-fairness-utility tradeoff. While nT is typically tuned via experiments (Long
et al., 2021; Wang et al., 2021a), we set a maximum value of nT considering fairness. Since a large
nT would result in a diverse ensemble that can generalize better, but also lead to a teacher receiving a
data subset that is too small for training, we suggest nT to be at most ⌊|D|mins∈S pbias(s)⌋ where ⌊·⌋
denotes the floor function. Since this equation captures the size of the smallest minority data group,
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this mathematical upper bound guarantees that each teacher probabilistically gets at least one sample
of the smallest minority data group. In Sec. 5.3, we show how this bound helps avoid compromising
fairness. We also discuss how to set nT when sensitive attribute labels are unavailable in Sec. C.3.

4.3 ADVANTAGES OF INTEGRATED DESIGN

We discuss how PFGuard overcomes the challenges of naı̈ve approaches discussed in Sec. 3.

Balances Privacy-Fairness Conflict PFGuard can sidestep privacy breaches and fairness can-
cellation arising from privacy-fairness conflicts. Compared to existing fairness-only techniques,
which can compromise DP guarantees and require complex sensitivity assessments when applied
to DP generators, PFGuard automatically preserves DP guarantees of PTEL-based DP generators
by maintaining sensitivities, eliminating the need of complex assessments. Compared to existing
privacy-only techniques, which often directly limit an individual sample’s influence (e.g., gradient
clipping discussed in Sec. 3) and can lead to fairness cancellation by suppressing the use of minority
data, PFGuard uses indirect privacy bounding, in the sense that we limit the influence of teacher
models in order to limit individual sample’s influence. Since there are no DP constraints during the
teacher learning, the teacher models can effectively learn balanced knowledge across data groups.

Achieves Better Fairness-Utility Tradeoff The fair sampling of PFGuard introduces minimal
training complexity, which can preserve utility while enhancing fairness. By modifying only the
minibatch sampling process, PFGuard maintains the original loss function and avoids the additional
fairness loss terms (Sattigeri et al., 2019; Yu et al., 2020) or auxiliary classifiers (Tan et al., 2020;
Um & Suh, 2023) typically employed in fairness techniques. As a result, we show how PFGuard can
achieve a prominent fairness-utility tradeoff with negligible computational overhead when integrated
into PTEL-based generative models in Sec. 5. Further discussions on PFGuard’s 1) flexibility with
other fairness techniques and 2) synergy with adversarial learning are presented in Sec. C.3.

5 EXPERIMENTS

We perform experiments to evaluate PFGuard’s effectiveness in terms of fairness, privacy, and utility.

Datasets We evaluate PFGuard on three image datasets: 1) MNIST (LeCun et al., 1998) and
FashionMNIST (Xiao et al., 2017) for various analyses and baseline comparisons, and 2) CelebA (Liu
et al., 2015) to observe performance in real-world scenarios more closely related to privacy and
fairness concerns. MNIST contains handwritten digit images, FashionMNIST contains clothing item
images, and CelebA contains facial images. While MNIST and FashionMNIST are simplistic and
less reflective of real-world biases, they enable reliable fairness analyses on top of high-performing
DP generative models on these datasets, making them widely adopted in recent studies addressing the
privacy-fairness intersections (Bagdasaryan et al., 2019; Farrand et al., 2020; Ganev et al., 2022). For
CelebA, we resize the images to 32 × 32 × 3 (i.e., CelebA(S)) and to 64 × 64 × 3 (i.e., CelebA(L))
following the conventions in the DP generative model literature (Long et al., 2021; Wang et al., 2021a;
Cao et al., 2021). We provide more dataset details (e.g., dataset sizes) in Sec. D.1.

Bias Settings We create various bias settings across classes and subgroups, focusing on four
scenarios: 1) binary class bias, which is a basic scenario often addressed in DP generative models,
and 2) multi-class bias, subgroup bias, and unknown subgroup bias, which are more challenging
scenarios typically addressed in fairness techniques, but not in DP generative models. We observe that
DP generative models mostly perform poorly in these challenging scenarios, especially with complex
datasets like CelebA, so we use MNIST for more reliable analyses. While recent privacy-fairness
studies primarily focus on class bias in MNIST (Bagdasaryan et al., 2019; Farrand et al., 2020), we
additionally analyze subgroup bias using image rotation for more fine-grained fairness analyses and
to support prominent fairness metrics like equalized odds (Hardt et al., 2016). In all experiments, we
denote y = 0 as the minority class and s = 0 as the minority group. More details on bias levels (e.g.,
size ratios between majority and minority data) and bias creation are in Sec. D.1.

Metrics We evaluate utility, privacy, and fairness in both synthetic data and downstream tasks.
• Utility. We measure the overall and groupwise Frechet Inception Distance (FID) (Heusel et al.,

2017) to evaluate the sample quality of synthetic data. We evaluate model accuracy in downstream
tasks by training Multi-layer Perceptrons (MLP) and Convolutional Neural Networks (CNN) on
synthetic data and testing on real datasets (Chen et al., 2020).
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• Fairness. We measure the group size disparity in synthetic data with the KL divergence to
uniform distribution U(s) (i.e., DKL(pG(s)||U(s))) (Yu et al., 2020) and the distribution dis-
parity (i.e., |pG(s) − U(s)|) (Choi et al., 2020), where pG(s) denotes generated distribution
w.r.t. s. We measure the fairness disparities in downstream tasks as follows: equalized odds
disparity (i.e., maxy,s1,s2 |Pr(ŷ=y|Y=y, s=s1) − Pr(ŷ=y|y=y, s=s2)|, ∀y ∈ Y , s1, s2∈S),
demographic disparity (i.e., maxs1,s2 |Pr(ŷ=1|s=s1) − Pr(ŷ=1|s=s2)|, ∀s1, s2 ∈ S), and
accuracy disparity (i.e., maxy1,y2 |Pr(ŷ=y1|y=y1)− Pr(ŷ=y2|y=y2)|, ∀y1, y2 ∈ Y).

• Privacy. We use privacy budget ε for DP (Def. 2.1), which is preserved in both synthetic data and
downstream tasks due to the post-processing property of DP (see Sec. B.1 for more details).

Baselines We compare PFGuard with three types of baselines: 1) privacy-only and fairness-only
approaches for data generation, 2) simple combinations of these methods, and 3) recent privacy-
fairness classification methods applicable to data generation. For 1) and 2), we use three state-of-
the-art DP generative models – GS-WGAN (Chen et al., 2020), G-PATE (Long et al., 2021) and
DataLens (Wang et al., 2021a) – and a widely-adopted fair reweighting method (Choi et al., 2020).
For 3), we extend DP-SGD-F (Xu et al., 2020) and DPSGD-Global-Adapt (Esipova et al., 2022),
which are fair variants of DP-SGD (Abadi et al., 2016). Specifically, we replace the DP-SGD used in
GS-WGAN with these fairness-enhanced variants. We faithfully implement all baseline methods with
their official codes and reported hyperparameters. More details on baseline methods are in Sec. D.2.

5.1 IMPROVING EXISTING PRIVACY-ONLY GENERATIVE MODELS

We evaluate how PFGuard enhances the performance of existing DP generative models. As PFGuard
guarantees the same level of DP, we focus on the fairness and utility performances while fixing the
privacy budget to ε=10, which is one of the most conventional values (Ghalebikesabi et al., 2023).

Analysis on Synthetic Data Table 1 shows the fairness and utility performances on synthetic data.
Private generative models generally produce synthetic data with better overall image quality, but
exhibit high group size disparity. In contrast, PFGuard significantly improves fairness by balancing
group size and groupwise image quality, with a slight decrease in overall image quality.

Table 1: Fairness and utility performances of private generative models with and without PFGuard on
synthetic data, evaluated on MNIST with subgroup bias under ε=10. Blue and red arrows indicate
positive and negative changes, respectively. Lower values are better across all metrics.

Fairness Utility

Method KL (↓) Dist. Disp. (↓) FID (↓) Y=1, S=1 Y=1, S=0 Y=0, S=1 Y=0, S=0

GS-WGAN 0.177±0.103 0.383±0.097 77.97±2.25 95.58±3.35 155.20±16.25 89.66±0.79 101.39±7.09

G-PATE 0.305±0.011 0.522±0.008 176.03±3.03 182.50±1.27 183.31±2.99 178.89±4.13 187.37±3.51

DataLens 0.220±0.030 0.450±0.028 192.29±3.67 197.13±6.18 197.99±6.01 202.86±4.12 207.12±12.75

GS-WGAN + PFGuard 0.067±0.036 (↓) 0.242±0.080 (↓) 83.67 ±6.98 (↑) 114.54±27.74 149.47±17.31 79.94±7.08 72.44±7.96

G-PATE + PFGuard 0.206 ±0.062 (↓) 0.431 ±0.066 (↓) 166.89 ±21.61 (↓) 173.48±19.93 173.79±19.43 174.98±24.06 185.92±19.89

DataLens + PFGuard 0.161 ±0.019 (↓) 0.389 ±0.022 (↓) 200.23 ±3.11 (↑) 209.74±1.70 208.80±0.39 207.03±4.67 207.05±3.17

Analysis on Downstream Tasks Table 2 shows the fairness and utility performances on downstream
tasks. Compared to the synthetic data analysis, PFGuard enhances not only fairness, but also overall
utility, especially for CNN models. We suspect that the increased overall utility results from the
improved fairness in the input synthetic data, promoting more balanced learning among groups.

Table 2: Fairness and utility performances of private generative models with and without PFGuard
on downstream tasks, evaluated on MNIST with subgroup bias under ε=10. Blue and red arrows
indicate positive and negative changes, respectively.

MLP CNN

Fairness Utility Fairness Utility

Method EO Disp. (↓) Dem. Disp. (↓) Acc (↑) EO Disp. (↓) Dem. Disp. (↓) Acc (↑)
GS-WGAN 0.153±0.030 0.061±0.012 0.910±0.007 0.172±0.045 0.069±0.014 0.927±0.008

G-PATE 0.166±0.082 0.063±0.053 0.896±0.005 0.256±0.046 0.111±0.001 0.888±0.015

DataLens 0.226±0.062 0.112±0.035 0.867±0.028 0.238±0.044 0.110±0.023 0.893±0.022

GS-WGAN + PFGuard 0.067±0.029 (↓) 0.044±0.012 (↓) 0.900 ±0.003 (↓) 0.063±0.059 (↓) 0.035±0.037 (↓) 0.927±0.009 (–)
G-PATE + PFGuard 0.085 ±0.052 (↓) 0.044±0.033 (↓) 0.906±0.008 (↑) 0.084 ±0.036 (↓) 0.044 ±0.011 (↓) 0.898±0.023 (↑)
DataLens + PFGuard 0.169±0.081 (↓) 0.106±0.043 (↓) 0.859±0.056 (↓) 0.141±0.050 (↓) 0.078±0.051 (↓) 0.898±0.020 (↑)
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Table 3: Comparison of privacy-fairness-utility performance on MNIST under ε=10, using GS-
WGAN as the base DP generator (see Sec. D.2 for more details). The first three rows represent upper
bound performances for vanilla, DP-only, and fair-only models. Evaluations cover both subgroup
bias and unknown subgroup bias, where “no S” indicates whether the method is applicable without
group labels. “perc” denotes the proportion of public data used compared to the training data size. “-”
indicates no samples are generated. Lower values are better across all metrics, and we boldface the
best results in each subgroup bias and unknown subgroup bias settings.

Privacy Fairness Utility

Method ε (↓) KL (↓) Dist. Disp. (↓) no S FID (↓) Y=1, S=1 Y=1, S=0 Y=0, S=1 Y=0, S=0

Vanila ✗ 0.229 0.459 ✗ 31.95 28.01 55.53 44.04 63.50
DP-only 10 0.177 0.383 ✗ 77.97 95.58 155.20 89.66 101.39
Fair-only ✗ 0.021 0.117 ✓ 38.62 50.78 52.69 75.46 53.86

Reweighting 13 0.009 0.044 ✗ 106.94 139.28 178.18 128.08 110.54
DP-SGD→ DP-SGD-F 11 0.659 0.494 ✗ 90.20 121.78 - 73.07 159.83
DP-SGD→ DPSGD-GA 10 0.693 0.707 ✓ 127.02 167.65 - 126.15 -
PFGuard 10 0.067 0.242 ✗ 83.67 114.54 149.47 79.94 72.24
Reweighting (perc=1.0) 13 0.025 0.148 ✓ 98.57 144.55 182.29 96.05 99.59
Reweighting (perc=0.1) 13 0.013 0.113 ✓ 106.94 139.28 178.18 128.08 110.54
PFGuard (perc=0.1) 10 0.004 0.041 ✓ 89.43 130.36 157.80 78.75 89.76

Figure 4: Fairness performances when varying
bias levels (γ) given a fixed number of teachers,
evaluated on MNIST with multi-class bias. We
downsize the class ‘8’ to γ times smaller than
the other classes to make it the minority class
and use GS-WGAN as the baseline model.

Figure 5: Fairness and utility performances for
varying reference dataset size ratio compared to
the training dataset size, evaluated on MNIST
with unknown subgroup bias under ε=10. Lower
values are better across all metrics used to evalu-
ate fairness and utility.

5.2 PRIVACY-FAIRNESS-UTILITY TRADEOFF

We compare our privacy-fairness-utility performance against simple combinations of prior approaches.
We evaluate performance under two bias settings: 1) subgroup bias and 2) unknown subgroup bias.
Table 3 shows the results, which aligns with our privacy-fairness counteraction analysis in Sec. 3;
fairness-only reweighting approaches compromise privacy due to the increased iterations, which may
arise from modifying the loss function for fair training (i.e., the more a model uses the data, the
weaker privacy it provides). In comparison, privacy-fairness classification techniques can maintain
the original privacy guarantees, but significantly degrade utility and fairness, resulting in lower image
quality and size disparities across groups – further discussions are provided in Sec. A. Among all
methods, PFGuard is the only method that successfully 1) achieves both privacy and fairness and
2) preserves the closest utility to the original models. In Sec. E.1, we provide more analyses of the
privacy-fairness-utility tradeoff, including Pareto Frontier results and varying privacy levels.

5.3 ABLATION STUDY

Fairness Upper Bound on Number of Teachers We validate the proposed theoretical upper bound
on the number of teachers for fairness, which depends on the bias level of the training data. To
effectively simulate scenarios where a teacher receives only a small subset of minority data, we
evaluate PFGuard in a multi-class bias setting, downsizing the minority class (i.e., class ‘8’ for
MNIST) by a factor of γ. Given that MNIST has fewer than 6,000 samples for class ‘8’, our proposed
upper bound is γ≤5 if we fix the number of teachers to 1,000. Fig. 4 shows that exceeding γ=5 leads
to a noticeable accuracy drop for the minority class, which is consistent with our theoretical results.
It is noteworthy that even with the decline, PFGuard shows higher accuracy than the privacy-only
baseline, which shows a consistent decrease in accuracy for the minority as γ increases.
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Impact of Reference Dataset Size We explore the influence of the reference dataset size when
PFGuard is extended to unknown subgroup bias setting. Fig. 5 shows PFGuard achieves comparable
fairness even with a small reference dataset size, while showing a slight increase in the overall FID.

More Analyses We provide more experiments in Sec. E, including a comparison of computation time
(Sec. E.3), results on different datasets (Sec. E.2 and E.7), performance with additional normalization
techniques (Sec. E.4), and a performance comparison with a different sampling strategy (Sec. E.5).

5.4 ANALYSIS WITH STRONGER PRIVACY, HIGH-DIMENSIONAL IMAGES

We provide preliminary results with CelebA dataset, which mirrors real-world scenarios with high-
dimensional facial images. As our study is the first to address both privacy and fairness in image data,
this exploration is crucial for understanding the challenges in real-world settings. To reflect the need
of stronger privacy protection in practical applications, we limit the privacy budget to ε=1.

Table 4 shows the fairness and utility performances under these challenging conditions. We observe
that DP generative models often exhibit extreme accuracy disparities even with a simplistic class bias
setting, achieving over 90% accuracy for the majority class while achieving accuracy below 25%
for the minority class. PFGuard consistently enhances the minority class performance and reduces
accuracy disparity, while there is still room for improvement. Our results underscore the importance
of tackling both privacy and fairness in future studies, encouraging more research in this critical area.

Table 4: Fairness and utility performances of private generative models with and without PFGuard on
downstream tasks, evaluated on CelebA with binary class bias under ε=1. GS-WGAN is excluded
due to lower image quality in this setting. Blue and red arrows indicate positive and negative changes,
respectively. We provide the full results with standard deviations in Sec. E.8.

CelebA(S) CelebA(L)

Fairness Utility Fairness Utility

Method Acc. Disp. (↓) Acc (↑) Y=0 Y=1 Acc. Disp. (↓) Acc (↑) Y=0 Y=1

G-PATE 0.978 0.666 0.014 0.992 0.968 0.668 0.023 0.991
DataLens 0.793 0.643 0.114 0.907 0.678 0.686 0.234 0.912

G-PATE + PFGuard 0.736 (↓) 0.678 (↑) 0.187 (↑) 0.923 (↓) 0.277 (↓) 0.563 (↓) 0.378 (↑) 0.655 (↓)
DataLens + PFGuard 0.725 (↓) 0.689 (↑) 0.205 (↑) 0.931 (↑) 0.641 (↓) 0.704 (↑) 0.276 (↑) 0.917 (↑)

6 RELATED WORK

We cover the private and fair data generation literature here and cover the 1) private-only data
generation, 2) fair-only data generation, 3) privacy-fairness intersection literature in Sec. F. Compared
to these lines of works, only a few works focus on private and fair data generation (Xu et al., 2021;
Pujol et al., 2022). First, (Xu et al., 2021) proposes a two-step approach that 1) removes bias from
the training data via a fair pre-processing technique (Celis et al., 2020) and 2) learns a DP generative
model (Chanyaswad et al., 2019) from the debiased data. However, this framework is limited to
low-dimensional structural data due to data binarization step in pre-precessing stage, which can
incur significant information loss in high-dimensional image data. PFGuard, on the other hand, can
generate high-dimensional image data with high quality. Second, (Pujol et al., 2022) proposes private
data generation techniques satisfying causality-based fairness (Salimi et al., 2019), which consider
the causal relationship between attributes. In comparison, PFGuard focuses on statistical fairness to
achieve similar model performances for sensitive groups (Barocas et al., 2018). While causality-based
approaches can better reveal the causes of discrimination than statistical approaches, modeling an
underlying causal mechanism for real-world scenarios is also known to be challenging.

7 CONCLUSION

We proposed PFGuard, a fair and private generative model training framework. We first identified the
counteractive nature between privacy preservation and fair training, demonstrating potential adverse
effects – such as privacy breaches or fairness cancellation – when two objectives are addressed
independently. We then designed PFGuard, which prevents the counteractions by using multiple
teachers to harmonize fair sampling and private teacher ensemble learning. We showed how this
integrated design of PFGuard offers multiple advantages, including a better fairness-privacy-utility
tradeoff compared to other baselines, ease of deployment, and support for high-dimensional data.
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ETHICS STATEMENT & LIMITATION

We believe our research addresses the critical issue of Trustworthy AI. Our focus on privacy and
fairness underscores the need to design AI models that simultaneously safeguard individual privacy
and mitigate biases in training data. In addition, our research and experiments are conducted with a
strong commitment to ethical standards. All datasets used in this study, including publicly available
human images, are widely used within the research community and do not contain sensitive or
harmful content. There are also limitations, and we note that choosing the right privacy and fairness
measures for an application can be challenging and also depends on the social context. We also note
that the use of multiple teacher does increase the cost of training, but can provide more benefits
particularly in balancing privacy and fairness.

REPRODUCIBILITY STATEMENT

All datasets, methodologies, and experimental setups used in our study are described in detail in the
supplementary material. More specifically, we provide a description of the proposed algorithm in
Sec. C.2, details of datasets and preprocessing in Sec. D.1, and implementation details including
hyperparameters in Sec. D.2 to ensure reproducibility.
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A CHALLENGES OF EXTENDING CLASSIFICATION TECHNIQUES

Continuing from Sec. 3, we provide more details of potential challenges when one tries to extend
fairness-privacy classification techniques (Jagielski et al., 2019; Mozannar et al., 2020; Tran et al.,
2021b; 2022) to generative settings due to the fundamentally different goals.

Different DP Notions and Assumptions Classification and generation settings often concentrate on
different DP notions or rely on different assumptions, which hinders simple extensions of techniques
between them. In the classification setting, Differential Privacy w.r.t. sensitive attribute (Jagielski
et al., 2019) is commonly addressed (Jagielski et al., 2019; Mozannar et al., 2020; Tran et al.,
2021b; 2022), which considers the demographic group attribute as the only private information.
This DP notion requires less DP noise compared to a more general notion of DP (Def. 2.1), which
protects all input features, and enables a better privacy-utility tradeoff for DP classifiers. However,
in the generative setting, a general notion of DP is mostly addressed, as presumed non-private
features may in fact encode private information (e.g., pixel values in a facial image). Therefore,
simply extending classification techniques to generative settings can be challenging, as it necessitates
rigorous mathematical proofs for corresponding DP notions and may add a large DP noise when
adapting to a general DP notion. Moreover, classification techniques can rely on convex objective
functions (Tran et al., 2021a), but the assumption of convexity does not usually hold in generative
models (Goodfellow et al., 2014).

Challenges of Adjusting Privacy Bound While recent studies have proposed fair variants of
DP-SGD (Xu et al., 2020; Esipova et al., 2022), directly adopting them in existing private generative
models can undermine the original utility and privacy guarantee. To prevent aggressive gradient
clipping in minority data groups, approaches to tune clipping threshold C during training have
been proposed, such as dynamically adjusting C during training (Esipova et al., 2022) or utilizing
different C values w.r.t. groups (Xu et al., 2020). However, these adjustments of C not only consume
additional privacy budget, but also can significantly affect model utility, as private generative models
often demonstrate high sensitivity in model convergence to these clipping values (Chen et al., 2020;
Wang et al., 2021a; Dockhorn et al., 2022). Hence, given the limited privacy budget and the necessity
to carefully set the value of C, these approaches of tuning C may drastically change the original
privacy-utility tradeoff of existing models to achieve fairness.

Here, we do not claim that extending classification techniques to generative settings is always
impossible, but introduce the challenges that can complicate such extensions. To exemplify some
possible cases, we extend classification methods from Esipova et al. (2022) and Xu et al. (2020) to
generative settings, using them as baselines in our experiments – see Sec. 5 for results.

B DIFFERENTIAL PRIVACY

Continuing from Sec. 2 and Sec. 4.2, we provide more details on Differential Privacy (DP).

B.1 POST-PROCESSING PROPERTY OF DIFFERENTIAL PRIVACY

Continuing from Sec. 2, we detail the post-processing property of DP as defined below.

Theorem B.1. (Post-processing (Dwork et al., 2014)) LetM : D → R1 be a randomized mechanism
that is (ε, δ)-DP. Let f : R1 → R2 be an arbitrary function. Then f ◦M : D → R2 is (ε, δ)-DP.

Due to the above post-processing theorem, a synthetic dataset D̃ = G(z) generated from an (ε, δ)-DP
generator G with random noise z ∈ Z also satisfies (ε, δ)-DP, as the random noise z is independent
of the private training dataset used for the DP generator.

B.2 SENSITIVITY ANALYSIS OF GNMAX AGGREGATOR

Continuing from Sec. 4.2, we echo the sensitivity analysis of GNMax aggregator provided by Papernot
et al. (2018) for readers’ convenience.
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Given {Ti}nT
i=1 teachers, c possible label classes, and a query input x̄, the teachers’ vote counts for

the j-th class to a query input x̄ is denoted as:
nj(x̄) = |{i : Ti(x̄) = j}| for j = 1, ..., c (7)

where Ti denotes the i-th teacher model. The vote count for each class is aggregated as follows:
n(x̄) = (n1, . . . , nc) ∈ Nc (8)

Since a single training data point only affects at most one teacher due to data disjointness, changing
one data sample will at most change the votes by 1 for two classes, where we denote here as classes i
and j without loss of generality. Given the two adjacent datasets D,D′ which differ by a single data
point, let the aggregated vote counts be n = (n1, . . . , nc) and n′ = (n′1, . . . , n

′
c), respectively. The

l2-sensitivity (Def. 2.2) can be derived as follows:
∆2 = max

D,D′
∥(n1, . . . , nc)− (n′1, . . . , n

′
c)∥2 (9)

= max
ni,n′

i,nj ,n′
j

∥(0, . . . , 0, ni − n′i, 0, . . . , 0, nj − n′j , 0, . . . , 0)∥2 (10)

= max
ni,n′

i,nj ,n′
j

√
(ni − n′i)2 + (nj − n′j)2 ≤

√
2 (11)

C PFGUARD FRAMEWORK

Continuing from Sec. 4.2, we provide more details on the proposed PFGuard framework.

C.1 PRIVACY ANLAYSIS OF PFGUARD

Continuing from Sec. 4.2, we provide a theoretical proof of how PFGuard preserve the sensitivity of
an arbitrary PTEL mechanism, and thus the sensitivity of an arbitrary PTEL-based generative model.

PTEL-based Generative Models We first characterize the common training scheme of PTEL-
based generative models (Jordon et al., 2018; Chen et al., 2020; Long et al., 2021; Wang et al.,
2021a). To train a DP generator G parametrized with θG, the goal is to make its training algorithm
A : D → G – which inputs the training dataset D and outputs the generator G – satisfy DP (Long
et al., 2021). Given the typical training scheme of stochastic gradient descent, which updates θG with
gradient information gup

G , the training algorithm satisfies DP if gup
G is privatized with a DP mechanism

due to the post-processing property of DP (Thm. B.1) (Abadi et al., 2016). To produce privatized
gradient g̃up

G , PTEL-based generative models typically proceed in two steps as follows:
(1) Training teacher ensemble from disjoint data subsets. The private dataset D is first divided into

nT disjoint subsets {Di}nT
i=1, where each subset Di is uniquely used to train a teacher model

Ti with its parameter θTi . Thus, a total of nT teachers are trained and form a teacher ensemble
T = {Ti}nT

i=1.
(2) Training generator by querying teacher ensemble. The target generator G with the parameter

θG is trained by interacting solely with the teacher ensemble T , without accessing the original
dataset D. Given a random input noise z, the generator G generates an output G(z) and queries
the teacher ensemble T with G(z) for their supervision. Each teacher in T votes on the gradient
gup
G for the query input G(z), resulting in a vote count n(G(z)). This vote count is processed by

the PTEL mechanismM (e.g., GNMax aggregator in Sec. 4.2) to finally produce a DP-sanitized
gradient g̃up

G . The generator G updates its parameter θG using g̃up
G .

Thus, given a PTEL mechanismM with (ε, δ)-DP guarantee for each iteration and a total of N
training iterations, the total DP guarantee of the training algorithm A can be computed via the
composition theorem of DP (Dwork et al., 2006b).

Sensitivity Preservation We now provide a theoretical proof of how training with PFGuard
preserves the original privacy analysis of an arbitrary PTEL-based generative model G as long as
data disjointness is enforced. As explained above, the privacy analysis of the PTEL-based generative
model depends on the 1) (ε, δ)-DP guarantee of the given PTEL mechanismM for each training
iteration and the 2) total number of training iterations N . Here, we focus more on the theoretical DP
guarantee than the practical DP guarantee, so we assume that N is preserved with the fair sampling
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algorithm Sample(·) used in PFGuard. That means, ifM andM◦ Sample – PTEL mechanisms
without and with PFGuard – result in the same (ε, δ)-DP guarantee for each iteration, the same total
DP guarantee is preserved. In particular, we show howM andM ◦ Sample result in the same
sensitivity (Def. 2.2), which ensures the same (ε, δ) values given the same amount of DP noise.

Since the PTEL mechanismM operates on a vote count n(x̄) from the teacher ensemble T given a
generated sample as a query input (i.e., x̄ = G(z)), we can denote n(x̄) = n(x̄;T ). Let AT be the
training algorithm of T , where AT (Di) = Ti and AT (D) = T = {Ti}nT

i=1 due to data disjointness
used in training of nT teachers. Since Sample(·) – the proposed minibatch sampling algorithm –
operates on AT and samples a data subset Bi ⊆ Di, data disjointness is preserved in Bi. We thus can
derive AT (Sample(Di)) = AT (Bi) = Ts,i and AT (Sample(D)) = Ts = {Ts,i}nT

i=1, resulting in a
different teacher ensemble due to changed minibatches.

Let the original sensitivity value over n(x̄;T ) = n(x̄;AT (D)) be k. Then, due to the definition of
the sensitivity, the following holds:

∆2 = max
D,D′
∥n(x̄;AT (D))− n(x̄;AT (D′))∥2 (12)

= max
D,D′
∥n(x̄;T1, ..., TnT−1, TnT

)− n(x̄;T1, ..., TnT−1, T
′
nT

))∥2 (13)

= max
D,D′
∥(n1, . . . , nc)− (n′1, . . . , n

′
c)∥2 (14)

= max
ni,n′

i,nj ,n′
j

∥(0, . . . , 0, ni − n′i, 0, . . . , 0, nj − n′j , 0, . . . , 0)∥2 (15)

= max
ni,n′

i,nj ,n′
j

√
(ni − n′i)2 + (nj − n′j)2 ≤ k (16)

where the second equality follows from 1) adjacent datasets D and D′ differing by a single data
sample and 2) data disjointness, where a single data sample can affect a particular teacher that
receives the data partition including the data sample); we denote TnT

as the affected teacher without
loss of generality. The last equality denotes how much one teacher can maximally contribute to the
PTEL voting scheme, captured by the sensitivity value.

We now compute the sensitivity value over n(x̄;Ts) = n(x̄;AT (Sample(D))) as follows:

∆2 = max
D,D′
∥n(x̄;AT (Sample(D)))− n(x̄;AT (Sample(D′)))∥2 (17)

= max
D,D′
∥n(x̄;Ts,1, ..., Ts,nT−1, Ts,nT

)− n(x̄;Ts,1, ..., Ts,nT−1, T
′
s,nT

))∥2 (18)

= max
D,D′
∥(v1, . . . , vc)− (v′1, . . . , v

′
c)∥2 (19)

= max
vi,v′

i,vj ,v′
j

∥(0, . . . , 0, vi − v′i, 0, . . . , 0, vj − v′j , 0, . . . , 0)∥2 (20)

= max
vi,v′

i,vj ,v′
j

√
(vi − v′i)2 + (vj − v′j)2 ≤ k (21)

Here, the second equality follows similarly from adjacent datasets and data disjointness, where we
denote Ts,nT

as the affected teacher. Also, the last equality again captures how much one teacher
can maximally contribute, which is a property of PTEL’s voting scheme and is independent of the
sampling algorithm – thus being k. As a result, using the sampling technique in PFGuard preserves
the sensitivity value as long as the PTEL mechanism enforces data disjointness, although the sampling
results in a different teacher ensemble compared to the original PTEL-based generative model. We
note that this sensitivity analysis remains valid when B includes duplicate samples due to potential
oversampling because it still affects one teacher due to data disjointness.

C.2 TRAINING ALGORITHM

Continuing from Sec. 4.2, we provide the pseudocode describing the full training algorithm of
PFGuard when integrated into a PTEL-based generative model.

As shown in Algorithm 1, PFGuard requires only a modification to the minibatch sampling process
during teacher model training to achieve fairness (Line 5). Despite this modification, PFGuard
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Algorithm 1 Integrating PFGuard with PTEL-based generative models
Input Training dataset D, ensemble of teacher model T = {Ti}nT

i=1 with each parameters θTi
, batch

size B, PTEL mechanismM(x;T ), teacher loss function LT , generator loss function LG

Output Differentially private generator G with parameters θG, total privacy cost ε
1: Divide the dataset D into subsets {Di}nT

i=1
2: for each training epoch do
3: ///Phase 1: Fair Training
4: for each teacher model Ti do
5: Draw a minibatch {xi}Bi=1 ⊆ Di with sampling ratio w(x) ∝ h(x) using Eq. 5
6: Draw a set of random noise {zi}Bi=1 from input random noise distribution pz of G
7: Update teacher model Ti with LT (θTi

;x, G(z; θG))
8: end for
9: ///Phase 2: Private Training

10: Draw a set of random noise {zi}Bi=1 from input random noise distribution pz of G
11: Generate synthetic data samples G(z; θG)
12: Aggregate teacher output with PTEL mechanism õ←M(G(z; θG);T )
13: where the voting is on gradient of LG(θG)
14: Update generator model G with õ
15: Accumulate privacy cost ε
16: end for
17: return Generator G, privacy cost ε

preserves the original privacy guarantee of the given PTEL-based generative model, as long as its
sensitivity analysis relies on data disjointness – see Sec. C.1 for more details.

C.3 EXTENSION

Continuing from Sec. 4.2, we provide more details on the extensibility of PFGuard.

Setting Number of Teachers without Sensitive Attribute Labels We discuss how to extend the
proposed upper bound on the number of teachers (i.e., ⌊|D|mins∈S pbias(s)⌋) when the sensitive
attribute label s is unavailable. Note that the proposed bound does not rely on full knowledge of
pbias(x) for data points to be generated (e.g., images), but instead relies on the distribution pbias(s)
w.r.t. sensitive attributes. Thus, we can estimate the sensitive attribute distribution in the training
data using traditional techniques such as K-means clustering (Macqueen, 1967) or random subset
labeling (Forestier & Wemmert, 2016) and use the estimated distribution in the proposed bound. We
note that while these estimations can be effective, they may introduce errors or additional overhead,
such as increased computational time.

Integration with Additional Fairness Techniques PFGuard supports additional integrations of
existing fairness methods if they meet two conditions: 1) they apply exclusively to teacher models,
ensuring no direct impact on the target generator, and 2) they maintain data disjointness – each
sample affects only one teacher – which is a fundamental requirement for PTEL’s privacy guarantees
(see Sec. 4.2 for details). For example, GOLD (Mo et al., 2019), a fairness method designed to
support Rawlsian Max-Min fairness (Joseph et al., 2016), is compatible with PFGuard. GOLD
computes log density ratio estimates to identify worst-group samples and reweight the discriminator
(i.e., teacher) loss to improve performance on these samples to achieve Rawlsian Max-Min fairness.
Since this reweighting is applied solely to teacher models and preserves data disjointness, PFGuard
with GOLD maintains the original privacy guarantees of the underlying PTEL generator – see
privacy-fairness-utility tradeoff when additionally applying GOLD in Sec. E.6.

Synergy with Adversarial Training While PFGuard’s training scheme is loss-agnostic and does
not necessarily require adversarial training, PFGuard can be particularly synergistic with adversarial
training. We discuss with two reasons: (1) the min-max optimization and (2) the assumption of an
optimal discriminator in adversarial training. First, adversarial learning optimizes conflicting goals
(i.e., the min-max optimization) using the two components of the generator and the discriminator.
Since privacy and fairness can also have conflicting goals, assigning them to separate components
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may better balance these goals. Additionally, since the convergence of adversarial training depends
heavily on the discriminator’s optimality (Goodfellow et al., 2014), assigning fairness specifically to
the discriminator may effectively guide the generator toward an optimal state that is also fair.

D EXPERIMENTAL SETTINGS

Continuing from Sec. 5, we provide more details on experimental settings. In all experiments, we
use PyTorch and perform experiments using NVIDIA Quadro RTX 8000 GPUs. Also, we repeat all
experiments 10 times and report the mean and standard deviation of the top 3 results. The reason
we report the top-3 results is to favor the simple privacy-fairness baselines (e.g., “Reweighting” in
Table 3), which we observe to fail frequently. We compare their best performances with PFGuard.

D.1 DATASETS AND BIAS SETTINGS

Continuing from Sec. 5, we provide more details on datasets. We use three datasets: MNIST (LeCun
et al., 1998), FashionMNIST (Xiao et al., 2017), and CelebA (Liu et al., 2015). MNIST and
FashionMNIST contain grayscale images with 28 x 28 pixels and 10 classes. Both datasets have
60,000 training examples and 10,000 testing examples. CelebA contains 202,599 celebrity face
images. We use the official preprocessed version with face alignment and follow the official training
and testing partition (Liu et al., 2015). We mainly use image datasets instead of the traditional smaller
tabular benchmarks for fairness because our goal is to make PFGuard work on higher dimensional
data such as images. Additional results on tabular datasets are provided in Sec. E.2.

MNIST & FashionMNIST We create four bias scenarios across classes and subgroups as follows.

• Binary Class Bias. For MNIST, we set digit “3” as the majority class y = 1 and “1” as the
minority class y = 0. For FasionMNIST, we set “Sneakers” as y = 1 and “Trousers” as y = 0.
For each class pair, we select two classes that share the fewest false negatives and thus can be
considered independent, following the convention of prior approaches (Bagdasaryan et al., 2019;
Farrand et al., 2020; Ganev et al., 2022). We set bias level as 2, which means the minority class
y = 0 is 2 times smaller than the majority class y = 1. After creating bias, we apply random
affine transformations to augment the datasets to match the original dataset size.

• Multi-class Bias. We set “8” as the minority class y=0 and reduce its size while maintaining the
size of the other 9 classes, following the aforementioned prior approaches. We vary the bias level
from 1 to 10.

• Subgroup Bias. For both MNIST and FashionMNIST datasets, we use image rotation to define
subgroups. We set non-rotated images as the majority group s = 1 and rotated image as the
minority group s = 0. We also considered other options including adding lines and changing
colors, but we observed that the other options often show the adverse affect of making the
images noisier and thus reducing the model accuracy unnecessarily. The rotation also allows for
simple and effective verification of subgroup labels in generated synthetic data by comparing the
mean values of synthetic image vectors to the centroids of real image vectors. To validate this
heuristic, we compared the results with 400 manually labeled images from each baseline model
and observed high accuracy (e.g., 96.5% for MNIST).

• Unknown Subgroup Bias. In the previous subgroup bias setting, s labels are not used during
model training and only used for evaluation purposes after training.

CelebA We create binary class bias using gender attributes, where we set female and male images
as y = 1 and y = 0, respectively. As discussed in the main text, DP generative models often show
low performance on CelebA in challenging bias scenarios like multi-class bias, which can hinder
the reliability of fairness analyses (e.g., a random generator achieves perfect fairness by outputting
random images regardless of data groups). Notably, we show that DP generative models can produce
highly biased synthetic data even in this simple binary class bias setting (Table 4).

D.2 BASELINES

Continuing from Sec. 5, we provide more details on baseline approaches used in our experiments.
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DP Generative Models We use three state-of-the-art PTEL-based generative models: GS-
WGAN (Chen et al., 2020), G-PATE (Long et al., 2021), and DataLens (Wang et al., 2021a).
For all models, we refer to their official Github codes to implement their models and to use their
best-performing hyperparameters for MNIST, FashionMNIST, and CelebA.

• GS-WGAN. GS-WGAN is widely used in our experiments, as it leverages both PTEL and
DP-SGD (Abadi et al., 2016) to ensure DP and thus allows for various integration with other
techniques. Their approach first trains a multiple teacher ensemble and considers one teacher as
the representative of the other teachers. Output of the representative teacher (i.e., gradients) is
then sanitized with a DP-SGD based mechanism to train a DP generator. Compared to DP-SGD
which operates on the whole minibatch, their DP mechanism operates on each data sample and
thus can be considered as a composition of B Gaussian mechanism where B is the minibatch
size. Our fair sampling preserves their sensitivity analyses despite the potential oversampling, as
it does not change the sensitivity of each Gaussian mechanism on one input data (i.e., 2C due to
the triangle inequality).

• G-PATE and DataLens. G-PATE and DataLens leverage teachers’ votes on intermediate gradients
to update the generator. To sanitize these teachers’ votes with DP mechanisms, G-PATE uses a
random projection and a gradient discretization, while DataLens uses a top-k stochastic sign quan-
tization. Our fair sampling preserves their sensitivity analyses despite the potential oversampling,
as each teacher still can throw only one vote.

Privacy-Fairness Approaches We use 1) a prominent fair training approach based on reweight-
ing (Choi et al., 2020) and 2) two recent classification techniques which address both privacy and
fairness: DP-SGD-F (Xu et al., 2020) and DPSGD-Global-Adapt (Esipova et al., 2022).

• Reweighting. As outlined in Sec. 3, the reweighting approach computes the likelihood ratio and
modifies the loss term of a discriminator to achieve fairness. For subgroup bias setting, we directly
compute the likelihood ratio using sensitive group labels (Eq. 5). For unknown subgroup setting,
we estimate the value using binary classification approach with their official Github code. During
this estimation process, a public reference dataset is required to effectively train a binary classifier.

• DP-SGD-F and DPSGD-Adapt-Global. DP-SGD-F and DPSGD-Adapt-Global are fair variants of
DP-SGD where clipping bounds are dynamically adjusted to control the fairness-utility tradeoff.
To prevent excessive gradient clipping for minority data group samples, DP-SGD-F employs a
groupwise clipping approach where each data group has its own clipping bound, while DPSGD-
Adapt employs a scaling approach where all per-sample gradients are scaled down depending on
a dynamically adjusted scaling factor. As DP-SGD-F and DPSGD-Adapt-Global do not provide
the official codes to our knowledge, we faithfully implemented each algorithm based on their
papers. We note that DP-SGD-F is not applicable in the unknown subgroup setting, as they require
number of subgroup samples present in the batch to compute clipping bounds for each subgroup;
in contrast, DPSGD-Global-Adapt is applicable in the unknown subgroup setting, as the scaling
factor does not require knowledge on subgroup labels.

E ADDITIONAL EXPERIMENTS

Continuing from Sec. 5, 5.1, 5.3, and 5.4, we provide more experimental results.

E.1 MORE EXPERIMENTS ON PRIVACY-FAIRNESS-UTILITY TRADEOFF

Continuing from Sec. 5.2, we provide more results on the privacy-fairness-utility tradeoff.

Fairness-Utility Tradeoff with Varying Privacy Levels We analyze the fairness-utility tradeoff
under varying privacy levels, following (Tran et al., 2021b). Specifically, we examine how training
with PFGuard impacts the original fairness-utility tradeoff of underlying private generative models,
using the MNIST dataset under the subgroup bias setting. The results are shown in Fig. 7 and
Fig. 8. In weaker privacy regimes (i.e., higher values of ε), both the privacy-only generative model
and PFGuard converge to similar performance levels. However, PFGuard show notable fairness
improvements in stronger privacy regimes, albeit it also shows utility degradation due to slower
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Figure 6: Visualization of Pareto frontier results of PF-
Guard. A darker color indicates a more stronger privacy
constraint. Both fairness metric (Distributon disparity)
and utility metric (Overall FID) are lower the better.

Figure 7: Fairness-utility tradeoff of GS-
WGAN (i.e., private generative model).

Figure 8: Fairness-utility tradeoff of GS-
WGAN when trained with PFGuard.

convergence in the early training stages. We suspect this slower convergence is a natural consequence
of learning a more balanced distribution, since the generative model should capture more diverse
input features at the early training stage and thus can be more challenging.

Pareto Frontier Results Fig. 6 visualizes the Pareto frontier results of PFGuard, showing the
privacy-fairness-utility tradeoff. The nonlinear surface highlights the intricate relationship between
these three objectives. As privacy constraints weaken (i.e., the light-colored region), both utility
and fairness improve, converging toward a more favorable region. However, as privacy constraints
become stronger, the utility narrows down to a specific range, while fairness greatly varies, which is
particularly evident in the purple-colored region. This suggests that stronger DP noise consistently
degrades the image quality, but results in highly variable fairness outcomes, which implies that there
can be sweet-spot regions that can achieve both fairness and utility.

E.2 EXPERIMENTAL RESULTS ON TABLUAR DATA

Continuing from Sec. 5.3, we provide additional results with a tabular dataset. Although tabular data
are not of our immediate interest given our focus on scalability to high-dimensional data such as
images, we show how PFGuard can support tabular data as well as image data.

Experimental Setups [Dataset] We use Adult (Kohavi, 1996), which contains 43,131 examples of
demographic information of individuals along with a binary label of whether their annual income is
greater than 50k. We use gender as the sensitive attribute s and income as the class label y. [Baseline]
We use DP-WGAN (Xie et al., 2018) and PATE-GAN (Jordon et al., 2018) for private-only generative
models, and FFPDG (Xu et al., 2021) for both fair and private generative models. Since PATE-GAN is
a PTEL-based generative model, we use PATE-GAN as the base generator of PFGuard. We note that
FFPDG is the most closest work of ours, which mainly focuses on tabular data and poses challenges
when scaling to images – see more details in Sec. 6. [Metric] We use privacy and fairness metrics
from the main text and AUROC as the utility metric, following FFPDG for effective comparison.

Privacy-Fairness-Utility Tradeoff Table 5 shows the privacy-fairness-utility performances on the
Adult dataset. Notably, PFGuard achieves fairness comparable to fair-only generative models while
maintaining comparable utility with privacy-only generative models and FFPDG. In addition, Fig. 9
shows the Pareto frontier results compared to privacy-only generative models, where PFGuard outper-
forms other baselines by showing curves closer to the ideal region (i.e., low fairness discrepancy and
high utility). These results on tabular data are consistent with the results on image data, highlighting
the effectiveness and flexibility of PFGuard to a wide range of real-world applications by supporting
both tabular and image datasets.
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Table 5: Comparison of privacy-fairness-utility performance on Adult under ε=1, using PATE-GAN
as the base DP generator. The first five rows represent upper bound performances for vanilla, DP-only,
and fair-only models. Evaluations cover subgroup bias. Lower values are better across all metrics
except AUROC. We boldface the best results and underline the second best results.

Privacy Fairness Utility

Method ε EO Disp. (↓) Dem. Disp. (↓) AUROC (↑)
Vanila ✗ 0.56 0.58 0.80
Fair-only ✗ 0.07 0.07 0.75
DP-WGAN ✓ 0.31 0.30 0.69
PATE-GAN ✓ 0.19 0.22 0.74
RON-Gauss ✓ 0.18 0.14 0.70

FFPDG ✓ 0.12 0.20 0.75
PFGuard ✓ 0.08 0.12 0.76

Table 6: Comparison of computational time of private generative models with and without PFGuard.
MNIST FashionMNIST

Method w/o PFGuard w/ PFGuard Overhead (%) w/o PFGuard w/ PFGuard Overhead (%)

GS-WGAN 7378.30 7467.48 1.21 8114.96 8392.58 3.42
G-PATE 30810.25 31852.11 3.38 25238.84 26317.07 3.56
DataLens 41590.34 41638.19 0.12 547740.47 55714.41 1.78

Figure 9: Pareto frontier results of DP generative models
evaluated on tabular dataset (Adult). Upper left region
denotes ideal case with low fairness discrepancy (EO
Disparity) and high utility (AUROC).

Figure 10: FID values with different nor-
malization factors, evaluated on MNIST
using different batch sizes. GS-WGAN
is used as the base DP generator. N1

denotes a default normalization factor
(Sec. E.4);N2 denotes normalization fac-
tor from (Skare et al., 2003).

Normalization factor
Batch size N1 N2

128 (ε = 29.91) 75.05±2.26 74.58±2.96

64 (ε = 19.58) 75.35±6.67 72.20±4.58

32 (ε = 9.99) 82.68±7.13 78.18±1.85

E.3 COMPARISON OF COMPUTATIONAL TIME

Continuing from Sec. 5.3, we compare the computational time when integrating PFGuard with
existing PTEL-based generative models. Table 6 shows that PFGuard incurs minimal overhead in
computational time (< 4%), due to the simple modification in minibatch sampling for fairness.

E.4 ADDITIONAL NORMALIZATION TECHNIQUE FOR FASTER CONVERGENCE

Continuing from Sec. 5.3, we investigate the impact of the normalization factor on the overall
image quality of PFGuard. While we use a traditional normalization factor N1 =

∑
i h(xi) for

w(xi) ∝ h(xi) in our SIR-based sampling algorithm, we can employ additional normalization
techniques to boost the performance. For example, we can use N2 =

∑
i h(xi)/N−i for w(xi) ∝

h(xi)/N−i where N−i =
∑

i h(xi) − h(xi), which is known to help faster convergence of SIR
algorithms to the target distribution pbal (Skare et al., 2003). To investigate the influence on model
convergence of normalization factors, we compare the overall image quality resulting from two
different normalization factors N1 and N2 with varying batch sizes. We create both binary class bias
and subgroup bias in the MNIST dataset with bias level 3 (see Sec. D.1 for details) to make a more
challenging setting to effectively compare convergence speeds. We note that using a larger batch size
can change the corresponding DP guarantee, as using large batches leads to more data usage.
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Table 10 shows the comparison of image quality measured with FID, where a lower value indicates
better quality. Although both N1 and N2 demonstrate comparable performance when using a large
batch size, the performance gap becomes more evident as the batch size decreases. This empirical
evidence shows that the performance of PFGuard can be further improved by additionally employing
various normalization techniques.

E.5 COMPARISON WITH A DIFFERENT SAMPLING STRATEGY

Continuing from Sec. 5.2, we provide a performance comparison with a different sampling scenario
to enhance fairness. If sensitive attribute labels are available, one natural strategy is to train teachers
exclusively on each data group to learn group representations, which is a commonly used strategy
in stratified sampling approaches (Meng, 2013). We compare this stratified sampling strategy
against PFGuard’s importance sampling strategy, which trains teachers on randomly partitioned data,
assessing their respective privacy-fairness-utility tradeoffs.

Table 7 shows that while stratified sampling achieves comparable fairness to importance sampling,
it significantly reduces utility. A potential theoretical explanation is the downgraded utility of the
teacher ensemble. Training teachers on non-i.i.d. datasets can lead to inconsistent convergence
across teachers, leading to low consensus during teacher voting (Dodwadmath & Stich, 2022). This
low consensus not only reduces the ensemble’s prediction accuracy (i.e., utility), but also increases
privacy costs during DP aggregation (Papernot et al., 2018) – ultimately leading to worse privacy-
fairness-utility tradeoff. These results suggest that while training teachers on heterogeneous data may
be useful in other contexts, importance sampling is better suited for ensemble learning context to
achieve both privacy and fairness.

Table 7: Comparison of privacy-fairness-utility performance of sampling strategies, evaluated on
MNIST under the subgroup bias setting. GS-WGAN is used as the base DP generator. Lower values
are better across all metrics. We boldface the best results and underline the second best results.

Privacy Fairness Utility

Method ε KL (↓) Dist. Disp. (↓) FID (↓)
DP-only 10 0.177 0.383 77.97
Stratified sampling 10 0.090 0.209 135.35
Importane sampling 10 0.067 0.242 83.67

E.6 EXTENSION WITH OTHER FAIRNESS TECHNIQUES

Continuing from Sec. 5.3 and Sec. C.3, we show experimental results on supporting other fairness
techniques. In particular, we use GOLD (Mo et al., 2019), which aims to achieve Rawlsian Max-Min
fairness (Joseph et al., 2016) and is compatible with PFGuard (see Sec. C.3 for more details).

Table 8 shows the privacy-fairness-utility performance when applying GOLD in the unknown sensitive
attribute setting. GOLD achieves the best performance for the smallest (i.e., worst-case) group,
aligning with its goal of Rawlsian Max-min fairness. However, GOLD does not surpass PFGuard in
group fairness metrics or overall utility. These results suggest that incorporating additional fairness
techniques can provide flexibility for different use cases, where GOLD can be particularly beneficial
in applications prioritizing Rawlsian Max-min fairness over group fairness.

E.7 EXPERIMENTAL RESULTS ON FASHIONMNIST

Continuing from Sec. 5.3, we show PFGuard’s performances in synthetic data (Table 9) and down-
stream tasks (Table 10) evaluated on the FashionMNIST dataset. Compared to the results evaluated
on MNIST, private generative models often generate more imbalanced synthetic data w.r.t. sensitive
groups and exhibit lower overall image quality. In comparison, PFGuard consistently improves both
fairness and overall utility in most cases, similar to the results observed in the MNIST evaluation.
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Table 8: Comparison of privacy-fairness-utility performance of additional fairness technique
(GOLD (Mo et al., 2019)), evaluated on MNIST under unknown subgroup bias setting. GS-WGAN
is used as the base DP generator. Lower values are better across all metrics. We boldface the best
results and underline the second best results.

Privacy Fairness Utility

Method ε KL (↓) Dist. Disp. (↓) Smallest group FID (↓) FID (↓)
DP-only 10 0.177 0.383 101.39 77.97
PFGuard 10 0.004 0.041 89.43 89.76
PFGuard + GOLD 10 0.090 0.209 84.52 100.39

Table 9: Fairness and utility performances of private generative models with and without PFGuard on
synthetic data, evaluated on FashionMNIST with subgroup bias under ε = 10. Blue and red arrows
indicate positive and negative changes, respectively. Lower values are better across all metrics.

Fairness Utility

Method KL (↓) Dist. Disp. (↓) FID (↓) Y=1, S=1 Y=1, S=0 Y=0, S=1 Y=0, S=0

GS-WGAN 0.558±0.147 0.651±0.007 124.85±0.00 130.95±0.00 278.06±0.00 155.36±0.00 217.00±0.00

G-PATE 0.270±0.026 0.494±0.021 245.13±24.85 271.28±15.32 249.66±10.95 275.61±38.26 282.58±30.95

DataLens 0.160±0.022 0.388±0.026 165.90±6.50 197.61±8.90 191.72±8.46 173.60±9.00 225.93±6.53

GS-WGAN + PFGuard 0.009±0.065 (↓) 0.065±0.049 (↓) 113.13±7.24 (↓) 149.54±3.96 166.69±10.00 114.87±12.26 146.67±22.52

G-PATE + PFGuard 0.190±0.050 (↓) 0.418±0.049 (↓) 242.20±42.70 (↓) 267.14±33.95 248.92±51.93 266.91±51.47 295.32±31.69

DataLens + PFGuard 0.127 ±0.037 (↓) 0.345±0.050 (↓) 209.48 ±12.01 (↑) 248.43±13.12 222.16±16.69 222.46±15.17 262.62±11.37

Table 10: Fairness and utility performances of private generative models with and without PFGuard
on downstream tasks, evaluated on FashionMNIST with subgroup bias under ε = 10. Blue and red
arrows indicate positive and negative changes, respectively.

MLP CNN

Fairness Utility Fairness Utility

Method EO Disp. (↓) Dem. Disp. (↓) Acc (↑) EO Disp. (↓) Dem. Disp. (↓) Acc (↑)
GS-WGAN 0.773±0.019 0.021±0.019 0.812±0.009 0.795±0.008 0.007±0.007 0.804±0.003

G-PATE 0.636±0.065 0.162±0.059 0.875±0.004 0.525±0.056 0.095±0.064 0.884±0.010

DataLens 0.484±0.168 0.203±0.092 0.901±0.030 0.328±0.039 0.072±0.045 0.925±0.009

GS-WGAN + PFGuard 0.296±0.099 (↓) 0.152 ±0.033 (↑) 0.884 ±0.015 (↑) 0.449 ±0.082 (↓) 0.203 ±0.037 (↑) 0.910 ±0.011 (↑)
G-PATE + PFGuard 0.556 ±0.152 (↓) 0.154 ±0.087 (↓) 0.885 ±0.013 (↑) 0.476 ±0.051 (↓) 0.124 ±0.041 (↑) 0.899 ±0.017 (↑)
DataLens + PFGuard 0.387 ±0.154 (↓) 0.153 ±0.103 (↓) 0.858 ±0.025 (↓) 0.394 ±0.109 (↑) 0.093 ±0.074 (↑) 0.877 ±0.025 (↓)

E.8 FULL RESULTS WITH STANDARD DEVIATION

Continuing from Sec. 5.2 and Sec. 5.4, we show full results with standard deviations. Table 11 and
Table 12 show the full results of Table 4, demonstrating the stable fairness improvements of PFGuard
while preserving utility.

Table 11: Full results of fairness and utility performances of private generative models with and
without PFGuard on downstream tasks, evaluated on CelebA(S) with binary class bias under ε =
1. GS-WGAN is excluded due to lower image quality in this setting. Blue and red arrows indicate
positive and negative changes, respectively.

Fairness Utility

Method Acc. Disp. (↓) Acc (↑) Acc (Y=1) Acc (Y=0)

G-PATE 0.978±0.024 0.666±0.003 0.014±0.014 0.992±0.010

DataLens 0.793±0.173 0.643±0.031 0.114±0.087 0.907±0.087

G-PATE + PFGuard 0.736 ±0.126 (↓) 0.678±0.003 (↑) 0.187 ±0.085 (↑) 0.923 ±0.041 (↓)
DataLens + PFGuard 0.725±0.055 (↓) 0.689±0.004 (↑) 0.205±0.040 (↑) 0.931 ±0.015 (↑)
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Table 12: Full results of fairness and utility performances of private generative models with and
without PFGuard on downstream tasks, evaluated on CelebA(L) with binary class bias under ε =
1. GS-WGAN is excluded due to lower image quality in this setting. Blue and red arrows indicate
positive and negative changes, respectively.

Fairness Utility

Method Acc. Disp. (↓) Acc (↑) Acc (Y=1) Acc (Y=0)

G-PATE 0.968±0.025 0.668±0.001 0.023±0.018 0.991±0.007

DataLens 0.678±0.027 0.686±0.011 0.234±0.028 0.912±0.005

G-PATE + PFGuard 0.277±0.314 (↓) 0.563±0.028 (↓) 0.378±0.181 (↑) 0.655±0.133 (↓)
DataLens + PFGuard 0.641±0.038 (↓) 0.704±0.007 (↑) 0.276 ±0.031 (↑) 0.917 ±0.008 (↑)

F RELATED WORK

Continuing from Sec. 6, we provide more discussion on related work.

Private-only Data Generation Most privacy-preserving data generation techniques focus on
satisfying differential privacy (DP) (Dwork et al., 2014). The majority of these techniques focus on
privatizing Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), while recent studies
have explored other generative models as well (Takagi et al., 2021; Cao et al., 2021; Harder et al.,
2021; Liew et al., 2021; Chen et al., 2022; Vinaroz et al., 2022; Yang et al., 2023; Ghalebikesabi et al.,
2023). One privatization approach is based on DP-SGD (Abadi et al., 2016), which is a DP version of
the standard stochastic gradient descent algorithm to train ML models (Xie et al., 2018; Zhang et al.,
2018; Torkzadehmahani et al., 2019; Bie et al., 2023). Another privatization approach is based on the
Private Aggregation of Teacher Ensembles (PATE) framework (Papernot et al., 2016; 2018), which
trains multiple teacher models on private data, and updates the generator with differentially private
aggregation of teacher model outcomes (Jordon et al., 2018; Long et al., 2021; Wang et al., 2021a).
GS-WGAN (Chen et al., 2020) leverages both DP-SGD and PATE, where multiple teacher models
are trained as in PATE, while their outcomes are processed with gradient cliiping as in DP-SGD. We
design PFGuard to complement these private GANs by also achieving fairness in data generation.

Fair-only Data Generation The goal of model fairness is to avoid discriminating against certain
demographics (Barocas et al., 2017; Feldman et al., 2015; Hardt et al., 2016), and fair data generation
solves this problem by generating synthetic data to remove data bias. The main approaches of fair
data generation are as follows: 1) modifying training objectives to balance model training (Xu et al.,
2018; Sattigeri et al., 2019; Yu et al., 2020; Choi et al., 2020; Teo et al., 2023) and 2) modifying
latent distributions of the input noise to obtain fairer outputs (Tan et al., 2020; Humayun et al., 2021).
In comparison, PFGuard 1) modifies sampling procedures to balance model training while preserving
original training objectives and 2) makes the key contribution of satisfying both privacy and fairness.
There is another recent line of work using generated data together with original training data for
model fairness (Roh et al., 2023; Zietlow et al., 2022), but they focus on classification tasks and
assume to use given generative models.

Privacy-Fairness Intersection Recent studies have shown that achieving DP can hurt model
fairness in classification tasks (Bagdasaryan et al., 2019; Farrand et al., 2020; Xu et al., 2020; Esipova
et al., 2022), decision-making processes (Pujol et al., 2020), and generation tasks (Cheng et al., 2021;
Ganev et al., 2022; Bullwinkel et al., 2022; Rosenblatt et al., 2024). In addition, many studies have
investigated the privacy-fairness-utility tradeoff, showing that achieving both privacy and fairness
will necessarily sacrifice utility (Cummings et al., 2019; Agarwal, 2021; Sanyal et al., 2022). In
comparison, our study uncovers the counteractive nature of privacy and fairness – achieving DP can
compromise model fairness and achieving model fairness can compromise DP.

Private and Fair Classification To effectively achieve both privacy and fairness in model training,
various techniques have been developed for classification tasks (Jagielski et al., 2019; Xu et al., 2019;
2020; Tran et al., 2022; Esipova et al., 2022; Kulynych et al., 2022; Yaghini et al., 2023; Lowy et al.,
2023). In comparison, PFGuard focuses on data generation tasks, which aim to learn the underlying
training data distributions to generate synthetic data, and specifically tailors its fair training phase
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to generative modeling objectives. Although having the fundamental different problem settings, we
make comparisons with existing classification techniques that also leverage 1) importance sampling
or 2) PTEL, which are the two key components of PFGuard. (Kulynych et al., 2022) also extends
importance sampling to private settings and evaluate fairness in downstream classification. In contrast,
PFGuard evaluates fairness in both synthetic data generation and downstream classification. (Yaghini
et al., 2023) and (Tran et al., 2022) use PTEL mechanisms, but rely on public datasets to train student
classifiers. In contrast, PFGuard eliminates the need for public datasets by making PTEL queries with
generated samples from the student generator. We finally note that (Lowy et al., 2023) introduces
the first DP fair learning method with convergence guarantees for empirical risk minimization. In
contrast, PFGuard provides convergence guarantees for fair generative modeling.
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