Supplementary Material

In this supplementary material, we describe the procedure for our analysis of the TotalSegmentator
annotations of the NLST dataset. The following are our main contributions:

1. Dashboard: for exploring features extracted from annotations, and analyzing the effect
of filters to detect failures in the segmentations: https://huggingface.co/spaces/
ImagingDataCommons/CloudSegmentatorResults

2. Google Colaboratory notebook: for performing exploratory analysis of the con-
sistency of segmentations and a comparison to measurements from the liter-
ature: https://github.com/ImagingDataCommons/CloudSegmentatorResults/
blob/main/part2_exploratoryAnalysis.ipynb

3. Google Colaboratory notebook: for generating the files needed to power the dash-
board (item 1) and the analysis (item 2): https://github. com/ImagingDataCommons/
CloudSegmentatorResults/blob/main/partl_derivedDataGenerator.ipynb

We begin by describing the dashboard, and what sorts of analysis can be performed. We then describe
the analysis we can perform in the notebook and include some additional statistics. Lastly, we
describe the formation of tables that are used to power the dashboard and the previous analysis.

We made available the artifacts for this analysis under the MIT license in GitHub and Hugging Face.

A Dashboard

In order to detect failures in the segmentations, and analyze outliers, we developed an
interactive Streamlit dashboard (https://github.com/streamlit/streamlit), hosted on
HuggingFace spaces free tier (https://huggingface.co/spaces/ImagingDataCommons/
CloudSegmentatorResults). We include two main pages in the dashboard:

1. Summary page: This page shows the results of applying the four heuristics to each
segmentation. These heuristics are the completeness of the segmentation, the laterality
check, the number of connected components=1 check, and that the volume > SmL. The user
can quickly investigate which segmentations are outliers using this page. We display the
percentage of series that passed each check.

2. Plots page: In this page, we display two types of plots that are dynamically created based on
the user input through drop-down menus and sliders. The user can quickly filter for specific
regions of interest, and select which heuristics passed/failed. The first plot displayed is a
violin plot, where we plot the distributions of the standard deviations of the features before
and after applying the filters. These standard deviations are computed for each patient,
as each patient is scanned multiple times, and can provide us with information about the
consistency of the particular radiomics feature we’re interested in. The second set of plots
shown are upset plots, which demonstrate the number of segments that passed or failed the
combinations of heuristics.

B Exploration of results using derived tables

The Colab notebook (https://github.com/ImagingDataCommons/
CloudSegmentatorResults/blob/main/part2_exploratoryAnalysis.ipynb) contains

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://huggingface.co/spaces/ImagingDataCommons/CloudSegmentatorResults
https://huggingface.co/spaces/ImagingDataCommons/CloudSegmentatorResults
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part2_exploratoryAnalysis.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part2_exploratoryAnalysis.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part1_derivedDataGenerator.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part1_derivedDataGenerator.ipynb
https://github.com/streamlit/streamlit
https://huggingface.co/spaces/ImagingDataCommons/CloudSegmentatorResults
https://huggingface.co/spaces/ImagingDataCommons/CloudSegmentatorResults
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part2_exploratoryAnalysis.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part2_exploratoryAnalysis.ipynb

the use cases that we studied in the manuscript. We include the generation of figures that
we presented in the paper, starting with the parquet files generated from the first notebook
(https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/
partl_derivedDataGenerator.ipynb). If you want to skip the creation of the parquet files, you
can jump straight to this notebook.

The goal of the manuscript was to explore and understand the effect of the heuristics on the ability to
filter out problematic segmentations and identify failures. We focused on three main aspects, where
our Colab notebook provides the code needed to reproduce figures in our manuscript for the first and
third items:

1. Consistency of left vs right structures such as the ribs
2. Within-patient volumes of structures

3. Vertebral volumes compared to a population in the literature

We now provide further details on the first item from above. For the analysis of left vs right
structures, our goal was to study the consistency of the left vs right rib volumes after applying each
successive heuristic. We computed the normalized difference between the left and right ribs using
(left-right)/(left+right). We then applied each heuristic successively, where one filter = segmentation
completeness, two filters = previous filter + connected components = 1, three filters = previous filters
+ volume > 5SmL, and four filters = previous filters + laterality is correct. We performed five different
linear mixed-effects modeling tests, to see the effect of each heuristic. We use the PatientID as a
random-effect to account for the fact that each patient had multiple scans.

The table below provides the p values and if each test is significant for each pair of ribs ("is sig"). We
can observe that by applying the segmentation completeness check (original data vs one filter), there
was a significant difference in the normalized volume difference between almost all of the left vs
right ribs. We observe the same when adding the additional heuristic of the connected components =
1 (one filter vs two filters). However, checking for the correctness of the laterality and the volume
threshold of 5 mL proved to not have significant effects for most of the ribs. We observe that the 12th
rib often did not follow the same trend as the other ribs. There was severe under-segmentation in
many of the 12th ribs that were still above the threshold of 5 mL and were therefore not flagged by
the heuristics.

Rib Original data One filter Two filters Three filters Original data

Vs Vs Vs Vs Vs

one filter two filters three filters four filters four filters

p value | issig | p value | issig | p value | issig | p value | issig | p value | issig
First rib 0.16 no «0.05 yes «0.05 yes 1.0 no «0.05 yes
Second rib 0.04 yes «0.05 yes 0.78 no 1.0 no «0.05 yes
Third rib 0.07 no «0.05 yes 0.96 no 1.0 no «0.05 yes
Fourth rib «0.05 yes «0.05 yes 0.87 no 0.99 no «0.05 yes
Fifth rib «0.05 yes «0.05 yes 1.0 no 1.0 no «0.05 yes
Sixth rib «0.05 yes «0.05 yes 0.99 no 1.0 no «0.05 yes
Seventh rib «0.05 yes «0.05 yes 0.74 no 1.0 no «0.05 yes
Eighth rib «0.05 yes «0.05 yes 0.70 no 1.0 no «0.05 yes
Ninth rib «0.05 yes «0.05 yes 0.35 no 1.0 no «0.05 yes
Tenth rib «0.05 yes «0.05 yes 0.28 no 1.0 no «0.05 yes
Eleventh rib | «0.05 yes «0.05 yes «0.05 yes 1.0 no «0.05 yes
Twelfth rib 0.92 no 0.07 no «0.05 yes 1.0 no «0.05 yes

C Generation of base and derived tables

In this section, we describe the motivation for the generation of the base tables and then the derived
tables for evaluating the heuristics. The four heuristics we developed are in part based upon the
metadata extracted from the DICOM Segmentation objects, which are publicly available as part of
the Google Public Datasets program at https://console.cloud.google.com/marketplace/
product/bigquery-public-data/nci-idc-data. However, for the analysis of segmentations,
we require the DICOM attribute PerframeFunctionalGroupsSequence as it contains crucial

https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part1_derivedDataGenerator.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part1_derivedDataGenerator.ipynb
https://console.cloud.google.com/marketplace/product/bigquery-public-data/nci-idc-data
https://console.cloud.google.com/marketplace/product/bigquery-public-data/nci-idc-data

segmentation info such as the slices on which the segmentation is located, segment number, and
segment label. This attribute was missing in the majority of the DICOM Segmentation Objects
because of the limitations of Bigquery. Bigquery has a limitation of 1 MB per DICOM tag https:
//cloud.google.com/healthcare-api/docs/how-tos/dicom-bigquery-streaming,
Because we encoded all segmentations (up to 104) into a single DICOM Segmentation object,
the PerframeFunctionalGroupsSequence was often run over the 1 MB limit. To alleviate
this limitation, we extracted the attribute using pydicom and created a workflow on Terra.
Please see |https://dockstore.org/myworkflows/github.com/ImagingDataCommons/
CloudSegmentator/perFrameFunctionalGroupSequenceExtractionOnTerral We
unnested this otherwise nested attribute to create a flat table and then exported it
as a parquet file and made it available as one of the base tables on GitHub as
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/
download/0.0.1/nlst_totalseg_perframe.parquet

Secondly, while we encoded only shape and first-order radiomics features into the DICOM Struc-
ture Reports, we did not encode the general module https://pyradiomics.readthedocs.io/
en/latest/radiomics.html#module-radiomics.generalinfo pyradiomics features as to our
knowledge, the DICOM standard did not have the necessary means to encode Center of Mass. So
we saved them into a JSON file. When we realized, we could make use of the general features, we
extracted them into a Bigquery table first. Subsequently, we exported them as parquet files, and con-
solidated into a single parquet file. We make available this parquet file as the second and last base ta-
ble on GitHub as https://github.com/ImagingDataCommons/CloudSegmentatorResults/
releases/download/0.0.1/json_radiomics.parquet.parquet.

We used the notebookhttps://github.com/ImagingDataCommons/
CloudSegmentatorResults/blob/main/partl_derivedDataGenerator.ipynb) to gen-
erate the following derived tables:

¢ bodyPartAndLaterality: This is an intermediate table that contains information about the
body part segmented by TotalSegmentator, segment number, source CT series, and its
laterality.

» Segmentation Completeness: This table contains info about whether a segment had at least
one slice below and above the segmentation.

* Laterality: This table contains if laterality (left vs right) is correctly assigned by TotalSeg-
mentator.

* Qualitative Checks; This table contains the three heuristics: segmentation completeness,
laterality, and connected components. The fourth heuristic is added when merged with the
quantitative measurements below.

* [Flat Quantitative Measurements: This table contains the pivoted quantitative measurements
for all TotalSegmentator segmentations. Effectively each row represents a segment and all
28 radiomics features are present in their columns.

* qualitative_checks_and_quant_measurements; This is the result of combining all the heuris-
tics along with 28 radiomics features for each segment along with the general module
features VolumeNum which gives us the number of connected components. This file may
be the most useful and is the file that is powering the Hugging Face Dashboard and all our
analysis in the part 2 colab notebook.

For all the above tables, we included schema files as well in the same
release (https://github.com/ImagingDataCommons/CloudSegmentatorResults/
releases/tag/0.0.1)

C.1 Compute Environment

The part2_exploratoryAnalysis notebook was tested on a free colab instance (2 vCPUs, 13 GB
RAM) and takes about 2 hrs. For partl_derivedDataGenerator notebook, we initially tested it
on a 32vCPUs 256 GB RAM Jetstream?2 instance. However, we made several optimizations since
then to bring the RAM consumption low despite leading to a longer run times. We were able to run it
successfully even on 2vCPUs, 16 GB RAM free tier hugging face jupyterlab space. Run times get
better if one has access to better computing resources. Other runtimes, we tested include the 2vCPU

https://cloud.google.com/healthcare-api/docs/how-tos/dicom-bigquery-streaming
https://cloud.google.com/healthcare-api/docs/how-tos/dicom-bigquery-streaming
https://dockstore.org/myworkflows/github.com/ImagingDataCommons/CloudSegmentator/perFrameFunctionalGroupSequenceExtractionOnTerra
https://dockstore.org/myworkflows/github.com/ImagingDataCommons/CloudSegmentator/perFrameFunctionalGroupSequenceExtractionOnTerra
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/nlst_totalseg_perframe.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/nlst_totalseg_perframe.parquet
https://pyradiomics.readthedocs.io/en/latest/radiomics.html#module-radiomics.generalinfo
https://pyradiomics.readthedocs.io/en/latest/radiomics.html#module-radiomics.generalinfo
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/json_radiomics.parquet.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/json_radiomics.parquet.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part1_derivedDataGenerator.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/blob/main/part1_derivedDataGenerator.ipynb
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/bodyPartAndLaterality.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/segmentation_completeness_table.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/laterality_check_table.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/qual_checks_table.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/flat_quantitative_measurements.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/download/0.0.1/qual_checks_and_quantitative_measurements.parquet
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/tag/0.0.1
https://github.com/ImagingDataCommons/CloudSegmentatorResults/releases/tag/0.0.1

13 GB free colab instance and the 8vCPU, 51 GB Colab Pro High-RAM instance. The runtimes
vary anywhere from 4 hrs to 10 hrs. We note that no cloud credentials are necessary as we queried
the metadata that is made available for the public for free in AWS buckets. We used duckdb, an
in-memory database as it can handle highly complex data in a tiny footprint.

	Dashboard
	Exploration of results using derived tables
	Generation of base and derived tables
	Compute Environment

