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1 SEMIROBUSTNESS GUARANTEES

1.1 PROOF OF THEOREM 1

First, we show the leftward implication, that if the layers f), fG=1 . (1 are semirobust, then
FU) is semirobust. This is proved becasue F') is f() ((7=1)) where 20U~ 1) = =fUDo. .  of),
Therefore, if f (4) is semirobust, regardless of whether any of f G ’1), o f (1) is semirobust, then
FU) is also semirobust.

Next, we show the rightward implication, that if F) is semirobust, then f@), =1 (1) are
semirobust. If F(9) is semirobust then

E(x y)~D [gggy (G0 FY(X + 5)] =E(x )~ [;ggy (Gjo fUX+ 6)} > (D)
This implies that f() is semirobust. Now let G ji—1=Gjof (), then

E(X,y)ND |:(%r€l£y . Gj o F(J)(X —|— 6):| = E(X,y)ND [mf y G o f o F j 1)(X —|— 5):| (2)

= Ex,y)~D Lllelgy Gy 0 FUTD(X 4 5)] = Ex,y)~D [glelgy G0 fUTV(X + 5)} > v,

(3)
This implies that U~ is semirobust. By induction, it’s shown that the other layers fG=2) .. . f(1)
are also semirobust.
1.2 PROOF OF LEMMA 1
Let "V =ge L, yand f™ =h e L,. As f(*~1 is semirobust,
E(X,y)~D [mf Y- Gno10g(X+ 6)} > Yn_1 and Z 1 (953 hsly) > p, €5

and after simplification, we have

E(x 4)~D [mfy Guoiog X+6] Zy m(y /;ggD<w|y)-Gn,1og(x+6)dx ®)

with 7(y) being the prior of y, and D(z|y) being the probability density function of = and y. Let
gs = g(x +8) € L,,_1, with components ggz) = gi(x + 0) such that x = (x) ... x(¥) ¢ R4,
and g = (g1,...,9m) € Ln—1. Note that the multivariate transformation g; is one to one; hence, the
transformation is invertible and can be solved for the equation z(?) + §() = g *(gs).
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Thus, the last line in (5) equals
Sy nly) [ inf Do (gs)  8l9) - G0 95 1] o
Yy

where |.J| denotes the absolute value of the determinant of the Jacobian J. In addition, using the
probability density for a function of a random variable, we can write:

Ex,y)~D {mfy Gn-109( X+6] Zy ( /;ggp(galy)-Gnqogs dgs  (6)

By simplifying mutual information I(gs; hs|y), using log(x) < z + 1, and recalling assumption B1:

p(gs; hsly)
w0 ] ot | s 12 ™

To show that (") is ~,,-semirobust, we prove
Yn < Exy)~D iélégy ~h(X + 5)} .

Set v, < Yn—1 + p, hence we need to show that

1 +p <Y Y-y /gggp(haly) - hgdhs ®)

Y

Following and semirobustness for f("~1), the inequality (8) can be transformed into

//mfp 95, hsly) <y Gn— 1ogs+((g§’5|y)—y~ha+1)dgadha§0

y 951y)p(hsly)

and subsequently into
> T Ep(gs hsly) Infses y - (Gno10gs — hs)] < —(1+U), 9)

Y

which holds true recalling the assumption B2. This concludes the proof of the lemma.

1.3 PROOF OF THEOREM 2

To prove Theorem 2, given that

E(X,y)wD (lrelgy : Ga o ha(X + 5):| 2 Ya and Z W(y)-[ (h&a; h5,a+1|y) 2 Pa+1, (10)

We need to show from the inequalities above that for y,41 < Vg + pa+t1
Exy)~D {gggy +Gag10har1 (X + 5)l > Ya+1 (11)

Under assumptions A1 and A2 for j = a + 1, we can simplify and (TT). We then need to show
> T sgs s a2y (Ga © hoa = Garr 0 hsay1)] < —(1+ Uat) (12)

Y

The above holds true recalling the assumption A2 and 7(y) being non-negative. Hence, f(¢*1) is
~Ya+1-semirobust. And because f, = F(@) s ~,-semirobust, then according to Theorem 1, F(¢+1) jg
also 4.4 1-semirobust.

Similarly, since f, = F(@*Y is 4, -semirobust, and by assumptions A1 and A2 for j = a + 2,
it is implied that f(@+2) ig Ya+2-semirobust. Recursively, it can be shown that all layers in f3, i.e.
flat ) are «yj-semirobust for j =a+1,...,nrespectively. Then, according to Theorem 1,

fp 18 Yp-semirobust where v, < v, + Z pj» proving Theorem 2.
j=a-+1
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1.4 PROOF OF LEMMA 2

n—1
Ex,y)~D [ggg y.fM(X + 5)] E(x,y)~D lmf y. Z AL FOX+6)) (13)
n—1 ) n—1 )
> Exy)~p [;ggy-kff(” (X + 5)} =Y Exy)~p {;gg A FO X+ 5)] L (4
i=1 i=1

The last equality holds true because the noises are added to the input X and since in feedforward
network, each layer is a function of the previous layer therefore f(9)(X + §) = F()(X + §).
Next, by letting G; = AT, then we have

n—1

Bocaen |0/ X+0)] = 3 Bcupen | nGio FOXK+0) > Z% .
=1

15)

The first inequality is true because of Theorem 1. This concludes that (") is 5,,-semirobust.

1.5 PROOF OF THEOREM 3

In Theorem 3, note that if f, = f(*~Y and f, = f,_1 = F("1 then it turns to Lemma 2. We
prove the theorem where f, = F(»~1™) and f, = F(1"~2)_and the general case f, and f; can be
shown similarly by extension. Let G}, : £, — ) be a function that maps layer f; to the output y.
Proof of the case where f, = F("~17) and f, = F("=2);

Ex,y)~D [;22 y FOmbm(X 4 5)} =Ex,)~D {gfelg y.f (X + 5)} (16)

Given that f(") is a linear combination of all the other layers, with AP mapping f @ to y,

n—1 n—1
=Exy)~D [mf y. Z A FOX+6)| = Z; E(x,y)~D [ggg y D FOX 4 5)} (17)

n—2
=Y Exy~p Ligg YA SO (X + 6)} +Ex.y)~D Ligg YA na ST (X 6)} (18)
i=1

Let G; = \T

wmn>

and let o be the second term in . Then, using Theorem 1,

n—2 ‘ n—2
= ; E(x,y)~D L%relgyGl o fO(X + 6)] +a> ; Vita=",+a (19)
where v, = ni:Q 7;. Now simplifying «, given that ("~ is a linear combination of the layers before
it, with )\iT(n_Z?)lmapping f@ to fln=1).

. T n—1 . i
Ex.y)~p |:§Ielgy')‘n—l(n)'f( )(X+5)} =Ex y)~D [gggy.)\ ZAM -F (X +6)
(20)
n—2
=D _Exy~n [gggy-Af_m)-Aﬂn_n-f(“ (X + 6)] : 1)

=1
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Let G; = )‘271(71)')‘?(7171)' Then, using Theorem 1,

n—2 n—2
=Y Exy)~p Llrelg y.Gio f(X + 5)} > V=" (22)
=1 =1

With both terms simplified, v, + a > v, + Y4 = V. Therefore, f;, is semirobust. This proof can
be extended to any other combination of f, and f,. Let’s show the case where f, = F(@+1.7) and
fa = F(a):
: a+1l,n _ : n
Eotayn | L0 F D (X +5)] = Boeyyen |10y ™ (X + )] 3

Given that f(") is a linear combination of all the other layers, with AL mapping f ) to 9,

n—1 n—1
=1

i=1
a ) n—1 )
=D Exy~p [ggg y~A3;L~f(”(X+5)} + D By~ {gggykﬂf(’)(XwL 5)] (25)
i=1 i=a+1
Let G; = A\! | and let
a; = Ex oD [gngy.A;.f<i> (X + 5)] d=a+1,...,n—1. (26)
€
Then, by using Theorem 1 again we have,
a n—1 a n—1 n—1
- i o £(® . , - .
= ZE(x,ww {gggy-@ of (X+5)} + Z a; > Z% + Z @ = Ya + Z a;
i=1 i=a+1 i=1 1=a+1 i=a+1

27)

where v, = ; ~i- Next we show that Z?:_alﬂ ;> e ((n —1—a)(n-— a)/2), and conclude the

proof by setting v, := Y4 + Va ((n —1—a)(n— a)/2). Now by the assumption that

i—1
FO =321, (28)
=1
with A7, mapping f () to £, then simplifying o; yields
i—1 i—1
. T T p(t : T \T (¢
@ = Exy)~p [;ggyam. Z M fOX +4)| = Z E(x,y)~D [gggy.mm.ﬂ (X +9)|,
(29)
fort =a+1,...,n — 1. Therefore we have
n—1 n—1 i-1
: T \T ¢(¢
Y o= X Y Eon [l uAh LSO+ )]
i=a-+1 i=a+1/4=1
n—1 i—1
= > D Exyro {gggy.em o fOX+3)|, (30)
i=a+10=1
where Gy, := AL AL Under the assumption , we know thatfori =a+1,...,n—1,
> By~ [gggy.Gzn o fO(X + 5)} > Ya, (31

=1
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Therefore,

n—1
Z ;> (n—1-a)y, + Ex, y)~D L%Ielg y~G(a+1)n o f(a+1)(X + 5)}
i=a+1

a+2 n—2

: 0 . [
+ Z Ex,y)~D [grelg y.Gen o fO(X + 5)} +...+ Z Ex y)~D |:§I€1£y.ng o fO(X +6)
l=a+1 l=a+1
(32)

Without loss of generality, assume that Gy, = Gy forall £ = a+1,...,n— 2. This simplifies as

n—1
Z a; > (n—1-a)ye +Exy)~D {ggg y.Gq41) © Fler (X + 5)]
1=a+1
a+2 n—2
+ Z E(ny)ND |:§I€1£yG£ o f(é) (X + (5):| +...+ Z E(X,y)ND [éggyGe o f(é)(X + 5):| .
{=a+1 {=a+1

(33)
Below we show that if f, = F(1:%) is semi-robust and f(*1) is a linear combination of layers
fO L F@, with Ag(,11) mapping £ to f(eD, then f,4q = F19+1) is a semi-robust feature:

Ex.y)~D Liggy.G(aH) o flD(X + 5)] = Exy)~D [;gg Y-Glar1) © D Magn) [ (X +0)
=1

a a
= ZE(X,y)ND [grelg y_G(aJrl) o /\%Ea+1)f(é) (X + 5):| = Z]E(X,y)ND |:§Ielg y.Gpo f(z) (X + 5):| ,
(=1 (=1

(34)

T 1y- Since fq, is semi-robust, all layers FO ., (@ are semi-robust.

(a+
Hence, the right-hand side in

where Gy = G(q41) © A
) is greater than or equal to 22:1 Yo = Ya-

Consequently, with the same methodology, this can be extended to the following: if f, = F(1®) is
semi-robust, and f(**%) is a linear combination of layers f(1), ... f(@+¢=1) then f,,, = F(Lat0)
for/ =1,...,n — 2 — ais semi-robust. This implies that the Ineq. is lower-bounded by

a+2 a+3 n—2
(n_l_a)7a+7a+ Z’Ya""ZVa""---"" Z’Ya7 (35)
l=a+1 l=a+1 l=a+1
——— N—— ——
2XYq 3XYa (n—2—a)xX~vq
which is equal to
n—=2—a
(n—1—a)Ye + Ya Z j= (nflfa)’yaJrfya((anfa)(nflfa)/Q). (36)
j=1
n—1
This proves that > «; > 7, ((n —1—a)(n-— a)/?) = . This completes the proof.
i=a+1

2 EXPERIMENTAL SETUP DETAILS

2.1 ATTACKS

Adversarial attacks for Algorithm 1 of the main paper were produced using the Adversarial Robustness
Toolbox (ART) library Nicolae et al. (2018)) using the default parameters with the exception of those
for which specific values are provided here and in the Experimental Setup section. Notably we use a
simplified approach for the attacks, applying perturbations across the full dataset rather than per-batch.
The adversarial data is then stored so that we can compare different hyperparameter settings on the
same perturbed data. With this setting we still observe significant drops in accuracy on non-robust
networks and observe the notable behavior of semi-robust networks.
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2.2 ALGORITHM SETTINGS

The pretraining of models on the normal CIFAR-10 and CIFAR-100 datasets uses settings from
DeVries & Taylor (2017), with an initial learning rate of 0.1 which is reduced by a factor of 10 at 60,
120, and 160 epochs for a total of 200 training epochs.

For Imagenette we start with the weights of networks provided in the Torchvision library at
https://github.com/pytorch/vision for models pretrained on Imagenet. The output layer is changed to
one with 10 classes for Imagenette, and the final layer was finetuned for 60 epochs.

Data is preprocessed by subtracting the mean and dividing by the standard deviation of each channel,
and as such our input data has a range slightly larger than [0, 1]. This means € values don’t directly
match with pixel values when processed as 5c=. To offset this we have included multiple € values and
attacks of differing strengths.

Training of the full model on adversarially attacked datasets is done for 120 epochs at an initial
learning rate of 0.01, decreasing by a factor of 10 at 40 and 80 epochs. Training of the subnetwork for
trials is done for 20 epochs. All training is done using checkpoints on validation accuracy. A batch
size of 512 is used for CIFAR data, while a batch size of 32 is used for Imagenette. Our experiments
use T'= 10 and k = 1e~16 for both algorithms.

3 ADDITIONAL EXPERIMENTS

Algorithm 1 Learning Hyperparameter A

Here we display additional results to supplement
the ideas presented in the main paper. We first
show the impact of applying the linearity con-
straint on the dependency between layers in the

Do regular training of F()
Do adversarial training of F(™ as (£, )
Store test accuracy of adversarial training

(fr, f) as Acc*

Get output of f)* foreach jina+1,...,n
Freeze f;

Replace densely connected layer f, with the

. Jj—1 _
linear-combination f¢) = )\iTj.f @, =
i=1

a+1,...,n
Set k to be as small as possible
fort=1,...,Tdo

subnetworks. In Algorithm 1 of the SM, each
layer in fj, is a linear combination of the layer
outputs in f, and we aim to reach Acc* on the
adversarial data using the frozen f; subnetwork.
We demonstrate our success in doing so utiliz-
ing a straightforward linear algebra approach
to directly solve for A in one epoch in Table
using AlexNet and CIFAR-10 and differing at-
tack types. In order to achieve these results,

fore=1,....Edo

for each batch do

Loss =37,y [IfU — U]
Solve for lambda using layer outputs
of fr and fy

Store test accuracy of (fF,f,) as
Accf

we record the outputs from the all layers in the
frozen f subnetwork as IF, and utilize the loss
function Loss = Y7 | [[f)* — O] to set

FU) = FU* and solve for the A which mini-
mizes the loss in the following steps:

N =F0)
end Fo-dig=F

if Acc* — Accf < kore > E then F: -\ = FO*
irezzk out of epoch loop and store Fz_l FE Ay = Fz_l F)
ccy ,

end T-Nij=Nij= F;ﬂ . FG)

end
We describe the steps in performing these exper-

end iments in Algorithm 1 of the SM.

Acc = largest Acc§
Report Acc

Table [I| shows the results of applying Algorithm 1 to AlexNet for a single layer of f;,. Noteably,
we limit this experiment to a single layer and use AlexNet, because although directly solving for
A in this way highlights that such a \ exists, the calculation involved would become intractable on
larger datasets where you need to take the inverse of a matrix of all intermediate activations of the
network. The table shows that we can represent f, under a linear assumption by replacing it with a
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Table 1: Linear combination accuracy with semirobust network on CIFAR-10 with AlexNet

Attack  Acc® (%)  Acc (%) Diff. (%) Acc(Arandom)

FGSM 70.65 70.67 0.02 9.08
I-FGSM  71.22 71.2 -0.02 10.42
PGD 70.9 70.92 0.02 8.62
C&W 67.04 67.01 -0.03 8.9
AlexNet VGG16 Resnet50
-0.2 ~0.20 -0.70
025 -0.72 — CIFAR-10
—04 -0.75 CIFAR-100
—030 ~0.77 ImageNette
g -0
-4 -0.35 -0.80 o D,
< -0.8 -0.40 082 b P
-0.85 v P,
-1.0 08 -0.87 v Pus
~0.50 e -0.90 ® -
2 3 4 5 6 0 1 2 3 4 35 40 45 50 55 6.0
p Value p Value p Value

Figure 1: Connectivity values vs performance differences are plotted for differing datasets on each
architecture with the CW attack when f; is 4 trainable layers.

linear combination of the semirobust f. We provide the accuracies of the fully-robust network Acc*,

the accuracy using the linear combination replacement of f; (Acc), and the accuracy when using a
random linear combination of f. as a negative control Acc(Arandom)-

Hyperparameter Analysis Experiments To observe the behavior of p when holding certain hyper-
parameters constant, we ran the experiments in Figs. [I}[2] and[3] For each experiment, f, = 4 layers
and for Fig. |2} we use € = %. Observing these results doesn’t show any clear pattern except that
CIFAR-100 consistently has a much narrower range of p values than the other two datasets. varying
attack type or network has little to no consistent pattern in the effect on p on the other hand.

We extend these results further by running each combination of attack type and network on the
CIFAR-10 dataset with an € = 5=, 5%, and 2. The results of these experiments are shown in Ta-
bles |ZL EI, andEI We report the accuracy of the non-adversarially-trained network (f,, f5) as AcCnorm,
the same model’s accuracy on the adversarially attacked data Acc,q,, and the remaining notations are
defined in the main text for Table 1. Once again we see little noticeable impact of changing the attack
type the € value on p. Again, CIFAR-100 shows the narrowest range of p values, but also noticeably

we observe that for f, = 4 layers, the difference in accuracy from Acc* is negligible even before

AlexNet VGG16 Resnet50
0.6 0.1 *—R O—k*
-0 —— FGSM
0.5
0.0 15 I-FGSM
0.4 —Am— PGD
-0. A
Q03 01 -2.0 AutoAttack
=}
<02 -0.2 c&w
-25 . [}
01 @ At
-0.3 A P
00 &—8M 8 am* =30 . o
n-2
-0.4
-01 -35 * Pas
-0.2  O——mmm & -0.5 L a3 & L A
2 3 4 5 0 1 2 3 4 5 0 12 3 4 s 6
p Value p Value p Value

Figure 2: Connectivity values vs performance differences are plotted for differing attacks and
networks for CIFAR-10 when f;, is 4 trainable layers.
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CIFAR-10 CIFAR-100 ImageNette
02 — AW -02 0 > ———— s m*
-0.3 -5 —— AlexNet
-0.4
-0.4 -10 VGG16
g -o0s o6 15 Resnet50
< (]
&g -06 ~20 Pn
. -038 A Poa
. _25 s P,
-0.8 1.0 _30 * pnri
-0.9 ~— =
2 3 4 5 6 28 30 32 34 36 38 o 1 2 3 4 5 6
p Value p Value p Value

Figure 3: Connectivity values vs performance differences are plotted for differing networks and
datasets with the C&W attack when f; is 4 trainable layers.

Table 2: Subnetwork training on CIFAR-10 with differing attacks

Model  Attack € ACChorm ACCagy Acc® Accsy Acc Diff. pn pn-1 pPn-2 Pns

AlexNet FGSM 8 75.6 63.0 72.8 344 729 0.07 2.04 499 526 5.71
I-FGSM 8 75.6 62.6 73.0 438 729 -0.13 2.06 502 537 579
PGD 8 75.6 62.6 725 388 732 0.61 2.03 494 525 5.67
Autoattack 8 75.6 15.1 647 19.7 645 -0.22 192 4.67 4.89 5.16
VGG16 FGSM 8 94.3 79.6 90.0 90.1 899 -0.09 1.68 193 1.03 0.02
I-FGSM 8 94.3 78.5 90.5 90.6 90.1 -0.48 249 0.57 0.00 0.00
PGD 8 94.3 78.5 89.3 894 893 -0.04 206 2.17 099 0.12
Autoattack 8 94.3 44.9 79.6 79.7 79.2 -046 1.58 222 204 1.77
ResNet50 FGSM 8 93.8 82.6 88.7 88.7 84.8 -3.82 3.12 535 446 022
I-FGSM 8 93.8 80.9 88.0 88.0 849 -3.10 295 541 4.66 043
PGD 8 93.8 80.7 88.1 88.1 87.0 -1.09 3.12 5.08 491 042
Autoattack 8 93.8 504 76.1 763 752 -09 329 562 540 5091

addition training of f},. Additionally, many of the experiments have p values near or equal to 0 in the
first few layers of f;,. We note this behavior in many of the 1 and 4-layer runs we’ve performed but
are unclear as to the underlying reason that these more trivial cases should have diminishing p values
while more challenging experiments with larger f, seldom appear to have this behavior as with those
in Table Bland [6l

Varying f, Size Experiment Data Tables [5|and [6] provide the data for the figures in the paper. For
Tabl we run each network type on datasets perturbed by AutoAttack with € = %. The size of f
varied for each network to ensure that we saw a substantial decrease in accuracy from Acc* to Accg,.
This way, the value of Acc couldn’t be trivially due to an insufficient disruption of network accuracy
by removing the robustness of f;.

We run a similar setup in Table [6] changing the size of f, when training ResNet50 on CIFAR-10
data perturbed by AutoAttack with € = %. This experiment showed a consistent increase of p
values deeper into the network from the output layer, with increasingly sharp drops in performance

between Acc* and Accg,. Despite these challenges to the performance, the subnetwork training was
consistently able to reach an Acc value within 1 — 2% of Acc*.
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Table 3: Subnetwork training on CIFAR-10 with differing attacks

Model Attack e ACCrorm ACCuqy Acc® Accs, Acc Diff. Pn Pn—1 Pn—2 Pn—3

AlexNet FGSM 16 75.6 51.1 702 367 69.8 -0.37 2.00 496 539 5.80
I-FGSM 16 75.6 50.0 69.5 459 70.0 0.52 2.02 497 541 5.75
PGD 16 75.6 50.1 70.6 33.6 706 0.00 2.06 500 535 5.76
Autoattack 16 75.6 6.7 61.5 13.8 612 -028 190 4.60 4.76 5.08
VGG16 FGSM 16 94.3 72.7 88.0 88.1 87.5 -0.50 2.07 0.59 0.00 0.00
I-FGSM 16 94.3 67.8 89.4 894 89.1 -028 1.71 275 253 195
PGD 16 94.3 67.8 90.0 90.1 89.7 -0.28 2.23 2.08 0.07 0.00
Autoattack 16 94.3 323 75.8 73.6 758 0.02 322 519 508 5.20
ResNet50 FGSM 16 93.8 74.4 86.9 869 86.0 -0.89 3.09 5.18 4.75 0.00
I-FGSM 16 93.8 68.7 86.8 86.8 84.8 -1.97 3.02 526 4.72 0.00
PGD 16 93.8 68.8 873 873 854 -189 3.10 522 493 045
Autoattack 16 93.8 36.9 782 78.1 76.8 -1.39 330 532 476 5.57

Table 4: Subnetwork training on CIFAR-10 with differing attacks

Model Attack e ACChorm ACCgaqn Acc® Accs, Acc Diff. P Prn—1 Pn—2 Pn—3

AlexNet FGSM 32 75.6 344 673 21.7 672 -0.11 2.07 486 540 593
I-FGSM 32 75.6 324 68.1 189 68.6 048 2.05 493 533 581
PGD 32 75.6 323 68.1 23.1 679 -022 2.05 492 540 5.90
Autoattack 32 75.6 1.3 61.5 121 615 -0.02 2.02 459 4.67 523
C&W - 75.6 19.6 669 21.7 669 -0.02 2.08 4.67 4.83 5.07
VGG16 FGSM 32 94.3 67.1 86.6 86.6 863 -0.24 1.73 1.74 157 0.72
I-FGSM 32 94.3 52.3 889 88.8 883 -0.52 2.15 0.58 0.00 0.00
PGD 32 94.3 523 89.0 89.0 88.6 -0.37 250 091 0.00 0.00
Autoattack 32 94.3 202 73.6 732 737 007 3.13 511 511 499
C&W - 94.3 18.9 80.1 80.3 80.2 0.09 298 506 530 533
ResNet50 FGSM 32 93.8 65.5 85.0 850 84.0 -1.09 3.01 557 484 054
I-FGSM 32 93.8 50.1 857 856 849 -0.78 3.16 505 534 5.03
PGD 32 93.8 50.1 855 855 84.0 -1.45 3.16 544 479 431
Autoattack 32 93.8 26.2 75.6 75.8 753 -0.33 326 542 492 6.09
C&W - 93.8 15.1 783 784 7T76.6 -1.65 321 436 479 532

Edwards. Adversarial robustness toolbox v1.2.0. CoRR, 1807.01069, 2018. URL https:
//arxiv.orqg/pdf/1807.010609.

Table 5: Subnetwork training on AutoAttack for e = % with differing networks and datasets

Model Dataset fo layers ACChrorm ACCaan Acc™ Accsr Ace Pn Pn—3 Pn—7 Pn—11 Pn—15

AlexNet CIFAR-10 4 75.6 15.1 647 19.7 645 192 516 - - -
CIFAR-100 4 433 7.7 336 169 323 279 355 - - -
Imagenette 4 71.4 378 753 673 740 2.17 624 - - -

VGG16 CIFAR-10 12 94.3 449 79.0 639 76.6 322 527 683 7.60 -
CIFAR-100 12 65.9 348 542 385 51.8 3.05 359 4.11 428 -
Imagenette 12 99.5 353  91.0 26.1 86.0 235 6.82 7.07 7.11 -

ResNet50 CIFAR-10 16 93.8 504  75.8 46.7 747 322 593 6.69 6.70 6.48
CIFAR-100 16 66.0 347 567 258 559 326 392 4.14 391 395
Imagenette 16 99.6 48.1 892 95 823 3.05 6.17 6.61 6.58 0.00
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Table 6: Subnetwork training of ResNet50 on CIFAR-10 with and with AutoAttack (e = %)

# f, layers ACChorm ACCagy Acc® Accsy Acc Diff. pn pn-s pnm Pn-11 Pn—is

4 93.8 504 76.1 763 752 -09 329 591 - - -
8 93.8 50.4 755 738 751 -03 332 5.64 6.69 - -
12 93.8 504 776 71.0 759 -1.7 335 6.06 645 6.13 -
16 93.8 50.4 75.8 46.7 747 -1.1 322 593 6.69 670 6.48
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