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Appendix

1 Implementation Details

Our NRNS model is implemented in PyTorch [1]]. We use the each datasets given train/val/test splits.
We tune hyperparameters based on val-unseen split performance and use the checkpoint with the
highest val-unseen split accuracy to test the NRNS agent on Image-Goal navigation.

1.1 Distance Prediction Network Implementation

Gp is a graph neural network followed by fully connected layers. The fully connected layers take in
the pairwise concatenation of the outputted GNN node features and goal image feature. The output of
the fully connected layers is the predicted distance to the goal of each node. We implement a graph
attention (GAT) network with edge feature attention using the PyTorch Geometric library [2]]. The
GNN is composed of two GAT layers trained with dropout of .6. For both GAT layers, the input to
the layer is node dimension 512, edge dimension 16 and the output dimension of the nodes is 512.
The node features output by the second GAT layer are pairwise concatenated with the ResNet18
feature of the goal image. The concatenated features are fed into a 2-layer MLP (512 to 256 to 1)
with ReLLU activation, and the output is fed through a sigmoid. The network is trained with mean
squared error (MSE) loss against the true distance to goal. The network is trained with the Adam
optimizer and the learning rate is .0001. Training the Gp model takes 20-25 epochs, requiring ~6
hours on a single GPU.

Unexplored nodes do not have features. Note unexplored nodes do not have features so the features
of these nodes are set to zero. Since unexplored nodes do not have children (no outward edges) their
empty features are not propagated to any other nodes and only receive propagated features from
explored nodes. The graph encoder simply creates the graph adjacency matrix, encodes the explored
node as visual 512 features using a ResNet18 via the observed images and sets the edge features to
be the transformation matrix between poses of neighboring nodes.

Distance Score Implementation. In Gp, the distance label is implemented as a score between 0 to
1 which equals the inverse of the step-wise distance from each node to the goal image calculated
by 1 — maz(distance, 30)/30). This clipped inverse distance score prioritizes small distances in
the loss calculation. During inference time, the distance from the agent’s current location n; to an
unexplored node is a added as a ’travel cost’ to the distance prediction. The predicted distance score
d; is first converted by to a step-wise distance before the travel cost is added. The Gp network is
trained with MSE loss over the predicted and ground truth distance scores. Additionally, loss is only
back-propagated over the predictions on unexplored nodes.
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1.2 Target Prediction Network Implementation

Input to Gr is the 512 dimension ResNet18 image features for the current and goal images. These
features are fed through a single linear layer (512 to 512) followed by a ReLu activation. The
hadamard product of the two vectors then fed into a linear layer (512 to 256) followed by a ReLu
activation. The output is fed into 3 separate linear layer heads (256 to 1) (the output of these layers
are the distance, rotation and switch predictions). The output of the switch linear layer is passed into
a sigmoid function. The network is trained using a total loss of the sum of the Smooth 11 loss over the
distance and rotation outputs and a Binary Cross Entropy (BCE) loss over the switch predictions. The
network is initialized with Xavier uniform and trained with the Adam optimizer, learning rate=.0001
and dropout=.25 after the 2nd linear layer. Training the G model takes 10-15 epochs, requiring ~2
hours on a single GPU.

1.3 RL Baseline Implementation

We use the Habitat [3] implementation of DDPPO [4] and follow the standard parameters. We train
our DDPO agent on 8 GPUs. During training of the agent receives a terminal reward rp = 2.5SPL,
and shaped reward r;(a¢, s¢) = —Ageo-dist — 0.01, Where Ageq.gis is the change in geodesic distance
to the goal by performing action a; in state s;. The RL baselines were evaluated over 3 random seeds
and the average of the 3 runs was reported.

2 Videos in the Wild

2.1 RealEstatel0k Dataset Description

RealEstate10K [5] is a large video dataset of trajectories through mostly indoor scenes. 80k video
clips, containing ~10 million frames each corresponding to a provided camera pose. The poses are
procured from SLAM and bundle adjustment algorithms run on the videos, and they represent the
orientation and path of the camera along the trajectory. The clips are gathered from 10k YouTube
videos of real estate footage. The clips are relatively short and range between 1-10 seconds [5]]. While
the total number of frames in the RealEstate10k clips is large, the total length of the trajectory in
meters is on average shorter than the MP3D and Gibson videos. Figure[T|shows the visual difference
between frames of the passive video dataset created from the simulator and those taken from YouTube
videos.

2.2 Passive Video Transfer Results on MP3D

On the MP3D dataset [6], we perform similar experiments as described in Section 5.2 of the main
paper. This section of the main paper only showed results of the experiments on the Gibson dataset [7].

The results of these experiments again demonstrate that NRNS can be learned from passive videos in
the wild. We use the same NRNS model trained on RealEstate 10K [5]] dataset as in Section 5.2 and
test on the MP3D test split. Additionally we test an NRNS model trained on passive videos from the
Gibson train split, and report performance on MP3D test split.

We find that training on passive videos from the simulator outperforms training on the passive videos
on RealEstate10K. This can be attributed a few domain gap factors. RealEstatelOK videos are
significantly shorter than the simulator generated passive videos, resulting in less training data for the
distance prediction network. Additionally, the simulator generated passive videos contain the same
actions for the agent’s rotation and translation as in the navigation task, where as RealEstate1 0K
contains a different action space. Despite these domain transfer challenges the NRNS model trained
on wild passive videos is able to outperform all other baselines.

3 NRNS Ablation Results on MP3D

We present results of the NRNS ablation experiments on MP3D [6]. The ablation experiments here
are identical to those described in Section 5.1, of the main paper, for which performance is shown
in Table 3, of the main paper, on Gibson [[7]. We observe similar patterns in the NRNS ablations



Table 1: Comparison of our model (NRNS) trained with different sets of passive video data and
tested on Image-Goal Navigation on MP3D [6]. We report average Success and Success weighted by
inverse Path Length (SPL) @ 1m. Results shown are tested without sensor & actuation noise.

Easy Medium

Path Type Training Data Model Succt SPLT  Succt SPL7T
RealEstate10k [5] NRNS 4458 3927 1581 10.73

Straight Gibson NRNS 59.20 54.12 2290 19.34
MP3D NRNS 64.70 58.23 39.70 32.74

MP3D BC w/ResNet + GRU  30.20 29.57 12.70 12.48
RealEstate10k [5] NRNS 9.43 496 5.30 2.86

Curved Gibson NRNS 12.10 5.66 8.48 4.92
MP3D NRNS 23.70 12.68 16.20 8.34

MP3D BC w/ResNet + GRU  3.10 2.61 0.80 0.77

results on MP3D as on Gibson. We again see that the Global Policy Gp has the greatest effect on
performance out of all modules particularly on episodes with more difficult settings.

Table 2: Ablations of NRNS with baselines on Image-Goal Navigation on MP3D [6]]. We report
average Success and Success weighted by inverse Path Length (SPL) @ 1m. X denotes a module
being replaced by the ground truth labels and a v denotes the NRNS module being used.

NRNS Ablation Easy Medium Hard
Path Type Ggra Gr Gp Succt SPL1T Succ? SPL1T Succt SPLT

X X X 100.00 100.00  99.80 99.07 100.00 99.02
Straight XX 100.00 100.00  99.00 96.81  96.10 92.65
/X 7420 68.19 64.50 60.13  58.40 55.38
v v/ 64.70 5823  39.70 3274 2230 17.33
X X X 100.00 94.08 99.90 9539 100.00 97.00
Curved X X 100.00 93.06 97.70 90.22  91.60 82.87
v v X 62.20 5331 54.10 47.51 51.00 44.92
v v/ 2370 12.68 1620 8.34 9.10 5.14
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Figure 1: Comparison of the passive videos from different datasets used for training our NRNS
agent. MP3D and Gibson passive video frames are images of rendered environments using the habitat
simulator and therefore are similar in photo realism. RealEstate10K video frames are taken directly
from a real estate tour YouTube video and therefore differ from MP3D and Gibson.
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