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Figure 1: The overview of OmniStitch’s pyramid structure.

In this document, we provide the following supplementary context:
• Details of pyramid strategy in OmniStitch (Section A).
• Details of synthesis network architecture (Section B).
• Details of GV360 dataset (Section C).
• Qualitative results on GV360 dataset (Section D).

Regarding the network architecture, the precise channel count,
number of layers, activation function, and other pertinent details
of the OmniStitch network can be found in the code that will be
provided.

A DETAILS OF PYRAMID STRATEGY IN
OMNISTITCH

Recent developments in image stitching have predominantly em-
ployed a two-step warping approach. Initially, this involves globally
warping the entire image to achieve global similarity, followed by
locally warping the segmented image to enhance local similar-
ity [1, 4, 5, 8]. While this method performs well in scenarios with
small parallax, it tends to falter with wide parallax, as demonstrated
by the qualitative assessments from both the GV360 and real-world
datasets. This issue likely arises from using distinct objective func-
tions for global and local warping without any integrative connec-
tion between the two stages. Additionally, these methods do not
offer any refinement of the final output.

To overcome these limitations, we have adopted a pyramid
structure commonly used in optical flow-based synthesis mod-
els [2, 3, 7]. This coarse-to-fine approach not only refines flow
estimation and synthesis progressively using up-sampled outputs
but also allows for the uniform application of the same network
architecture across different pyramid levels, significantly reducing
parameter count [2, 3]. OmniStitch leverages these benefits, yet it

introduces two principal distinctions in its structure, as shown in
Figure 1.

Firstly, OmniStitch features a four-level pyramid designed to
enhance stitching performance progressively. The flow estimation
step is bypassed at the final pyramid level, corresponding to the
original resolution. Instead, the refined flow is created by quadru-
pling the scale of the up-sampled flow. This modification has been
experimentally proven to significantly boost the LPIPS metric sig-
nificantly, mainly because estimating flow between images with
significant parallax at full resolution can result in errors and blur-
ring artifacts.

Secondly, there is no provision for up-sampled flow or output
at the highest pyramid level. Here, the top-level image pair is pro-
cessed using a Learnable Forward Warping (LFW) network, the
same type employed in step 2, although the LFW network is not
trained during this phase. The warped image pair is overlaid and
replaces the up-sampled output. Any additional up-sampled results
are simply replaced with zeros of equivalent dimensions.

Figure 2: The detailed architecture of synthesis network of
the OmniStitch.
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B DETAILS OF SYNTHESIS NETWORK
ARCHITECTURE

In this section, we describe the details of the synthesis network
in Step 3: Synthesis Process (Section 3.3.3.). The precise structure
is illustrated in the Figure 2. The synthesis network, detailed in
Section 3.3.3 under Step 3: Synthesis Process, is pivotal in the image
stitching framework. It harnesses the outputs of the preceding
pyramid level (denoted as 𝑂𝑘 ) and integrates results from Steps 1
and 2 of the current level (denoted as 𝐼𝑘

𝐿
, 𝐼𝑘
𝑅
, 𝐹𝑘

𝐿
, 𝐹𝑘

𝑅
, 𝐼̂𝑘
𝐿
, and 𝐼̂𝑘

𝑅
).

This network uses an advanced encoder-decoder architecture
with lateral connections, similar to the U-net configuration. Each en-
coder stage processes inputs comprising a series of warped outputs
from the feature encoder at distinct stages (denoted as 𝐶𝑘

0 , 𝐶
𝑘
1 , and

𝐶𝑘
2 ). These inputs undergo warping via Learnable ForwardWarping

(LFW) and are concatenated with the output of the preceding CNN
layer, forming tailored inputs for each subsequent layer.

Notably, the contextual features 𝐶𝑘
0 and 𝐶𝑘

1 are derived by av-
erage splatting of 𝐶𝑘

0 and 𝐶𝑘
1 , while 𝐶

𝑘
2 is produced using softmax

splatting [6]. This decision was based on empirical observations
that showed minimal differences in the outcomes between these
splatting methods for𝐶𝑘

0 and𝐶𝑘
1 , leading to the selection of average

splatting to reduce parameterization.

Figure 3: The configuration of the GV360’s weather and time
settings.

C DETAILS OF GV360 DATASET
OmniStitch is a supervised model trained using the GV360 dataset
to ensure robust performance across various environments. This
dataset includes diverse settings for distance parallax, weather,
time, map, and spawn points. Training data was collected using two
maps and 18 spawn points 4, covering nine different weather and
time conditions 3, with distance parallaxes ranging from 0.01m to
1.4m 5. Each setting was carefully configured to ensure a uniform
distribution, providing a comprehensive range of scenarios.

Figure 4: The configuration of the GV360’s map and spawn
point settings.

During the testing phase, data was collected from three different
maps using 9 spawn points not previously used in the training. The
test data utilized four distance parallax : 0.01m, 0.5m, 0.8m, and 1.4m.
Notably,each collection session was conducted with the vehicle
being driven autonomously, ensuring that the test conditions closely
simulated real-world driving scenarios.

D QUALITATIVE RESULTS ON GV360
DATASET

This section provides a comprehensive overview of the qualitative
results from various image stitching models, as shown in Figure 6
and Figure 7. We have focused our detailed analysis on the more ad-
vanced models—PTGui, VSLA-like, and OmniStitch—where mean-
ingful comparisons are feasible. For clarity, the comparison setup
is organized by Distance parallax: the first and second columns
feature a distance of 1.4 meters, the third and fourth columns a
distance of 0.8 meters, and the fifth and sixth columns a distance
of 0.01 meters. To facilitate accurate comparisons, the output from
each model has been scaled to match the size of the ground truth.

Figure 5: The configuration of the GV360’s inter camera dis-
tance settings. Distance parallax – 1.4 m (1 row), 0.8 m (2 row),
0.01 m (3 row).
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Figure 6: Qualitative results with APAP, UDIS++, Samsung gear 360 on GV360 dataset. Distance parallax – 1.4 m (1,2 row), 0.8 m
(3,4 row), 0.01 m (5,6 row).

Figure 7: Qualitative results with PTGui, VSLA-like, OmniStitch on GV360 dataset. Distance parallax – 1.4 m (1,2 row), 0.8 m (3,4
row), 0.01 m (5,6 row).
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