
Published as a conference paper at ICLR 2025

CONDA: ADAPTIVE CONCEPT BOTTLENECK FOR
FOUNDATION MODELS UNDER DISTRIBUTION SHIFTS

Jihye Choi, Jayaram Raghuram, Yixuan Li & Somesh Jha
Department of Computer Sciences, University of Wisconsin - Madison
{jihye,jayaramr,sharonli,jha}@cs.wisc.edu

ABSTRACT

Advancements in foundation models (FMs) have led to a paradigm shift in machine
learning. The rich, expressive feature representations from these pre-trained, large-
scale FMs are leveraged for multiple downstream tasks, usually via lightweight
fine-tuning of a shallow fully-connected network following the representation.
However, the non-interpretable, black-box nature of this prediction pipeline can be
a challenge, especially in critical domains, such as healthcare, finance, and security.
In this paper, we explore the potential of Concept Bottleneck Models (CBMs)
for transforming complex, non-interpretable foundation models into interpretable
decision-making pipelines using high-level concept vectors. Specifically, we focus
on the test-time deployment of such an interpretable CBM pipeline “in the wild”,
where the distribution of inputs often shifts from the original training distribution.
We first identify the potential failure modes of such pipelines under different types
of distribution shifts. Then we propose an adaptive concept bottleneck framework
to address these failure modes, that dynamically adapts the concept-vector bank
and the prediction layer based solely on unlabeled data from the target domain,
without access to the source dataset. Empirical evaluations with various real-world
distribution shifts show our framework produces concept-based interpretations
better aligned with the test data and boosts post-deployment accuracy by up to
28%, aligning CBM performance with that of non-interpretable classification 1.

1 INTRODUCTION

Foundation Models (FMs), trained on vast data, are powerful feature extractors applicable across
diverse distributions and downstream tasks (Bommasani et al., 2021; Rombach et al., 2022). They
can be applied to classification tasks off-the-shelf via zero-shot prediction, or via linear probing
using task-specific fine-tuning data (Kumar et al., 2022; Radford et al., 2021). Despite these strong
advantages, foundation model-based systems often operate as inscrutable black-boxes, presenting a
barrier to user trust and wider deployment in safety-critical settings. Another challenge faced in the
standard deployment of FM-based deep classifiers is their vulnerability to distribution shifts at test
time caused e.g., due to environmental changes, which can cause a drop in performance (Bommasani
et al., 2021). This is particularly challenging in high-stakes domains such as healthcare (AlBadawy
et al., 2018; Eslami et al., 2023), autonomous driving (Yu et al., 2020), and finance (Wu et al., 2023a).

In this work, we address these challenges by developing an interpretable classification framework
that enjoys the rich, expressive feature representations of FMs, while also having enhanced robustness
towards distribution shifts at test time. To tackle interpretability, we utilize Concept Bottleneck Models
(CBMs) (Koh et al., 2020), transforming FM-based classifiers into interpretable, concept-based
prediction pipelines. With the rapid advancements in FMs, there is strong opportunity to utilize them
as powerful backbones, providing robust feature representations from which high-quality concepts
can be extracted. Unlike early CBM approaches that required expensive concept annotations, recent
advances show potential for constructing concept bottlenecks without any annotations by leveraging
vision-language models (Oikarinen et al., 2023; Wu et al., 2023b), and achieving performance on par
with non-interpretable models. Concept-based predictions provide not only interpretability, but are

1The code repository for our work is available at https://github.com/jihyechoi77/CONDA.
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Figure 1: Concept-based predictions are not inherently more robust to distribution shifts than feature-
based predictions, necessitating dynamic adaptation after deployment. We observe significant drops in the
averaged group accuracy (AVG) and worst-group accuracy (WG) from the source to the target (test) domain under
two types of distribution shifts: (1) low-level shift (left), where inputs are perturbed without modifying class-level
semantics (e.g., Gaussian noise); and (2) concept-level shift (right), where some high-level semantics change.
On the left, predictions made through high-level concepts (e.g., by PCBM (Yuksekgonul et al., 2023) here) are
not necessarily more robust to low-level input perturbations. On the right, the performance of concept-based
predictions suffers an even more drastic drop, failing to leverage the expressiveness of the foundation model’s
high-level features, and falling behind direct feature-based predictions (here zero-shot and linear-probing based
classification). However, with CONDA, we can boost the performance of the deployed concept-based predictor
to be on par with, or even better than, its non-interpretable counterparts.

also beneficial for robustness; a central premise of CBMs is that as complex feature embeddings go
through the concept bottleneck, the resulting predictions should, in theory, become more invariant to
inconsequential input changes (Kim et al., 2018; Adebayo et al., 2020).

However, we observe that CBMs directly deployed under distribution shifts often do not produce more
robust predictions compared to FM-based classifiers (either in zero-shot or fine-tuned configurations).
For instance, as illustrated in Figure 1, even when a concept-based prediction pipeline matches
or outperforms a feature-based prediction pipeline in the training (source) domain, its test-time
(deployment) performance can drop significantly under distribution shifts. This highlights that a
naive adoption of CBMs is insufficient for fully leveraging the robustness and expressiveness of
FM features under test-time shifts, necessitating a dynamic approach for adapting concept-based
predictions in real-world deployments.

The problem of test-time (or source-free domain) adaptation (TTA) has recently been explored
extensively (Wang et al., 2021; Jung et al., 2023; Liang et al., 2023). The goal of TTA is to adapt a
deep classifier, trained on source domain data, to a test-time deployment setting where there could
be distribution shifts (e.g., corruptions, environment changes), and given access to only unlabeled
test data and the source domain classifier. While the main focus of TTA methods has been on
non-interpretable, deep classifier networks, we present the first approach (to our knowledge) for TTA
of concept bottlenecks with a foundation model backbone. Our key contributions are summarized as
follows: given unlabeled test data, a frozen FM, and a pre-constructed concept bottleneck, we

1. formally categorize the types of distribution shifts expected during deployment, identifying
possible failure modes of the concept bottleneck pipeline under these shifts (Section 2);

2. propose a novel framework CONDA (CONcept-based Dynamic Adaptation), where each
component of the framework is adapted based on the identified failure modes, without
requiring access to the source dataset or any labels for the test data (Section 3);

3. empirically demonstrate the robustness and interpretability of CONDA across various FM
backbones (e.g., CLIP:ViT-L/14) and concept bottleneck construction methods (e.g., post-
hoc CBM), showing that CONDA improves the test-time accuracy by up to 28%, and
provides concept-based interpretations better tailored towards the test inputs (Section 4).

Related Work. Distribution shifts occur when the data distribution during deployment differs from
that during training, leading to degraded model performance (Quiñonero-Candela et al., 2022). To
address this issue, TTA methods adapt the model parameters using only unlabeled test data; via
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entropy minimization (Wang et al., 2021; Zhang et al., 2022), self-supervised learning at test time (Sun
et al., 2020), class-aware feature alignment (Jung et al., 2023), and updating batch normalization
statistics using test data (Nado et al., 2020). These methods enable models to adapt on-the-fly
without requiring access to the labeled training data. In the era of foundation models, recent efforts
have been made to enhance their zero-shot inference robustness under distribution shifts without
modifying their internal parameters (Chuang et al., 2023; Adila et al., 2024). However, improving the
robustness of the foundation model itself is not the focus of our work. Instead, given any foundation
model, regardless of its inherent robustness, we aim to construct an interpretable framework without
sacrificing the utility, striving for performance that matches or exceeds that of the foundation model’s
feature-based predictions. Refer to Appendix A for extended related work.

2 CONCEPT BOTTLENECK MODEL UNDER DISTRIBUTION SHIFTS

2.1 BACKGROUND: FOUNDATION MODELS WITH A CONCEPT BOTTLENECK

Consider a foundation model ϕ : X 7→ Rd, which is any pre-trained backbone model or feature
extractor (Eslami et al., 2023; Jia et al., 2021; Girdhar et al., 2023) that maps the input x to an
intermediate feature embedding ϕ(x) ∈ Rd. ϕ(x) is pre-trained on a large-scale, broad mixture
of data for general purposes, i.e., not restricted to a specific domain. For a specific downstream
classification task, the general practice is to either apply zero-shot prediction on ϕ(x), or to train
a shallow label predictor gs : Rd 7→ RL, that maps ϕ(x) to the un-normalized class predictions
gs(ϕ(x)), using a supervised loss (e.g., cross-entropy).

A CBM (Koh et al., 2020) first projects the high-dimensional feature embedding to a lower m-
dimensional (m ≪ d) concept-score space (acting like a bottleneck), and follows it with a label
predictor, which is a simple affine or fully-connected layer that maps the concept scores into class
predictions. The concept bottleneck is represented by a matrix of m unit-norm concept vectors
Cs = [cs1 / ∥cs1∥2 · · · csm / ∥csm∥2]⊤ ∈ Rm×d, where each csi ∈ Rd represents a high-level
concept (e.g., “stripes”, “fin”, “dots”). The m concept scores are obtained via a linear projection
vCs

(x) = Cs ϕ(x), which is followed by a fully-connected layer to obtain the CBM model as

f (cbm)
s (x) := Ws vCs(x) + bs = WsCs ϕ(x) + bs = gs(ϕ(x)) (1)

The label predictor gs(z) is defined by the parameters Ws ∈ RL×m, bs ∈ RL, and Cs. A key
advantage of the CBM is that its predictions are an affine combination of the high-level concept
scores, which allows for better interpretability of the model. Since the label predictor of a CBM is
chosen to be simple, its performance is strongly dependent on the construction of the concept bank.
Additional details on the preparation of concept vectors can be found in Appendix A.

2.2 DISTRIBUTION SHIFTS IN THE WILD

We define the source domain Ds and the target domain Dt. Let H be a concept hypothesis class,
defined as the space of measurable concept mappings h : Rd → Rm from the feature representation
ϕ(x) to concept scores. We also define the concept set C := {c1, c2, · · · , cm}, where each ci :
Rd 7→ R represents a high-level concept mapping (e.g., stripe pattern, grass, beach, etc.). For a
domain Dj , j ∈ {s, t}, we define the concept score distribution as Pcon(Dj ,ϕ,h) = (h ◦ ϕ)∗Pj ,
where (h ◦ ϕ)∗Pj is the push-forward measure (Le Gall, 2022) of Pj under h ◦ ϕ. Note that h is
determined by C such that h(ϕ(x)) = [c1(ϕ(x)), · · · , cm(ϕ(x))]T 2.

Let G be a classification hypothesis class, defined as a set of measurable classifiers g : Rm → RL

mapping the concept scores to prediction logits. Finally, we define the distribution of predictions as
the push-forward measure of Pcon(Dj ,ϕ,h) under g: Ppred(Dj ,ϕ,h,g) = g∗Pcon(Dj ,ϕ,h).

Given h ∈ H and g ∈ G, we categorize the distribution shifts in the target domain, {µt(ti) > 0 | ti ∈
T }, into one of the following broad categories:

1. Low-level shift: This type of transformation does not change the concept score distribution across
the domains. Examples include additive Gaussian noise, blurring, and pixelization, which employ
2A common approach is to define ci(ϕ(x)) as the inner product of a (unit-normalized) concept vector with

the feature representation ϕ(x), which results in a score for concept i.
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low-level changes to the input (e.g., CIFAR10-C (Hendrycks & Dietterich, 2019)):
Pcon(Dt,ϕ,h) = Pcon(Ds,ϕ,h) (2)

Naturally, the resulting distribution of predictions based on the concept scores also remains the
same across the domains, i.e., Ppred(Ds,ϕ,h,g) = Ppred(Dt,ϕ,h,g).

2. Concept-level shift: This type of transformation alters the concept score distribution, but not the
prediction distribution across the domains. Examples include replacing water background with a
land background in images (e.g., Waterbirds, Metashift (Sagawa et al., 2019; Liang & Zou, 2021)):

Pcon(Dt,ϕ,h) ̸= Pcon(Ds,ϕ,h)

Ppred(Dt,ϕ,h,g) = Ppred(Ds,ϕ,h,g) (3)

Definition 1 The concept set C = {c1, c2, . . . , cm} is complete if there exists a classifier g ∈ G
such that, for both low-level and concept-level shifts, the prediction distributions conditioned on the
concepts are identical for source and target domains:

Ppred(Ds,ϕ,h,g) = Ppred(Dt,ϕ,h,g). (4)
This implies that there exists a mapping from concept scores to labels encompassing both the source
and target domains.

2.3 FAILURE MODES OF CONCEPT BOTTLENECK FOR FOUNDATION MODELS

Based on the definitions above, we categorize the possible failure modes of the decision-making
pipeline of a foundation model equipped with a CBM, defined by a given Ds, Dt,ϕ, h ◦ ϕ =
[c1 ◦ ϕ, · · · , cm ◦ ϕ], and g as follows.

1. Non-robust concept bottleneck under low-level shift: the concept mapping h is not robust to
low-level shifts, causing discrepancies in the concept-level predictions:

Pcon(Dt,ϕ,h) ̸= Pcon(Ds,ϕ,h),

violating the requirement for a low-level shift in Eqn. 2. Such discrepancies in the concept
predictions can lead to degraded performance in Dt, resulting from mismatched prediction
distributions, i.e., Ppred(Dt,ϕ,h,g) ̸= Ppred(Ds,ϕ,h,g).

2. Non-robust classifier under concept-level shift: Given that the concept score distributions differ
due to a concept-level shift as in Eqn. 3, the given classifier g fails to produce consistent prediction
distributions across the domains, violating Eqn 3:

Ppred(Dt,ϕ,h,g) ̸= Ppred(Ds,ϕ,h,g)

3. Incomplete concept set: The concept set {c1, c2, . . . , cm} is not complete, and there does not
exist any g ∈ G such that Ppred(Ds,ϕ,h,g) = Ppred(Dt,ϕ,h,g). Intuitively, it fails to capture
all the necessary information for consistent predictions across domains, and Definition 1 is not
achievable in the first place.

3 CONDA: CONCEPT-BASED DYNAMIC ADAPTATION

To address the failure modes of a CBM identified in the previous section, here we propose a dynamic
approach for adaptation of a CBM based only on unlabeled test data. We follow the setting of test-time
adaptation, where the foundation model ϕ(x) and CBM, consisting of the concept bank Cs and label
predictor (Ws,bs), trained on the source domain are given (see Eqn 1), but the source (training)
dataset is not available. Let Dt = {xtn}Nt

n=1 be the unlabeled test set from the target distribution. To
address the three potential failure modes in a CBM pipeline identified in Section 2.3, we propose the
following three-step adaptation procedure, with each step designed to tackle a specific failure mode:

1. Concept-Score Alignment (CSA): The goal of this step is to perform a feature alignment of the
concept scores of test inputs vC(xt) ∈ Rm such that their class-conditional distributions are close
to that of the concept scores in the source dataset 3. By adapting the concept vectors C, this will
ensure that the label predictor continues to “see” very similar class-conditional input distributions
at test time, thereby maintaining accurate predictions.
3We drop the subscript ‘s’ to denote that they are adaptation parameters, not specific to the source domain.
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Figure 2: Overview of CONDA, our proposed adaptation framework. The foundation model and CBM
pipeline trained on the source domain is shown at the top, while the adapted CBM, consisting of a main branch
and residual branch, is shown at the bottom. The components that are adapted during each stage of the proposed
method (i.e., CSA, LPA, and RCB) are shown in different colors.

2. Linear Probing Adaptation (LPA): To further address any discrepancy or mismatch in the feature
alignment CSA step (e.g., due to distribution assumptions), here we adapt the label predictor
(W,b) of the CBM, with the concept vectors fixed at their updated values from the CSA step.

3. Residual Concept Bottleneck (RCB): As discussed in Section 2.3, the concept bank from the
source domain could be incomplete, and new concepts may be required to bridge the distribution
gap between the domains. In this step, we introduce a residual CBM with additional concept
vectors and a linear predictor, which are jointly optimized (with the parameters of the main CBM
fixed) to improve the test accuracy.

Target Domain CBM. Figure 2 shows the overall architecture of CONDA. The residual con-
cept bottleneck is shown as a separate branch, where we introduce r additional concept vectors
C̃ = [ c̃1 / ∥c̃1∥2 · · · c̃r / ∥c̃r∥2 ]⊤ ∈ Rr×d. The concept scores are obtained by projecting the
feature representation ϕ(x) on these residual concept vectors, and the scores are passed to another
linear predictor (W̃, b̃) to obtain the un-normalized class predictions (logits) of the residual CBM:
W̃C̃ϕ(x) + b̃. The un-normalized predictions of the target domain CBM are obtained by adding
that of the main and the residual branch CBMs, giving

f (cbm)
t (x) = WCϕ(x) + b + W̃C̃ϕ(x) + b̃

= (WC+ W̃C̃)ϕ(x) + b+ b̃ = WconCcon ϕ(x) + bcon, (5)

where W̃ ∈ RL×r and b̃ ∈ RL. For comparison with the source domain CBM (Eqn. 1), we have
defined the combined parameters from the main and residual branch CBMs as Wcon = [W W̃] ∈
RL×(m+r), Ccon = [C ; C̃] ∈ R(m+r)×d, and bcon = b+ b̃ ∈ RL. That is, adding the residual CBM
is equivalent to introducing r additional rows (columns) in the concept (weight) matrix. For adaptation,
the parameters of the main CBM {C,W,b} are initialized to their corresponding values from the
source domain, while the parameters of the residual CBM {C̃,W̃, b̃} are initialized randomly.

Pseudo-labeling. Since the test samples are unlabeled, it becomes challenging to design adaptation
objectives that can minimize a smooth proxy of the classification error rate on the target distribution.
We utilize the idea of pseudo-labeling to address this, as commonly done in the TTA and semi-
supervised learning literature (Chen et al., 2022; Lee et al., 2013; Sohn et al., 2020). We leverage the
fact that the feature extraction backbone ϕ(x) is a foundation model that is pre-trained on diverse data
distributions, and as a result is likely to be relatively robust to distribution shifts. We take an ensemble
of the commonly used zero-shot predictor (as done e.g., in Radford et al. (2021)) and a linear probing
predictor (trained on the source dataset on top of the foundation model) to get the pseudo-labels
for test samples. We combine the two by taking the class predicted with higher confidence across
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both predictors. We note that more advanced pseudo-labeling methods e.g., involving weak- and
strong-augmentations, and soft nearest-neighbor voting (Chen et al., 2022) can be used to potentially
improve our method (see Appendix D for further exploration).

Following the convention in the TTA literature (Wang et al., 2021; Chen et al., 2022), we randomly
split the test data into fixed-size batches Dt =

⋃B
b=1 Db

t , and perform adaptation sequentially on
each batch b, obtaining the adapted model’s predictions on the same batch, before moving to the
next one. Also, the CBM parameters (main and residual) are adapted in an online fashion (not
episodically) (Wang et al., 2021), i.e., the adapted parameters learned from a batch are used to
initialize the next batch and so on 4. For convenience, we define the test dataset with paired pseudo-
labels as D̂t = {(xtn, ŷtn)}Nt

n=1, and the corresponding pseudo-labeled test batches as D̂b
t , b ∈ [B].

We next expand on each stage of the CBM adaptation outlined earlier, and provide a complete
algorithm for the same in Algorithm 1 in the Appendix.

3.1 CONCEPT SCORE ALIGNMENT

From Figure 2 (top half) and Eqn. 1, the concept scores vCs
(x) ∈ Rm are input to the linear label

predictor Wsv + bs. Let {P(vCs
(xs) | ys = y), y ∈ Y} be the class-conditional distributions

of these concept scores on the source domain. At test time, if the distribution of the input changes
such that xt ∼ pt(x), then there is a corresponding change in the class-conditional distributions of
concept scores {P(vCs

(xt) | yt = y) = P(Csϕ(xt) | yt = y), y ∈ Y}. The goal of concept-score
alignment (CSA) is to adapt the source domain concept bank Cs to a target domain-specific one Ct

such that the class-conditional distributions after adaptation are close to that of the source domain
under some distributional distance (e.g., Kullback-Leibler or Total-variation). Informally, we wish to
find an adapted concept bank Ct, starting from Cs, such that

P(Ctϕ(xt) | yt = y) ≈ P(Csϕ(xs) | ys = y), ∀y ∈ Y.

If the class priors {P(yt = y), ∀y} do not change significantly, this can ensure that the label predictor
of the main CBM continues to receive concept scores from a similar distribution as the source domain.

We model the class-conditional distributions of the concept scores in the source domain as multivariate
Gaussians: P(vCs(xs) | ys = y) = N (vCs(xs) ;µy,Σy), ∀y ∈ Y . Given a labeled source-
domain dataset, it is straight-forward to estimate µy and Σy using the sample mean and sample
covariance of vCs

(xs) on the data subset from class y (max-likelihood estimate). Although we
cannot access the source domain dataset during adaptation, we assume to have access to these
distribution statistics {(µy,Σy)}y∈Y . At test time, changes to the distribution of the concept scores
can be captured by a concept matrix C (to be adapted). For a test input xt, the distance of its
concept scores vC(xt) from the Gaussian distribution of class y is given by the Mahalanobis metric
Dmah(xt ;µy,Σy) = (vC(xt)− µy)

⊤Σ−1
y (vC(xt))− µy).

Intra-class and Inter-class Distances. Taking the pseudo-label ŷt as a proxy for the true label of xt,
the intra-class (or within-class) distance measures the closeness of xt to samples from its own class,
while the inter-class (or between-class) distance measures the separation of xt to samples from the
other classes. They are defined as follows:

Dintra(xt, ŷt) = Dmah(xt ;µŷt
,Σŷt

) and (6)

Dinter(xt, ŷt) =
1

L− 1

L∑
ℓ=1:ℓ ̸=ŷt

Dmah(xt ;µℓ,Σℓ). (7)

Motivated by class-aware feature alignment CAFA (Jung et al., 2023), we explore an adaptation loss
ℓada that is specifically designed to achieve concept-score alignment on a per-class level. This loss is
based on the idea that for discriminative feature alignment, the intra-class distances should be small
and the inter-class distances should be large on the test samples (Ye et al., 2021; Ming et al., 2023).

ℓada(vC(xt), ŷt) = log
Dintra(xt, ŷt)

Dinter(xt, ŷt)
. (8)

4In the episodic approach, parameters would be reset to their source domain values to initialize each batch.
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With this setup, we propose the adaptation objective for CSA to minimize on a test batch:

LCSA(C) =
1

|D̂b
t |

∑
(xt,ŷt)∈D̂b

t

ℓada(vC(xt), ŷt) + λfrob ∥C−Cs∥2F . (9)

The second term is a regularization on how much the concept vectors can deviate from their source
domain values in terms of the Frobenius norm.

3.2 LINEAR PROBING ADAPTATION

In this step, we focus on improving the test accuracy of the label predictor of the main CBM branch
(W,b), with the concept vectors C fixed at their updated values from the CSA step (the residual
CBM parameters are also frozen). For this, we use the cross-entropy loss between the predictions of
the target domain CBM (Eqn. 5) and the pseudo-labels of a test batch D̂b

t . In order to enhance the
interpretability of the label predictor, we impose sparsity and grouping effect in its weights via an
Elastic-net penalty term (Zou & Hastie, 2005; Yuksekgonul et al., 2023) given by

Lsparse(W) =
1

mL

L∑
ℓ=1

(
α ∥wℓ∥1 + (1− α) ∥wℓ∥22

)
, (10)

where wℓ ∈ Rm is the ℓ-th row of W, and α = 0.99. The adaptation objective for LPA is given by

LLPA(W,b) = − 1

|D̂b
t |

∑
(xt,ŷt)∈D̂b

t

logσŷt
(f (cbm)

t (xt)) + λsparse Lsparse(W), (11)

where σk(r) is the Softmax probability for class k given the logits r, and λsparse ≥ 0 is a sparsity
regularization hyper-parameter. Using this objective, the label predictor is adapted such that the
CBM’s predictions on a test batch are consistent with their pseudo-labels.

3.3 RESIDUAL CONCEPT BOTTLENECK

We next discuss adaptation of the residual branch of the CBM whose parameters are {C̃,W̃, b̃}.
The r additional concept vectors in C̃ are expected to capture new concepts in the target data and
compensate for the potentially incomplete coverage of the main CBM (see Section 2.3). By increasing
the expressiveness of the concept subspace, we expect to improve the accuracy on the target dataset
beyond the CSA and LPA steps. Therefore, we first have a cross-entropy loss term in this adaptation
objective (as in Eqn. 11). We also introduce a cosine similarity based regularization in the objective
to encourage the new concept vectors in C̃ to be less redundant with each other, and to have less
overlap with the existing concept vectors C (obtained from the CSA step).

Lsim(C̃) =
1

mr

∑
i∈[m]

∑
j∈[r]

cos(ci, c̃j) +
2

r (r − 1)

∑
(i,j)∈[r]2:

j>i

cos(c̃i, c̃j). (12)

Finally, we include a coherency regularization term in the objective (modified from Yeh et al. (2020))
to improve the interpretability of the learned residual concepts, given by

Lcoh(C̃) =
1

r k

∑
i∈[r]

∑
xt∈Tc̃i

⟨c̃i,ϕ(xt)⟩
∥c̃i∥2

, (13)

where Tc̃i
is the subset of the current target batch Db

t that has the k-largest concept scores for residual
concept vector c̃i (i.e., the top-k nearest neighbors of c̃i among the feature representations from Db

t ).

The objective to be minimized for adapting the residual concept bottleneck (with the parameters of
the main CBM branch frozen) is given by:

LRCB(C̃,W̃, b̃) = − 1

|D̂b
t |

∑
(xt,ŷt)∈D̂b

t

logσŷt
(f (cbm)

t (xt)) + λsim Lsim(C̃) − λcoh Lcoh(C̃). (14)
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The constants λsim ≥ 0 and λcoh ≥ 0 are hyper-parameters that control the strength of the regular-
ization terms. Note that for the residual CBM, we jointly adapt C̃ and W̃, b̃, because we have a
common objective of increasing the test accuracy, whereas for the main CBM, adaptation is done in
two stages (CSA and LPA), with CSA focusing on distribution alignment of the concept scores based
on the intra-class and inter-class distances. Additional details on our method are given in Appendix B.
This includes 1) complexity analysis and evaluation of running times of CONDA; and 2) automatic
annotation (captioning) of the adapted and residual concept vectors for interpretability analysis.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following three research questions:

RQ1: How effective is CONDA in improving the test-time performance of deployed classification
pipelines that use a foundation models with a concept bottleneck predictor?

RQ2: How does each component of CONDA specifically address and remedy the failures caused
by different types of distribution shifts?

RQ3: How do the concept-based explanations change before and after test-time adaptation?

4.1 SETUP

Datasets. We evaluate the performance of concept bottlenecks for FMs and the proposed adaptation
on five real-world datasets with distribution shifts, following the setup in Lee et al. (2023): (1)
CIFAR10 to CIFAR10-C and CIFAR100 to CIFAR100-C for low-level shift, (2) Waterbirds and
Metashift for concept-level shift, and (3) Camelyon17 for natural shift.

Backbone Foundation Models. For the CIFAR datasets, we use CLIP:ViT-L/14 (FARE2) (Schlar-
mann et al., 2024), which is adversarially fine-tuned to be more robust to (adversarial) low-level
perturbations than standard CLIP variants. We employ CLIP:ViT-L/14 (Radford et al., 2021) for
Waterbirds and Metashift. For Camelyon17, we utilize BioMedCLIP (Zhang et al., 2023), which
is pre-trained on diverse medical domains to understand medical images and text jointly, making it
suitable for zero-shot tasks in the medical domain.

Preparing the Concept Bottleneck. We evaluate CONDA using three popular approaches for con-
structing the concept bottleneck: (1) using a general-purpose concept bank where natural language
concept descriptions and modern vision-language models (e.g., Stable Diffusion (Rombach et al.,
2022)) are leveraged to automatically generate concept examples for finding concept vectors (Yuk-
sekgonul et al., 2023; Wu et al., 2023b); (2) unsupervised learned concepts where concept vectors
are learned via optimization to maximize the concept-based prediction accuracy (Yeh et al., 2020);
and (3) employing GPT-3 with appropriate filtering to discover a tailored set of concepts for the
bottleneck (Oikarinen et al., 2023). More details can be found in Appendix A and Appendix C.2.

Metrics. We report the performance in terms of two metrics: averaged group accuracy (AVG) and
worst-group accuracy (WG). AVG is the average (per-class) accuracy across the classes, and WG is
the minimum (per-class) accuracy across the classes.

4.2 RQ1: EFFECTIVENESS OF CONDA UNDER REAL-WORLD DISTRIBUTION SHIFTS

Table 1 presents our main results evaluating the effectiveness of CONDA on different real-world
distribution shifts, when combined with different CBM baselines. First of all, we observe that
leveraging the expressive power of the FM feature representations can enhance the performance of
CBMs. For example, using the method from Oikarinen et al. (2023), their reported accuracies on
CIFAR10 and CIFAR100 are 86.40% and 65.13% respectively when using the CLIP-RN50 backbone.
In our experiments, by employing the adversarially fine-tuned CLIP-ViT-L/14, we achieve higher
accuracies of 95.24% and 68.36% respectively (source domain). This demonstrates the potential for
improved utility in concept-based interpretable pipelines as foundation models continue to improve.

However, this improved performance in the source domain often does not translate to robustness
after deployment. Under low-level shifts, the performance of CBMs may be comparable to that of
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Dataset ZS LP
Yuksekgonul et al. (2023) Yeh et al. (2020) Oikarinen et al. (2023)

Unadapted w/ CONDA Unadapted w/ CONDA Unadapted w/ CONDA

CIFAR10
Source

AVG 91.18 93.26 ± 0.02 92.55 ± 0.05 - 96.26 ± 0.11 - 95.24 ± 0.08 -
WG 71.1 88.23 ± 0.08 85.64 ± 0.55 - 90.89 ± 0.97 - 90.11 ± 0.76 -

Target
AVG 66.68 ± 15.88 84.11 ± 1.54 82.61 ± 1.65 84.38 ± 1.52 89.76 ± 1.10 85.14 ± 1.29 81.22 ± 2.77 84.56 ± 3.11
WG 55.04 ± 2.05 71.37 ± 3.33 68.62 ± 2.93 72.69 ± 2.49 78.28 ± 2.43 76.09 ± 1.66 69.03 ± 2.47 72.88 ± 2.01

CIFAR100
Source

AVG 62.73 66.67 ± 0.29 65.98 ± 0.10 - 83.87 ± 0.04 - 68.36 ± 0.09 -
WG 5.12 4.28 ± 0.51 9.5 ± 1.14 - 51.0 ± 1.40 - 12.09 ± 1.23 -

Target
AVG 51.90 ± 1.76 55.30 ± 1.63 51.53 ± 0.13 53.88 ± 0.23 72.33 ± 0.15 70.82 ± 0.20 52.16 ± 0.14 54.79 ± 1.17
WG 1.73 ± 0.4 2.47 ± 0.49 2.80 ± 0.71 2.56 ± 0.27 30.60 ± 1.42 28.44 ± 0.95 6.32 ± 0.38 6.01 ± 0.22

Waterbirds
Source

AVG 82.61 97.43 ± 0.05 97.78 ± 0.16 - 98.80 ± 0.04 - 98.80 ± 0.17 -
WG 67.45 95.08 ± 0.11 96.31 ± 0.38 - 98.21 ± 0.08 - 97.03 ± 0.26 -

Target
AVG 61.06 54.10 ± 0.55 32.03 ± 0.58 60.69 ± 0.23 45.03 ± 0.34 61.11 ± 0.09 46.18 ± 0.42 62.71 ± 0.33
WG 42.52 44.70 ± 0.70 27.80 ± 1.24 43.01 ± 0.46 38.74 ± 0.68 41.86 ± 0.25 35.29 ± 1.52 44.01 ± 0.60

Metashift
Source

AVG 95.72 97.27 ± 0.28 97.94 ± 0.10 - 97.18 ± 0.01 - 98.02 ± 0.10 -
WG 93.44 96.62 ± 0.39 96.94 ± 0.30 - 96.0 ± 0.01 - 97.25 ± 0.10 -

Target
AVG 94.65 80.39 ± 0.42 84.45 ± 1.39 93.69 ± 0.20 90.53 ± 0.09 93.81± 0.13 83.72 ± 2.21 93.90 ± 0.13
WG 92.81 65.33 ± 0.61 73.89 ± 3.21 92.02 ± 0.12 84.84 ± 0.20 91.41 ± 0.26 75.41 ± 1.68 91.77 ± 0.12

Camelyon17
Source

AVG 77.71 92.14 ± 0.01 89.07 ± 0.60 - 97.01 ± 0.05 - 94.19 ± 0.11 -
WG 69.73 88.89 ± 0.02 84.34 ± 1.39 - 96.31 ± 0.24 - 91.23 ± 0.12 -

Target
AVG 84.55 93.69 ± 0.01 89.71 ± 0.65 91.20 ± 0.06 95.01 ± 0.07 92.54 ± 0.16 91.75 ± 0.08 93.16 ± 0.05
WG 76.08 89.49 ± 0.02 85.96 ± 0.88 88.96 ± 0.16 93.07 ± 0.37 91.07 ± 0.32 87.24 ± 0.09 89.00 ± 0.07

Table 1: Performance of CONDA on different distribution shifts when combined with different CBMs.
Zero-shot (ZS) and Linear probing (LP) are the non-interpretable FM baselines. Low-level shifts are covered by
the CIFAR datasets, concept-level shifts by Waterbirds and Metashift, and natural shifts by the Camelyon17
benchmark. CONDA significantly improves the AVG and WG accuracy on the target domain in many scenarios.

Figure 3: Effectiveness of individual components of CONDA for the CBM method of Yuksekgonul et al.
(2023). We report the relative AVG and WG, which is the (acc. after adaptation) − (acc. before adaptation).

the non-interpretable counterparts (ZS and LP), but they are not inherently more robust to low-level
shifts. The performance drop is particularly severe under concept-level shifts when the CBM is not
adapted. But with adaptation using CONDA, the test-time accuracy under different distribution shifts
increases significantly in most cases. The performance is on par with or even surpasses that of the
non-interpretable methods, notably in terms of the WG accuracy.

4.3 RQ2: EFFECTIVENESS OF INDIVIDUAL COMPONENTS OF CONDA

We next analyze the individual contributions of the components in CONDA, viz. CSA, LPA, and RCB.
Figure 3 illustrates the relative AVG and WG (%) when adapting the CBM of Yeh et al. (2020). Under
low-level shifts, CSA plays a crucial role in performance improvement by encouraging the high-level
concept scores to remain similar. Interestingly, using CSA alone even surpasses the performance
achieved when all components are combined. This trend is also observed with the Camelyon17
dataset, which resembles a low-level shift due to lighting differences across hospitals. On the
other hand, under concept-level shifts, LPA and RCB become the key components of adaptation.
These components allow the model to adjust concept reliance to the target domain and address the
incompleteness of the deployed concept set, tailoring it to the target data. In this context, CSA has
minimal impact, while using only LPA leads to performance gains comparable to, or even exceeding
that achieved when all components are included.

This phenomenon aligns with the findings of Lee et al. (2023) that fine-tuning only a subset of layers
can be more effective than fine-tuning all layers, depending on the type of distribution shift. In our
case, the concept-based prediction pipeline can be considered a special instance of their framework
with a two-layer classifier. The concept bottleneck layer corresponds to the first layer, which is
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(a) Before adaptation (source) (b) After adaptation (target)

Figure 4: CONDA adapts the concept weights to be tailored to the target data. We visualize the positive
weights in the linear probing layer (width of each mapping) before vs. after applying CONDA to the PCBM
baseline (Yuksekgonul et al., 2023) on the Waterbirds dataset.

particularly important for addressing input-level shifts (following their definition), while the linear
probing layer corresponds to the second layer, which is more important for handling output-level
shifts (see Section 3 of their paper). These empirical observations confirm our design motivation for
CONDA, i.e., different components play key roles in adapting to different types of distribution shifts.

Additional results, including ablation experiments to understand the effect of hyper-parameters,
improved pseudo-labeling methods, and the choice of backbone foundation model are given in
Appendix D. They provide additional support for the strong empirical performance of CONDA.

4.4 RQ3: INTERPRETABILITY OF CONDA

We investigate how the concept-based explanations change through adaptation by CONDA on the
Waterbirds dataset. In Figure 4a, we present the top five most prominent concepts contributing to
the predictions for each class. As expected, in the source domain, land-related concepts are most
important for predicting “landbird”, and do not positively contribute to “waterbird”; and vice versa
for water-related concepts. After adapting to the target domain (test dataset), we observe adjustments
in the concept-to-class mappings. Notably, land-related concepts begin to positively contribute to the
prediction of “waterbird”. This shift indicates that CONDA successfully adapts the concept-based
explanations to reflect the new correlations observed in the target domain. Moreover, in the original
concept bottleneck constructed following Wu et al. (2023b), there were no bird-related concepts that
could help make robust predictions independent of spurious background correlations. By employing
RCB with five residual concepts, we identified that three of them correspond to bird-related concepts:
feathers, wings, and beak 5. This demonstrates that CONDA adapts in a manner aligned with human
intuition, just like a human intervening in a CBM to correct its predictions would. More importantly,
RCB captures concepts that may have been missed during the initial construction of the concept
bottleneck, enhancing both the interpretability and robustness. Additional results and analysis of the
interpretability of CONDA can be found in Appendix E.

5 CONCLUSIONS AND FUTURE WORK

In this work, we made a first effort at exploring the test-time (post-deployment) performance of
CBMs combined with foundation models. We formalized potential failure modes under low-level
and concept-level distribution shifts and proposed a novel test-time adaptation framework. Each
component of our framework is designed to address specific failure modes, effectively improving the
test-time performance of a deployed CBM. Limitations and future work are discussed in Appendix F.

5To interpret the residual concepts, we use automated concept annotations; see details in Appendix B.2.
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APPENDICES

Symbol Description

d Dimension of the feature representation from the foundation model
L Number of classes or size of the label set
m Number of concepts in the main CBM
r Number of concepts in the residual CBM
xs, ys Input and corresponding label in the source domain
xt, ŷt Input and corresponding pseudo-label in the target domain
ϕ(x) Foundation model or the backbone feature extractor
Ds and Dt Source and target domain
h : Rd → Rm with h ∈ H Concept mapping and concept hypothesis class
g : Rm → RL with g ∈ G Classifier and classification hypothesis class
Pcon(Dj ,ϕ,h) Concept score distribution for domain Dj , j ∈ {s, t}
Ppred(Dj ,ϕ,h,g) Prediction distribution for domain Dj , j ∈ {s, t}

C
Matrix of concept vectors adapted for the target domain of size m× d.
Subscripts ‘s’ and ‘t’ refer to the source and target domain respectively.

C̃ Matrix of residual concept vectors adapted for the target domain of size r × d

W,b Main CBM linear predictor parameters. W has size L×m and b has length L

W̃, b̃ Residual CBM linear predictor parameters. W̃ has size L× r and b̃ has length L

f (cbm)
s (x) CBM predictor in the source domain. See Eqn. (1)
f (cbm)
t (x) CBM predictor in the target domain. See Eqn. (5)
Dt Unlabeled test dataset
Db

t and D̂b
t Test data batch. First one is unlabeled, while the second one includes the pseudo-labels.

µy,Σy Class-specific mean and covariance matrix of the concept scores from the source dataset
vC(x) Concept scores obtained from the concept vectors in C via the projection Cϕ(x)

Dmah(x ;µy,Σy) Mahalanobis distance in the concept-score space
σk(r) Softmax probability for class k given the logits r
ℓada(·) Adaptation loss used for feature alignment. See Eqn. (8)
LCSA Adaptation objective for CSA. See Eqn. (9)
Lsparse Elastic-net penalty regularization used in LPA. See Eqn. (10)
LLPA Adaptation objective for LPA. See Eqn. (11)
Lsim Cosine similarity based regularization used in RCB. See Eqn. (12)
Lcoh Coherancy regularization used in RCB. See Eqn. (13)
LRCB Adaptation objective for RCB. See Eqn. (14)
ngrad Number of gradient steps for each of the CSA, LPA, and RCB adaptations.
nbatch = |Db

t | Batch size of adaptation

Table 2: Symbols and notations used in the paper.
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Algorithm 1 CONDA: CONCEPT-BASED DYNAMIC ADAPTATION

Inputs: Foundation model ϕ(x). Source domain CBM: Cs,Ws,bs. Concept scores distribution
statistics: {(µy,Σy)}y∈Y . Unlabeled test dataset Dt.

1: Set constants and hyper-parameters:
# batches B, # gradient steps ngrad, # residual concepts r
Regularization constants: λfrob, λsparse, λsim, λcoh

2: Initialize the main CBM branch using source domain parameters: C = Cs,W = Ws,b = bs.
3: Initialize the residual CBM branch parameters C̃,W̃, b̃ randomly.
4: Split the test dataset randomly into B fixed-size batches {Db

t}Bb=1.

5: for batch b = 1, 2, · · · , B do

6: Pseudo-labeling: Using the foundation model, take an ensemble of the zero-shot predictor
and the linear-probing predictor to obtain pseudo-labels for the test batch. More advanced
methods can be used here, e.g., the soft nearest-neighbor voting of Chen et al. (2022).

7: CSA Step: Adapt C with the remaining parameters fixed at their current values.
8: for step i = 1, 2, · · · , ngrad do
9: Compute the intra-class and inter-class Mahalanobis distances for the pseudo-labeled test

batch D̂b
t (Eqns. 6 and 7).

10: Compute the CSA adaptation objective LCSA(C) (Eqns. 8 and 9).
11: Perform a gradient descent step to update C.
12: end for

13: LPA Step: Adapt (W,b) with the remaining parameters fixed at their current values.
14: for step i = 1, 2, · · · , ngrad do
15: Compute the Elastic-net regularization term Lsparse(W) (Eqn. 10).
16: Compute the LPA adaptation objective LLPA(W,b) (Eqn. 11).
17: Perform a gradient descent step to update W,b.
18: end for

19: RCB Step: Adapt (C̃,W̃, b̃) with the remaining parameters fixed at their current values.
20: for step i = 1, 2, · · · , ngrad do
21: Compute the cosine similarity regularization term Lsim(C̃) (Eqn. 12).
22: Compute the coherency regularization term Lcoh(C̃) (Eqn. 13).
23: Compute the RCB adaptation objective LRCB(C̃,W̃, b̃) (Eqn. 14).
24: Perform a gradient descent step to update C̃,W̃, b̃.
25: end for

26: Using the adapted parameters, obtain the target domain CBM predictions f (cbm)
t (x) for the

current batch (Eqn. 5).
27: Initialize parameters for the next batch using the adapted parameters from the current batch.

28: end for

Outputs: Predictions of the target domain CBM on the test dataset. Final adapted parameters of the
target domain CBM: Ct,Wt,bt, C̃t,W̃t, b̃t.
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A EXPANDED RELATED WORK

Concept Bottleneck Models (CBMs), introduced by Koh et al. (2020), are interpretable neural
networks that map input data to a set of human-understandable concepts (the “bottleneck”) before
making predictions. This architecture enhances the interpretability by revealing which concepts
influence the predictions and allows users to intervene by adjusting mis-predicted concepts.

Definition of Concept Bottleneck. Despite the above benefits, early variants (e.g., (Havasi et al.,
2022)) required extensive concept annotations during training, which can be costly and impractical.
This reliance on predefined, annotated concepts limits their scalability and applicability to diverse
domains and tasks. To address this, recent methods aim to construct CBMs without requiring explicit
concept labels, and they can be placed into three main categories: (a) unsupervised learning-based
concept discovery, (b) general-purpose concept bank agnostic to tasks, and (c) leveraging multi-modal
foundation models. They are further discussed below.

(a) Unsupervised learning-based concept discovery: Yeh et al. (2020) formulates the concept
discovery as an optimization process with the objective of concept completeness, ensuring
that the extracted concepts comprehensively represent the data while maintaining inter-
pretability. This approach is further advanced in Wang et al. (2023), where they optimize
task-specific concepts via self-supervision techniques such as contrastive loss to improve
the quality of the learned concepts.

(b) General-purpose concept bank agnostic to tasks: Yuksekgonul et al. (2023) and Wu et al.
(2023b) utilize a predefined concept bank where each concept vector is derived from the
parameters of a Support Vector Machine (SVM) trained to distinguish between positive and
negative instances in image embeddings obtained from a backbone model. Here the dataset
used to learn the SVMs does not have to be the same as the data for the given task.

(c) Leveraging multi-modal foundation models: Another approach leverages the rapid advance-
ments in multi-modal foundation models like CLIP to align visual and textual representa-
tions, enabling the mapping of each concept to a human-readable description (Moayeri et al.,
2023). Yuksekgonul et al. (2023) also suggests defining each concept vector with the text
embeddings from the backbone, where the text serves as human-understandable concept
descriptions (refer to Figure 2 in Shang et al. (2024) for a descriptive illustration of the
method). Oikarinen et al. (2023) relies on a pre-trained backbone like CLIP which maps
images and textual descriptions into a shared embedding space. They define each concept
vector as the mapping of an image embedding to its corresponding text embedding.

In our paper, we consider the most representative method from each category of concept bottleneck
constructions: Yeh et al. (2020) for (a), Yuksekgonul et al. (2023) for (b), and Oikarinen et al.
(2023) for (c) (refer to Appendix C.2 for further details on their implementations). By applying
our adaptation framework to various definitions of a concept bottleneck, we demonstrate that it
can effectively and flexibly enhance the post-deployment robustness of various CBM types under
real-world distribution shift scenarios.

Concept-based explanations and distribution shifts. There has been growing interest in the utility
of concept-based explanations under distribution shifts. The initial work by (Kim et al., 2018)
hinted at the potential of high-level concepts as diagnostic units against low-level perturbations,
such as adversarial examples. Following this, Adebayo et al. (2020) suggested that concept-based
explanations could be more robust tools for debugging and analyzing model behaviors under spurious
correlations. More recently, Abid et al. (2022) and Wu et al. (2023b) have studied the utility of
concept-based explanations in the context of data drift. However, these works rely on a predefined
concept bank that remains static after model deployment. Our work emphasizes the need for a
dynamic approach to concept bottlenecks for the optimal utility of concept-based predictions in the
deployment phase where test data can have distribution shifts. To the best of our knowledge, this is
the first work to present a comprehensive view of the post-deployment performance of concept-based
prediction pipelines, and to address their test-time adaptation under distribution shifts with a dynamic
concept bank.
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B ADDITIONAL METHOD DETAILS

We describe the comprehensive algorithm of CONDA in Algorithm 1.

B.1 COMPLEXITY ANALYSIS OF CONDA

Referring to Algorithm 1, we evaluate the computational complexity of the CSA, LPA, RCB, and
pseudo-labeling steps for a single test batch Db

t . We recall some of the terms used in our notation.

• m : number of concepts in the main CBM.
• r : number of concepts in the residual CBM branch.
• d : dimension of the feature representation ϕ(x).
• L : number of classes.
• ngrad : number of gradient steps for each of the CSA, LPA, and RCB adaptations.
• nbatch = |Db

t | : batch size

CSA step optimizes the concept matrix of the main CBM branch C, which has md parameters.
Below we breakdown the computations involved in the CSA adaptation objective and its gradient
updates. We assume that the mean and inverse-covariance matrices of the class-conditional concept
score distributions are pre-computed from the source dataset.

Concept score projection for a single test sample: 2md.

Intra-class and inter-class Mahalanobis distances for a single test sample: L (2m2 + 3m) + L =
Lm (2m+ 3) + L.

Frobenius norm regularization term: 3md.

Cost of stochastic gradient update step for the batch: 2md.

The cost of optimizing the CSA objective (Eqn. 9) for ngrad gradient update steps can be expressed as:

CostCSA = ngrad

(
nbatch

(
2md+ Lm (2m+ 3) + L

)
+ 5md

)
. (15)

LPA step optimizes the linear predictor in the main CBM branch, whose parameters are (W,b). The
number of parameters optimized in this step is L (m+ 1). Below we breakdown the computations
involved in the LPA adaptation objective and its gradient updates.

Elastic-Net regularization term: 3Lm.

Cross-entropy loss term in the LPA adaptation objective (Eqn. 11) for a single test sample: 2md+
2Lm+ L+ 2 r d+ 2Lr + L+ 3L = 2 (m+ r) (d+ L) + 5L.

Cost of stochastic gradient update step for the batch: 2L (m+ 1).

The cost of optimizing the LPA objective for ngrad gradient update steps can be expressed as:

CostLPA = ngrad

(
nbatch

(
2 (m+ r) (d+ L) + 5L

)
+ 5Lm + 2L

)
. (16)

RCB step optimizes the concept matrix and linear predictor in the residual CBM branch, whose
parameters are (C̃,W̃, b̃). The number of parameters optimized in this step is r d+L (r+1). Below
we breakdown the computations involved in the RCB adaptation objective and its gradient updates.

Cosine similarity regularization term: 6 d r (m+ (r − 1)/2).

Coherancy regularization term: r
(
4nbatch d + nbatch log(nbatch) + k

)
.

Cross-entropy loss term in the RCB adaptation objective (Eqn. 14) for a single test sample: 2md+
2Lm+ L+ 2 r d+ 2Lr + L+ 3L = 2 (m+ r) (d+ L) + 5L.

Cost of stochastic gradient update step for the batch: 2 r d+ 2L (r + 1).
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The cost of optimizing the RCB objective for ngrad gradient update steps can be expressed as:

CostRCB = ngrad

(
nbatch

(
2 (m+ r) (d+ L) + 5L

)
+ 6 d r (m+ (r − 1)/2)

+ 4nbatch r d + r nbatch log(nbatch) + k r + 2 r d + 2L (r + 1)
)

(17)

Pseudo-labeling. For the pseudo-labeling method based on the ensemble of the zero-shot predictor
and linear-probing predictor with the foundation model backbone, the computational complexity will
be dominated by the architecture and number of parameters p in the foundation model. We denote
the inference cost on a test batch by Cϕ(p, nbatch). The computation involved in the zero-shot and
linear probing predictions will be negligible compared to this.

The overall computational cost for a single test batch is the sum of the costs of the CSA, LPA,
RCB, and pseudo-labeling steps described above. From this, we select the terms that dominate the
computational cost and ignore terms that depend on smaller quantities like r and k. This leads us an
overall complexity of O

(
ngrad nbatch m

2 L + ngrad nbatch md + ngrad d r (m + r)
)
. The number

of concepts m is usually on the order of hundreds and r is much smaller than that. The embedding
dimension d is on the order of few hundreds to thousands, depending on the foundation model.

To quantify the computational complexity of our method, in Table 3, we report the average (per-batch)
wall-clock running times of CONDA when combined with post-hoc CBM (Yuksekgonul et al., 2023).
We observe that adaptation using CONDA is quite fast, taking only a few seconds per batch, with
the main time-consuming component being the pseudo-labeling since it involves inference on the
foundation model.

Backbone Embedding size Target Dataset Dataset size PL +CSA +LPA +RCB All

CLIP:ViT-L-14 (FARE2) 768 CIFAR10-C 10000 4.113 0.116 0.021 0.038 4.288
CLIP:ViT-L-14 (FARE2) 768 CIFAR100-C 10000 16.203 0.692 0.023 0.041 16.959

CLIP:ViT-L-14 768 Waterbirds 2897 0.064 0.043 0.028 0.051 0.186
CLIP:ViT-L-14 768 Metashift 541 0.077 0.051 0.022 0.039 0.188
BiomedCLIP 512 Camelyon17 85054 0.387 0.089 0.042 0.078 0.596

Table 3: Runtime of CONDA. All inputs are reshaped to the dimension of (224, 224, 3). In column
PL, we report the time it takes to obtain our proposed pseudo-labeling per batch (averaged across all
incoming batches). We run 20 adaptation steps for each of CSA, LPA, and RCB with five residual
concepts, and report runtime (in seconds) averaged across all batches at the test time.

B.2 AUTOMATICALLY ANNOTATING CONCEPTS

We adopt and modify CLIP-DISSECT (Oikarinen & Weng, 2023) for automatically annotating the
concepts as follows.

Suppose S is the set of possible concept annotations. We use ConceptNet (Speer et al., 2017) to
obtain texts that are relevant to the classes. ConceptNet is an open knowledge graph, where we can
find concepts that have particular relationships to a query text. For instance, for a class “cat”, one
can find relations of the form “A Cat has {whiskers, four legs, sharp claws, ...}”. Similarly, we can
find “parts” of a given class (e.g., “bumper”, “roof” for “truck” class), or the superclass of a given
class (e.g., “animal”, “canine” for “dog”). Following the setup in Yuksekgonul et al. (2023), we
restrict ourselves to five sets of relations for each class: the hasA, isA, partOf, HasProperty,
and MadeOf relations in ConceptNet. We collect all the concepts that have these relations with the
classes in each classification task to build the concept annotation set. However, for the Waterbirds
dataset, since the classes of {“waterbird”, “landbird”} are too specific in their terminology and we
cannot find relevant nodes in ConceptNet, we instead use {“bird”, “water”, “land”} as the query set.
When we have the concept annotations for the main concept bottleneck from before-deployment
(e.g., (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Wu et al., 2023b), we set S as the union set of
those pre-defined concepts and those identified by ConceptNet.

Let Dt be the target domain (test) dataset. Let ϕI
CLIP and ϕT

CLIP be the image encoder and text
encoder (respectively) of CLIP:ViT-B/16. Recall that ϕ is the backbone foundation model used in
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our framework. To determine the annotation for a concept vector ca ∈ Ct, our goal is to assign to it
the most relevant caption tb ∈ S as follows:

1. Compute the normalized text embedding of the concepts in S using ϕT
CLIP; let Tj be the

normalized text embedding of the j-th concept in S. Also, compute the image embedding
of all images in Dt using ϕI

CLIP; let Ii be the image embedding of the i-th image in Dt. We
then compute the inner product of the all pairs of image-text embeddings via the image-text
matrix P = IT⊤ ∈ R|Dt|×|S| where I ∈ R|Dt|×d and T ∈ R|S|×d and d is the dimension
of the CLIP embeddings. That is, Pij is the inner product of the normalized embeddings of
the i-th target image and the j-th candidate annotation.

2. For all images in the target dataset, we compute and collect their concept scores as vca
=

[⟨ϕ(x1), ca⟩, · · · , ⟨ϕ(x|Dt|), ca⟩]⊤ ∈ R|Dt|.

3. The annotation for ca is determined by calculating the most similar concept label in S based
on its concept scores vca . The similarity with respect to a concept tℓ ∈ S is defined as

sim(tℓ,vca
;P) =

⟨vca ,P:,ℓ⟩
∥vca

∥ ∥P:,ℓ∥
, (18)

which is the cosine similarity between the concept scores and the corresponding column ℓ of
the image-text matrix P:,ℓ. Then, the annotation for ca becomes the concept in S with the
maximum similarity, given by tb where b = argmaxℓ sim(tℓ,vca

;P). To reduce noise in
the annotations, we only accept tb as the annotation for ca only when sim(tb,vca

;P) > 0.8.

To annotate the concepts in the residual concept bottleneck C̃, we repeat the same process.

C EXPERIMENTAL DETAILS

All the experiments are run on a server with thirty-two AMD EPYC 7313P 883 16-core processors,
528 GB of memory, and four 884 Nvidia A100 GPUs. Each GPU has 80 GB of 885 memory. For
each setup, we repeated each experiment for 10 trials (using seed 40–49 for the random number
generation) and report the mean and standard error.

C.1 DATASETS

CIFAR10. It consists of 60k RGB images of size 32x32 (50k images for the train set, and 10k images
for the test set), equally balanced over 10 different classes (e.g., airplane, car, dog, cat, etc.). We
follow the given train/test split to report the performance in the source domain.

CIFAR100. It is similar to CIFAR10, but in a larger-scale; there are 100 classes, and each class has
500 32x32 RGB training images and 100 test images, making the classification more challenging.

CIFAR10-C and CIFAR100-C. To report the accuracies, we take the average over 15 different
types of corruptions with the severity level of two (out of the scale from one to five); Gaussian
Noise, Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow,
Frost, Fog, Brightness, Contrast, Elastic, Pixelate, JPEG Compression. Conventionally, studies in
out-of-distribution generalization literature, severity level five is used, but we observe that it severely
hurts the performance of the foundation model, making it impossible to be used as a decent oracle for
the pseudo labeling. Hence, we chose the severity level two that still causes the performance drop
due to the distribution shift, but against which, the backbone model still presents decent performance
compared to the CBMs.

Waterbirds. Waterbirds dataset is for a two-class classification task (“landbird” vs. “waterbird”).
In the source domain, landbird (waterbird) images are always associated with the land (water)
background, while in the target domain, the correlation with the background is flipped, i.e., landbird
(waterbird) images are always on the water (land) background.

Metashift. Metashift has two classes of “cat” and “dog”, and it simulates the disparate correlation to
the backgrounds in a similar way. Source cat images are always correlated with a sofa or bed in the
background, while dog images are always correlated with a bench or bike in the background. For
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evaluation, we randomly split 90:10 equally across the correlation types, i.e., 10% of dog images
with sofa, 10% of dog images with bed, 10% of cat images with bench, and 10% of cat images with
bike. In the target domain, both cat and dog images are always on the shelf background.

Camelyon17. This dataset is a collection of histopathology whole-slide images used for the detection
of metastases in lymph nodes; classifying the given slide into benign tissue vs cancerous tissue. It
includes images from five medical centers, each with different staining protocols, equipment, and
imaging settings. These differences simulate natural real-world distribution shifts. We use the train
set (hospital 1-3) for source, and the test set (hospital 5) for the target.

For zero-shot prediction, we use a basic text template: "A photo of {class name}"
for CIFAR10, CIFAR100, Waterbirds, and Metashift datasets. For the Camelyon17 dataset,
we use the ensemble of prompts: for class benign, {"A histopathology image of
normal lymph node tissue stained with hematoxylin and eosin.",
"An H&E stained slide showing healthy lymph node without cancer
cells.", "Microscopic image of non-cancerous lymph node tissue.",
"A pathology image of benign lymph node with normal histology.",
"Hematoxylin and eosin stained section of normal lymph node.’’}; for
class malicious, {"A histopathology image of lymph node with metastatic
breast cancer stained with hematoxylin and eosin.", "An H&E
stained slide showing lymph node tissue infiltrated by cancer
cells.", "Microscopic image of lymph node containing metastatic
carcinoma.", "A pathology image of malignant lymph node with
cancer metastasis.", "Hematoxylin and eosin stained section of
lymph node with breast cancer metastases."}.

C.2 PREPARING THE CONCEPT BOTTLENECK

There are various ways of defining the concept vectors {csi}mi=1 in the concept prediction layer
vCs

(x). Early works on CBM required the training dataset to have concept annotations from domain
experts in addition to the class labels for training the concept predictor (Koh et al., 2020). Subsequent
works have also explored learning the concept vectors in an unsupervised manner (without any
concept annotations) (Yeh et al., 2020; Choi et al., 2023). More recently, natural language concept
descriptions and modern vision-language models (e.g., Stable Diffusion (Rombach et al., 2022)) are
being leveraged to automatically generate concept examples (Yuksekgonul et al., 2023; Wu et al.,
2023b) for finding the Concept Activation Vectors (CAVs) (Kim et al., 2018) (each CAV corresponds
to a csi), or to directly guide the construction of concept bank Cs (Oikarinen et al., 2023). We
highlight that in all prior works (to our knowledge) the concept bank remains static, i.e., once the
set of concept vectors is defined and the CBM is deployed, its predictions are made based on these
predefined concepts, regardless of any distribution shift at test time.

Yuksekgonul et al. (2023). For CIFAR10 and CIFAR100, we use the BRODEN visual concepts
datasets Bau et al. (2017) to learn concept activation vectors, which are used to initialize the weights
and bias parameters of the concept bottleneck layer, as described in Yuksekgonul et al. (2023). For
Waterbirds and Metashift, we use the images belonging to the concept categories as follows; nature,
color, and textures for Waterbirds, and nature, color, texture, city, household, and others for Metashift.
For Camelyon17, we use color and textures categories, following the setting in Wu et al. (2023b).

Yeh et al. (2020). For a fair comparison, we set the number of the concepts to be the same as the size
of concept bottleneck by Yuksekgonul et al. (2023) except with Metashift where we use 100 concepts
instead, since with over 100 concepts, we found there are much unnecessary redundancy between
them.

Oikarinen et al. (2023). Following their instructions, we create the initial concept set using GPT-3,
followed by concept filtering. For the sparsity of the linear probing layer, we set λ = 0.001 and
α = 0.5.

Table 4 shows a summary of the major hyper-parameters used in our experiments. As for the
hyper-parameter k in Equation 13, we set k equal to batch size / (2× number of classes), which is a
heuristic that works well in practice.
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Dataset Backbone Batch Size # Epochs lr (CSA, LPA, RCB) Adaptation steps {λfrob, λsparse, λsim, λcoh}
CIFAR10 CLIP:ViT-L-14 (FARE2) 128 50 Adam, 0.01 20 {0.1, 1.0, 0.1, 2.0}

CIFAR100 CLIP:ViT-L-14 (FARE2) 512 50 Adam, 0.01 20 {0.1, 1.0, 0.1, 2.0}
Waterbirds CLIP:ViT-L-14 32 20 SGD, 0.1 20 {2.5, 1.0, 0.1, 0.1}
Metashift CLIP:ViT-L-14 32 20 SGD, 0.1 50 {5.0, 2.0, 1.0, 0.1}

Camelyon17 BiomedCLIP 64 30 SGD, 0.01 20 {0.5, 1.0, 0.5, 1.0}

Table 4: Summary of the hyper-parameters used in our experiments.

(a) λfrob in CSA, CIFAR10-C (b) λfrob in CSA, Waterbirds (c) λsparse in LPA

(d) r in RCB (e) λsim in RCB (f) λcoh in RCB

Figure 5: Ablations on the hyper-parameters in CONDA. We ablate on the individual hyper-
parameters in CONDA for each type of distribution shift: (1) CIFAR10-C (impulse noise) simulating
low-level shift, and (2) Waterbirds simulating concept-level shift.

D ABLATION EXPERIMENTS

Ablation Study on Hyperparameters.

In Figure 5, we present a comprehensive ablation study illustrating how different hyperparameter
choices affect the performance of our proposed method.

Most notably, in Figures 5a and 5b, we observe that λfrob influences the adaptation performance
differently depending on the type of distribution shift (i.e., CIFAR10-C for low-level shifts and
Waterbirds for concept-level shifts). Recall that λfrob controls how much the concept vectors are
allowed to deviate from their original construction during adaptation. When λfrob is very low
(e.g., 0.001), the weights in the concept bottleneck layer deviate excessively, leading to instability.

In the case of low-level shifts, as shown in Figure 5a, over-regularizing the Frobenius norm term
(e.g., setting λfrob as high as 10) prevents the method from addressing the non-robustness of the
concept bottleneck under such shifts (i.e., the first failure mode in Section 2.3). Selecting a suitable
moderate value such as λfrob = 0.1 leads to optimal performance.

In contrast, under concept-level shifts depicted in Figure 5b, allowing deviation of the concept vectors
harms performance. By strongly regularizing with a high λfrob value (e.g., λfrob = 10), we can nearly
preserve the original pre-adaptation performance (note that WG drops to almost zero when λfrob < 1).
This occurs because failures of CBMs under concept shifts need to be addressed by adapting the
linear probing layer rather than the concept bottleneck layer (the second failure mode in Section 2.3).

However, when all components of CONDA are activated, the adaptation performance becomes quite
insensitive to the choice of λfrob, regardless of the type of distribution shift, since all the components
collaboratively combine to handle all possible failure modes.
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Regarding the hyperparameters for the other regularization terms – namely, λsparse, λsim, and λcoh
(Figures 5c, 5e, and 5f) – we find that the performance is relatively insensitive to their values unless
they are set too high, which could override the main optimization objectives.

As for the number of residual concepts r, shown in Figure 5d, we observe that increasing r helps
improve the performance up to a certain point (specifically, r = 5), after which the performance
saturates and additional concepts become redundant. We recommend that a criterion like this be
used to select r in practice. Choose a high cosine similarity threshold (e.g., 0.9), and stop adding
new residual concepts once a new concept vector starts to have maximum cosine similarity (with the
existing set of residual concept vectors) larger than the set threshold.

Pseudo-labeling variants. We acknowledge that the performance of CONDA relies on the quality
of pseudo-labels. In Section 3, we introduced a simple yet effective approach that ensembles the
foundation model’s zero-shot predictions and linear probing predictions, with a focus on matching
the CBMs’ post-deployment performance with that of the feature-based predictions. However, more
advanced pseudo-labeling techniques could further improve our method’s performance.

Importantly, the pseudo-labeling technique should operate on a batch basis to run alongside CONDA,
which performs adaptation with an incoming batch of test data in an online fashion. For this,
we employ a recent method from the TTA literature Chen et al. (2022). They employ an online
pseudo-labeling refinement scheme that generates significantly more accurate pseudo-labels by using
soft k-nearest neighbors voting in the target domain’s feature space for each target sample. The
neighboring samples are generated by applying weak augmentation to each incoming target sample.
The core intuition of their method is that the model should make consistent predictions for these
nearest neighbors. We apply this method to the feature-based linear-probing predictions (“Refined
LP”) and ensemble it with ZS predictions.

Table 5 compares the performance of CONDA with Post-hoc CBM (Yuksekgonul et al., 2023) when
using i) our simple pseudo-labeling approach, ii) pseudo-label refinement by Chen et al. (2022),
and iii) perfect pseudo labeling (using the ground-truth labels of the target dataset to provide an
empirical upper bound on the performance). We observe that the refined pseudo-labeling of Chen
et al. (2022) helps further improve the adaptation performance of CONDA. It is particularly effective
with low-level shifts (CIFAR10-C and CIFAR100-C), as the method by Chen et al. (2022) enforces
consistent predictions among weakly-augmented instances, which correspond to low-level shifts
(e.g., cropping, color jittering, flipping, etc.). However, compared to the performance with perfect
pseudo-labeling, there remains a significant performance gap (especially CIFAR-100). Reducing this
gap with more advanced pseudo-labeling that can handle both distribution shift types is an important
direction for future work.

Dataset Metric {ZS, LP} {ZS, Refined LP} Perfect PL

CIFAR10-C
AVG 84.38 ± 1.52 90.06 ± 1.94 96.37 ± 0.37
WG 72.69 ± 2.49 76.31 ± 3.01 92.65 ± 0.56

CIFAR100-C
AVG 53.88 ± 0.23 61.25 ± 0.29 97.31 ± 0.35
WG 2.56 ± 0.27 10.28 ± 0.27 79.13 ± 1.73

Waterbirds
AVG 60.69 ± 0.23 62.77 ± 0.16 95.39 ± 0.21
WG 43.01 ± 0.46 44.30 ± 0.11 92.02 ± 0.42

Metashift
AVG 93.69 ± 0.20 94.07 ± 0.11 100.0
WG 92.02 ± 0.12 93.56 ± 0.13 100.0

Camelyon17
AVG 91.20 ± 0.06 93.19 ± 0.10 94.82 ± 0.08
WG 88.96 ± 0.16 90.88 ± 0.15 93.50 ± 0.17

Table 5: Performance of CONDA with different pseudo-labeling techniques. Here, ZS and LP
refer to zero-shot and linear probing methods used for prediction based on the foundation model.
Refined LP refers to the pseudo-labeling method of Chen et al. (2022).

Choice of foundation model. Another factor that inherently affects the performance of CONDA
is the choice of the backbone foundation model. While foundation models are usually designed
for general-purpose tasks (e.g., BiomedCLIP (Zhang et al., 2023), pretrained on diverse medical
domains), they are sometimes fine-tuned for specific domains (e.g., MedCLIP (Wang et al., 2022),
specifically pretrained on chest X-rays).
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In Table 6, we compare the performance of our proposed adaptation with different CBM baselines
on the Camelyon17 dataset, while varying the backbone foundation model. Intuitively, MedCLIP
may not be well-suited for pathology data such as Camelyon17, and we observe significant drops in
zero-shot (ZS) and linear probing (LP) accuracies in both source and target domains. Consequently,
the performance of the CBM based on its embeddings is much worse when a mis-matched foundation
model is used. On the other hand, with BioMedCLIP as the foundation model, the source domain
performance as well as the adaptation performance of CONDA on the target domain are much better.
This confirms that selecting an appropriate backbone leads to better representative embeddings and
higher-quality pseudo labels, which in-turn leads to more accurate test-time adaptation.

This suggests another avenue for further improving the adaptation performance beyond advanced
pseudo-labeling techniques – for example, zero-shot robustification of the foundation model embed-
dings (Adila et al., 2024). Such approaches could be employed when the chosen foundation model is
not specifically tailored to the given task. We leave this as an important direction for future work.

Backbone ZS LP
Yuksekgonul et al. (2023) Yeh et al. (2020) Oikarinen et al. (2023)
Unadapted w/ CONDA Unadapted w/ CONDA Unadapted w/ CONDA

BiomedCLIP
Source

AVG 77.71 92.14 ± 0.01 89.07 ± 0.60 - 97.01 ± 0.05 - 94.19 ± 0.11 -
WG 69.73 88.89 ± 0.02 84.34 ± 1.39 - 96.31 ± 0.24 - 91.23 ± 0.12 -

Target
AVG 84.55 93.69 ± 0.01 89.71 ± 0.65 91.20 ± 0.06 95.01 ± 0.07 92.54 ± 0.16 91.75 ± 0.08 93.16 ± 0.05
WG 76.08 89.49 ± 0.02 85.96 ± 0.88 88.96 ± 0.16 93.07 ± 0.37 91.07 ± 0.32 87.24 ± 0.09 89.00 ± 0.07

MedCLIP
Source

AVG 53.09 79.89 ± 0.05 76.92 ± 0.06 - 94.58 ± 0.10 - 79.15 ± 0.08 -
WG 11.75 79.28 ± 0.01 76.21 ±0.16 - 92.20 ± 0.44 - 78.01 ± 0.15 -

Target
AVG 48.87 68.37 ± 0.07 67.35 ± 0.12 67.56 ± 0.11 88.72 ± 0.28 86.04 ± 0.19 66.29 ± 0.18 67.05 ± 0.08
WG 14.66 68.32 ± 0.05 62.15 ± 0.19 65.36 ± 0.14 81.42 ± 1.15 81.01 ± 1.65 59.35 ± 0.21 65.17 ± 0.14

Table 6: Performance of CONDA varying backbone foundation model. The dataset is Camelyon17,
simulating a natural shift between the source and target domains.

E ADDITIONAL INTERPRETABILITY ANALYSIS

In this section, we include additional experiments and analysis to better understand the interpretability
of CONDA as well as the utility of the RCB component.

E.1 RESIDUAL CONCEPT BOTTLENECK COMPENSATES FOR PREDICTION ERRORS

Here we aim to understand how including the RCB component in CONDA impacts the predictions
of the adapted classifier. We conduct an analysis similar to the one in Appendix B of Yuksekgonul
et al. (2023), where they evaluate the impact of the residual predictor PCBM-h and when it alters the
predictions of the main predictor PCBM. In Figure 6, we compare the predictions made by (i) PCBM
+ CSA + LPA (i.e., excluding RCB) with that of (ii) PCBM + CSA + LPA + RCB (i.e., including
RCB) on the CIFAR10-C (with Gaussian Noise, Shot Noise, and Impulse Noise) and Metashift
datasets. The x-axis shows the confidence of predictions, which are binned into 5 intervals; and
y-axis shows both the accuracy of (i) within each confidence bin (blue curve), and the consistency of
predictions between (i) and (ii) within each confidence bin (red curve). Consistency is defined as the
fraction of samples where the predictions of two models are the same.

Figures 6a and 6b show the accuracy/consistency plots for the CIFAR10-C and Metashift datasets
respectively. We observe that in both cases, when the confidence is high, the accuracy and consistency
are high. As the confidence of predictions decreases, the accuracy and consistency within the
confidence bins also decrease sharply. From this, we can infer that the residual component (RCB)
modifies the predictions of PCBM + CSA + LPA mostly when they are incorrect and have low
confidence. This is readily apparent in the case of Metashift which addresses binary classification,
since all the inconsistent predictions where PCBM + CSA + LPA is incorrect have to be correct when
RCB is included. Thus, we hypothesize that RCB has the effect of intervening to compensate mainly
when the prior adaptation components (CSA + LPA) have prediction errors or low confidence.

We also summarize the test accuracies of the CONDA variants (i) and (ii) on Metashift and CIFAR10-
C in Table 7. We observe that including RCB (variant ii) leads to a small increase in both the AVG
and WG accuracies.
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(a) CIFAR10-C (b) Metashift

Figure 6: RCB intervenes and compensates for mis-classifications of PCBM + CSA + LPA, particu-
larly in the lower confidence prediction bands. For Metashift, with two classes, a mis-classification
and inconsistent prediction imply that RCB corrects the prediction.

Dataset CONDA variant Accuracy (AVG) Accuracy (WG)

Metashift
PCBM + CSA + LPA 93.96 91.61
PCBM + CSA + LPA + RCB 94.57 93.25

CIFAR10-C
PCBM + CSA + LPA 81.89 64.63
PCBM + CSA + LPA + RCB 82.27 66.54

Table 7: Accuracy comparison of the CONDA variants where (i) RCB is excluded and (ii) RCB is
included on Metashift and CIFAR10-C (with Gaussian Noise, Shot Noise, and Impulse Noise).

E.2 ACCURACY-INTERPRETABILITY TRADEOFF IN RESIDUAL CONCEPT BOTTLENECK

In this sub-section, we aim to answer to the following question: while the residual concept bottleneck
improves the adaptability of CONDA, does it potentially affect the interpretability by introducing
additional model complexity? An analysis of the trade-off between model complexity and inter-
pretability, particularly as new residual concepts are added, would be valuable for practitioners
seeking interpretable yet robust models.

Here we apply our adaptation to PCBM (CLIP), where each concept vector is constructed using
CLIP text embeddings of concept captions, deployed to the Waterbirds dataset. As discussed in
Appendix B.2, for concept annotation, we leveraged the ConceptNet hierarchy following the setup
in Yuksekgonul et al. (2023). We searched ConceptNet for the words “Bird”, “Water”, “Land” and
obtained concepts that have the following relationship with the query concept: hasA, isA, partOf,
HasProperty, and MadeOf.

We compare the two CONDA variants (i) PCBM + CSA + LPA and (ii) PCBM + CSA + LPA + RCB
by varying the number of residual concepts (r) and evaluating the following metrics:

– Relative accuracy of method (ii) minus (i), both for AVG and WG.
– Similarity score output in Eqn. 18 from the automatic concept annotation method described in

Appendix B.2.

The similarity score is used as a quantitative metric to measure the interpretability of RCB. To be
more specific, the score in Eqn. 18 tells us how aligned the assigned concept caption is with each
residual concept vector. A low score implies that the assigned caption is not a good description for
the concept.

Figure 7 shows the relative accuracy and similarity score as a function of the number of residual
concepts (as they are added incrementally). We observe that choosing r = 5 would result in the best
relative accuracy, but it leads to a drop in the similarity score which peaks at r = 4 (implying a drop
in interpretability of the residual concept). A practitioner can choose a suitable stopping point for the
residual concepts by monitoring these two criteria as shown in the figure.
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Figure 7: Accuracy vs. Interpretability of the Residual Concept Bottleneck. with PCBM (CLIP)
deployed on the Waterbirds dataset (target domain).

(a) Before adaptation (source) (b) After adaptation (target)

Figure 8: CONDA adapts the concept weights to be tailored to the target data. We visualize
the linear probing layer weights (width of each mapping) before vs after applying CONDA to
PCBM (Yuksekgonul et al., 2023) on the Metashift dataset. We only show the mappings with positive
weights.

E.3 ADDITIONAL INTERPRETABILITY RESULTS

In Figure 8, we present another example demonstrating how CONDA adapts interpretations on the
MetaShift dataset, similar to Figure 4. In the source domain, cat images are exclusively correlated
with sofa or bed objects, whereas dog images are always associated with bench or bike objects. In the
target domain, however, both cat and dog images appear with a shelf background.

Without any adaptation, the deployed CBM indicates that the most contributing concepts to the “cat”
class are mainly household-related objects (see Figure 8a), and these concepts do not positively
contribute to the “dog” class at all. After applying our adaptation (Figure 8b), the influence of the
bed-related concepts is diminished, while shelf-related concepts (highlighted in bright green) begin
to contribute to the prediction of both the “cat” and “dog” classes.

F LIMITATIONS AND FUTURE WORK

This work was motivated by our observation that recent CBM variants atop a backbone foundation
model may close the performance gap with feature-based predictions in the source domain, but they
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are often unable to do so under distribution shifts at test time (after deployment). Hence, for an
interpretable and robust decision-making pipeline under distribution shifts, while fully leveraging
the representative power of foundation models, an adaptive test-time approach is required. To the
best of our knowledge, we have proposed the first effort to tackle this problem setting for CBMs. We
formalized potential failure modes under low-level and concept-level distribution shifts and proposed
a novel test-time adaptation framework, named CONDA. Each component of CONDA is designed to
address specific failure modes, effectively improving the test-time performance of a deployed CBM
using only unlabeled test data.

We acknowledge that the effectiveness of our framework is limited by the inherent robustness of the
backbone foundation model, especially due to its reliance on pseudo-labeling. Specifically, when the
backbone foundation model remains robust (e.g., against low-level shifts with lower severity level or
concept-level shifts), concept-based predictions can be adjusted to be more robust than feature-based
predictions through adaptation (e.g., see Metashift results in Table 1). However, when the backbone
foundation model is not robust (e.g., against low-level shifts with higher severity level), the CBM
adaptation, which relies on the pseudo-labels of the foundation model (feature representations),
cannot be guided to a successful solution and could lead to reduced performance; see results in
Table 8. Moreover, in Table 1, we note that there are instances where our adaptation did not yield

Dataset ZS LP
Yuksekgonul et al. (2023) Yeh et al. (2020)

w/o adaptation + CSA + LPA + CSA + LPA w/o adaptation + CSA + LPA + CSA + LPA

Metashift
Source

AVG 0.957 0.972 0.979 ± 0.001 - - - 0.972 ± 0.001 - - -
WG 0.934 0.960 0.969 ± 0.003 - - - 0.960 ± 0.001 - - -

Target
AVG 0.705 0.835 0.890 ± 0.006 0.620 ± 0.049 0.713 ± 0.005 0.676 ± 0.009 0.840 ± 0.009 0.834 ± 0.009 0.749 ± 0.008 0.690 ± 0.005
WG 0.460 0.720 0.850 ± 0.013 0.279 ± 0.110 0.476 ± 0.017 0.398 ± 0.018 0.712 ± 0.018 0.700 ± 0.020 0.512 ± 0.016 0.400 ± 0.010

Table 8: Negative results of our test-time adaptation. In the target domain, the model faces
Metashift images with random Gaussian noise (severity level five), following the implementation
of Hendrycks & Dietterich (2019). When the performance of zero-shot and linear-probing inference
is poor on the target domain, the pseudo-labels cannot serve as a reliable reference for the test-time
adaptation. Therefore, the performance of CONDA with different components on the target domain
is worse than that of the model without any adaptation.

improvements with the CBM method of Yeh et al. (2020). In cases such as the CIFAR datasets and
Camelyon17, the unadapted CBM already outperforms ZS or LP in the target domain, and adaptation
using pseudo-labels produced by these methods can negatively impact the performance. This is likely
because the concept learning algorithm in Yeh et al. (2020) is designed to optimize accuracy, with
the concept bottleneck layer serving as an additional layer that can be optimized along with the
subsequent LP layer. However, a caveat of this approach is that the interpretability of the concept
bottleneck is not guaranteed, whereas methods such as Yuksekgonul et al. (2023) and Oikarinen et al.
(2023) provide clear textual annotations for concepts, enhancing the interpretability.

Despite these limitations, we believe our work is an important first step toward leveraging off-the-shelf
foundation models in an interpretable decision-making process, while preserving the post-deployment
utility. We highlight that our framework can continue to benefit from ongoing improvements in the
robustness of foundation models and the development of more advanced pseudo-labeling techniques
(as hinted in Appendix D), both of which represent promising avenues for future work. Another
promising direction for future research is to develop a deeper theoretical understanding of concept
bottlenecks under distribution shifts. For instance, it would be valuable to i) characterize the
sufficiency of a given concept set from training (source domain) for robust test-time accuracy under
different distribution shifts; and ii) to quantify or bound the extent to which test-time adaptation can
bridge the accuracy gap between the source and target distributions. Such theoretical insights would
complement the algorithmic and empirical advancements, guiding both the design of more effective
residual concept bottleneck and the development of improved adaptation strategies.
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