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1 SEMIROBUSTNESS GUARANTEES

1.1 PROOF OF THEOREM 1

First, we show the leftward implication, that if the layers f (j), f (j−1), . . . , f (1) are semirobust, then
F (j) is semirobust. This is proved becasue F (j) is f (j)(x(j−1)) where x(j−1) = f (j−1) ◦ . . . ◦ f (1).
Therefore, if f (j) is semirobust, regardless of whether any of f (j−1), . . . , f (1) is semirobust, then
F (j) is also semirobust.
Next, we show the rightward implication, that if F (j) is semirobust, then f (j), f (j−1), . . . , f (1) are
semirobust. If F (j) is semirobust then

E(X,y)∼D

[
inf
δ∈S

y ·Gj ◦ F (j)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y ·Gj ◦ f (j)(X+ δ)

]
≥ γj (1)

This implies that f (j) is semirobust. Now let Gj−1 = Gj ◦ f (j), then

E(X,y)∼D

[
inf
δ∈S

y ·Gj ◦ F (j)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y ·Gj ◦ f (j) ◦ F (j−1)(X+ δ)

]
(2)

= E(X,y)∼D

[
inf
δ∈S

y ·Gj−1 ◦ F (j−1)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y ·Gj−1 ◦ f (j−1)(X+ δ)

]
≥ γj ,

(3)

This implies that f (j−1) is semirobust. By induction, it’s shown that the other layers f (j−2), . . . , f (1)

are also semirobust.

1.2 PROOF OF LEMMA 1

Let f (n−1) = g ∈ Ln−1 and f (n) = h ∈ Ln. As f (n−1) is semirobust,

E(X,y)∼D

[
inf
δ∈S

y ·Gn−1 ◦ g(X+ δ)

]
≥ γn−1 and

∑
y

π(y)I (gδ;hδ|y) ≥ ρ, (4)

and after simplification, we have

E(X,y)∼D

[
inf
δ∈S

y ·Gn−1 ◦ g(X+ δ)

]
=

∑
y

y · π(y)
∫

inf
δ∈S

D(x|y) ·Gn−1 ◦ g(x+ δ)dx (5)

with π(y) being the prior of y, and D(x|y) being the probability density function of x and y. Let
gδ = g(x + δ) ∈ Ln−1, with components g(i)δ = gi(x + δ) such that x = (x(1), . . . ,x(d)) ∈ Rd,
and g = (g1, . . . , gm) ∈ Ln−1. Note that the multivariate transformation gi is one to one; hence, the
transformation is invertible and can be solved for the equation x(i) + δ(i) = g−1

i (gδ).
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Thus, the last line in (5) equals∑
y

y · π(y)
∫

inf
δ∈S

D(g−1(gδ)− δ|y) ·Gn−1 ◦ gδ |J | dgδ

where |J | denotes the absolute value of the determinant of the Jacobian J . In addition, using the
probability density for a function of a random variable, we can write:

E(X,y)∼D

[
inf
δ∈S

y ·Gn−1 ◦ g(X+ δ)

]
=

∑
y

y · π(y)
∫

inf
δ∈S

p(gδ|y) ·Gn−1 ◦ gδ dgδ (6)

By simplifying mutual information I(gδ;hδ|y), using log(x) ≤ x+ 1, and recalling assumption B1:∑
y

π(y)

∫∫
inf
δ∈S

p(gδ, hδ|y)
[

p(gδ, hδ|y)
p(gδ|y)p(hδ|y)

]
dgδdhδ + 1 ≥ ρ (7)

To show that f (n) is γn-semirobust, we prove

γn ≤ E(X,y)∼D

[
inf
δ∈S

y · h(X+ δ)

]
.

Set γn ≤ γn−1 + ρ, hence we need to show that

γn−1 + ρ ≤
∑
y

y · π(y)
∫

inf
δ∈S

p(hδ|y) · hδdhδ (8)

Following (7) and semirobustness for f (n−1), the inequality (8) can be transformed into∑
y

π(y)

∫∫
inf
δ∈S

p(gδ, hδ|y)
(
y ·Gn−1 ◦ gδ +

p(gδ, hδ|y)
p(gδ|y)p(hδ|y)

− y · hδ + 1

)
dgδdhδ ≤ 0

and subsequently into∑
y
π(y)Ep(gδ,hδ|y)[infδ∈S y · (Gn−1 ◦ gδ − hδ)] ≤ −(1 + U), (9)

which holds true recalling the assumption B2. This concludes the proof of the lemma.

1.3 PROOF OF THEOREM 2

To prove Theorem 2, given that

E(X,y)∼D

[
inf
δ∈S

y ·Ga ◦ ha(X+ δ)

]
≥ γa and

∑
y

π(y)I (hδ,a;hδ,a+1|y) ≥ ρa+1, (10)

We need to show from the inequalities above that for γa+1 ≤ γa + ρa+1

E(X,y)∼D

[
inf
δ∈S

y ·Ga+1 ◦ ha+1(X+ δ)

]
≥ γa+1 (11)

Under assumptions A1 and A2 for j = a+ 1, we can simplify (10) and (11). We then need to show∑
y

π(y)Ep(gδ,hδ,a+1|y)[ inf
δ∈S

y · (Ga ◦ hδ,a −Ga+1 ◦ hδ,a+1)] ≤ −(1 + Ua+1) (12)

The above holds true recalling the assumption A2 and π(y) being non-negative. Hence, f (a+1) is
γa+1-semirobust. And because fa = F (a) is γa-semirobust, then according to Theorem 1, F (a+1) is
also γa+1-semirobust.

Similarly, since fa = F (a+1) is γa+1-semirobust, and by assumptions A1 and A2 for j = a + 2,
it is implied that f (a+2) is γa+2-semirobust. Recursively, it can be shown that all layers in fb, i.e.
f (a+1), . . . , f (n), are γj-semirobust for j = a+1, . . . , n respectively. Then, according to Theorem 1,

fb is γb-semirobust where γb ≤ γa +
b∑

j=a+1

ρj , proving Theorem 2.

2



Under review as a conference paper at ICLR 2023

1.4 PROOF OF LEMMA 2

E(X,y)∼D

[
inf
δ∈S

y.f (n)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y.

n−1∑
i=1

λT
i .f

(i)(X+ δ)

]
(13)

n−1∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
i f

(i)(X+ δ)

]
=

n−1∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
i .F

(i)(X+ δ)

]
. (14)

The last equality holds true because the noises are added to the input X and since in feedforward
network, each layer is a function of the previous layer therefore f (i)(X+ δ) = F (i)(X+ δ).

Next, by letting Gi = λT
i , then we have

E(X,y)∼D

[
inf
δ∈S

y.f (n)(X+ δ)

]
=

n−1∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.Gi ◦ F (i)(X+ δ)

]
≥

n−1∑
i=1

γi := γn.

(15)

The first inequality is true because of Theorem 1. This concludes that f (n) is γn-semirobust.

1.5 PROOF OF THEOREM 3

In Theorem 3, note that if fb = f (n−1) and fa = fn−1 = F (1,n−1), then it turns to Lemma 2. We
prove the theorem where fb = F (n−1,n) and fa = F (1,n−2), and the general case fa and fb can be
shown similarly by extension. Let Gb : Lb 7→ Y be a function that maps layer fb to the output y.
Proof of the case where fb = F (n−1,n) and fa = F (n−2):

E(X,y)∼D

[
inf
δ∈S

y.F (n−1,n)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y.f (n)(X+ δ)

]
(16)

Given that f (n) is a linear combination of all the other layers, with λT
in mapping f (i) to y,

= E(X,y)∼D

[
inf
δ∈S

y.

n−1∑
i=1

λT
in.f

(i)(X+ δ)

]
=

n−1∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.f

(i)(X+ δ)

]
(17)

=

n−2∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.f

(i)(X+ δ)

]
+ E(X,y)∼D

[
inf
δ∈S

y.λT
n−1(n).f

(n−1)(X+ δ)

]
(18)

Let Gi = λT
in, and let α be the second term in (18). Then, using Theorem 1,

=

n−2∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.Gi ◦ f (i)(X+ δ)

]
+ α ≥

n−2∑
i=1

γi + α = γa + α (19)

where γa =
n−2∑
i=1

γi. Now simplifying α, given that f (n−1) is a linear combination of the layers before

it, with λT
i(n−1) mapping f (i) to f (n−1):

E(X,y)∼D

[
inf
δ∈S

y.λT
n−1(n).f

(n−1)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y.λT
n−1(n).

n−2∑
i=1

λT
i(n−1).f

(i)(X+ δ)

]
(20)

=

n−2∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
n−1(n).λ

T
i(n−1).f

(i)(X+ δ)

]
. (21)
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Let G̃i = λT
n−1(n).λ

T
i(n−1). Then, using Theorem 1,

=

n−2∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.G̃i ◦ f (i)(X+ δ)

]
≥

n−2∑
i=1

γi = γa (22)

With both terms simplified, γa + α ≥ γa + γa = γb. Therefore, fb is semirobust. This proof can
be extended to any other combination of fa and fb. Let’s show the case where fb = F (a+1,n) and
fa = F (a):

E(X,y)∼D

[
inf
δ∈S

y.F (a+1,n)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y.f (n)(X+ δ)

]
(23)

Given that f (n) is a linear combination of all the other layers, with λT
in mapping f (i) to y,

= E(X,y)∼D

[
inf
δ∈S

y.

n−1∑
i=1

λT
in.f

(i)(X+ δ)

]
=

n−1∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.f

(i)(X+ δ)

]
(24)

=

a∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.f

(i)(X+ δ)

]
+

n−1∑
i=a+1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.f

(i)(X+ δ)

]
(25)

Let Gi = λT
in, and let

αi = E(X,y)∼D

[
inf
δ∈S

y.λT
in.f

(i)(X+ δ)

]
, i = a+ 1, . . . , n− 1. (26)

Then, by using Theorem 1 again we have,

=

a∑
i=1

E(X,y)∼D

[
inf
δ∈S

y.Gi ◦ f (i)(X+ δ)

]
+

n−1∑
i=a+1

αi ≥
a∑

i=1

γi +

n−1∑
i=a+1

αi = γa +

n−1∑
i=a+1

αi

(27)

where γa =
a∑

i=1

γi. Next we show that
∑n−1

i=a+1 αi ≥ γa

(
(n− 1− a)(n− a)

/
2
)
, and conclude the

proof by setting γb := γa + γa

(
(n− 1− a)(n− a)

/
2
)
. Now by the assumption that

f (i) =

i−1∑
ℓ=1

λT
ℓi.f

(ℓ), (28)

with λT
ℓi mapping f (ℓ) to f (i), then simplifying αi yields

αi = E(X,y)∼D

[
inf
δ∈S

y.λT
in.

i−1∑
ℓ=1

λT
ℓi.f

(ℓ)(X+ δ)

]
=

i−1∑
ℓ=1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.λ

T
ℓi.f

(ℓ)(X+ δ)

]
,

(29)
for i = a+ 1, . . . , n− 1. Therefore we have

n−1∑
i=a+1

αi =

n−1∑
i=a+1

i−1∑
ℓ=1

E(X,y)∼D

[
inf
δ∈S

y.λT
in.λ

T
ℓi.f

(ℓ)(X+ δ)

]

=

n−1∑
i=a+1

i−1∑
ℓ=1

E(X,y)∼D

[
inf
δ∈S

y.Gℓn ◦ f (ℓ)(X+ δ)

]
, (30)

where Gℓn := λT
in.λ

T
ℓi. Under the assumption (28), we know that for i = a+ 1, . . . , n− 1,

a∑
ℓ=1

E(X,y)∼D

[
inf
δ∈S

y.Gℓn ◦ f (ℓ)(X+ δ)

]
≥ γa, (31)
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Therefore,
n−1∑

i=a+1

αi ≥ (n− 1− a)γa + E(X,y)∼D

[
inf
δ∈S

y.G(a+1)n ◦ f (a+1)(X+ δ)

]

+

a+2∑
ℓ=a+1

E(X,y)∼D

[
inf
δ∈S

y.Gℓn ◦ f (ℓ)(X+ δ)

]
+. . .+

n−2∑
ℓ=a+1

E(X,y)∼D

[
inf
δ∈S

y.Gℓn ◦ f (ℓ)(X+ δ)

]
(32)

Without loss of generality, assume that Gℓn = Gℓ for all ℓ = a+1, . . . , n−2. This simplifies (32) as

n−1∑
i=a+1

αi ≥ (n− 1− a)γa + E(X,y)∼D

[
inf
δ∈S

y.G(a+1) ◦ f (a+1)(X+ δ)

]

+

a+2∑
ℓ=a+1

E(X,y)∼D

[
inf
δ∈S

y.Gℓ ◦ f (ℓ)(X+ δ)

]
+. . .+

n−2∑
ℓ=a+1

E(X,y)∼D

[
inf
δ∈S

y.Gℓ ◦ f (ℓ)(X+ δ)

]
.

(33)

Below we show that if fa = F (1,a) is semi-robust and f (a+1) is a linear combination of layers
f (1), . . . , f (a), with λℓ(a+1) mapping f (ℓ) to f (a+1), then fa+1 = F (1,a+1) is a semi-robust feature:

E(X,y)∼D

[
inf
δ∈S

y.G(a+1) ◦ f (a+1)(X+ δ)

]
= E(X,y)∼D

[
inf
δ∈S

y.G(a+1) ◦
a∑

ℓ=1

λT
ℓ(a+1)f

(ℓ)(X+ δ)

]

=

a∑
ℓ=1

E(X,y)∼D

[
inf
δ∈S

y.G(a+1) ◦ λT
ℓ(a+1)f

(ℓ)(X+ δ)

]
=

a∑
ℓ=1

E(X,y)∼D

[
inf
δ∈S

y.Gℓ ◦ f (ℓ)(X+ δ)

]
,

(34)

where Gℓ = G(a+1) ◦ λT
ℓ(a+1). Since fa is semi-robust, all layers f (1), . . . , f (a) are semi-robust.

Hence, the right-hand side in (34) is greater than or equal to
∑a

ℓ=1 γℓ = γa.

Consequently, with the same methodology, this can be extended to the following: if fa = F (1,a) is
semi-robust, and f (a+ℓ) is a linear combination of layers f (1), . . . f (a+ℓ−1), then fa+ℓ = F (1,a+ℓ)

for ℓ = 1, . . . , n− 2− a is semi-robust. This implies that the Ineq. (32) is lower-bounded by

(n− 1− a)γa + γa +

a+2∑
ℓ=a+1

γa︸ ︷︷ ︸
2×γa

+

a+3∑
ℓ=a+1

γa︸ ︷︷ ︸
3×γa

+ . . .+

n−2∑
ℓ=a+1

γa︸ ︷︷ ︸
(n−2−a)×γa

, (35)

which is equal to

(n− 1− a)γa + γa

n−2−a∑
j=1

j = (n− 1− a)γa + γa

(
(n− 2− a)(n− 1− a)

/
2
)
. (36)

This proves that
n−1∑

i=a+1

αi ≥ γa

(
(n− 1− a)(n− a)

/
2
)
= γb. This completes the proof.

2 EXPERIMENTAL SETUP DETAILS

2.1 ATTACKS

Adversarial attacks for Algorithm 1 of the main paper were produced using the Adversarial Robustness
Toolbox (ART) library Nicolae et al. (2018) using the default parameters with the exception of those
for which specific values are provided here and in the Experimental Setup section. Notably we use a
simplified approach for the attacks, applying perturbations across the full dataset rather than per-batch.
The adversarial data is then stored so that we can compare different hyperparameter settings on the
same perturbed data. With this setting we still observe significant drops in accuracy on non-robust
networks and observe the notable behavior of semi-robust networks.
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2.2 ALGORITHM SETTINGS

The pretraining of models on the normal CIFAR-10 and CIFAR-100 datasets uses settings from
DeVries & Taylor (2017), with an initial learning rate of 0.1 which is reduced by a factor of 10 at 60,
120, and 160 epochs for a total of 200 training epochs.
For Imagenette we start with the weights of networks provided in the Torchvision library at
https://github.com/pytorch/vision for models pretrained on Imagenet. The output layer is changed to
one with 10 classes for Imagenette, and the final layer was finetuned for 60 epochs.
Data is preprocessed by subtracting the mean and dividing by the standard deviation of each channel,
and as such our input data has a range slightly larger than [0, 1]. This means ϵ values don’t directly
match with pixel values when processed as ϵ

255 . To offset this we have included multiple ϵ values and
attacks of differing strengths.
Training of the full model on adversarially attacked datasets is done for 120 epochs at an initial
learning rate of 0.01, decreasing by a factor of 10 at 40 and 80 epochs. Training of the subnetwork for
trials is done for 20 epochs. All training is done using checkpoints on validation accuracy. A batch
size of 512 is used for CIFAR data, while a batch size of 32 is used for Imagenette. Our experiments
use T = 10 and k = 1e−16 for both algorithms.

3 ADDITIONAL EXPERIMENTS

Algorithm 1 Learning Hyperparameter λ

Do regular training of F (n)

Do adversarial training of F (n) as (f∗
a , f

∗
b )

Store test accuracy of adversarial training
(f∗

a , f
∗
b ) as Acc∗

Get output of f (j)∗ for each j in a+ 1, . . . , n
Freeze f∗

a
Replace densely connected layer fb with the

linear-combination f (j) =
j−1∑
i=1

λT
ij .f

(i), j =

a+ 1, . . . , n
Set k to be as small as possible
for t = 1, . . . , T do

for e = 1,. . . ,E do
for each batch do

Loss =
∑n

j=a+1 ||f (j)∗ − f (j)||
Solve for lambda using layer outputs
of f∗

a and f∗
b

Store test accuracy of (f∗
a , f̃b) as

Accet
end
if Acc∗ −Accet ≤ k or e ≥ E then

Break out of epoch loop and store
Accet

end
end

end
Ãcc = largest Accet
Report Ãcc

Here we display additional results to supplement
the ideas presented in the main paper. We first
show the impact of applying the linearity con-
straint on the dependency between layers in the
subnetworks. In Algorithm 1 of the SM, each
layer in fb is a linear combination of the layer
outputs in f∗

a , and we aim to reach Acc∗ on the
adversarial data using the frozen f∗

a subnetwork.
We demonstrate our success in doing so utiliz-
ing a straightforward linear algebra approach
to directly solve for λ in one epoch in Table 1
using AlexNet and CIFAR-10 and differing at-
tack types. In order to achieve these results,
we record the outputs from the all layers in the
frozen f∗

a subnetwork as Fa and utilize the loss
function Loss =

∑n
j=a+1 ||f (j)∗ − f (j)|| to set

F(j) = F(j)∗ and solve for the λ which mini-
mizes the loss in the following steps:

F∗
a · λi,j = F(j)

F∗
a · λi,j = F(j)∗

F∗
a
−1 · F∗

a · λi,j = F∗
a
−1 · F(j)

I · λi,j = λi,j = F∗
a
−1 · F(j)

We describe the steps in performing these exper-
iments in Algorithm 1 of the SM.

Table 1 shows the results of applying Algorithm 1 to AlexNet for a single layer of fb. Noteably,
we limit this experiment to a single layer and use AlexNet, because although directly solving for
λ in this way highlights that such a λ exists, the calculation involved would become intractable on
larger datasets where you need to take the inverse of a matrix of all intermediate activations of the
network. The table shows that we can represent fb under a linear assumption by replacing it with a
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Table 1: Linear combination accuracy with semirobust network on CIFAR-10 with AlexNet

Attack Acc∗ (%) Ãcc (%) Diff. (%) Acc(λrandom)

FGSM 70.65 70.67 0.02 9.08
I-FGSM 71.22 71.2 -0.02 10.42
PGD 70.9 70.92 0.02 8.62
C&W 67.04 67.01 -0.03 8.9

Figure 1: Connectivity values vs performance differences are plotted for differing datasets on each
architecture with the CW attack when fb is 4 trainable layers.

linear combination of the semirobust f∗
a . We provide the accuracies of the fully-robust network Acc∗,

the accuracy using the linear combination replacement of fb (Ãcc), and the accuracy when using a
random linear combination of f∗

a as a negative control Acc(λrandom).

Hyperparameter Analysis Experiments To observe the behavior of ρ when holding certain hyper-
parameters constant, we ran the experiments in Figs. 1, 2, and 3. For each experiment, fb = 4 layers
and for Fig. 2, we use ϵ = 8

255 . Observing these results doesn’t show any clear pattern except that
CIFAR-100 consistently has a much narrower range of ρ values than the other two datasets. varying
attack type or network has little to no consistent pattern in the effect on ρ on the other hand.
We extend these results further by running each combination of attack type and network on the
CIFAR-10 dataset with an ϵ = 8

255 ,
16
255 , and 32

255 . The results of these experiments are shown in Ta-
bles 2, 3, and 4. We report the accuracy of the non-adversarially-trained network (fa, fb) as Accnorm,
the same model’s accuracy on the adversarially attacked data Accadv , and the remaining notations are
defined in the main text for Table 1. Once again we see little noticeable impact of changing the attack
type the ϵ value on ρ. Again, CIFAR-100 shows the narrowest range of ρ values, but also noticeably
we observe that for fb = 4 layers, the difference in accuracy from Acc∗ is negligible even before

Figure 2: Connectivity values vs performance differences are plotted for differing attacks and
networks for CIFAR-10 when fb is 4 trainable layers.
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Figure 3: Connectivity values vs performance differences are plotted for differing networks and
datasets with the C&W attack when fb is 4 trainable layers.

Table 2: Subnetwork training on CIFAR-10 with differing attacks

Model Attack ϵ ACCnorm ACCadv Acc∗ Accsr Ãcc Diff. ρn ρn−1 ρn−2 ρn−3

AlexNet FGSM 8 75.6 63.0 72.8 34.4 72.9 0.07 2.04 4.99 5.26 5.71
I-FGSM 8 75.6 62.6 73.0 43.8 72.9 -0.13 2.06 5.02 5.37 5.79
PGD 8 75.6 62.6 72.5 38.8 73.2 0.61 2.03 4.94 5.25 5.67
Autoattack 8 75.6 15.1 64.7 19.7 64.5 -0.22 1.92 4.67 4.89 5.16

VGG16 FGSM 8 94.3 79.6 90.0 90.1 89.9 -0.09 1.68 1.93 1.03 0.02
I-FGSM 8 94.3 78.5 90.5 90.6 90.1 -0.48 2.49 0.57 0.00 0.00
PGD 8 94.3 78.5 89.3 89.4 89.3 -0.04 2.06 2.17 0.99 0.12
Autoattack 8 94.3 44.9 79.6 79.7 79.2 -0.46 1.58 2.22 2.04 1.77

ResNet50 FGSM 8 93.8 82.6 88.7 88.7 84.8 -3.82 3.12 5.35 4.46 0.22
I-FGSM 8 93.8 80.9 88.0 88.0 84.9 -3.10 2.95 5.41 4.66 0.43
PGD 8 93.8 80.7 88.1 88.1 87.0 -1.09 3.12 5.08 4.91 0.42
Autoattack 8 93.8 50.4 76.1 76.3 75.2 -0.9 3.29 5.62 5.40 5.91

addition training of fb. Additionally, many of the experiments have ρ values near or equal to 0 in the
first few layers of fb. We note this behavior in many of the 1 and 4-layer runs we’ve performed but
are unclear as to the underlying reason that these more trivial cases should have diminishing ρ values
while more challenging experiments with larger fb seldom appear to have this behavior as with those
in Table 5 and 6.

Varying fb Size Experiment Data Tables 5 and 6 provide the data for the figures in the paper. For
Table 5 we run each network type on datasets perturbed by AutoAttack with ϵ = 8

255 . The size of fb
varied for each network to ensure that we saw a substantial decrease in accuracy from Acc∗ to Accsr.
This way, the value of Ãcc couldn’t be trivially due to an insufficient disruption of network accuracy
by removing the robustness of fb.
We run a similar setup in Table 6, changing the size of fb when training ResNet50 on CIFAR-10
data perturbed by AutoAttack with ϵ = 8

255 . This experiment showed a consistent increase of ρ
values deeper into the network from the output layer, with increasingly sharp drops in performance
between Acc∗ and Accsr. Despite these challenges to the performance, the subnetwork training was
consistently able to reach an Ãcc value within 1− 2% of Acc∗.
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Table 3: Subnetwork training on CIFAR-10 with differing attacks

Model Attack ϵ ACCnorm ACCadv Acc∗ Accsr Ãcc Diff. ρn ρn−1 ρn−2 ρn−3

AlexNet FGSM 16 75.6 51.1 70.2 36.7 69.8 -0.37 2.00 4.96 5.39 5.80
I-FGSM 16 75.6 50.0 69.5 45.9 70.0 0.52 2.02 4.97 5.41 5.75
PGD 16 75.6 50.1 70.6 33.6 70.6 0.00 2.06 5.00 5.35 5.76
Autoattack 16 75.6 6.7 61.5 13.8 61.2 -0.28 1.90 4.60 4.76 5.08

VGG16 FGSM 16 94.3 72.7 88.0 88.1 87.5 -0.50 2.07 0.59 0.00 0.00
I-FGSM 16 94.3 67.8 89.4 89.4 89.1 -0.28 1.71 2.75 2.53 1.95
PGD 16 94.3 67.8 90.0 90.1 89.7 -0.28 2.23 2.08 0.07 0.00
Autoattack 16 94.3 32.3 75.8 73.6 75.8 0.02 3.22 5.19 5.08 5.20

ResNet50 FGSM 16 93.8 74.4 86.9 86.9 86.0 -0.89 3.09 5.18 4.75 0.00
I-FGSM 16 93.8 68.7 86.8 86.8 84.8 -1.97 3.02 5.26 4.72 0.00
PGD 16 93.8 68.8 87.3 87.3 85.4 -1.89 3.10 5.22 4.93 0.45
Autoattack 16 93.8 36.9 78.2 78.1 76.8 -1.39 3.30 5.32 4.76 5.57

Table 4: Subnetwork training on CIFAR-10 with differing attacks

Model Attack ϵ ACCnorm ACCadv Acc∗ Accsr Ãcc Diff. ρn ρn−1 ρn−2 ρn−3

AlexNet FGSM 32 75.6 34.4 67.3 21.7 67.2 -0.11 2.07 4.86 5.40 5.93
I-FGSM 32 75.6 32.4 68.1 18.9 68.6 0.48 2.05 4.93 5.33 5.81
PGD 32 75.6 32.3 68.1 23.1 67.9 -0.22 2.05 4.92 5.40 5.90
Autoattack 32 75.6 1.3 61.5 12.1 61.5 -0.02 2.02 4.59 4.67 5.23
C&W - 75.6 19.6 66.9 21.7 66.9 -0.02 2.08 4.67 4.83 5.07

VGG16 FGSM 32 94.3 67.1 86.6 86.6 86.3 -0.24 1.73 1.74 1.57 0.72
I-FGSM 32 94.3 52.3 88.9 88.8 88.3 -0.52 2.15 0.58 0.00 0.00
PGD 32 94.3 52.3 89.0 89.0 88.6 -0.37 2.50 0.91 0.00 0.00
Autoattack 32 94.3 20.2 73.6 73.2 73.7 0.07 3.13 5.11 5.11 4.99
C&W - 94.3 18.9 80.1 80.3 80.2 0.09 2.98 5.06 5.30 5.33

ResNet50 FGSM 32 93.8 65.5 85.0 85.0 84.0 -1.09 3.01 5.57 4.84 0.54
I-FGSM 32 93.8 50.1 85.7 85.6 84.9 -0.78 3.16 5.05 5.34 5.03
PGD 32 93.8 50.1 85.5 85.5 84.0 -1.45 3.16 5.44 4.79 4.31
Autoattack 32 93.8 26.2 75.6 75.8 75.3 -0.33 3.26 5.42 4.92 6.09
C&W - 93.8 15.1 78.3 78.4 76.6 -1.65 3.21 4.36 4.79 5.32

Edwards. Adversarial robustness toolbox v1.2.0. CoRR, 1807.01069, 2018. URL https:
//arxiv.org/pdf/1807.01069.

Table 5: Subnetwork training on AutoAttack for ϵ = 8
255 with differing networks and datasets

Model Dataset fb layers ACCnorm ACCadv Acc∗ Accsr Ãcc ρn ρn−3 ρn−7 ρn−11 ρn−15

AlexNet CIFAR-10 4 75.6 15.1 64.7 19.7 64.5 1.92 5.16 - - -
CIFAR-100 4 43.3 7.7 33.6 16.9 32.3 2.79 3.55 - - -
Imagenette 4 71.4 37.8 75.3 67.3 74.0 2.17 6.24 - - -

VGG16 CIFAR-10 12 94.3 44.9 79.0 63.9 76.6 3.22 5.27 6.83 7.60 -
CIFAR-100 12 65.9 34.8 54.2 38.5 51.8 3.05 3.59 4.11 4.28 -
Imagenette 12 99.5 35.3 91.0 26.1 86.0 2.35 6.82 7.07 7.11 -

ResNet50 CIFAR-10 16 93.8 50.4 75.8 46.7 74.7 3.22 5.93 6.69 6.70 6.48
CIFAR-100 16 66.0 34.7 56.7 25.8 55.9 3.26 3.92 4.14 3.91 3.95
Imagenette 16 99.6 48.1 89.2 9.5 82.3 3.05 6.17 6.61 6.58 0.00
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Table 6: Subnetwork training of ResNet50 on CIFAR-10 with and with AutoAttack (ϵ = 8
255 )

# fb layers ACCnorm ACCadv Acc∗ Accsr Ãcc Diff. ρn ρn−3 ρn−7 ρn−11 ρn−15

4 93.8 50.4 76.1 76.3 75.2 -0.9 3.29 5.91 - - -
8 93.8 50.4 75.5 73.8 75.1 -0.3 3.32 5.64 6.69 - -

12 93.8 50.4 77.6 71.0 75.9 -1.7 3.35 6.06 6.45 6.13 -
16 93.8 50.4 75.8 46.7 74.7 -1.1 3.22 5.93 6.69 6.70 6.48
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