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ABSTRACT

Fine-tuning on generalized tasks such as instruction following, code generation,
and mathematics has been shown to enhance language models’ performance on a
range of tasks. Nevertheless, explanations of how such fine-tuning influences the
internal computations in these models remain elusive. We study how fine-tuning
affects the internal mechanisms implemented in language models. As a case study,
we explore the property of entity tracking, a crucial facet of language compre-
hension, where models fine-tuned on mathematics have substantial performance
gains. We identify the mechanism that enables entity tracking and show that (i) in
both the original model and its fine-tuned versions primarily the same circuit im-
plements entity tracking. In fact, the entity tracking circuit of the original model
on the fine-tuned versions performs better than the full original model. (ii) The
circuits of all the models implement roughly the same functionality: Entity track-
ing is performed by tracking the position of the correct entity in both the original
model and its fine-tuned versions. (iii) Performance boost in the fine-tuned models
is primarily attributed to its improved ability to handle the augmented positional
information. To uncover these findings, we employ: Patch Patching, DCM, which
automatically detects model components responsible for specific semantics, and
CMAP, a new approach for patching activations across models to reveal improved
mechanisms. Our findings suggest that fine-tuning enhances, rather than funda-
mentally alters, the mechanistic operation of the model.

1 INTRODUCTION

The capabilities of models fine-tuned on general reasoning tasks have hinted at nontrivial mecha-
nisms underlying task learning. While it has been widely understood that fine-tuning a pretrained
model on a specific task can improve task performance on that same task (Howard & Ruder, 2018),
studies of fine-tuning on generalized domains (Gururangan et al., 2020) have suggested that fine-
tuning on generic problems can improve specific task performance as well. In particular, fine-tuning
on coding has been observed to lead to a range of improved capabilities in a model (Madaan et al.,
2022; Kim & Schuster, 2023). In this paper, we study the mechanisms underlying one specific ca-
pability which is dramatically improved by fine-tuning a standard large language model (LLM) on
the generic task of arithmetic-problem solving: the ability of a model to perform in-context entity
tracking, where the model can infer properties associated with an entity previously defined in the in-
put context. For example, if we say “The apple is in Box C,” a model will later be able to infer “Box
C contains the apple”. The ability to track and maintain information associated with various entities
within the context is fundamental for complex reasoning (Karttunen, 1976; Heim, 1983; Nieuwland
& Van Berkum, 2006; Kamp et al., 2010), thus making entity tracking an intriguing case study.

We ask several specific questions about the mechanisms underlying the emergence of improved
entity tracking in an arithmetic-tuned model. First, we ask: can the performance gap be explained
because the fine-tuned models contain a different circuit for performing entity tracking? Or does it
contain the same entity-tracking circuit as the base model? To answer this question, we explicitly
identify the entity-tracking circuit in the base Llama-7B model, using the path-patching method
from Elhage et al. (2021); Wang et al. (2022), consisting of a sparse set of 72 attention heads in four
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groups, each group active at a specific token location (Fig. 1); acting in isolation, this sparse circuit
can reproduce the entire entity-tracking capability of the base model. Then, without altering the
graph, we ask if exactly the same set of components constitutes the entity-tracking circuit in the fine-
tuned models. We observe that the identical circuit exists in the fine-tuned models, which alone can
restore atleast 88% of the overall performance of the entire fine-tuned model. However, achieving
the full performance of the fine-tuned models requires incorporation of additional components.

Next, we ask: how does this common circuit work? Can we discern the role of each group of at-
tention heads? To answer these questions, we use Desiderata-based Component Masking (DCM;
Davies et al., 2023), a method for automatically identifying model components responsible for per-
forming a specific semantic subtask. That is done by specifying a set of “desiderata,” each consisting
of pairs of entity tracking tasks, a base task, and a carefully designed alternation of it. The alternation
is done on a specific semantic part of the task (e.g. the entity name) with a known target output (e.g.
switch the entity property). Using these sets of tasks, we automatically identify groups of model
components that have causal effects that correspond to specific semantics. For example, we could
identify whether circuit components are transporting entity name information (e.g. “Box C” in the
previous example), or its associated property (e.g. “contains the apple”), or some other scheme. We
test these hypotheses and surprisingly find a third scheme that is used: entity tracking is performed
by identifying and transporting the position of the queried entity in the context, with multiple groups
of heads collaborating to pass the position downstream. Furthermore, this scheme and specific role
of each group of heads remain the same between models, confirming that fine-tuning preserves the
overall mechanism for performing the entity tracking task. The mechanism invariance is observed
in both low-rank adaptations (LoRA) (Hu et al., 2021) and fully fine-tuned models.

Third, we ask: if the mechanism remains the same after fine-tuning, can we attribute the perfor-
mance improvement to a specific step in the mechanism? To study this question, we introduce
cross-model activation-patching (CMAP), which allows us to localize the specific sub-mechanism
being improved by fine-tuning. Cross-model activation patching shows evidence that (i) the inter-
nal representation of both the original model and the fine-tuned models is similar enough so that
patching components of the entity-tracking circuit from the fine-tuned models to Llama-7B leads to
enhanced performance. (ii) In fine-tuned models the entity tracking circuit has augmented positional
information for attending to the correct object and hence fetching its enhanced representation.

Taken together, our findings indicate that fine-tuning enhances the existing mechanism of the orig-
inal model rather than causing a fundamental shift. Notably, the entity tracking circuit remains
consistent across both base and fine-tuned models and maintains the same functionality, with the
performance gap mainly attributed to an improved core sub-mechanism. The code, data and fully
fine-tuned model can be accessed at https://finetuning.baulab.info.

2 RELATED WORK

Mechanistic interpretability aims to elucidate neural network behaviors by comprehending the un-
derlying algorithms implemented by models (Olah et al., 2017; Elhage et al., 2022). Recently, no-
table progress has been made in identifying circuits performing various tasks within models (Nanda
et al., 2023; Wang et al., 2022; Chughtai et al., 2023; Olah et al., 2020; Lieberum et al., 2023), and
in methods enabling circuit discoveries (Davies et al., 2023; Conmy et al., 2024; Wu et al., 2024;
Meng et al., 2022; Chan et al., 2022). We aim to harness mechanistic interpretability to uncover
an explanation for the performance enhancement observed in fine-tuned models. Specifically, our
exploration focuses on whether the performance gap results from varying circuit implementations
of the same task and if not, we aim to identify the enhanced mechanism within the circuit.

Fine-tuning on generic domains such as code, mathematics, and instructions has been shown to
enhance language models performance, both in the context of general fine-tuning and when tailored
for specific tasks (Christiano et al., 2017; Gururangan et al., 2020; Madaan et al., 2022; Ouyang
et al., 2022; Chung et al., 2022; Taori et al., 2023; Chiang et al., 2023; Liu & Low, 2023; Kim &
Schuster, 2023; Zheng et al., 2023; Touvron et al., 2023b; Bommarito II & Katz, 2022). Several
attempts to understand the effect of such fine-tuning on model operations reveal interesting charac-
teristics; instruction fine-tuning can destroy knowledge for OOD input (Kumar et al., 2022), shift the
model’s weight to a task-depended sub-domain (Gueta et al., 2023; Ilharco et al., 2022), and enhance
existing capabilities rather than introduce new knowledge (Zhou et al., 2023). Fine-tuned models
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were shown to have a localized set of components that perform the task (Panigrahi et al., 2023),
and modified underlying embedding spaces and attention patterns (Kovaleva et al., 2019; Merchant
et al., 2020; Wu et al., 2020; Zhou & Srikumar, 2022). Concurrent to our research, (Jain et al., 2023)
delved into the impact of fine-tuning on LLMs from a mechanistic perspective. Although their main
finding, suggesting that fine-tuning rarely alters pretrained capabilities, resonates with our result
of enhancing existing mechanisms through fine-tuning, their study involved controlled experiments
utilizing transformer models created using the tracr library (Lindner et al., 2024). In contrast, our
experiments focus on established LLMs such as Llama-7B and their fine-tuned variants, specifically
in the context of entity tracking tasks, which we believe better represent real-world language tasks.

Entity tracking is a fundamental cognitive ability that enables AI models to recognize and trace
entities, including objects, individuals, or concepts, within a given context (Karttunen, 1976; Heim,
1983; Nieuwland & Van Berkum, 2006; Kamp et al., 2010; Marcus, 2018). In the large language
models realm, models such as GPT-2 (Radford et al., 2019) have shown some related abilities, such
as predicting the next moves in board games (Toshniwal et al., 2022; Li et al., 2022). Utilizing a
probing technique, Li et al. (2021) shows that entity state can be recovered from internal activa-
tions in BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020). Lately, Kim & Schuster (2023)
presented a dataset of entity tracking tasks, showing that models fine-tuned on code data perform
entity tracking more accurately. We use entity tracking as a case study to explore how fine-tuning
changes the model’s functionality to achieve enhanced performance. Complimentary of our work,
(Feng & Steinhardt, 2023) investigated how LLMs keep track of various properties associated with
an entity. Their findings indicated that models generate binding ID vectors corresponding to entities
and attributes. We find it intriguing to further investigate the interaction between these binding ID
vectors and the entity tracking circuit we have identified.

3 EXPERIMENTAL SETUP

To explore the internal mechanism that enables entity tracking we adapt the dataset presented in Kim
& Schuster (2023), aimed at evaluating the ability of a language model to track state changes of
discourse entities. The dataset contains English sentences describing different settings of objects
located in different boxes, with different labels, and the task is to discover what is inside a specific
box. For example, when the model is presented with “The apple is in box F, the computer is in Box
Q, the document is in Box X... Box F contains the”, it should predict the next token as “apple” (see
additional task examples in Fig. 2 and in the Appendix J). Each of our tasks involves 7 boxes and no
operations (i.e. contents of the boxes are not altered), each box is labeled with a random alphabetic
letter. For convenience, we only use single-token objects. In contrast to Kim & Schuster (2023), we
reorder the structure of the context segment (where each box information is defined) such that the
object is mentioned before the box label (“The apple is in box F” instead of “Box F contains the
apple”). This is to ensure that the context segment and the query segment (where the box is queried)
have different structures, and the model needs to infer the box information rather than locating the
longest identical context segment in the text.

We study four language models: LLaMA-7B (Touvron et al., 2023a), and three fine-tuned versions
of it: Vicuna-7B (Chiang et al., 2023) that was fine-tuned on user-shared conversations collected
from ShareGPT, Goat-7B (Liu & Low, 2023), fine-tuned on synthetically generated arithmetic ex-
pressions using LoRA (Hu et al., 2021), and FLoat-7B (Fine-tuned Llama on arithmetic tasks),
fine-tuned on the same data as Goat-7B without LoRA. All these models achieve high performance
on the entity tracking task, as shown in Table 1 (first column, evaluation was done over 500 tasks).
Although Goat-7B and FLoat-7B were fine-tuned on arithmetic tasks, their ability to perform entity
tracking is significantly improved compared to the base Llama-7B model. This aligns with Kim
& Schuster (2023), who also found that models trained on structured data are better at performing
entity tracking. We seek a mechanistic explanation for this performance gap.

4 IS THE SAME CIRCUIT PRESENT AFTER FINE-TUNING?

In this section we ask whether the circuit that enables entity tracking changes across the different
fine-tuned models. Entity tracking might be solved by the same circuit in all four models, or each
model may implement a different circuit in the light of fine-tuning data. To answer this, we start with
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Figure 1: Entity Tracking circuit in Llama-7B (Cir). The circuit is composed of 4 groups of
heads (A,B,C,D) located at the last token (A,B), query label (C), and previous query label (D) token
positions. Each group is illustrated by a prominent head in that group.

identifying the entity tracking circuit in Llama-7B, and then evaluate the same circuit components
in Vicuna-7B, Goat-7B, and FLoat-7B.

4.1 CIRCUIT DISCOVERY IN LLAMA-7B

The entity-tracking circuit will be a subgraph of the transformer computational graph, where each
node is an attention head at a specific token position, so the whole circuit is a set Cir = {(a, t)}. For
example, Fig.1 illustrates the entity tracking circuit in Llama-7B consisting of four groups of nodes,
each represented by a prominent head; e.g. Group A is characterized with (aL21H3, tlast). Given the
nature of the entity tracking task, we are primarily interested in how and what kinds of information
are transported between tokens rather than how that information is transformed. We therefore focus
our analysis on the attention heads of the circuit, and we consider all MLP layers to be involved in
the computation of the final output.

To identify the components of the entity tracking circuit, we use Path Patching (Wang et al., 2022;
Goldowsky-Dill et al., 2023), using the synthetic box tracking dataset with 300 examples. For
each of the original entity tracking tasks xorg we define a corresponding noise task xnoise with a
randomized query, box labels, and objects. Then we evaluate each candidate pair of nodes with
a score defined as follows. We denote porg as the probability of the correct token predicted by
the original run, and we let ppatch be the probability assigned to the correct token when patching a
specific path from one specific node to another using activations from the noisy run. The patching
score for the candidate pair is defined as (ppatch − porg)/porg. At each iteration we add the paths with
the lowest (most negative) scores.

In the first step, we identify the group of heads that directly influence the final logit with the lowest
patching scores. These attention heads attend mainly to the correct object token: in other words,
they look directly at the answer, e.g., ‘apple’ that should be predicted (Fig. 1). We refer to this set of
heads as Group A. We then iteratively identify groups of heads that have high direct effects on each
other using the path patching score; this leads us to three additional groups of attention heads, (B, C,
and D), active at the last, query label, and previous query label token positions, as shown in Fig. 1.
We mark the paths between groups with either Q or V to indicate whether the heads of the previous
group affect the query or the value vector calculation of the following group correspondingly.

Overall, the circuit Cir consists of four groups of heads. Group D at the previous query label token
collects information of its segment and passes it on to the heads in Group C at the query box label
position via V-composition. The output of Group C is transported to the last token residual stream
via the heads of Group B through V-composition, which is used by the heads of Group A via Q-
composition to attend to the correct object token. The validity of this information flow channel is
further substantiated by the results obtained from the attention knockout technique introduced in
Geva et al. (2023), as demonstrated in Appendix A. Interestingly, this circuit suggests that correct
object information is fetched directly from its token residual stream, instead of getting it from the
query label token residual stream. This result is consistent with the findings of Lieberum et al.
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Table 1: Entity-tracking circuit found in Llama-7B, evaluated on Llama-7B, Vicuna-7B, Goat-7B,
and FLoat-7B, without any adjustment of the circuit graph. The circuit achieves high accuracy and
faithfulness scores in all models (chance accuracy is 0.14).

Accuracy

Model Finetuned? Full-Model Circuit Random Circuit Faithfulness
Llama-7B – 0.66 0.66 0.00 1.00
Vicuna-7B User conversations 0.67 0.65 0.00 0.97
Goat-7B Arithmetic tasks (LoRA) 0.82 0.73 0.01 0.89
FLoat-7B Arithmetic tasks (w/o LoRA) 0.82 0.72 0.01 0.88

(2023), reporting that heads affecting final logit attend to the correct label, instead of content tokens,
to identify the label corresponding to the already-determined correct answer.

4.2 CIRCUIT EVALUATION

Although path patching ranks a head based on its relevance via the patching score, it does not provide
a clear threshold for the number of heads that should be included in the circuit. In our setting, we
include a total of 90 heads in the circuit discovered with path patching (50,10,25,5 heads in Groups
A,B,C,D respectively). However, there might be redundancy among the heads in each group. Hence,
inspired by Wang et al. (2022), we use a minimality criterion to prune the initial circuit. We then
measure the performance of the minimal circuit compared with that of the entire model using the
faithfulness metric. We also evaluate it with the completeness metric in the Appendix C.

For both criteria, we define the performance metric F to be the accuracy score averaged over 500
examples. That is, for the model M and its circuit Cir, F (M), F (Cir) represent the accuracy of
the model and circuit respectively. Specifically, we compute F (Cir) by first mean ablating of all
the heads in the model that are not involved in Cir.

Minimality. The minimality criterion helps identify heads that do not significantly contribute to the
circuit performance found with path patching (90 heads in total). For each head, v ∈ Cir, and a
subset of heads K, we measure the relative performance difference of Cir when the heads in K are
knockout, with and without v from the circuit. That is, we define the contribution of each head v to
Cir as (F (Cir \K)− F (Cir \ (K ∪ {v})))/F (Cir \ (K ∪ {v})). We filter out the heads with a
score lower than 1% (e.g. contribute less than 1% to the performance of the circuit in the absence of
the functionality defined by subset K). Unlike Wang et al. (2022), we use a greedy approach to form
the subset for each head in Cir (check Appendix B for more details), and only consider heads that
positively contribute to the model performance (e.g. contribute to performing of the task). Using this
criterion we prune 20% of the heads of the initial circuit, hence reducing the total number of heads
to 72 (see Appendix D for exact distribution and heads in each group).

Faithfulness. We next measure how good is the identified circuit compared with the entire model.
We use the criterion of faithfulness, which is defined as the percentage of model performance that
can be recovered with the circuit, i.e. F (Cir)/F (M). As shown in Table 1, Llama-7B has a faith-
fulness score of 1.0, suggesting identified circuit can recover entire model performance.

4.3 CIRCUIT GENERALIZATION ACROSS FINE-TUNED MODELS

As described in section 3, fine-tuned models perform the entity tracking task better than the base
Llama-7B. Better performance could be attributed to a superior circuit in the fine-tuned models.
Hence, in this subsection, we ask the question of whether the fine-tuned models use a different or
the same circuit, i.e. with exactly the same group of heads, to perform the entity tracking task.

To answer this, we evaluate the circuit identified in Llama-7B, on the fine-tuned models using the
faithfulness criterion. Surprisingly, we find that fine-tuned models have good faithfulness scores for
the circuit identified in Llama-7B (without any additional optimization or adaptation) as shown in
Table 1. Specifically, Vicuna-7B has almost a perfect faithfulness score of 0.97, while Goat-7B and
FLoat-7B exhibit slightly lower scores of 0.89 and 0.88, respectively. As a baseline, we calculate
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the average accuracy of 10 random circuits with the same total and per-position number of heads;
random circuits have virtually zero accuracy. This suggests that Vicuna-7B utilizes roughly the
same circuit as that of Llama-7B to perform entity tracking. Whereas, in Goat-7B and FLoat-7B the
same circuit is present, but achieving the complete performance of the fine-tuned models requires
the incorporation of additional components.

To further investigate the overlap between the circuits of fine-tuned models and the base model,
we identify the entity tracking circuits of the Goat-7B and FLoat-7B models, using the same pro-
cedure as in Section 4.1 (Refer to Appendix E and Appendix F). We found that these circuits are
significantly larger, consisting of 175 attenton heads and approximately forming a superset of the
Llama-7B circuit (Refer to Appendix E4 and Appendix F4 for more details). This finding suggests
that fine-tuning is inserting additional components to the circuitry that performs entity tracking.

5 IS CIRCUIT FUNCTIONALITY THE SAME AFTER FINE-TUNING?

While the same circuit is primarily responsible for performing entity tracking in both the base and
fine-tuned models, the specific functionality of different parts of the circuit remain unknown. In
other words, to fully comprehend the underlying mechanism through which these models execute
the task, it is crucial to understand the functionalities of the circuit components. There are two
hypothesis pertaining to circuit functionality in base and fine-tuned models: (i) The same circuit
exists in all four models, but the functionalities it implements may vary, accounting for the per-
formance difference. (ii) The circuits of all models implement the same mechanism, but with an
enhanced functionality in fine-tuned models. To investigate these hypotheses, we use the automatic
Desiderata-based Component Masking (DCM) method, introduced in Davies et al. (2023), for iden-
tifying groups of model components responsible for specific functionalities. First, we use DCM on
the groups of heads in the minimal circuit of Llama-7B to identify subsets of heads with specific
functionalities, (e.g. moving positional information or object values). Then, for each model we apply
activation patching on those subsets of heads, to quantify their efficacy on various functionalities.

5.1 DESIDERATA-BASED COMPONENT MASKING

The DCM method involves using desiderata for identifying model components responsible for spe-
cific functionality. Each desideratum consists of numerous 3-tuple (original, alternative, target),
where original is an original entity tracking task, alternate is a carefully designed counterfactual
task, and target is the desired output, as shown in Fig. 2. If a set of components encodes information
regarding the desired semantics, then patching activations from the alternate run into the original
run should alter the model output to target. Refer to Davies et al. (2023) for more details.

DCM use gradient descent optimization procedures; For each desideratum, we train a sparse binary
mask over potential model components to identify the ones that when patched from counterfactual
to original run maximize the target value. Hence, compared to brute-force activation patching, DCM
is much more efficient. More importantly, it overcomes a major drawback of activation patching,
i.e. it can locate the subset of model components that work together to produce the final output.

5.2 CIRCUIT FUNCTIONALITY IN LLAMA-7B

To untangle the functionality of groups of heads in the Llama-7B circuit, we define three desiderata,
as shown in Fig. 2: (i) Object desideratum, which is used to identify model components encoding
the value of correct object, (ii) Label desideratum, used to identify model components encoding
the box label value information, and (iii) Position desideratum which can be used to identify model
components encoding the positional information of the correct object. Please refer to Fig. 2 caption
and Appendix G for additional details about each.

We apply DCM to identify the subset of heads that encode these functionalities in Llama-7B circuit.
For each group of heads, we train three binary masks, one for each desideratum, that identify the
subset of heads encoding specific functionality (check Appendix H for more details). The results are
shown in Table A2. All Group A heads encode the value of correct object in their output. While most
of the heads in Group B (71.43%) and C (70.0%) encode positional information of the correct object
in their output. The heads of Group D are not profoundly involved in any of the three functionalities.
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Desiderata OriginalAlternate Target

(a) Object cupThe document is in Box X, the pot is in Box Y, the
cross is in Box Z, … Box X contains the ____

The book is in Box A, the cup is in Box B, the
computer is in Box C, … Box B contains the ____

(b) Label potThe document is in Box X, the pot is in Box Y, the
cross is in Box Z, … Box X contains the ____

The book is in Box A, the cup is in Box B, the
computer is in Box C, … Box Y contains the ____

(c) Position crossThe document is in Box X, the pot is in Box Y, the
cross is in Box Z, … Box X contains the ____

The book is in Box A, the cup is in Box B, the
computer is in Box C, … Box C contains the ____

Figure 2: Desiderata for identifying circuit functionality. We define different desiderata (sets of an
original sentence and a carefully designed counterfactual alternation of it with a known target output)
to evaluate various hypotheses regarding the functionality of a subset of heads within the circuit. (a)
when patching heads encoding information about the correct object, the object information from the
alternate run (e.g. “cup”) is implanted into the original run. (b) heads sensitive to the query box label
will be affected by the alternate query label (e.g. “Box Y”) causing the output to be the object in
that box. (c) Position encoding heads represent positional information of the correct object token.
Therefore patching these, the model outputs the object at the location of the correct object token in
the alternate sequence (e.g. “cross” which is located at the same position as “computer”.)

We next apply activation patching on this subset of heads, using additional (N = 500) samples
from the three desiderata, and compute the accuracy with respect to the target value. In order to
incorporate randomness in the generated data, we repeated the evaluation ten times with different
samples of the test set and report the mean accuracy and standard deviation. The results are shown in
Fig. 3, indicating that heads in Group A are primarily responsible for fetching the value information
of the correct object. Hence, we refer to this set of heads as Value Fetcher. Heads in Group B and C
are mainly responsible for detecting and transmitting the positional information of the correct object
and are therefore referred to as Position Detector and Position Transmitter. Since we were unable
to establish the functionality of heads in Group D, we used their attention pattern to annotate them.
These heads primarily attend to tokens in their own segment, as shown in Fig. 1, hence we refer to
them as Structure Reader heads.

Overall, the circuit generates correct output by first detecting the positional information of the correct
object with Position Detector heads, using the information collected by the Structure Reader heads.
The positional information is transmitted to the Value Fetcher heads, by the Position Transmitter
heads, which resolves this information to locate the correct object location and fetches its value, to
be generated as final output. This indicates that the model is primarily using positional information
to keep track of in-context entities. Additionally, we have some early evidence that the model is
encoding positional information relative to the context segment; see Appendix J for more details.

5.3 CIRCUIT FUNCTIONALITY IN FINE-TUNED MODELS

Now that we have identified the functionality of the group of heads in the Llama-7B circuit, we can
examine whether this circuit, also present in the fine-tuned models, implements the same or different
functionalities across different models. To assess this, we employ activation patching on the same
subset of heads of Vicuna-7B, Goat-7B, and FLoat-7B that are involved in a specific functionality.

As shown in Fig. 3, the functionality of the subset of heads remains the same across fine-tuned
models. Position Detector and Position Transmitter heads of Vicuna-7B and Goat-7B achieve per-
formance similar to that of Llama-7B, though they demonstrate enhanced accuracy in FLoat-7B.
The Value Fetcher heads in fine-tuned models consistently show an improved capability to retrieve
the correct object value, e.g. Goat-7B can achieve a performance improvement of 20% compared to
Llama-7B. Furthermore, we found that both Goat-7B and FLoat-7B circuits implement precisely the
same functionality within each group, as depicted in Fig. A8 and Fig. A9. These findings suggest
that neither additional functionality nor a shift in functionality is introduced in fine-tuned models.
Overall, the results confirm the hypothesis that circuits in fine-tuned models implement the same
functionality with the insight that the Value Fetcher in fine-tuned models has a better ability to
resolve positional information for fetching the correct object value information.
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Figure 3: Circuit Functionality in Llama-7B, Vicuna-7B, Goat-7B, and FLoat-7B. We use DCM
to uncover functionality of each subgroup of Llama-7B circuit. Group A (pink) is mainly sensitive to
value desideratum, while groups B, C (purple, turquoise) are responsible for positional information.
We find group D insensitive to each of the three desideratum. Error bars indicate standard deviation.

Combining the results from previous experiments indicates that not only the circuit from the base
model is present in the fine-tuned models, but also its functionality remains the same. Further, addi-
tional components in fine-tuned models’ circuits implement the exact same functionality. Hence, we
conclude that fine-tuned models implement the same mechanism to perform entity tracking task as
the base model. However, the increased performance of fine-tuned models suggests that fine-tuning
enhances that existing mechanism. This implies that unraveling the mechanism through which a
fine-tuned model accomplishes a task provides valuable insights into how the same task would be
executed in the base model. This insight is particularly crucial for tasks that the base model struggles
to perform well, making unraveling its mechanism more challenging.

6 WHY DO GOAT-7B AND FLOAT-7B PERFORM BETTER?

In the previous sections, we established that fine-tuned models employ the same mechanism as the
base model to perform the entity tracking task, albeit with additional components. In this section,
we aim to attribute performance improvement to a specific step in the mechanism.

6.1 CROSS-MODEL ACTIVATION PATCHING

In order to be able to attribute the performance improvement to a specific step in the mechanism,
we introduce Cross-Model Activation Patching (CMAP). Unlike naive activation patching, which
involves patching activations of the same model on different inputs, CMAP requires patching acti-
vations of the same components of different models on the same input, as shown in Fig 4.

We use CMAP to patch the output of the subset of heads responsible for dominant functionality in
each group of Goat-7B and FLoat-7B circuits. Since we do not fully understand the functionality of
Structure Reader heads, we patch all the heads in this group. More specifically, we patch the output
of heads in the Goat-7B circuit from the Goat-7B to Llama-7B model, to identify which step in
the Goat-7B model mechanism leads to performance improvement. Similarly, we perform the same
patching process for heads in the FLoat-7B circuit.
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Figure 4: Why do Goat-7B and FLoat-7B perform better? We use CMAP to patch activations
of the Goat-7B and FLoat-7B circuit components, from Goat-7B and FLoat-7B to Llama-7B model
respectively, to attribute the performance improvement to a specific sub-mechanism used to perform
entity tracking tasks. We patch the output of the subset of heads in each group that are involved in
the primary functionality. We find that patching Value Fetcher heads can solely improve the perfor-
mance of Llama-7B to that of Goat-7B and FLoat-7B. Additionally, we also observe a significant
performance boost when the output of Position Transmitter heads is patched.

6.2 RESULTS

As shown in Fig. 4, patching the output of the Position Transmitter and Value Fetcher heads from
fine-tuned models to Llama-7B improves the performance of Llama-7B beyond its default perfor-
mance (red dashed line). It is interesting to observe that the activations of fine-tuned models are
compatible with base model, even though they could have been using completely different sub-
spaces and/or norms to encode information. We observe the maximal increase in performance when
the Value Fetcher heads are patched, recovering the full fine-tuned models’ performance (green
dashed line). This indicates that the output of these heads in fine-tuned models encodes an enhanced
representation of the correct object, corroborating results from Section 5. Additionally, we also see a
substantial increase in performance when the outputs of the Position Transmitter heads are patched,
suggesting that fine-tuned models are also transmitting augmented positional information. We spec-
ulate that the enhanced encoding in fine-tuned models stem from both additional components in their
circuit and the improved ability to encode vital information of shared components with Llama-7B.

7 DISCUSSION AND CONCLUSION

In this work, we investigated the effect of fine-tuning on circuit-level mechanisms in LLMs. We
discovered that not only does the circuit from the base model persist in the fine-tuned models, but
its functionality also remains unchanged. Further, the circuits in fine-tuned models, augmented with
additional components, precisely employ the same functionality. We have introduced Cross-Model
Activation Patching (CMAP) to compare mechanisms in two different models, revealing how a fine-
tuned model enhances the existing mechanism in a base model to obtain a better performance on
entity tracking. In our work we have studied the interaction between a single task and three fine-
tuned models. Understanding whether such mechanism invariance is typical will require experience
with further tasks on more models. Nevertheless, the methods presented in the paper are generic and
could be applied to a variety of settings. Future work may study the training dynamics during the
fine-tuning process, to pinpoint exactly when and how the circuit enhancement occurs.

9



Published as a conference paper at ICLR 2024

8 ETHICS STATEMENT

This work investigating the impact of fine-tuning on large language models suggests that fine-tuning
primarily enhances existing mechanisms present in the base model. This highlights the importance
of training safe and unbiased base models that are openly available. If such models are developed
responsibly, then the risks of fine-tuning introducing new biases or dangerous behaviors can be
greatly reduced. Hence, indicating that careful stewardship is required in the foundational phases of
model development to promote beneficial applications as the capabilities of AI systems advance.
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Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt,
Jenny Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas.
Causal scrubbing: A method for rigorously testing interpretability hypothe-
ses. https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing, 2022. Accessed:
February 14, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
how networks learn group operations. arXiv preprint arXiv:2302.03025, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36, 2024.

Xander Davies, Max Nadeau, Nikhil Prakash, Tamar Rott Shaham, and David Bau. Discovering
variable binding circuitry with desiderata. arXiv preprint arXiv:2307.03637, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

10

https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


Published as a conference paper at ICLR 2024

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen, T Conerly,
et al. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context?, 2023.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 12216–12235, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.751. URL https://aclanthology.org/2023.
emnlp-main.751.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen.
Knowledge is a region in weight space for fine-tuned language models. arXiv preprint
arXiv:2302.04863, 2023.
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A UNRAVELING CRITICAL INFORMATION FLOW FOR ENTITY TRACKING
TASK THROUGH ATTENTION KNOCKOUT

Drawing inspiration from the Attention Knockout technique proposed in Geva et al. (2023), which
aims to investigate the flow of crucial information from the subject token to the last token position,
we adapted this technique to understand how essential information for entity tracking is conveyed
within Llama-7B. In our adaptation, all attention heads of a specific layer and position are obstructed
from attending to heads in the same layer at a different position, thereby limiting the flow of infor-
mation between these positions at the designated layer.

Unlike the approach in Geva et al. (2023), where a window of layers around the specified layer was
blocked from attending to a previous position, our method initiates by blocking all layers. Subse-
quently, at each step, we progressively unblock the next previously blocked layer. More precisely,
we block attention heads of all layers at a given position from attending to heads in a different
position. Then, in subsequent steps, we systematically unblock each layer, revealing which layer
encodes vital information which when unblocked leads to improved performance of the model in
conducting entity tracking tasks.
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Figure A1: Critical Information Flow to Last Token Position

In Fig. A1, the results are presented when heads at the last token position are prevented from attend-
ing to various previous positions. It is observed that there are two primary sources of information
that heads at the last token position utilize: the query box token and the correct object token posi-
tion. Specifically, heads in the initial layers focus on and extract crucial information from the query
box token residual stream, while heads in the later layers attend to the correct object token, bringing
in another essential piece of information. As a baseline comparison, we blocked the heads from
attending to a randomly selected previous position, which did not result in a loss of performance.
Additionally, Fig. A2 shows the results when heads at the query box token position are blocked from
attending to previous positions. We observe that heads in the initial layers transport vital information
from the previous query box token position.

The findings from the attention knockout methods align with the information flow subgraph iden-
tified using path patching in section. 4.1, as shown in Fig. 1. In other words, heads at the previous
query box position collect information about their segment, which is then passed on to the query box
token residual stream by the initial layer heads at that position. Subsequently, heads in the initial
layers at the final token position attend to the query box token position to incorporate it into their
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Figure A2: Critical Information Flow to Query Box Token Position

residual stream. This information is utilized by the heads in the later layers to attend to the correct
object token position and convey it to the final logit.

B MINIMALITY

We have utilized the minimality to identify heads that do not contribute significantly to the circuit
performance. For each head v ∈ Cir, we seek a subset of heads K ⊆ Cir \ {v}, such that when
heads in K are knocked out of Cir, v can still recover the performance of Cir considerably. Unlike
in Wang et al. (2022) which primarily defined K as the heads in the same class G ⊆ Cir that v
belongs to, we use a greedy approach to compute the subset. We cannot use the entire class as
K, since some of the classes have a large number of heads, e.g. Value Fetcher Heads, that when
knocked out would result in a colossal decrease in performance, which cannot be recovered via a
single head. To determine the subset K associated with a head v ∈ G, we rank all the other heads
in G based on the difference in circuit performance. This difference is computed by comparing the
circuit’s performance F (Cir), when only the other head vj (where vj is any head in G excluding
v) is removed, and when both v and vj are removed from the circuit. More specifically, we use
{F (Cir \ {vj})− F (Cir \ {v, vj}) | vj ∈ G, vj ̸= v} to rank all heads in G \ v and then consider
upto top 30% of the heads to form the subset K.

C EVALUATING LLAMA-7B CIRCUIT WITH COMPLETENESS CRITERION

To evaluate the integrity of the Llama-7B entity tracking circuit, we use an additional criterion;
completeness, which compares the performance of the circuit and the model under knockouts. The
circuit is considered complete if eliminating any subset of its components, denoted as K ⊆ Cir,
results in a comparable performance impact to removing the same subset K from the entire model,
as described in Wang et al. (2022). Specifically, for every subset K we calculate the performance of
the full model M in the absence of K and compare it to the circuit performance Cir in the absence
of K, i.e. |F (Cir \K)−F (M \K)|. We define this as the incompleteness score. If the circuit Cir
is complete, it should have a low incompleteness score. Since there are exponentially many K, it is
computationally intractable to evaluate the incompleteness score of every possible subset K. Hence,
Wang et al. (2022) proposed a few sampling methods to compute K and we use the following two:

1. Random: We uniformly sample a group of circuit components.

2. Circuit groups: We define K to be one of four groups of the circuit, i.e. A, B, C, and D as
shown in Fig. 1.
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The results in Fig. A3 and Table A1 indicate that the Llama-7B minimal circuit is not perfectly
complete, i.e. there are additional heads in the model that are involved in the entity tracking task.
Higher incompleteness score can also be attributed to backup heads, which become active only when
other relevant heads are excluded during forward propagation, as identified by Wang et al. (2022).
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Figure A3: Completeness of Llama-7B circuit. We plot the full model accuracy in the absence of
a subgroup vs. the circuit accuracy in the absence of the same subgroup. In a complete circuit, this
trend should represent equality (x = y). Our circuit is not perfectly complete and additional heads
might be included.

Table A1: Completeness evaluation of Llama-7B circuit. For the random setting we report the
mean and standard over 10 random subsets K.

Accuracy

Full-Model Circuit Completeness
Random 0.11± 0.06 0.0± 0.01 0.1± 0.06
Group A 0.19 0.0 0.19
Group B 0.23 0.02 0.21
Group C 0.04 0.02 0.02
Group D 0.58 0.46 0.12

D ENUMERATE LLAMA-7B CIRCUIT HEADS IN EACH GROUP

Table A2: Groups of heads in the Llama-7B circuit.
Group # Heads Functionality Name # DCM

A 40 Value Value Fetcher 40
B 7 Position Position Transmitter 5
C 20 Position Position Detector 14
D 5 - Structure Reader -

A: Value Fetcher
L15 H13, L21 H3, L24 H5, L20 H14, L18 H8, L29 H7, L18 H3, L15 H18,
L17 H28, L21 H4, L21 H25, L23 H15, L18 H28, L23 H19, L23 H20, L19
H30, L23 H5, L17 H27, L15 H5, L21 H0, L23 H17, L15 H2, L17 H3, L19
H20, L19 H11, L19 H8, L15 H6, L20 H29, L16 H23, L24 H0, L25 H14,
L14 H13, L21 H26, L24 H8, L18 H6, L19 H26, L23 H16, L16 H27, L18
H20, L18 H25.
B: Position Transmitter
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L14 H27, L11 H23, L12 H23, L19 H12, L13 H0, L16 H2, L13 H14
C: Position Detector
L10 H3, L13 H14, L9 H2, L9 H7, L11 H23, L9 H10, L1 H9, L7 H17, L13
H0, L6 H10, L4 H4, L7 H26, L9 H21, L8 H1, L12 H0, L8 H22, L10 H4,
L11 H7, L7 H9, L10 H15
D: Structure Reader
L8 H21, L12 H23, L11 H9, L8 H12, L11 H23

E CIRCUIT DISCOVERY IN GOAT-7B

To better understand the impact of fine-tuning on underlying mechanism for performing entity track-
ing task, we also identify the circuit in Goat-7B model responsible for performing this task, using
the same procedure as described in Section 4.1. The Goat-7B circuit consists of four groups of heads
positioned at the same token positions and similar layers, connected through the same type of com-
position as observed in the Llama-7B circuit. We include a total of 200 attention heads (80,30,50,40
heads in Groups A,B,C,D respectively) in the identified circuit. To eliminate redundant heads, we
employ the minimality criterion, mirroring the approach used for the Llama-7B circuit, resulting in a
circuit with 175 heads. The distribution of heads among groups is detailed in Table A3. The minimal
circuit is evaluated using completeness and faithfulness metrics in the following subsections.

E1 ENUMERATE GOAT-7B CIRCUIT HEADS IN EACH GROUP

Table A3: Groups of heads in the Goat-7B circuit.
Group # Heads Functionality Name # DCM

A 68 Value Value Fetcher 56
B 28 Position Position Transmitter 15
C 40 Position Position Detector 18
D 39 - Structure Reader -

A: Value Fetcher
L24 H5, L17 H28, L20 H14, L21 H4, L21 H3, L18 H8, L23 H19, L19
H30, L30 H4, L23 H17, L29 H7, L19 H20, L23 H15, L31 H6, L28 H16,
L30 H8, L28 H17, L17 H8, L25 H14, L24 H8, L19 H8, L23 H16, L21
H25, L31 H26, L19 H11, L31 H25, L18 H20, L31 H23, L15 H12, L31 H1,
L23 H27, L19 H26, L21 H19, L20 H0, L19 H1, L17 H27, L20 H29, L20
H7, L17 H5, L18 H21, L31 H14, L15 H2, L18 H6, L16 H23, L15 H31,
L19 H23, L21 H11, L23 H31, L31 H0, L17 H24, L11 H5, L22 H17, L13
H10, L14 H9, L18 H23, L15 H24, L21 H17, L16 H27, L19 H2, L17 H23,
L24 H0, L15 H9, L31 H24, L19 H15, L24 H4, L25 H19, L14 H3, L31 H30
B: Position Transmitter
L14 H27, L12 H23, L11 H23, L19 H12, L17 H26, L13 H1, L16 H16, L13
H0, L16 H2, L15 H4, L15 H13, L16 H28, L15 H18, L13 H25, L14 H11,
L14 H13, L10 H6, L13 H27, L12 H25, L12 H8, L12 H0, L11 H9, L18 H3,
L18 H28, L14 H10, L11 H26, L11 H24, L13 H3
C: Position Detector
L10 H3, L13 H14, L6 H10, L11 H23, L11 H24, L9 H7, L1 H9, L9 H10,
L10 H7, L7 H17, L13 H0, L5 H7, L12 H0, L12 H8, L12 H23, L12 H20,
L13 H25, L13 H12, L4 H4, L13 H4, L12 H16, L11 H2, L11 H7, L7 H26,
L10 H4, L4 H27, L9 H21, L8 H1, L11 H28, L12 H30, L8 H12, L9 H30,
L15 H26, L13 H23, L6 H17, L13 H1, L8 H29, L8 H25, L13 H6, L12 H17
D: Structure Reader
L8 H21, L11 H9, L12 H23, L11 H23, L12 H13, L9 H14, L9 H21, L10 H6,
L7 H2, L9 H29, L12 H29, L8 H13, L8 H12, L11 H28, L12 H30, L12 H25,
L8 H10, L8 H26, L8 H7, L10 H24, L6 H23, L9 H30, L11 H24, L9 H18,
L9 H12, L12 H0, L8 H19, L11 H11, L8 H9, L11 H20, L11 H26, L9 H6,
L8 H25, L9 H7, L9 H26, L10 H3, L9 H9, L12 H11, L7 H0
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E2 EVALUATING GOAT-7B CIRCUIT WITH COMPLETENESS CRITERION

To assess whether the identified Goat-7B circuit encompasses all the components engaged in ex-
ecuting the entity tracking task within the Goat-7B model, we utilize the completeness metric, as
detailed in Section C. We use two sampling methods for computing K: 1) Random sampling and 2)
Circuit groups.

Fig. A4 and Table A4 presents the completeness score of the Goat-7B circuit, revealing that the
circuit is nearly complete, except for heads in Group A. This suggests the possibility of additional
heads contributing to the entity tracking task. The higher incompleteness in Group A could also be
attributed to backup heads, which become active only when other relevant heads are excluded during
forward propagation, as identified by (Wang et al., 2022).

Table A4: Completeness evaluation of Goat-7B circuit. For the random setting we report the
mean and standard over 20 random subsets K.

Accuracy

Full-Model Circuit Completeness
Random 0.13± 0.06 0.16± 0.11 0.06± 0.06
Group A 0.41 0.21 0.2
Group B 0.13 0.11 0.02
Group C 0.06 0.11 0.05
Group D 0.62 0.63 0.01
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Figure A4: Completeness of Goat-7B circuit. We plot the full model accuracy in the absence of a
subgroup vs. the circuit accuracy in the absence of the same subgroup. In a complete circuit, this
trend should represent equality (x = y).

E3 EVALUATION OF GOAT-7B CIRCUIT WITH FAITHFULNESS CRITERION

For a more thorough evaluation of the Goat-7B circuit in comparison to the entire Goat-7B model,
we apply the faithfulness criterion as defined in Section 4.2. As presented in Table A5, Goat-7B
attains a faithfulness score of 0.99, indicating that the identified Goat-7B circuit can recover almost
the entire model performance. We also observe that the Goat-7B circuit has a similar faithfulness
score on FLoat-7B, suggesting a high overlap between the components that perform entity tracking
task in these models.

We also observe that the performance of the Goat-7B circuit on Llama-7B and Vicuna-7B is higher
than the entire model. Essentially, this implies that when the heads not present in the Goat-7B
circuit are mean-ablated in Llama-7B and Vicuna-7B, their performance shows improvement. This
phenomenon aligns with observations made in Vig et al. (2020), i.e. a small proportion of heads can
surpass the gender bias effect of the entire model. Our speculation revolves around the presence of
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Table A5: Entity-tracking circuit found in Goat-7B, evaluated in Llama-7B, Vicuna-7B, Goat-7B,
and FLoat-7B, without any adjustment of the circuit graph. The circuit achieves high accuracy and
faithfulness scores in all models (chance accuracy is 0.14).

Accuracy

Model Finetuned? Full-Model Circuit Random Circuit Faithfulness
Llama-7B – 0.66 0.77 0.00 1.17
Vicuna-7B User conversations 0.67 0.76 0.00 1.13
Goat-7B Arithmetic tasks (LoRA) 0.82 0.81 0.01 0.99
FLoat-7B Arithmetic tasks (w/o LoRA) 0.82 0.79 0.02 0.96

negative heads, i.e., attention heads that work against predicting the correct object, in these models,
contributing to a decrease in their overall performance, as also reported in Wang et al. (2022).

E4 COMPARISON OF LLAMA-7B AND GOAT-7B CIRCUITS

We observe that, while the faithfulness scores of the Llama-7B and Goat-7B circuits in their re-
spective models are comparable (i.e., 1.0 and 0.99), there is a substantial disparity in their sizes.
Specifically, the Goat-7B circuit comprises 175 heads, whereas the Llama-7B circuit has only 72
heads. This notable difference in the number of attention heads in the circuits implies that fine-
tuning introduces additional components to the circuitry dedicated to solving the entity tracking
task. Indeed, Table A10 and Fig. A5 suggest that the Goat-7B circuit is approximately a superset of
the Llama-7B circuit. Additionally, most of the highly causal heads in the Llama-7B circuit remain
to be highly influencial in the Goat-7B circuit, suggesting that a minimal alteration in the base model
circuit.

Table A6: Intersection of Attention Heads in Llama-7B and Goat-7B Circuits: Comparison of
the number of heads in each group of Llama-7B and Goat-7B circuits as well as their intersection.

Head Group Number of heads Number of heads Intersection Precision Recall
in Llama-7B circuit in Goat-7B circuit

A 40 68 27 0.68 0.4
B 7 28 6 0.86 0.21
C 20 40 16 0.8 0.4
D 5 39 5 1.0 0.13

F CIRCUIT DISCOVERY IN FLOAT-7B

In addition to examining the circuits of Llama-7B and Goat-7B, we also identify the circuit in the
FLoat-7B model responsible for performing entity tracking tasks. The primary objective of ana-
lyzing the FLoat-7B model and its associated circuit is to establish whether the results generalize
to models fine-tuned without LoRA. Similar to other circuit identification process, we followed
the procedure described in Section 4.1, to discover the Float-7B circuit which also consists of four
groups of heads located at the same token positions and similar layers to that in Llama-7B and Goat-
7B circuits. We initially included a total of 200 attention heads (80, 30, 50, 40 heads in Groups A,
B, C, D, respectively), which were subsequently reduced to 175 heads after applying the minimality
criterion. The distribution of heads in the minimal circuit is detailed in Section F1. Notably, we
found that the FLoat-7B circuit closely resembles the Goat-7B circuit, suggesting that the impact
of fine-tuning with and without LoRA on the underlying mechanism for performing entity tracking
tasks is similar. In the following subsections, we evaluate the FLoat-7B circuit using completeness
and faithfulness criterion.
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Figure A5: Causal Impact of Llama and Goat Circuit Heads: The first subplot shows the attention
heads that are included in the Goat circuit (red), sorted based on their causal impact, i.e. absolute
patching score. For comparison, the second subplot shows the attention heads that are included in
the Llama circuit (green) in the same order as the Goat component in the upper subplot (e.g. the first
bar in both subplots represents the same head that is present in both the circuits, hence colored red
and green respectively).

Table A7: Groups of heads in the FLoat-7B circuit.
Group # Heads Functionality Name # DCM

A 68 Value Value Fetcher 60
B 29 Position Position Transmitter 13
C 40 Position Position Detector 22
D 38 - Structure Reader -

F1 ENUMERATE FLOAT-7B CIRCUIT HEADS IN EACH GROUP

A: Value Fetcher
L18 H3, L24 H5, L18 H8, L21 H4, L20 H14, L17 H28, L30 H4, L18 H28,
L23 H17, L19 H30, L23 H19, L28 H16, L15 H5, L19 H20, L31 H26, L15
H18, L25 H14, L19 H11, L15 H12, L29 H7, L17 H3, L30 H8, L19 H1,
L31 H6, L16 H23, L24 H0, L23 H27, L31 H29, L20 H29, L15 H22, L23
H16, L15 H6, L18 H23, L17 H24, L15 H15, L12 H16, L23 H31, L23 H30,
L29 H22, L18 H6, L20 H0, L27 H19, L21 H10, L25 H19, L21 H23, L13
H23, L22 H17, L18 H20, L17 H27, L19 H15, L14 H9, L21 H11, L13 H10,
L17 H5, L14 H13, L20 H26, L18 H25, L19 H24, L18 H21, L24 H11, L12
H9, L31 H23, L26 H16, L16 H15, L19 H17, L17 H15, L19 H16, L22 H5
B: Position Transmitter
L14 H27, L11 H23, L12 H23, L13 H0, L13 H14, L13 H1, L19 H12, L16
H2, L17 H26, L16 H16, L14 H0, L15 H13, L12 H8, L15 H4, L14 H11,
L16 H28, L13 H25, L10 H6, L13 H27, L11 H26, L12 H30, L12 H21, L12
H5, L14 H17, L11 H5, L16 H17, L15 H26, L10 H12, L15 H1
C: Position Detector
L10 H3, L13 H14, L7 H17, L11 H23, L9 H10, L9 H7, L6 H10, L11 H24,
L13 H0, L4 H4, L7 H3, L12 H9, L10 H4, L8 H1, L9 H21, L12 H23, L11
H2, L12 H8, L10 H7, L12 H0, L10 H21, L9 H15, L13 H4, L13 H12, L12
H5, L7 H9, L11 H7, L8 H29, L12 H20, L15 H26, L12 H17, L9 H1, L12
H30, L11 H28, L5 H5, L13 H1, L10 H18, L13 H26, L10 H6, L11 H19
D: Structure Reader
L8 H21, L12 H23, L11 H9, L11 H23, L9 H21, L8 H12, L12 H13, L9 H14,
L8 H11, L10 H6, L11 H28, L9 H30, L12 H29, L6 H17, L9 H12, L8 H7,
L12 H30, L12 H25, L12 H15, L8 H26, L7 H30, L10 H24, L9 H9, L6 H25,

20



Published as a conference paper at ICLR 2024

L8 H13, L11 H24, L5 H4, L9 H26, L12 H11, L10 H12, L9 H6, L11 H11,
L12 H5, L7 H2, L9 H28, L10 H7, L7 H0, L6 H31

F2 EVALUATING FLOAT-7B CIRCUIT WITH COMPLETENESS CRITERION

We assess the entirety for the FLoat-7B circuit using the completeness criterion, as described in
Section C. Similar to other circuits’ evaluation, we utilize two sampling methods for computing K:
1) Random sampling and 2) Circuit groups.

Fig. A6 and Table A8 presents the completeness score of the FLoat-7B circuit. As with Goat-7B
circuit, FLaot-7B circuit is almost complete, except for the heads in Group A, suggesting either the
presence of additional heads that are fetching the value of correct object or backup heads, that get
activated when other relevant heads are ablated during forward propagation.

Table A8: Completeness evaluation of FLoat-7B circuit. For the random setting we report the
mean and standard over 20 random subsets K.

Accuracy

Full-Model Circuit Completeness
Random 0.2± 0.07 0.12± 0.1 0.09± 0.04
Group A 0.51 0.08 0.43
Group B 0.15 0.11 0.04
Group C 0.19 0.07 0.12
Group D 0.68 0.57 0.11
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Figure A6: Completeness of FLoat-7B circuit. We plot the full model accuracy in the absence of
a subgroup vs. the circuit accuracy in the absence of the same subgroup. In a complete circuit, this
trend should represent equality (x = y).

F3 EVALUATING FLOAT-7B CIRCUIT WITH FAITHFULNESS CRITERION

In addition to the completeness score, we assess the FLoat-7B circuit using the faithfulness criterion,
which evaluates the performance of the identified circuit compared to the entire model. We observe
that the FLoat-7B circuit attains a faithfulness score of 1.0 on the FLoat-7B model, indicating its
capability to recover the entire model performance. Furthermore, we note that its faithfulness on the
Goat-7B circuit is 0.93, suggesting a high degree of overlap between the circuits of the FLoat-7B
and Goat-7B models for performing entity tracking.
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Table A9: Entity-tracking circuit found in FLoat-7B, evaluated in Llama-7B, Vicuna-7B, Goat-
7B, and FLoat-7B without any adjustment of the circuit graph. The circuit achieves high accuracy
and faithfulness scores in all models (chance accuracy is 0.14).

Accuracy

Model Finetuned? Full-Model Circuit Random Circuit Faithfulness
Llama-7B – 0.66 0.69 0.0 1.05
Vicuna-7B User conversations 0.67 0.7 0.0 1.04
Goat-7B Arithmetic tasks (LoRA) 0.82 0.76 0.01 0.93
FLoat-7B Arithmetic tasks (w/o LoRA) 0.82 0.82 0.02 1.0

F4 COMPARISON OF LLAMA-7B AND FLOAT-7B CIRCUITS

To gain insights into how fine-tuning impacts the underlying mechanism for performing entity track-
ing in Llama-7B, we compare the identified circuits of Llama-7B and FLoat-7B models. Similar to
the observation with the Goat-7B model, we note a substantial difference in the sizes of the Llama-
7B and FLoat-7B circuits (72 and 175, respectively). This difference in circuit sizes suggests that
fine-tuning introduces additional components dedicated to the task of entity tracking. This is further
supported by the results presented in Table A10 and Fig. A7, demonstrating that the FLoat-7B circuit
indeed forms a superset of the Llama-7B circuit. Additionally, most of the highly causal heads in
the Llama-7B circuit remain highly influential in the Goat-7B circuit, suggesting minimal alteration
in the base model circuit.

Table A10: Intersection of Attention Heads in Llama-7B and FLoat-7B Circuits: Comparison
of the number of heads in each group of Llama-7B and FLoat-7B circuits as well as their intersection.

Head Group Number of heads Number of heads Intersection Precision Recall
in Llama-7B circuit in FLoat-7B circuit

A 40 68 27 0.68 0.4
B 7 29 7 1.0 0.24
C 20 40 15 0.75 0.38
D 5 38 5 1.0 0.13
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Figure A7: Causal Impact of Llama and FLoat Circuit Heads: The first subplot shows the at-
tention heads that are included in the FLoat circuit (red), sorted based on their causal impact, i.e.
absolute patching score. For comparison, the second subplot shows the attention heads that are in-
cluded in the Llama circuit (green) in the same order as the FLoat component in the upper subplot
(e.g. the first bar in both subplots represents the same head that is present in both the circuits, hence
colored red and green respectively).
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G DESIDERATA FOR DCM

To identify the functionality of various circuit components, we conceptualized and defined three
desiderata:

(1) Object desideratum is used to identify attention heads that encode the value of the correct object
in their output. Consequently, when the output of these components is patched from the counterfac-
tual run (which contains a different correct object value, associated with a completely different box
label) to the original run, the final output changes to the value of the correct object of the counter-
factual example, as shown in Fig. 2(a). This occurs even though that object was not included in the
original statement.

(2) Label desideratum is used to identify circuit components that are encoding the query box label
value. Hence, when their output is patched from the counterfactual run (that queried a different box
label) to the original run, the final output of the original run changes to the object from the original
run that is associated with the query box label of the counterfactual statement, as shown in Fig. 2(b).
Notably, this occurs even though that object was not initially associated with the query box in the
original statement but rather with the query box of the counterfactual one, and it is not present in the
counterfactual statement.

(3) Position desideratum is used to identify circuit components that encode the positional informa-
tion of the correct object, i.e. when they are patched from counterfactual run to the original run, the
final output of the original run changes to the object in the original statement located at the same po-
sition as the correct object of the counterfactual statement, as shown in Fig. 2(c). This happens even
though this object is not the correct object of the original run and is not present in the counterfactual
statement.

For each of the three desiderata, we train a binary mask over the model components to identify the
circuit components encoding the corresponding vital information to accomplish the task.

H DCM EXPERIMENT DETAILS

As mentioned in section 5.2, we restricted the model component search space to the heads in each
group. More specifically, for each group in the circuit, we identify the subset of heads that are
involved in three functionalities: 1) encoding object value, 2) box label value, and 3) correct object
position. We synthetically generated training (N = 1000) and eval datasets (N = 500), according
to the desiderata. To train a binary mask consisting of learnable parameters (W ), we minimize the
following loss function:

L = −logittarget + λ
∑

1−W (1)

with λ = 0.01. We trained it for two epochs, with ADAM optimizer and a batch size of 32.

I CIRCUIT FUNCTIONALITY IN GOAT-7B AND FLOAT-7B

To identify the functionality of the head groups within the Goat-7B and FLoat-7B circuits, we
adopted a procedure similar to the one detailed in section 5. Initially, we employed DCM to lo-
calize the subset of heads within each group encoding various functionalities. Subsequently, we
conducted activation patching on these subsets of heads.

As depicted in Table A3 as well as Fig. A8 for Goat-7B circuit, and in Table A7 as well as Fig. A9
for FLoat-7B circuit, the functionality of each head group mirrors that of the Llama-7B circuit.
Specifically, Group A heads predominantly encode the value of the correct object, while Groups B
and C are tasked with encoding the positional information of the correct object. Nevertheless, the
functionality of heads in Group D continues to remain a mystery.

J ADDITIONAL DESIDERATA FOR POSITIONAL INFORMATION

In section 5, we found that the models are using the positional information of the correct object for
entity tracking. However, we could not precisely characterize the positional information. Therefore,
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Figure A8: Activation patching results of the functionality heads in the Goat-7B circuit, identified
using DCM. Error bars indicate standard deviation.
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Figure A9: Activation patching results of the functionality heads in the Float-7B circuit, identified
using DCM. Error bars indicate standard deviation.

we devised a few additional positional desiderata, as shown in Tables A12 and A13. Similar to
our analysis on previously defined desiderata, we applied activation patching on the subset of heads
in the Position Transmitter group that encodes positional information. In other words, we were
interested in understanding what kind of positional information is being used by Value Fetcher heads
to locate the correct object in the context.

Results are summarized in Table A11. Although redundant text at the start, end, or between the
object and the box does not impact the positional information encoded in those heads, an additional
segment at the start does seem to affect it. Further, mentions of boxes with labels before the correct
segment (the segment containing the correct object) also interfere with the positional information. In
addition to relative positional information, the semantics of the association between the object and
the box are also influential. Combining these results, we speculate that the model is enumerating the
association of the boxes and their corresponding object from the start token as well as keeping track
of the semantics of the association. However, more work is needed to completely characterize the
positional information.

Table A11: Positional desiderata to characterize the positional information transported by the Posi-
tion Transmitter heads to the Value Fetcher heads. Please refer to Table A12 and A13 for examples.

Position hyp. Acc. Var.
1 Random text at the start 0.35 0.02
2 Random text at the end 0.34 0.01
3 Additional tokens between object and box 0.38 0.02
4 Additional segment at the start 0.25 0.02
5 Additional segment at the end 0.31 0.02
6 Additional boxes before correct segment 0.2 0.02
7 Incorrect box segment 0.16 0.01
8 Altered box object order 0.16 0.01
9 Altered association btw box and object 0.18 0.02
10 No comma to separate segments 0.38 0.02
11 Additional comma after the object 0.36 0.02
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Table A12: Examples of Positional desiderata: For each positional desiderata reported in Table
A11, this table contains specific examples of original, alternate, and target data.

Desiderata Base Source Target

1

The document is in Box X, the pot is
in Box T, the magnet is in Box A ,
the game is in Box E, the bill is in
Box M, the cross is in Box K, the
map is in Box D. Box S contains the

There are a bunch of boxes con-
taining objects, the magnet is in
Box O, the bell is in Box M,
the leaf is in Box W , the cup is in

Box G, the ice is in Box J, the milk
is in Box Z, the wire is in Box H.
Box W contains the

magnet

2

The document is in Box X, the pot
is in Box T, the magnet is in Box
A, the game is in Box E, the bill
is in Box M, the cross is in Box K,
the map is in Box D . Box A con-

tains the

The document is in Box Q, the bus
is in Box F, the camera is in Box R,
the glass is in Box W, the magazine
is in Box Z, the coffee is in Box E,
the watch is in Box C , these are a

bunch of boxes containing objects.
Box C contains the

map

3

The document is in Box X, the
pot is in Box T, the magnet is
in Box A, the game is in Box E,
the bill is in Box M , the cross is in

Box K, the map is in Box D. Box A
contains the

The pot is in Box U, the flower
is in Box D, the car is in
Box K, the disk is in Box C,
the fan is contained in the Box H ,

the bill is in Box S, the painting is
in Box L. Box H contains the

bill

4

The document is in Box X, the
pot is in Box T, the magnet is
in Box A, the game is in Box E,
the bill is in Box M , the cross is in

Box K, the map is in Box D. Box A
contains the

The apple is in Box O, the dress is in
Box N, the boot is in Box Y, the hat
is in Box L, the bus is in Box X ,
the painting is in Box F, the drug is
in Box J, the string is in Box D. Box
X contains the

game

5

The document is in Box X, the pot
is in Box T, the magnet is in Box
A, the game is in Box E, the bill
is in Box M, the cross is in Box K,
the map is in Box D . Box A con-

tains the

The hat is in Box K, the plane is in
Box H, the tie is in Box U, the wire is
in Box F, the file is in Box R, the note
is in Box Y, the train is in Box G ,
the apple is in Box O. Box G con-
tains the

map

6

The document is in Box X, the pot
is in Box T, the magnet is in Box A,
the game is in Box E , the bill is in

Box M, the cross is in Box K, the
map is in Box D. Box A contains the

The hat is in Box K, the plane
is in Box H, the tie is in Box U,
there are three additional boxes,
Box PP, Box BB and Box AA,
the wire is in Box F , the file is in

Box R, the note is in Box Y, the
train is in Box G. Box F contains
the

game

7

The document is in Box X, the
pot is in Box T, the magnet is
in Box A, the game is in Box E,
the bill is in Box M , the cross is in

Box K, the map is in Box D. Box A
contains the

The magnet is in Box O, the
bell is in Box M, the leaf is in
Box W, the cup is in Box G,
the ice is in Box J , the milk is in

Box Z, the wire is in Box H. Box J
contains the

cross

8

The document is in Box X, the pot
is in Box T, the magnet is in Box A,
the game is in Box E , the bill is in

Box M, the cross is in Box K, the
map is in Box D. Box A contains the

The pot is in Box U, the flower
is in Box D, the car is in Box K,
Box C contains the disk , the fan is

in Box H, the bill is in Box S, the
painting is in Box L. Box C contains
the

game
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Table A13: Examples of Positional desiderata: For each positional desiderata reported in Table
A11, this table contains specific examples of original, alternate, and target data.

Desiderata Base Source Target

9

The document is in Box X, the pot
is in Box T, the magnet is in Box A,
the game is in Box E, the bill is in
Box M, the cross is in Box K , the
map is in Box D. Box A contains the

The ticket is in Box N, the book
is in Box J, the gift is in Box W,
the coat is in Box Y, the rose is in
Box K, the wheel is not in Box G ,
the brick is in Box V. Box G contains
the

cross

10

The document is in Box X, the
pot is in Box T, the magnet is
in Box A, the game is in Box E,
the bill is in Box M , the cross is in

Box K, the map is in Box D. Box A
contains the

The pot is in Box U the flower is in
Box D the car is in Box K the disk
is in Box C the fan is in Box H the
bill is in Box S the painting is in Box
L. Box H contains the

bill

11

The document is in Box X, the pot
is in Box T, the magnet is in Box A,
the game is in Box E , the bill is in

Box M, the cross is in Box K, the
map is in Box D. Box A contains the

The clock, is in Box M, the bomb, is
in Box J, the newspaper, is in Box
G, the letter, is in Box L , the suit,
is in Box Y, the computer, is in Box
R, the wheel, is in Box V. Box L con-
tains the

bill
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