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Abstract
Current state-of-the-art flow methods are mostly based on dense
all-pairs cost volumes. However, as image resolution increases, the
computational and spatial complexity of constructing these cost
volumes grows at a quartic rate, making these methods impractical
for high-resolution images. In this paper, we propose a novel Hy-
brid Cost Volume for memory-efficient optical flow, named HCV.
To construct HCV, we first propose a Top-k strategy to separate the
4D cost volume into two global 3D cost volumes. These volumes
significantly reduce memory usage while retaining a substantial
amount of matching information. We further introduce a local 4D
cost volume with a local search space to supplement the local in-
formation for HCV. Based on HCV, we design a memory-efficient
optical flow network, named HCVFlow. Compared to the recurrent
flowmethods based the all-pairs cost volumes, our HCVFlow signifi-
cantly reduces memory consumption while ensuring high accuracy.
We validate the effectiveness and efficiency of our method on the
Sintel and KITTI datasets and real-world 4K (2160 × 3840) resolu-
tion images. Extensive experiments show that our HCVFlow has
very low memory usage and outperforms other memory-efficient
methods in terms of accuracy. The code is publicly available at
https://github.com/gangweiX/HCVFlow.

CCS Concepts
• Computing methodologies→Matching.
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Figure 1: Qualitative comparisons on the Sintel test
set[2]. Compared to the notable memory-efficient method
Flow1D[48], our approach achieves more accurate flow esti-
mation in low-texture regions.

1 Introduction
Optical flow, a fundamental aspect of computer vision, aims to esti-
mate the two-dimensional motion of each pixel between two con-
secutive images. This task serves as a fundamental component pro-
viding dense correspondences as valuable clues for downstream ap-
plications, including object tracking[26, 39, 41], high-quality video
reconstruction[46, 51], and autonomous driving[4, 14, 19]. With
the emergence of deep learning, neural network-based methods[9,
15, 18, 31, 33–35, 37, 49] have become mainstream in optical flow
algorithms, achieving superior results in accuracy. However, balanc-
ing the trade-off between memory consumption and high accuracy
remains a challenging endeavor, which limits the application of op-
tical flow algorithms in scenarios involving high-resolution images.

Within the realm of deep learning methods for optical flow esti-
mation, a key module known as the cost volume[9, 18, 34, 35, 37],
also referred to as the correlation volume, holds critical importance.
This component captures the correlations between pixels across
two images, effectively storing a measure of similarity or disparity
between them. RAFT[37] represents a significant advancement in
the field of optical flow research, constructing a global 4D cost
volume by calculating correlations across all pairs of pixels. This
cost volume, encompassing comprehensive matching information,
has enabled RAFT[37] to achieve remarkable levels of accuracy.
However, the approach comes with a drawback: the spatial com-
plexity of building such a cost volume is𝑂 (𝐻 ×𝑊 ×𝐻 ×𝑊 ). With
increasing image resolution, the required memory for computa-
tion grows quadratically, limiting its application to high-resolution
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Figure 2: Comparisons with Flow1D [48] on high-resolution (1080 × 1920) images from DAVIS[30] dataset. We achieve better
results than Flow1D[48] when consuming similar memory.

images. To mitigate the memory overhead of constructing a full
matching cost volume, some researchers have proposed memory-
efficient methods for constructing cost volumes[21, 48, 56]. A rep-
resentative example is Flow1D[48], which constructs two three-
dimensional cost volumes along the horizontal and vertical direc-
tions, respectively. This approach reduces the overall complexity
to 𝑂 (𝐻 ×𝑊 × (𝐻 +𝑊 )). However, in the process of constructing
the cost volume, Flow1D[48] utilizes global attention at each posi-
tion to propagate and aggregate feature information orthogonal to
the current row/column. This attention-based aggregation incorpo-
rates a substantial amount of noise and is strongly correlated with
position, making it struggle to match large motions correctly.

In this paper, we propose a novel Hybrid Cost Volume (HCV) for
memory-efficient optical flow estimation. Leveraging this hybrid
cost volume, we designed an end-to-end network, named HCVFlow,
for optical flow estimation that achieves notable accuracy while
requiring reduced memory resources.

The Hybrid Cost Volume (HCV) is constructed in two primary
stages: In the first stage, we build two 3D global cost volumes along
both horizontal and vertical dimensions by calculating the correla-
tion between the target and reference feature maps. Unlike Flow1D,
which aggregates all information into a single value per row or
column using attention techniques, our method employs a Top-k
strategy. This strategy retains the k positions in each row or column
with the highest relevance, ensuring that essential matching infor-
mation is preserved. Additionally, we introduce a lightweight and
efficient separable aggregation module. This module aggregates the
3D cost volumes along both dimensions, capturing more non-local
information. This is particularly beneficial for addressing challenges
such as occluded areas or large textureless/reflective surfaces. The
aggregation module also provides a relatively accurate initial opti-
cal flow prediction, laying the groundwork for further optical flow
regression. After aggregation, the result is two 3D global cost vol-
umes that encompass a wider array of potential matching scenarios
with minimal memory overhead, thereby enhancing the accuracy
of subsequent optical flow predictions. In the second stage, a local
4D cost volume is constructed by calculating the correlation within

a local 2D search space. This local 4D cost volume, with a compara-
tively small search domain, does not significantly increase memory
consumption. Importantly, by preserving match information within
a localized 2D domain, it complements the global 3D cost volume
with critical local details that might be missing otherwise.

By integrating these two global 3D cost volumes with the local
4D cost volume, we achieve the final Hybrid Cost Volume (HCV).
This innovative structure effectively balances memory efficiency
with the ability to capture detailed motion information, signifi-
cantly improving both the precision and reliability of optical flow
predictions across various challenging scenarios.

The process of constructing two 3D cost volumes with the Top-k
strategy incurs an overall complexity of 𝑂 (𝐻 ×𝑊 × (𝐷 + 𝐷) × 𝐾),
where𝐾 is substantially smaller than both𝐻 (height) and𝑊 (width),
especially for high-resolution images. We typically set 𝐾 to 8. D
represents the maximum displacement in the horizontal/vertical
direction. The complexity for building the local 4D cost volume
is 𝑂 (𝐻 ×𝑊 × (2𝑅 + 1)2), where 𝑅 is the search radius, and 𝑅 is
much smaller than both 𝐻 and𝑊 . As a result, the total complexity
for constructing the Hybrid Cost Volume (HCV) is maintained
at 𝑂 (𝐻 ×𝑊 × (𝐷 + 𝐷) × 𝐾). The 𝐷 is smaller than 𝐻 or𝑊 for
high-resolution images. In comparison to the 𝑂 (𝐻 ×𝑊 × 𝐻 ×𝑊 )
complexity associated with generating a cost volume in RAFT, our
methodology significantly reduces memory requirements while
capturing the essential matching information effectively.

The experimental results demonstrate that our HCVFlow, con-
structed using our Hybrid Cost Volume (HCV), achieves remarkable
accuracy and exceptionally low memory consumption. The experi-
ments conducted on the KITTI[29] datasets showed that ourmethod
outperforms previous memory-efficient methods[21, 48], such as
Flow1D[48], by more than 16%. The accuracy of our model are close
to those of RAFT[37], yet it only requires one-eighth of the memory
used by RAFT. Furthermore, our benchmark tests on the Sintel[2]
test dataset have surpassed RAFT, significantly exceeding other
memory-efficient methods. Specifically, our method outperforms
Flow1D by 26% on Sintel (Final) test dataset.

Overall, our work makes the following key contributions:
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Figure 3: Overview of our HCVFlow. We obtain feature maps at 1/8 and 1/16 resolutions and construct the Hybrid Cost Volume
(HCV) using these featuremaps. Specifically, we compute initial cost volumes in both horizontal and vertical directions, followed
by obtaining 3D cost volumes through a Top-k strategy. Subsequently, we aggregate these volumes using an aggregation module
to obtain the final 3D global cost volume. Additionally, we construct a 4D local cost volume. Finally, we input the the hybrid cost
volume and initial flow predictions generated by aggregation module into the ConvGRU module for iterative flow prediction.

• We develop a memory-efficient technique for constructing
cost volumes by implementing a Top-k strategy. This ap-
proach allows us to decompose the conventional 4D cost
volume into two more manageable 3D cost volumes, signifi-
cantly reducing memory requirements while preserving the
most valuable matching information. Additionally, we de-
signed a lightweight aggregation module that enables these
3D cost volumes to capture more non-local information,
enhancing their capacity to account for complex motion
scenarios.

• Innovatively, we combine the 3D global and 4D local cost
volumes to create the Hybrid Cost Volume (HCV). This novel
structure not only minimizes memory consumption but also
encodes a rich set of effective matching information capable
of handling various motions. The integration of global and
local cost volumes addresses the challenges of accurately
predicting motion across a wide range of scenarios, making
HCV a versatile and efficient solution.

• Leveraging the Hybrid Cost Volume (HCV), we have con-
structed an end-to-end optical flow prediction network named
HCVFlow. Experimental results demonstrate that HCVFlow
surpasses representative memory-efficient method Flow1D
by 16% in terms of accuracy on KITTI dataset, closely ri-
valing the performance of RAFT with only one-eighth of
RAFT’s memory consumption. On the Sintel test dataset,
HCVFlow’s benchmark results exceed Flow1D by more 26%
and also surpass RAFT.

2 Related Work
2.1 Deep-Flow Method
The research of optical flow has a long history, with traditional
methods being explored for optical flow estimation decades ago.
Among these, the Horn-Schunck[13] and Lucas-Kanade[24] meth-
ods stand out as seminal approaches. However, in recent years, the
advent of deep learning has led to a surge of techniques based on
this paradigm, which have significantly outperformed traditional
methods in terms of accuracy. As a result, deep learning-based
optical flow prediction methods[9, 11, 15, 18, 25, 28, 33, 36, 46] has
become dominant in the field.

FlowNetS[9] is pioneering work in the end-to-end prediction of
optical flow using CNN technology, which follows a straightfor-
ward, end-to-end learning approach without any specialized layers
or mechanisms specifically for optical flow beyond the standard
convolutional layers. FlowNetC[9] introduces a correlation layer to
better capture the relationship between two images by learning a
similarity measure. FlowNet 2.0[18] uses a stacked architecture that
refines optical flow estimates through multiple training schedules
to achieve high accuracy. PWC-Net[34] leverages pyramidal pro-
cessing, warping, and cost volume layers which enables efficient
handling of motions at different scales and has shown remarkable
performance, especially in scenarios with rapid movement and
occlusions.

A recent notable work is RAFT[37], which introduces an all-
pairs cost volume. This cost volume stores a wealth of matching
information, allowing RAFT to achieve higher accuracy during flow
regressionwith GRU block. RAFT achieves state-of-the-art accuracy
in the optical flow, particularly outperforming other methods in
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challenging scenarios such as fast-moving objects and occluded
areas. Following RAFT’s success, several researchers have made
improvements and innovations based on its fundamental structure.
However, the construction cost of this all-pairs 4D cost volume,
which is𝑂 (𝐻 ×𝑊 ×𝐻 ×𝑊 ), results in high memory usage, making
these methods challenging to apply to high-resolution images due
to the significant GPU memory consumption.

2.2 Memory-efficient Method
To facilitate the use of optical flow algorithms on lower-end con-
sumer GPUs and with high-resolution images, recent research[21,
42, 48] has introduced a series of studies focused on developing
memory-efficient optical flow networks. SCV[21] adopts a sparse
cost volume to replace RAFT’s all-pair cost volume, aiming to de-
crease memory usage. For each position, SCV utilizes a Top-k strat-
egy, keeping only the k most relevant points for subsequent match-
ing. However, in areas that lack distinctive features or are blurry,
the inherent ambiguity can lead to a multitude of potential matches.
In such cases, the Top-k approach may not encompass the correct
match, potentially leading to erroneous motion predictions.

Flow1D innovatively proposed replacing the all-pairs 4D cost
volume with two separate 3D cost volumes[6, 7, 12, 32, 43–45] along
the horizontal and vertical directions, significantly reducing the
network’smemory usage. However, in constructing the cost volume,
Flow1D utilized the attention mechanism to aggregate information
from each row/column into a singular value. This approach led to a
loss of critical information in the resulting cost volume, making it
susceptible to mismatches, particularly in long-distance, high-speed
motions where Flow1D often predicts incorrectly. The limited local
information also presents a challenge in achieving precise matching.
Consequently, despite its advancements, the overall accuracy and
generalization capabilities of Flow1D still fall short when compared
to RAFT.

In response to these challenges, particularly the lower accu-
racy and difficulties encountered in certain scenarios by memory-
efficient methods[21, 48], our research introduces a novel hybrid
cost volume approach. This method combines the global 3D cost vol-
umes with the local 4D cost volume to adeptly manage a variety of
motions. The empirical results from testing our network on datasets
such as KITTI[29] and Sintel[2] have shown notable enhancements
in both generalization and accuracy over prior memory-efficient
solutions.

3 Method
3.1 Hybrid Cost Volume Construction
The construction of the Hybrid Cost Volume (HCV) consists of
the following steps: initial 3D global cost volume construction via
Top-k strategy; aggregation of the initial 3D global cost volume;
and construction of the 4D local cost volume.
3D global cost volume construction.We provide a detailed de-
scription of the 3D global cost volume construction along the hori-
zontal direction, while the construction for the vertical is similar.

For the input feature maps F
′
1 ∈ R𝐶×𝐻×𝑊 and F

′
2 ∈ R𝐶×𝐻×𝑊 ,

we compute the correlation between feature points using the dot
product operation, 𝐻 and𝑊 represent the height and width of the
16× downsampled image respectively. Specifically, the correlation

𝐶 (𝑢, 𝑣, 𝑖, 𝑗) between the pixel at (𝑢, 𝑣) in F
′
1 and the pixel at (𝑖, 𝑗) in

F
′
2 is formulated as:

C(𝑢, 𝑣, 𝑖, 𝑗) =
F
′
1 (𝑢, 𝑣) · F

′
2 (𝑖, 𝑗)√

𝐶
. (1)

The · symbol refers to the dot product operation, and 1√
𝐶
acts as

a normalization factor.
For any given horizontal displacement𝑑 (𝑑 ∈ {−𝐷,−(𝐷−1),−(𝐷−

2), . . . , 0, . . . , 𝐷 − 1}), we first utilize the following formula to calcu-
late the horizontal correlation Cℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 between the point (ℎ,𝑤)
in F

′
1 and all corresponding points in F

′
2 at a horizontal displacement

of 𝑑 :

Cℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (ℎ,𝑤,𝑑) = {C1,C2, . . . ,C𝐻 },
C𝑖 = C(ℎ,𝑤,𝑑, 𝑖). (2)

Then we obtain a dense horizontal cost volume Cℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 . To
reduce memory consumption while preserving the majority of
valuable matching information, we propose to use a Top-k strategy
on Cℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 , retaining only the top 𝑘 points with the highest
correlation at a given horizontal displacement 𝑑 . We have

C𝑡𝑜𝑝𝑘

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
(ℎ,𝑤,𝑑) = TopK (Cℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (ℎ,𝑤,𝑑)) , (3)

where the notation TopK(·) denotes the operation of selecting the
largest 𝐾 values from a given list. The spatial complexity of our
sparse horizontal cost volume, C𝑡𝑜𝑝𝑘

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
, is 𝑂 (𝐻 ×𝑊 × 𝐷 × 𝐾).

𝐷 represents the maximum horizontal displacement on the left or
right. 𝐾 , with a default value of 8, is significantly smaller than both
𝐻 and𝑊 in high-resolution images. Thus, we ultimately obtain
a 3D global cost volume C𝑡𝑜𝑝𝑘

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
with a spatial complexity of

𝑂 (𝐻 ×𝑊 × 𝐷 × 𝐾).
By applying this construction method to the vertical direction,

we can easily obtain the vertical 3D global cost volume, C𝑡𝑜𝑝𝑘

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
.

Aggregation of the 3D global cost volume. By employing the
Top-k strategy, we have separately obtained the 3D cost volumes for
both horizontal and vertical directions. The structure and properties
of these unidirectional cost volumes resemble those found in stereo
matching[5, 10, 12, 40, 43–45, 47], inspiring us to adopt aggregation
methods commonly used in stereo matching to optimize our initial
3D cost volumes.

Therefore, we design a novel, lightweight aggregation module
R to capture more non-local information, enhancing accuracy in
handling complex scenarios such as occlusions and textureless
regions. The cost aggregation is expressed as,

C𝐻 = R(C𝑡𝑜𝑝𝑘

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
),

C𝑉 = R(C𝑡𝑜𝑝𝑘

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
) .

(4)

TheC𝐻 andC𝑉 represent the aggregated horizontal 3D cost volume
and vertical 3D cost volume respectively. To implement cost aggre-
gation, we first employ a sequence of 3D convolutions with batch
normalization and ReLU activations to downsample the feature
maps while further extracting features. Then, we utilize a 3D trans-
posed convolution layer, which enlarges the spatial dimensions of
the feature maps, enriching them with spatial information.
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Table 1: Ablation study. GCV denotes global cost volume, LCV denotes local cost volume. The final method, GCV+LCV, is
denoted as HCV.

Method Sintel (train, clean) Sintel (train, final) KITTI (train) 448 × 1024 1080 × 1920

EPE s0-40 s40+ EPE s0-40 s40+ EPE F1-all Memory (G) Time (ms) Memory (G) Time (ms)

GCV 1.70 0.87 9.43 3.29 1.54 19.60 7.46 25.56 0.32 60 1.38 230
LCV 1.76 0.77 10.90 3.41 1.48 21.30 6.51 20.07 0.32 65 1.39 290
GCV+LCV (Ours) 1.51 0.74 8.67 2.84 1.23 17.79 5.33 16.80 0.38 85 1.56 340

Table 2: Ablation study. The first column represents the
strategies used when constructing the 3D global cost vol-
ume, corresponding to retaining only the average value, the
maximum value, and the top k values of each row/column
correlation (in our experiments, k is set to 8). The strategy
used in HCV is the Top-k strategy.

Strategy Sintel (train) KITTI (train)

Clean Final EPE F1-all

Mean 1.55 2.88 5.63 18.26
Max 1.68 2.92 6.08 18.94
Top-k (k=8) 1.51 2.84 5.33 16.80

By developing these two 3D global cost volumes via Top-k strat-
egy, not only can we capture the vast majority of valuable global
match information, but we also substantially decrease the memory
usage compared to the 4D global cost volume method employed
by RAFT. Furthermore, we leverage the C𝐻 and C𝑉 for an initial
optical flow estimation f𝑖𝑛𝑖𝑡 :

f𝑖𝑛𝑖𝑡_ℎ =

𝐷−1∑︁
𝑑=−𝐷

𝑑 × 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (C𝐻 (𝑑)),

f𝑖𝑛𝑖𝑡_𝑣 =
𝐷−1∑︁
𝑑=−𝐷

𝑑 × 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (C𝑉 (𝑑)),

f𝑖𝑛𝑖𝑡 = Concat{f𝑖𝑛𝑖𝑡_ℎ, f𝑖𝑛𝑖𝑡_𝑣}.

(5)

These initial flow estimation f𝑖𝑛𝑖𝑡 provides a relatively accurate
starting point for the subsequent flow regression process.
4D local cost volume construction. Our 3D global cost volume
introduced before is constructed from 1D horizontal and vertical di-
rections. This method, while beneficial for computational efficiency
and memory conservation, may result in the loss of certain match-
ing details. Consequently, this approximation can introduce minor
inaccuracies in localized regions, potentially affecting the overall
precision of the optical flow predictions. To address this limitation,
we propose the construction of a local 4D cost volume. Unlike the
3D global cost volume which is constructed at 1/16 resolution, the
4D local cost volume is constructed at 1/8 resolution.

Initially, the 1/8 resolution source featuremap F1 (F1 ∈ R𝐶×2𝐻×2𝑊 )
and target feature map F2 (F2 ∈ R𝐶×2𝐻×2𝑊 ) are aligned and com-
pared within a small local range (𝑙𝑟 ) to compute a correlation score.
This process begins by padding the second feature map to ensure
that comparisons can be made across all valid positions, followed by
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Figure 4: Qualitative comparisons with accuracy-oriented
methods on the KITTI test set[29]. Our novel aggregation
module aggregates contextual information to reduce mis-
matches, thus our method outperforms RAFT and GMA in
real-world complex texture-less areas.
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Figure 5: Qualitative comparisons with memory-efficiency
method Flow1D on the KITTI test set[29]. Flow1D fails to ac-
curately predict motion near object edges, while our method
can precisely estimate local details.

an unfolding operation that prepares the feature map for efficient
local comparisons. The unfolding radius is 𝑙𝑟 . The unfolded target
feature map is denoted as F𝑢2 ∈ R𝐶×2𝐻×2𝑊 ×(2𝑙𝑟+1)2 . Then, the 4D
local cost volume C𝐿 ∈ R2𝐻×2𝑊 ×(2𝑙𝑟+1)2 is constructed by,

C𝐿 (ℎ,𝑤) =
F1 (ℎ,𝑤) · F𝑢2 (ℎ,𝑤)

√
𝐶

. (6)

This 4D local cost volume offers a detailed and rich representa-
tion of similarity scores across local regions between two feature
maps. By integrating this 4D local cost volume, HCV is able to
capture more local matching information and enable more precise
matching of similar areas between images, thereby reducing the
likelihood of mismatches.
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3.2 HCVFlow Architecture
Following RAFT, we first utilize a feature extraction network to
derive feature maps F1 and F2 from the original reference and
target images, achieving an 8× downsampling. To further reduce
the memory footprint for the 4D global cost volume construction,
an additional downsampling stage by a factor of 2× is applied to
obtain F

′
1 and F

′
2. Additionally, we incorporate a context network

to extract contextual information, which is instrumental for the
flow regression. Subsequently, as described in Sec. 3.1, we construct
two separate 3D global cost volumes and one 4D local cost volume.
By concatenating these volumes, we obtain the core component of
HCVFlow, the Hybrid Cost Volume (HCV).

In the flow regression stage, we index correlation features from
3D global cost volumes, C𝐻 and C𝑉 , and 4D local cost volume C𝐿 .
The indexed hybrid correlation features, together with flow fea-
tures and context features, are all inputted into the flow regression
module. Here, we employ a Convolutional Gated Recurrent Unit
(ConvGRU[37]) to iteratively update the flow predictions, which
leads to the output of the refined optical flow results.

3.3 Loss Function
We first compute the L1 loss on the initial optical flow estimation
obtained from the aggregation module, defining it as follows:

L𝑖𝑛𝑖𝑡 = | |f𝑖𝑛𝑖𝑡 − f𝑔𝑡 | |1, (7)

Following RAFT[37], we calculate the L1 loss between all predicted
optical flow sequences and the ground truth. Similar to RAFT, we
exponentially increase the weights, with 𝛾 set to 0.8 in our experi-
ments. The loss for the predicted flow is calculated as follows:

L𝑖𝑡𝑒𝑟 =

𝑁∑︁
𝑖=1

𝛾𝑁−𝑖 | |f𝑖 − f𝑔𝑡 | |1, (8)

Finally, we add these two parts of the loss to obtain the total loss
function:

L𝑡𝑜𝑡𝑎𝑙 = L𝑖𝑛𝑖𝑡 + L𝑖𝑡𝑒𝑟 . (9)

4 Experiments
4.1 Experimental Setup
Datasets and evaluation setup. We conduct experiments on the
KITTI[29], Sintel[2], and high-resolution DAVIS[3, 30] datasets to
evaluate the effectiveness of our method. We first train our model
on the FlyingChairs[9] and FlyingThings3D[27] datasets. Upon
completing the training, we conduct extensive experiments on
both the KITTI and Sintel datasets to verify the performance and
generalization ability of our method. Subsequently, we fine-tune
our trained model on a mixed dataset comprising HD1K[22], KITTI,
Sintel, and FlyingThings3D and submit it to the KITTI and Sintel
websites for benchmark testing. We employ the End-Point Error
(EPE) metric to evaluate the model’s prediction accuracy on the
Sintel dataset and use both EPE and F1-all metrics to evaluate the
accuracy on the KITTI dataset. F1-all denotes percentage of outliers
for all pixels. Finally, we validate the performance of our method
on high-resolution images (1080P and 4K resolutions) using the
DAVIS[3, 30] dataset.

Implementation details. We implement our HCVFlow using the
PyTorch framework, with Adam[23] serving as the optimizer. Our
feature network implementation is followed by RAFT[37], but we
have added an additional downsampling layer, resulting in a fea-
ture map that is downsampled by a factor of 16. Similar to other
optical flow methods[32, 37, 48], we trained our model for 100K
iterations on the FlyingChairs dataset with a batch size of 12. Then,
we trained our model for another 100K iterations on the FlyingTh-
ings3D dataset with a batch size of 6. We finally fine-tuned our
model on amixed dataset comprising FlyingThings3D, Sintel, KITTI,
and HD1K. For the Sintel evaluation, the fine-tuning was carried out
over 100K iterations, and for the KITTI evaluation, it was conducted
over 50K iterations. The batch size was set to 6 for fine-tuning.
During training, we employed 12 GRU-based iterations. For the
evaluation phase, we used 32 GRU-based iterations for Sintel and
24 GRU-based iterations for KITTI, respectively. When building
the 3D global cost volume, we utilize a Top-k approach with the k
parameter set to 8.

4.2 Ablation Study
We carry out ablation studies to confirm the effectiveness and ef-
ficiency of HCV’s key components. For these studies, models are
trained on the FlyingChairs and FlyingThings3D datasets and sub-
sequently evaluated on the Sintel and KITTI training sets. Across
all experiments, memory consumption and inference time are mea-
sured using 12 GRU-based iterations on our RTX 3090.

We initially verify the effectiveness of the two primary compo-
nents of HCV: the 3D global cost volume and the 4D local cost
volume. As shown in Table 1, the network constructed solely with
the global cost volume (GCV) performs well in handling large
motions(s40+), yet shows weak performance for small motions
(s0-40). Conversely, the network utilizing only the local cost volume
(LCV) demonstrates good performance on short-distance move-
ments but struggles with long-distance movements. Our proposed
Hybrid Cost Volume (HCV), which concates both GCV and LCV,
manages to integrate the advantages of both cost volumes, achiev-
ing a synergistic effect where the whole is greater than the sum
of its parts. Whether dealing with large motions or small motions,
our HCV consistently delivers optimal performance.

Subsequently, we conduct experiments to validate the effective-
ness of the Top-k strategy used in constructing the 3D global cost
volume. In the construction process, we experiment with three
different strategies for retaining the correlation values: the maxi-
mum correlation value, the average correlation value, and the Top-k
correlation values (with 𝑘 = 8 in our experiments), while keeping
all other parameters constant. As shown in Table 2, models con-
structed using the Top-k strategy outperforms those built with
either the maximum or average values across various accuracy
metrics on both the Sintel and KITTI datasets. Experimental results
demonstrate that our Top-k strategy, which selectively preserves
matches with higher correlation, yields more precise estimations
than straightforward aggregation approaches like averaging or at-
tention mechanisms, the latter of which tend to incorporate noise.
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Table 3: Comparison with existing representative cost volumes. Memory and are measured for 448 × 1024 and 1080 × 1920
resolutions on RTX 3090 GPU, and the GRU-based iteration numbers are 12 for RAFT, Flow1D and our HCVFlow. Bold: Best,
Underscore: Second best.

Method Sintel (train) KITTI (train) Param
(M)

Memory (G)

Clean Final EPE F1-all 448 × 1024 1080 × 1920

RAFT[37] 1.43 2.71 5.04 17.40 5.26 0.48 8.33
FlowNet2[18] 2.02 3.14 10.06 30.37 162.52 1.31 3.61
PWC-Net[34] 2.55 3.93 10.35 33.67 9.37 0.86 1.57
Flow1D[48] 1.98 3.27 6.69 22.95 5.73 0.34 1.42
HCVFlow (Ours) 1.51 2.86 5.33 16.80 6.06 0.38 1.56

Table 4: Comparisons withmemory-efficient methods. Ourmethod demonstrates either the best or the second-best performance
across various datasets in terms of accuracy, memory consumption, and inference time. Bold: Best, Underscore: Second best.

Method KITTI
test

Sintel (test) 448 × 1024 1080 × 1920

Clean Final Memory (G) Time(ms) Memory (G) Time(ms)

SCV[21] 6.17 1.72 3.60 0.59 280 2.66 900
DIP[56] 4.21 1.67 3.22 0.67 180 2.90 620
Flow1D[48] 6.27 2.24 3.81 0.34 52 1.42 200
HCVFlow (Ours) 5.54 1.69 2.81 0.38 85 1.56 340

Table 5: Comparisons with accuracy-oriented methods. Our method achieves accuracy levels close to those of accuracy-oriented
approaches while significantly reducing memory consumption. At a resolution of 1920x1080, our memory usage is 5 times
lower than RAFT’s and 7 times lower than SepaFlow’s.

Method KITTI
test

Sintel (test) 448 × 1024 1080 × 1920

Clean Final Memory (G) Time(ms) Memory (G) Time(ms)

GMFlow[49] 9.32 1.74 2.90 1.31 115 8.30 1242
SKFlow[36] 4.84 1.28 2.23 0.66 138 11.73 634
FlowFormer[15] 4.87 1.18 2.36 2.74 250 OOM -
RAFT[37] 5.10 1.61 2.86 0.48 64 8.33 300
GMA[20] 5.15 1.39 2.47 0.65 75 11.73 387
SepaFlow[54] 4.64 1.50 2.67 0.65 570 12.13 3948
HCVFlow (Ours) 5.54 1.69 2.81 0.38 85 1.56 340

4.3 Comparison with Existing Methods
Comparison with existing representative cost volumes. The
core of our approach lies in the construction of a hybrid cost volume.
So we conduct extensive experimental comparisons with other
existing representative cost volume construction methods. We test
the accuracy and memory consumption of RAFT[37], FlowNet2[18],
PWC-Net[34], Flow1D[48], and our HCVFlow on the KITTI and
Sintel datasets on RTX 3090. Our comparison involves models that
employ various methods for constructing cost volumes. Specifically,
RAFT constructs a 4D global cost volume, FlowNet2 generates a
single-scale cost volume, PWC-Net develops a coarse-to-fine cost
volume pyramid, and Flow1D uses an attention mechanism to build
two 3D global cost volumes.

As illustrated in Table 3, our HCVFlow achieves suboptimal End-
Point Error (EPE) on both the Sintel and KITTI datasets, slightly

behind RAFT. However, it surpasses RAFT on the KITTI dataset in
terms of the F1-all metric, achieving the best performance. Our
method outperforms Flow1D by 26.8% and PWC-Net by 50.1%
on the KITTI dataset in terms of the F1-all metric. Moreover, our
method consumes significantly lessmemory compared to approaches
like RAFT. For images at 1080P resolution, our memory usage is
only one-fifth of RAFT’s. Compared to Flow1D, which is also known
for its memory efficiency, our method consumes only slightly more
memory but significantly surpasses Flow1D in terms of accuracy.
Comparison with memory-efficient methods. We further com-
pare our method with other memory-efficient optical flow methods.
As shown in Table 4, our HCVFlow exhibits superior accuracy com-
pared to Flow1D[48] and SCV[21]. While we are slightly behind
DIP[56] on some accuracy metrics, our model significantly sur-
passes DIP in terms of memory usage and inference time. When
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Image Flow1D Ours

Figure 6: Comparisons with Flow1D [48] on high-resolution (2160 × 3840) images from DAVIS dataset.Our approach accurately
addresses occluded regions and complex lighting conditions.

processing 1080P images, our memory consumption is half that of
DIP, and our inference time is only half as long.
Comparisons with accuracy-oriented methods.We also com-
pare HCVFlow with several accuracy-oriented methods. As shown
in Table 5, our accuracy on the KITTI and Sintel test datasets is
close to these methods, with our EPE on the Sintel final dataset
even surpassing some approaches like RAFT[49] and GMFlow[49].
Moreover, our method exhibits a clear advantage in terms of mem-
ory consumption and inference speed. During the inference pro-
cess for 1080P images, our method’s memory consumption is only
one-seventh of SKFlow[36]’s and one-eighth of SepaFlow[54]’s.
FlowFormer[15] consumes seven times more memory than our
method for images of 448*1024 resolution and even fails to process
images of 1080*1920 resolution due to OOM (given our RTX 3090’s
maximum memory capacity is 24G).

4.4 Benchmark Results
In Table 6, we showcase the benchmark results of our method on
the KITTI and Sintel test datasets, along with comparisons to other
methods. Our accuracy surpasses most methods, including PWC-
Net+[35], SCV[21], Flow1D[48], and MaskFlowNet[55], and is only
slightly lower than methods designed with a focus on accuracy,
such as SKFlow[36] and FlowFormer[15]. Compared to Flow1D[48],
a notable memory-efficient method, our performance on the Sintel
(Final) test set improved by 26%, and we led by 12% on the KITTI
test set. Figure 1 and Figure 5 display some predictive results of
our method and Flow1D on the KITTI and Sintel datasets. It is evi-
dent that our approach preserves more fine structure and performs
better in large textureless regions. Figure 4 demonstrates that our
method performs better in handling textureless regions even when
compared to some accuracy-focused approaches.

We also conducted experiments on high-resolution images from
the DAVIS dataset at both 1080P and 4K resolutions. As shown in
Figure 2 and Figure 6, our HCVFlow exhibits superior performance
in handling fine details, achieving accuracy noticeably better than
Flow1D while consuming a similar amount of memory. Further-
more, we only need 6GB of memory to process 4K images, whereas
RAFT fails to handle them on 48G A6000 GPU due to OOM.

5 Conclusion
RAFT and its successors achieve high accuracy in optical flow es-
timation using 4D global cost volumes. However, their memory
consumption increases quadratically with image resolution, lim-
iting their applicability to high-resolution images. In this paper,

Table 6: Benchmark performance on Sintel and KITTI
datasets.

Method Sintel (test) KITTI
testClean Final

FlowNet2[18] 4.16 5.74 11.48
LiteFlowNet2[16] 3.48 4.69 7.74
PWC-Net+[35] 3.45 4.60 7.72
HD3[53] 4.79 4.67 6.55
IRR-PWC[17] 3.84 4.58 7.65
VCN[52] 2.81 4.40 6.30
DICL[38] 2.12 3.44 6.31
MaskFlowNet[55] 2.52 4.17 6.10
RAFT[37] 1.61 2.86 5.10
GMA[20] 1.39 2.47 5.15
SepaFlow[54] 1.50 2.67 4.64
GMFlow[49] 1.74 2.90 9.32
GMFlow+[50] 1.03 2.37 4.49
SKFlow[36] 1.28 2.23 4.84
FlowFormer[15] 1.18 2.36 4.87
DEQ-RAFT[1] 1.82 3.23 4.98
EMD-L[8] 1.32 2.51 4.51
SCV[21] 1.72 3.60 6.17
Flow1D[48] 2.24 3.81 6.27
HCVFlow (Ours) 1.69 2.81 5.54

we propose a novel approach for constructing a hybrid cost vol-
ume (HCV) that achieves significantly lower memory consumption
while maintaining high prediction accuracy. By decomposing the
4D cost volume into horizontal and vertical 3D cost volumes us-
ing the Top-k strategy and processing them with an aggregation
module, we effectively reduce memory overhead while retaining
the majority of matching information. Additionally, we construct
a local 4D cost volume to supplement local information. By com-
bining these cost volumes, our HCV not only drastically reduces
memory usage but also achieves high prediction accuracy across
various motion scenarios. We hope our research will advance the
study and application of optical flow algorithms in high-resolution
images and edge devices.
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