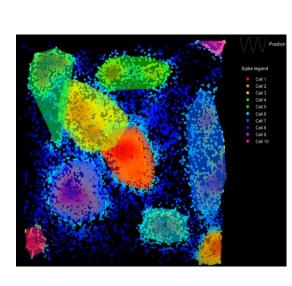


SCAN ME

Covering Relations in the Poset of Combinatorial Neural Codes

MOTIVATION



Place fields of 10 recorded place

approximately convex.

[1] are

- Place cells fire in specific regions called place fields.
- Place fields are allocentric and believed to contribute to the **neural maps** of the environment.
- Place fields away from the walls are approximately open **convex** (e.g., circular or elliptical [2], [3]) for dorsal hippocampal place cells.

Collective cell co-firings can tell us about the convexity of their place fields [5].

PROBLEM

We How can we determine if a neural code admits an arrangement of open convex place fields?

 \sless Complexity^[7]: NP-hard and $\exists \mathbb{R}$ -hard.

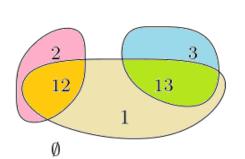
PRELIMINARIES

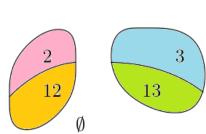
- A (combinatorial) neural code is a collection of some subsets of $[n] = \{1, ..., n\}$ and \emptyset .
- Elements are **codewords**, written as strings (e.g., 12 instead of {1,2}).
- **The code** of an open cover $\mathcal{U} = \{U_1, ..., U_n\}$ is

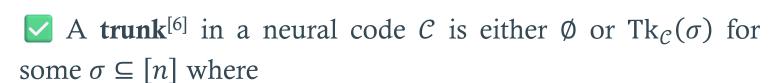
$$C(\mathcal{U}) = \left\{ \sigma \subseteq [n] : \bigcap_{i \in \sigma} U_i \setminus \bigcup_{j \in [n] \setminus \sigma} U_j \neq \emptyset \right\}$$

The code $C_1 = \{\emptyset, 1, 2, 3, 12, 13\}$ is convex because it is the code C(U) of the below open convex cover U.

The code $C_2 = \{\emptyset, 2, 3, 12, 13\}$ cannot admit any arrangement of open convex cover.



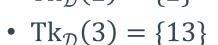


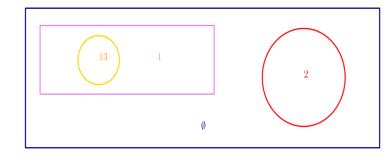


$$Tk_{\mathcal{C}}(\sigma) = \{ \tau \in \mathcal{C} : \sigma \subseteq \tau \}$$

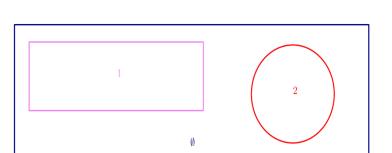
E.g.: $\mathcal{D} = \{\emptyset, 1, 2, 13\}$

- $\operatorname{Tk}_{\mathcal{D}}(\emptyset) =$ $\{\emptyset, 1, 2, 13\} = \mathcal{D}$
- $\{\emptyset, 1, 2, 13\} = D$ $Tk_{\mathcal{D}}(1) = \{1, 13\}$
- $Tk_{\mathcal{D}}(2) = \{2\}$





Trunks of \emptyset (dark blue), 1 (pink), 2 (red), and 3 (orange) in \mathcal{D} .



E.g.: $C = \{\emptyset, 1, 2\}$ • $Tk_C(\emptyset) =$

 $\{\emptyset, 1, 2\} = \mathcal{C}$

• $Tk_{\mathcal{C}}(1) = \{1\}$

Trunks of Ø (dark blue), 1 (pink), and 2 (red) in \mathcal{C} . • $Tk_{\mathcal{C}}(2)=\{2\}$

ightharpoonup A **code morphism**^[7] is a function $f: \mathcal{D} \to \mathcal{C}$ of neural codes such that preimage of every proper trunk $T \subseteq \mathcal{C}$ is a proper trunk in \mathcal{D} .

E.g.: $\mathcal{D} = \{\emptyset, 1, 2, 13\}$ and $\mathcal{C} = \{\emptyset, 1, 2\}$

 $f: \{\emptyset, 1, 2, 13\} \to \{\emptyset, 1, 2\}$

 $\emptyset \mapsto \emptyset$; 1,13 \mapsto 1; 2 \mapsto 2

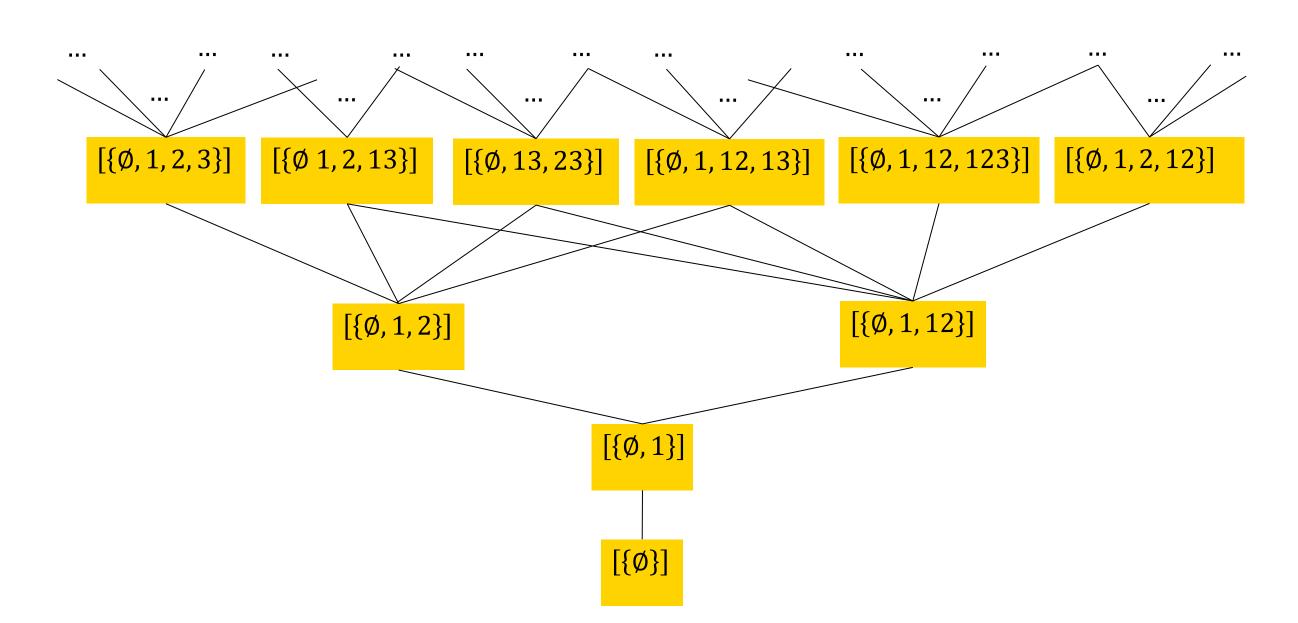
is a code surjective morphism since f is onto and $f^{-1}(\operatorname{Tk}_{\mathcal{C}}(\emptyset)) = f^{-1}(\mathcal{C}) = \mathcal{D} = \operatorname{Tk}_{\mathcal{D}}(\emptyset)$ $f^{-1}(\operatorname{Tk}_{\mathcal{C}}(1)) = \{1,13\} = \operatorname{Tk}_{\mathcal{D}}(1)$

 $f^{-1}(\operatorname{Tk}_{\mathcal{C}}(2)) = \{2\} = \operatorname{Tk}_{\mathcal{D}}(2)$

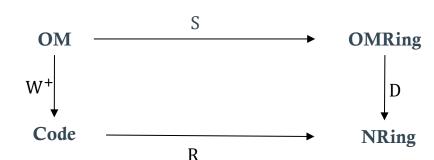
Communatorial recural Codes

THE POSET P_{Code}

Code surjective morphisms induce a partial order named "is a minor of" on the set of isomorphism classes of neural codes, resulting in a poset called $\mathbf{P}_{\mathbf{Code}}^{[7]}$.

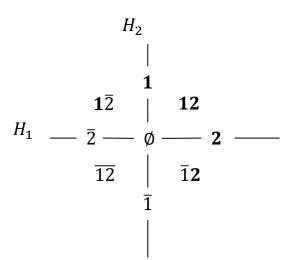


The category of acyclic oriented matroids **OM**, that of oriented matroid rings **OMRing**, that of neural codes **Code**, and that of neural rings **NRing** commute in the following diagram^[8]:

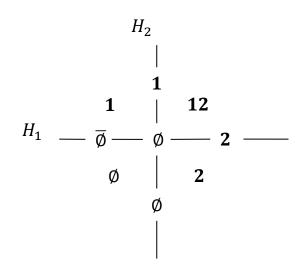


CONJECTURE

Every open convex neural code is the image of some representable oriented matroid under some code surjective morphism^[8].



The covectors of an oriented matroid arising from an arrangement of H_1 and H_2 .



The convex code $C = \{\emptyset, 1, 2, 12\}$ given by the positive open half-spaces of H_1 and H_2 .

OUR CONTRIBUTIONS

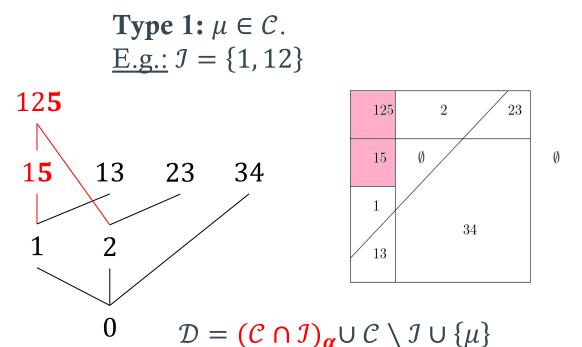
№ ISOLATED SUBSETS

Given an \cap -complete neural code \mathcal{C} . An **isolated subset** \mathcal{I} of \mathcal{C} is an \cap -complete subset that satisfies the condition that $\sigma \not\supseteq \tau, \forall \sigma \in \mathcal{C} \setminus \mathcal{I}, \forall \tau \in \mathcal{I} \setminus \{\mu\}$ where μ is the minimal codeword in \mathcal{I} .

POSTERING CODES

For every isolated subset \mathcal{I} of the \cap -completion $\hat{\mathcal{C}}$ of \mathcal{C} , depending on the conditions on \mathcal{I} , one can construct a neural code \mathcal{D} covering \mathcal{C} in **Pcode** by one of the following ways (with examples).

Type 2: $\mu \in \mathcal{C}$ and $\mathrm{Tk}_{\mathcal{C}}(\mu) \setminus \mathcal{I} \neq \emptyset$.



Type 3: $\mu \in \mathcal{C}$ and $\mu = \bigcap_{\sigma \in \mathcal{C} \cap \mathcal{I} \setminus \{\mu\}} \sigma$.

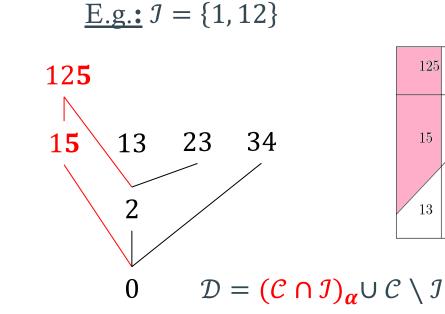
 $\mathcal{D} = (\mathcal{C} \cap \mathcal{I} \setminus \{\mu\})_{\alpha} \cup \mathcal{C} \setminus \mathcal{I} \cup \{\mu\}$

34

E.g.: $\mathcal{I} = \{1, 12, 13\}$

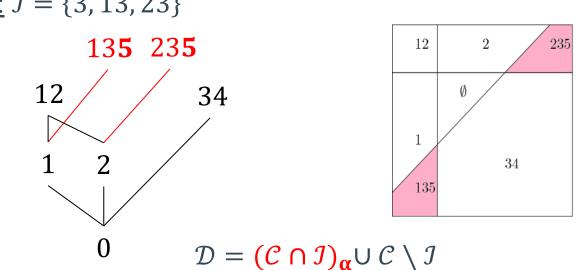
23 34

12**5** 13**5**



 $\begin{array}{c|c}
125 & 2 & 23 \\
\hline
 & \emptyset & 34 \\
\hline
 & 13 & 34
\end{array}$

Type 4: $\mu \notin \mathcal{C}$, $\mu = \bigcap_{\sigma \in \mathcal{C} \cap \mathcal{I} \setminus \{\mu\}} \sigma$, and $\text{Tk}_{\mathcal{C}}(\mu) \setminus \mathcal{I} \neq \emptyset$. <u>E.g.:</u> $\mathcal{I} = \{3, 13, 23\}$



*Note: $(S)_{\alpha}$ denotes the operation of adding a new neuron α to all codewords in S.