
A Appendix

A.1 A nonlinear Hebbian learning rule: model and notation

We take a neuron receiving K time-varying inputs xi(t), each filtered through a connection with
synaptic weight Ji to produce activity n(t). We consider learning rules where the update of Ji can
depend on the postsynaptic activity n(t), the local input xi(t), and the current synaptic weight Ji(t).
We encode these dependencies in a learning rule f :

f (n(t), xi(t), Ji(t)) = naxbiJ
c
i (1)

where a, b 2 Z+ and c 2 R. Finally, we assume that the synaptic weights are homeostatically
regulated [9]. Together,

Ji(t+ dt) =
Ji(t) + (dt/⌧) f(n(t), xi(t), Ji(t))

||J + (dt/⌧)f ||p
(2)

where dJi = Ji(t+ dt)� Ji(t), ⌧ is a learning timescale, and ||x||p is the `p norm of x.

We will model the neuron as a simple linear unit, n(t) =
�
Jx
�
(t). Note that taking n(t) =

�
Jx
�a
(t)

and f (n(t), xi(t), Ji(t)) = n(t)xb
i (t)J

c
i (t) yields the same weight update as (eq. 1). As observed

by [74], it is the composition of the neural nonlinearity and the output-dependent nonlinearity in
the learning rule that determines the effective nonlinearity of the output-dependence in learning.
A power-law neural transfer function has been shown to approximate biological models near their
spiking threshold [75, 76].

We follow Oja [10] and expand in powers of dt (equivalently, in 1/⌧ or dt/⌧ ) which yields to linear
order,

⌧
dJi
dt

= f (n(t), xi(t), Ji(t))� Ji
X

j

Jj |Jj |
p�2f (n(t), xj(t), Jj(t))

= naxbiJ
c
i � Jin

a
X

j

Jj |Jj |
p�2xbjJ

c
j

(3)

We suppressed the time-dependence of x and J here and onwards. We will assume, as is standard,
that learning is slow (dt/⌧ ⌧ 1). In this case, individual changes in synaptic weights are small. If the
inputs x are stationary (at least within a timescale T , dt ⌧ T ⌧ ⌧ ) and have finite joint moments up
to order a+ 1, the dynamics average over the statistics of x [77] so that

⌧ J̇i = Jc
i

X

↵

µi,↵(J
⌦a)↵ � Ji

X

j,↵

Jc+1
j |Jj |

p�2µj,↵(J
⌦a)↵ (4)

where J̇i(t) = (1/T )
R t+T
t dt0 (dJi/dt)(t0) and µi,↵ = hxb

i (x
⌦a)↵ix ⇡

(1/T )
R t+T
t dt0 xbi (t)(x⌦a)↵(t) is a (a + b)-order joint moment of x and an (a + 1)-order

tensor. The order of the tensor refers to its number of indices, so a vector is a first-order tensor and a
matrix a second-order tensor. Since µ is a correlation tensor of x each of its modes has the same
range, 1, . . . ,K. We also use multi-index notation: ↵ = k1, k2, . . . , ka. Sums over any index run
from 1 to K unless otherwise specified.

A.2 Proofs

Theorem 1. In eq. 2, take (b, c) = (1, 0). Let µ be a cubical, symmetric tensor of order a+ 1 and

orthogonally decomposable (odeco) into R components:

µ =
RX

r=1

�r (Ur)
⌦a+1 (5)

where U is a matrix of unit-norm orthogonal E-eigenvectors: UTU = I . Let �i > 0 for each

i 2 [R] and �i 6= �j 8 (i, j) 2 [R]⇥ [R] with i 6= j. Then for each k 2 [R]:

1. With any odd a > 1, J = ±Uk are attracting fixed points of eq. 2 and their basin of attrac-

tion is
T

i2[R]\k

n
J :
��UT

i J/UT
k J
�� < (�k/�i)

1/(a�1)
o

. Within that region, the separatrix of

+Uk and �Uk is the hyperplane orthogonal to UT
k : {J : UT

k J = 0}.
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2. With any even positive a, J = Uk is an attracting fixed point of eq. 2 and its basin of

attraction is
�
J : UT

k J > 0
 T

i2[R]\k

n
J : UT

i J/UT
k J < (�k/�i)

1/(a�1)
o

.

3. With any even positive a, J = 0 is a neutrally stable fixed point of eq. 2 with basin of

attraction

n
J :
PR

j=1(U
T
j J)2 < 1 ^UT

k J < 0 8 k 2 [R]
o

.

Proof. Note that because the eigenvalues of µ are distinct, U is unique [47]. Reshaping µ from an
order a+1 tensor with each fiber of length K to µ(n), a K ⇥Ka matrix with the rows equal to mode
n of µ, yields the matricized form [23]

µ(n) = U⇤
�
U�a

�T (6)

where ⇤ = diag(�1, . . . ,�R) and � is the columnwise Khatri-Rao product; U�a is the a-fold
Khatri-Rao product of U with itself, a Ka

⇥R matrix. Let J(t) ⌘ Uv(t). From the mixed-product
property of the Kronecker and dot products,

J⌦a = U⌦av⌦a (7)

where ⌦ is the Kronecker product; U⌦a is the a-fold Kronecker product of U with itself, a Ka
⇥Ra

matrix. (For vectors, the Kronecker product is the vector outer product.) We insert the decomposition
of µ(n) and this projection of J into the plasticity dynamics, eq. 2 with c = 0:

⌧ J̇ =µ(n)J
⌦a

� J � JTµ(n)J
⌦a

⌧Uv̇ =U⇤(U�a)TU⌦av⌦a
�Uv � vTUTU⇤(U�a)TU⌦av⌦a

(8)

where � is the elementwise product. Since U is orthogonal so are U⌦a and U�a and (U�a)TU⌦a =
I , where I is a R⇥Ra identity matrix that picks out diagonal elements of v⌦a. Let ⌃ = ⇤I , so

⌧Uv̇ =U⇤Iv⌦a
�Uv � vT⇤Iv⌦a

⌧ v̇ =⌃v⌦a
� v � vT⌃v⌦a, or

⌧ v̇i =vai �i � vi

RX

j=1

�jv
a+1
j

(9)

Note that for any i, vi = 0 is an equilibrium. In the standard Oja rule (a = 1), all other equilibria are
on the unit sphere, S = {v :

P
i v

2
i = 1}, which is a globally attracting manifold [11]. Is this still

the case? Let
S(v) =

X

i

v2i , L(v) =
X

j

�jv
a+1
j (10)

so
⌧

2
Ṡ = L (1� S) (11)

If a is odd, L(v) > 0 for any v, so S = 1 is a global attractor for S and S is a globally attracting
manifold for v. If a is even, S is attracting from regions where L(v) > 0 but repelling from regions
where L(v) < 0.

What points in S are fixed points? From eq. 9, we have for each i either v⇤i = 0 or it obeys the fixed
point equation

v⇤i = (L⇤/�i)
1/(a�1) (12)

where L⇤ = L(v⇤). This implies that if v⇤i 6= 0,

v⇤i = ±�
1/(1�a)

i

 
X

j:v⇤
j 6=0

�
2/(1�a)

j

!�1/2

(13)

In what follows, we will see that the sparse points on S , with one vk = 1 (±1 if a odd) and the rest at
0, are the only attractors and determine their basins of attraction.
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Are the sparse points stable? The Jacobian of eq. 9 is

@v̇i
@vk

=�ik

0

@a�iv
a�1
i � (a+ 2)�iv

a+1
i �

X

j 6=i

�jv
a+1
j

1

A+ (1� �ik)vi(a+ 1)�kv
a
k (14)

At a sparse fixed point, the Jacobian is diagonal. At a sparse v⇤ with 1 at element j, the Jacobian
eigenvalues are �2�j and, with multiplicity R� 1, ��j so those positive sparse points are stable. At
a sparse vector with -1 at element j, the Jacobian eigenvalues are 2�j(�1)a, and with multiplicity
R� 1, �j(�1)a. So the negative sparse points are stable if a is odd and unstable if a is even.

What are the basins of attraction of the stable sparse points? Can any non-sparse equilibria be stable?
Following [11], we consider the change of variables

yi =
vi
vk

, i 6= k (15)

for some vk 6= 0. We examine the joint dynamics of the loading onto the normalizing eigenvector, vk,
and the relative loadings onto the other eigenvectors, yi. These are

⌧ ẏi =va�1
k yi

�
ya�1
i �i � �k

�
, i 6= k

⌧ v̇k =vak

0

@�k � v2k

0

@�k +
X

j 6=k

�jy
a+1
j

1

A

1

A (16)

The nullclines for vk are v⇤k 2
�
0,±

p
�k/(�k+

P
j 6=k �jy

a+1
j )

 
(vk = 0 is a hyperplane equilibrium

for the whole system, but the coordinate transform is singular at it). Checking sign(v̇k) on either side
of v⇤k = ±

p
�k/(�k+

P
j 6=k �jy

a+1
j ) reveals that those nullclines for vk are both attracting with respect

to vk for any finite yi.

The stability of v⇤k = 0 depends on the parity of a. The y-nullclines are y⇤i 2 {0,±(�k/�i)
1/(a�1)

}.
(If a is odd we have both roots, while if a is even we have only the + root.) These nullclines also
depend on the parity of a.

Case 1: odd a. First consider v⇤k = 0. Note that with a odd, �k +
PR

j=2 �jy
a+1
j � �k > 0. From

eq. 16, sign(v̇k) = sign(vk) when a is odd. So, vk is repelled from 0.

Now consider the y-nullclines. For any vk 6= 0, checking the sign of ẏi reveals that yi = 0 is an
attractor and yi = ± (�k/�i)

1/(a�1) are both repellers. Recall that v⇤k = ±
p

�k/(�k+
P

j 6=k �jy
a+1
j ) is

attracting along vk for any finite y. Together, the only attracting equilibria in vk,y can be at vk = ±1
and each yi = 0. Since the columns of U are orthonormal, vk = UT

k J = ±1 implies that J = ±Uk.
The basin of attraction of these equilibria are defined by the other, unstable nullclines.

Back in the space of v, those are the unstable hyperplanes vi/vk = ±(�k/�i)
1/(a�1) and the repelling

nullcline v⇤k = 0. Each unique pair vi, vk generates one such pair of unstable hyperplanes, all passing
through the origin. All of the equilibria points v⇤

2 S identified earlier, with at least two nonzero
elements, lie on at least one of those unstable hyperplanes and are thus unstable. Since S is a global
attractor, these R(R� 1) + 1 hyperplanes partition RR into the basins of attraction of each sparse
point with one vk = ±1 and the others 0, which are the only attractors.

Case 2: even a. Let vk > 0 in the definition of y. (If L(v) > 0 and a even, at least one vk must
be positive.) Checking the sign of ẏi then reveals that for each i 6= k, y⇤i = 0 is an attractor while
y⇤i = (�k/�i)

1/(a�1) is repelling. So the hyperplane vi = vk(�k/�i)
1/(a�1) is unstable. Each unique

pair of axes vi, vk has such an unstable hyperplane where vk > 0.

If vk(0) > 0, vk cannot cross zero since vk = 0 is an equilibrium for the whole system. Furthermore,
if vk = ✏wk,

⌧ ẇk = ✏a�1�kw
a
k +O(✏a+1) (17)

so vk is repelled by 0 from above. So if vk > 0 and each yi < (�k/�i)
1/(a�1), the relative loadings yi

will all approach zero. Let each yi = 0, so

⌧ v̇k = �kv
a
k

�
1� v2k

�
(18)
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with a stable equilibrium at vk = 1. (The equilibrium vk = �1 is excluded by construction.)
Each sparse point with vk = 1, y = 0 corresponds to a sparse equilibrium for the loadings with
vi = 0, i 6= k. Together, the only attracting equilibria in vk,y can be at vk = ±1 and each yi = 0.
Since the columns of U are orthonormal, vk = UT

k J = ±1 implies that J = ±Uk. The basin of
attraction of these equilibria are defined by the other, unstable nullclines.

Each positive sparse point, with vk = 1, lies inside a section of RR bounded by the R� 1 repelling
hyperplanes vi = vk(�k/�i)

1/(a�1) and/or the repelling axis vk = 0, and each such region contains
one such sparse point. So, those hyperplanes divide RR into the basins of attraction for the columns
of U .

Finally, v = 0 is an equilibrium of eq. 9. At v = 0, the Jacobian of eq. 9 is identically 0. Let v < 0
elementwise. Then L(v) < 0 so if S(v) < 1 then Ṡ < 0 (eq. 11). As S(v) ! 0, no vk can become
positive because vk = 0 is an equilibrium. In the section under S with v < 0, v thus approaches the
origin.

Corollary 1.1. Let Vk be the relative volume of the basin of attraction for J⇤ = UT
k . For odd a > 1,

Vk = R�1
RY

i=1

✓
�k

�i

◆1/(a�1)

(19)

Proof. We will compute the volume Vk of the basin of attraction for UT
k directly. Take a odd. Then

from theorem 1,

Vk =

Z
DJ

RY

i=1
i 6=k

✓

✓
Cik �

����
UT

i J

UT
k J

����

◆
(20)

where DJ =
QK

i=1 dJi and Cik =
⇣

�k
�i

⌘1/(a�1)

. We change variables to the relative loadings,

v = UTJ ; the Jacobian factor is vol(U), the product of the singular values of U . Since U is
orthogonal, its singular values are all 1. The integrals over vi, i 6= k, all factorize:

Z 1

�1
dvi ✓ (Cik|vk|� |vi|) = 2Cik|vk| (21)

which leaves

Vk = 2R�1

 
Y

i 6=k

Cik

!Z 1

�1
dvk |vk|

R�1 (22)

We choose bounds �x, x for
R
dvk and compute V (x):

Vk(x) = R�1(2x)R
Y

i 6=k

Cik (23)

Note that Ckk = 1, so
Q

i 6=k Cik =
Q

i Cik. Vk(x) is the volume of the set of weight vectors with
projection at least x onto UT

k that will converge to Uk. We recognize the factor of (2x)R as the
volume of an R-dimensional hypercube with edge lengths 2x. Normalizing by the volume of the
hypercube concludes the calculation.

For even a, integrating each vj over (0,1) and normalizing by the hypercube volume xR, rather than
(2x)R, yields the same result. The region with all vi > 0 is certainly part of the basin of attraction of
vk = 1, but not the whole basin which requires only vk > 0. This result thus provides a lower bound
of the volume of the basins of attraction for even a.

Corollary 1.2. Let Vk be the relative volume of the basin of attraction for J⇤ = UT
k . For even

positive a,

Vk =21�R

 
R�1

Y

i

✓
�k

�i

◆1/(a�1)

+ (R� 1)�1
X

j 6=k

Y

i 6=j

✓
�k

�i

◆1/(a�1)

+ (R� 2)�1
X

j,l 6=k

Y

i 6=j,l

✓
�k

�i

◆1/(a�1)

+ . . .+ 1

! (24)
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Proof. For even a, we compute

Vk =

Z
DJ ✓

�
UT

k J
� RY

i=1
i 6=k

✓

✓
Cik �

UT
i J

UT
k J

◆
(25)

as in corollary 1.1. The integrals over vi, i 6= k all factorize:
Z 1

�1
dvi ✓ (Cikvk � vi) (26)

and we choose a bound of �x for them, leaving

Vk(x) =

Z x

0
dvk

Y

i 6=k

(Cikvk + x) (27)

The proper normalization here is by 2R�1xR, with a factor of x from
R
dvk and (2x)R�1 from the

integrals
R
dvi.

Corollary 1.3. Let S be the unit R-sphere in RR
and Sk be the section of S in the basin of attraction

of J⇤ = UT
k . If a is odd, the surface area of Sk is

Ak = 2 tan�1 Cjk

R�1Y

i=1
i 6=j

�

✓
R� i

2

◆ p
⇡

�
�
R�i+1

2

� �
�
1 + C2

ik

�j�R/2

�
�
R�i+2

2

� 2F1

✓
1

2
,
R� i

2
,
R� j + 2

2
,

1

1 + C2
ik

◆!
.

(28)
If a is even, the surface area of Sk is

Sk =
⇣
tan�1 Cjk +

⇡

2

⌘R�1Y

i=1
i 6=j

1

2
�

✓
R� i

2

◆ 
2
p
⇡

�
�
R�i+1

2

� �
�
1 + C2

ik

�j�R/2

�
�
R�i+2

2

� 2F1

✓
1

2
,
R� i

2
,
R� j + 2

2
,

1

1 + C2
ik

◆!

(29)

Proof. We calculate the surface area by transforming to spherical coordinates with an azimuthal
angle ✓j 2 [0, 2⇡) and R � 2 polar angles ✓i 2 [0,⇡]. Without loss of generality, we place UT

k at
✓i = 0, ✓j = ⇡/2 for each j.

Take a odd. The unstable hyperplanes bounding the basin of attraction for UT
k are defined by the

azimuthal angle ✓i = ± tan�1 (�k/�i)
1/a�1 and polar angles ✓i = ⇡/2 ± tan�1 (�k/�i)

1/a�1. Let
Cik = (�k/�i)

1/a�1. The surface area of Sk with a odd is:

Sk =

Z tan�1 Cjk

� tan�1 Cjk

d✓j

R�1Y

i=1
i 6=j

Z ⇡
2 +tan�1 Cik

⇡
2 �tan�1 Cik

d✓i sinR�i�1 ✓i (30)

Take a even. The unstable hyperplanes bounding the basin of attraction for UT
k are defined by the

azimuthal angle ✓i = tan�1 (�k/�i)
1/a�1 and the polar angles ✓i = ⇡/2 + tan�1 (�k/�i)

1/a�1. The
other bounds for the basin of attraction are that they have positive loadings, UT

k J > 0. Those
correspond to the azimuthal angle �⇡/2 and the polar angles ⇡. The surface area of Sk with a even
is:

Sk =

Z tan�1 Cjk

�⇡
2

d✓j

R�1Y

i=1
i 6=j

Z ⇡

⇡
2 �tan�1 Cik

d✓i sinR�i�1 ✓i (31)
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Remark. For small eigenvalues �k, the limits of integration for the polar factors (e.g.,
R ⇡

2 +tan�1 Cik
⇡
2 �tan�1 Cik

d✓i sinR�i�1 ✓i) approach 0 and ⇡. (For even a, the upper limit is always ⇡.) For

small �k, those polar factors thus approach 1. This raises the hope that those products might be

truncated. The number of eigenvalues is, however, exponentially large in K: aK�1/a�1 [50, 51],

and standard algorithms for computing the singular value decomposition of a tensor have space

complexity O(Ka+1). We computed the first 20 singular vectors (eigenvectors) of µ, and they did not

decay to negligible values within those.

Corollary 1.4. In eq. 2, take (b, c) = (1, 0). Let µ be a cubical, symmetric tensor of order a + 1
and rank R, as in theorem 1, but with d equal eigenvalues. Let D be the index set of those equal

eigenvalues. Let SD 2 RR
be the unit d-sphere spanned by {UT

j : j 2 D} and let �SD be the unit

d-sphere spanned by {�UT
j : j 2 D}. Then:

1. With any odd a > 1, SD and �SD are attracting equilibrium manifolds of eq. 2. The basin

of attraction for SD is
S

k2D

T
i/2D

(
J : �

⇣
�k
�i

⌘1/(a�1)

< UT
i J

UT
k J

<
⇣

�k
�i

⌘1/(a�1)

)
. The

basin of attraction for �SD is
S

k2D

T
i/2D

(
J : �

⇣
�k
�i

⌘1/(a�1)

> UT
i J

UT
k J

>
⇣

�k
�i

⌘1/(a�1)

)
.

2. With any even positive a, Sd is an attracting equilibrium manifold of eq. 2 and its basin of

attraction is
S

k2D

✓
{J : UT

k J > 0}
T

i/2D {J : UT
i J

UT
k J

<
⇣

�k
�i

⌘1/(a�1)

}

◆
.

Proof. Since d eigenvalues of µ are equal, the eigendecomposition of µ is not unique. Call UT
D be

the set of the d eigenvectors with equal eigenvalues. Let

U 0 = UT (32)

where T is an orthogonal transformation within the subspace spanned by UT
D . For any such T , the

columns of U 0 are also eigenvectors of µ. Note that for any i /2 D, U 0T
i = UT

i .

As in the proof of theorem 1, let J = U 0v. Pick one k 2 D and choose T such that vj = 0 for each
j 2 D, j 6= k. This is a fixed point for the d� 1 loadings vj . For the remaining R� d+ 1 loadings,
the proof of theorem 1 follows.

In particular, for odd a, vk = 1 is an attractor with basin of attraction
T

i2[R]\D

n
J : � (�k/�i)

1/(a�1) < vi/vk < (�k/�i)
1/(a�1)

o
. This holds for each k 2 D. To-

gether, the basin of attraction for UT
D is the union of those basins of attraction. Similarly, the basin of

attraction for vk = �1 is
T

i2[R]\D

n
J : � (�k/�i)

1/(a�1) > vi/vk > (�k/�i)
1/(a�1)

o
, and the basin

of attraction for �UT
D is the union of those.

Recall that the eigendecomposition of µ is invariant under orthogonal transfomations [42]. That is,
prior to choosing T above, the eigenvectors UT

D can be replaced by any unit-norm linear combination
thereof. Any point on SD or �SD is thus an attractor with the same basin of attraction defined above.

For even a, the same argument applies; the boundaries of the basins of attraction are as specified in
theorem 1.

Theorem 2. In eq. 10, take b = 1, c = 0,a 2 ZN
+ , and consider N cubical, symmetric tensors, mµ,

each of order am +1 for m 2 [N ], that are mutually orthogonally decomposable into R components:

mµ =
RX

r=1

�mrU
T
r ⌦UT

r ⌦ · · ·⌦UT
r (33)
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with ||Ur||2 = 1 for each r 2 [R] and UT
i Uj = 0 for i 6= j. Let �mr � 0 and

P
m �mr > 0 for

each m, r 2 [N ]⇥ [R]. Let

S(J) =
RX

i=1

(UT
i J)2, L(J) =

NX

m=1

RmX

i=1

�mi(U
T
i J)am+1 (34)

Then:

1. S
⇤ = {J : S(J) = 1 ^ L(J) > 0} is an attracting set for eq. 10 and its basin of attraction

includes {J : L(J) > 0}.

2. For each k 2 [R], J = Uk is a stable equilibrium of eq. 10

3. For each k 2 [R], J = �Uk is a stable equilibrium of eq. 10 if
P

m m�k(�1)am < 0 (and

unstable if
P

m m�k(�1)am < 0)

4. Any other stable equilibrium must have UT
k J  0 for each k 2 [R].

Proof. We will prove the claims in the order of their statement in theorem 2. Let J(t) = Uv(t); we
again study the dynamics for the loadings:

⌧ v̇i =
X

m

�miv
am
i � vi

X

m,j

�mjv
am+1
j (35)

Let
S(v) =

X

i

v2i , L(v) =
X

m,j

�mjv
am+1
j (36)

At a fixed point for v, S and L must also be at a fixed point. The dynamics of S are
⌧

2
Ṡ = L (1� S) (37)

with fixed points at S = 1, L = 0. Let S = {v : S(v) = 1}, the unit sphere, and L = {v : L(v) =
0}. All fixed points v⇤ must be in S or L. A fixed point has each vi at a root of

P
m �miv

am
i � vi(v).

Furthermore, from eq. 35, we have that at a fixed point for any i, either vi = 0 or it obeys the fixed
point equation

L(v) =
X

m

�miv
am�1
i (38)

S is attracting from above the boundary set L = {v : L(v) = 0}. If v starts above L, will it remain
so? Is L attracting or repelling? Let L(v⇤) = ✏. Then

⌧ v̇i =
X

m

�miv
am
i +O(✏) (39)

Let v = v⇤ + ✏w, where v⇤
2 L and wi =

P
m �mi(v⇤i )

am , so

L(v⇤ + ✏w) =✏
X

m,n,j

�mj(v
⇤
j )

am�nj(v
⇤
j )

an +O(✏2)

=✏
X

j

 
X

m

�mj(v
⇤
j )

am

!2

+O(✏2) � 0

(40)

Points v⇤
2 L, if perturbed, will either 1) move above L or 2) if

P
j

�P
m �mj(v⇤j )

am
�2

= 0, stay on
L. So if L(v) > 0 at some time t, L(v) � 0 for all subsequent times and S

⇤ = {v 2 S|L(v) � 0}
is an attracting set for v.

The sparse vectors v⇤ with one element at ±1 and the others at 0 are in S. They correspond to
equilibria for J at the columns of ±U . Are those equilibria stable? The Jacobian of eq. 35 is

@v̇i
@vk

=�ik
X

m

0

@am�miv
am�1
i � (am + 2)�miv

am+1
i �

X

j 6=i

�mjv
am+1
j

1

A+ (1� �ik)vi
X

m

(am + 1)�mkv
am
k

=�ik
X

m

am�miv
am�1
i

�
1� v2i

�
+ (1� �ik)vi

 
Lvk +

X

m

am�mkv
am
k

!

(41)
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where we used the fixed point condition eq. 38. At a sparse fixed point, the Jacobian is diagonal. At a
sparse v⇤ with 1 at element j, the Jacobian eigenvalues are �2

P
m �mj and, with multiplicity R� 1,

�
P

m �mj so those are stable. At a sparse vector with -1 at element j, the Jacobian eigenvalues are
2
P

m �mj(�1)am and, with multiplicity R � 1,
P

m �mj(�1)am . So the sparse points with -1 at
element j are stable if

P
m �mj(�1)am < 0 and unstable if

P
m �mj(�1)am > 0.

Next we will study non-sparse equilibria. We again study the dynamics of the relative loadings
yi = vi/vk, i 6= k, for some vk 6= 0:

⌧ ẏi =yi

NX

m=1

vam�1
k

�
�miy

am�1
i � �mk

�

⌧ v̇k =
NX

m=1

vam
k

0

@�mk � v2k

0

@�mk +
X

j 6=k

�mjy
am+1
j

1

A

1

A
(42)

with nullclines for each yi at 0 and the other roots of
P

m vam�1
k

�
�miy

am�1
i � �mk

�
, and nullclines

for vk at 0 and the other roots of
P

m vam
k

⇣
�mk � v2k

⇣
�mk +

P
j 6=k �mjy

am+1
j

⌘⌘
. A fixed point

for v must also be a fixed point for (vk,y) for any k with vk 6= 0. If such a fixed point v̄ has at least
two nonzero elements v̄i, they must correspond to each ȳi on a nonzero nullcline.

Consider the yi-nullclines at the roots of
P

m vam�1
k

�
�miy

am�1
i � �mk

�
. Let yi(t) = ȳi + ✏wi(t),

where
P

m vam�1
k

�
�miȳ

am�1
i � �mk

�
= 0. The dynamics of wi are

⌧ ẇi =wi

X

m

(am � 1)�miv
am�1
k ȳam�1

i +O(✏) (43)

These nullclines ȳi are stable if
P

m(am � 1)�miv
am�1
k ȳam�1

i < 0, or equivalently
P

m(am �

1)�miv
am�1
i < 0. This is only possible if vi < 0: a condition directly on v. A stable fixed point

must thus have vi  0 for each i 6= k. This is true for any k with vk 6= 0. So, a stable fixed point
must have vi  0 for each i 2 [R].

A.3 Spiking models

So far, we have discussed learning in a neuron model with two major simplifying assumptions. First,
the neural output n depended only on the current input x(t). Synaptic kinetics, however, exhibit
nonzero time constants so that neural activity depends also on the recent history of its inputs. Second,
the neural output was a continuous, linear function of the inputs. Cortical neurons, however, spike.
We next relax these two assumptions. We introduce a generalized spike timing–dependent plasticity
(STDP) rule:

f (n(t), xi(t), Ji(t)) = AT �naxbiJ
c
i

�
(44)

where A = A(s) is the STDP kernel, a scalar function of each of the a post-post lags, b pre-
post lags and c synaptic weight lags. Here, the notation AT X denotes a functional inner product,
integrating over the time lags of the STDP kernel A and the tensor X (eq. 47). We use this functional
notation for simplicity and to emphasize the similarity with the simpler model of eq. 1. The case
a = 1, b = 1, c = 0 corresponds to classic pair-based STDP [78–80] while a = 2, b = 1, c = 0
corresponds to triplet STDP [45]. The commonly used triplet STDP model has two terms: a pair-
based depression and triplet-based potentiation. Here we first discuss STDP rules with one term and
then consider an arbitrary expansion of a plasticity model in STDP kernels [44]. Similarly to for
eq. 1, combining eq. 44 with a homeostatic normalization of the synaptic weights and a separation of
timescales between the neural and plasticity dynamics leads to

⌧ J̇i = AT �
hnaxbi in,xJ

c
i

�
� Ji

X

j

JjAT �
hnaxbjin,xJ

c
j

�
(45)

where hnaxbi in,x(t, s) is an order a + b joint moment density (correlation function) of the output
spike train and the inputs (which might be spike trains or any process admitting a finite joint moment
of this order). hin,x is the expectation over the joint density of the inputs x and the activity n.
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In contrast to the original case of eq. 2, these dynamics depend on a joint moment of the inputs and
output, rather than on just the input correlation. To calculate this joint moment, we will model the
postsynaptic activity as conditionally Poisson. With two additional assumptions, we can recast eq. 45
in a form that depends only on J and statistics of x. First we take the neural transfer function to be a
power-law nonlinearity, which matches the effective nonlinearity of mechanistic spiking models in
fluctuation-driven regimes [75, 81] and experimental observations [82, 83]. Second, we will assume
that the input to the nonlinearity is non-negative, restricting the average over p(x) to one over the
samples of x that can drive spiking.

With the STDP rule of eq. 44, homeostatic regulation of the p-norm of the synaptic weights, and a
separation of timescales between activity and plasticity, the plasticity dynamics are

⌧ J̇i = AT �
hnaxbi in,xJ

c
i

�
� Ji

X

j

Jj |Jj |
p�2AT �

hnaxbjin,xJ
c
j

�
(46)

where for fixed i and t we introduce the inner product over functions:

AT �naxb
iJ

c
i

�
(t) =

Z 1

�1
Ds A(s)n(t)

a�1Y

i=1

n(t+ si)
a+bY

j=a

xi(t+ sj)
a+b+cY

k=a+b+1

Ji(t+ sk) (47)

with integration measure Ds =
Qa+b+c

i=1 dsi. Now we must determine the input-output joint moment
hnaxbi in,x. This will depend on the input distribution, p(x), and the model for the neural activity
n(t). We take n(t) to be a Poisson process with stochastic intensity

rx(t) = �
�
GTx (t) + �(t)

�
(48)

where G(t, s) = J(t) �W (s) and GTx (t) =
P

j

R1
0 ds Gj(t� s)xj(s). That is, J is a vector of

synaptic weights and W is a vector of coupling kernels for each synapse. We fix the integral of each
elements of W at 1, so J sets the amplitude of synaptic interactions. �(t) models a deterministic
drive. We assume that W is fixed and plasticity only affects the weights, J . We will also assume that
GTx (t) + �(t) � 0.

Our strategy to compute the joint moment hnaxbi in,x has two parts. First, we decompose the joint
moment into cumulants. Second, we write each of those cumulants as a tensor product of J and a
cumulant of x. Only the second step depends on the neuron model.

The joint moment hnaxbi can be decomposed into a Bell polynomial in its cumulants:
*
n(t)

bY

l=1

xi(t+ sl)
a�1Y

m=1

n(t+ sb+m)

+

n,x

=
X

⇡2⇧

Y

(P,Q)2⇡

**
Y

j2P
k2Q

n(t+ sj)xi(t+ sk)

++

n,x

(49)

where ⇧ is the set of all partitions of the time lags (0, s1, . . . , sa+b�1). (⇧ also corresponds to the set
of all partitions of the a factors of n and b factors of xi appearing in the joint moment. The first lag, 0,
corresponds to n(t).) For one such partition ⇡ 2 ⇧, each of its blocks (P,Q) contains indices j, k for
the time lags corresponding to factors of n or x. In one block (P,Q) of the partition ⇡, P is the set
of indices j correspond to factors of n while Q is the set of indices k corresponding to factors of x.

We will compute the joint expectation by factorizing p(n,x) = p(n|x)p(x). This will allow us to
write a each joint cumulant of n,x as a tensor product of J and a cumulant of x. Given x, a cumulant
of n is **

n(t)
MY

m=1

n(t+ sm)

++

n|x

= rx(t)
MY

m=1

�(sm) (50)

We will take �(x) = bxcd+ so a joint cumulant of ṅ,x is
**

n(t)
MY

m=1

n(t+ sN+m)
NY

n=1

xn(t+ sn)

++

n,x

=

****
ṅ(t)

Y

m

ṅ(t+ sN+m)

++

n|x

Y

n

xn(t+ sn)

++

x

=

**
bGTxcd+(t)

Y

n

xn(t+ sn)

++

x

MY

m=1

�(sN+m)

(51)
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and if GTx � 0 for all x then bGTxcd+ =
P

↵(G
d)T↵(x

d)↵ so

**
n(t)

a�1Y

m=1

n(t+ sb+m)
bY

l=1

xi(t+ sl)

++

n,x

=
X

↵

(Gd)T↵

**
(xd)↵

Y

l

xi(t+ sl)

++

x

(t, s1, . . . , sb)
a�1Y

m=1

�(sb+m)

(52)
These expansions of the input-output joint moment have a similar structure to the expansion of
arbitrary learning rules (section 2.3) with one main difference: the exponent of the neural transfer
function, d, also determines the relevant input moments because of the Poisson cumulants of n.

For example, take a = b = 1. The relevant joint moment hnaxbi in,x is

hn(t)xi(t+ s)in,x =
X

↵

(GT )↵h(x
d)↵ix(t)hxiix(t+ s1) +

X

↵

(GT )↵hh(x
d)↵(t)xi(t+ s1)iix

=
X

↵

(GT )↵h(x
d)↵(t)xi(t+ s1)ix

(53)
where hh(xd)↵xiii = h(xd)↵xii � h(xd)↵ihxii denotes the second cumulant of (xd)↵ and xi, not a
d+ 1-order cumulant of x, since the factor of xd arises from the intensity of n. For a = b = 1, the
decomposition of hnaxbi in,x reduces to just the inner product of Gd with a d+ 1-order moment of
the inputs, evaluated at one set of time lags. The decomposition of hnaxb

i in,x does not always reduce
to just one term like that. As a second example, take a simple triplet STDP rule (a = 2, b = 1). The
relevant joint moment hnaxb

i in,x is

hn(t)n(t+ s2)xi(t+ s1)i =
X

↵

(Gd)T↵hh(x
d)↵(t)xi(t+ s1)iix�(s2)

+
X

↵

(Gd)T↵h(x
d)↵ix(t)�(s2)hxiix(t+ s1)

+
X

↵

(Gd)T↵h(x
d)↵ix(t)

X

�

(Gd)T� hh(x
d(t+ s2))�xi(t+ s1)iix

+
X

↵

(Gd)T↵h(x
d)↵ix(t+ s2)

X

�

(Gd)T� hh(x
d)�(t)xi(t+ s1)iix

+
X

↵

(Gd)T↵h(x
d)↵ix(t)

X

�

(Gd)T� h(x
d)�ix(t+ s2)hxiix(t+ s1)

(54)
We can recognize two moments of the input here, combining the first and second lines and either the
third or fourth with the fifth:

hn(t)n(t+ s2)xi(t+ s1)in,x =
X

↵

(Gd)T↵h(x
d)↵(t)xi(t+ s1)i�(s2)

+
X

↵

(Gd)T↵hx
d
i↵(t)

X

�

(Gd)T� h(x
d)�(t+ s2)xi(t+ s1)i

+
X

↵

(Gd)T↵h(x
d)↵i(t+ s2)

X

�

(Gd)T� hh(x
d)�(t)xi(t+ s1)ii

(55)
where all expectations on the right-hand side are with respect to the input distribution, p(x).

As discussed above, any joint moment hnaxb
in,x can be decomposed into joint cumulants hhnaxb

iin,x.
Each of those joint cumulants can be expressed as a tensor product of G with a cumulant of x. To
isolate the synaptic weights J , let y = W Tx so (Gd)T↵(x

d)↵ = (Jd)↵
�
(W Tx)d

�
↵
= (Jd)↵(yd)↵.

Since y = W Tx, joint cumulants of x,y are cumulants of x. So we can write any joint cumulant of
n,x as a tensor product of J with a cumulant of x. Using this and the cumulant decomposition of
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hnaxbiJc
i i in the learning dynamics, eq. 45, yields

⌧ J̇i =AT

0

BB@

0

BB@
X

⇡2⇧

Y

(P,Q)2⇡

X

↵

(Jd)T↵

**
Y

j2P
k2Q

(yd)↵(t)xi(t+ sk)

++

n,x

�(t+ sj)

1

CCA
cY

l=1

Ji(t+ sl)

1

CCA

� Ji
X

j

Jj |Jj |
p�2AT

0

B@

0

B@
X

⇡2⇧

Y

(P,Q)2⇡

X

↵

(Jd)T↵

**
Y

k2P
l2Q

(yd)↵(t)xj(t+ sl)

++

n,x

�(t+ sk)

1

CA
cY

m=1

Jj(t+ sm)

1

CA

(56)

Equation eq. 56 gives the dynamics of J as a function of J and weighted cumulant tensors of the
input x. It has, however, a different form than the corresponding dynamics of the non-spiking neuron
(eq. 2). First, the right-hand side is given y a sum of products of cumulant tensors with J⌦d, rather
than just a sum of products of cumulant tensors.

A.4 Weight-dependent plasticity

Above, we examined the dynamics of the generalized Hebbian rule with no direct weight-dependence
(c = 0 in eq. 1). In biological plasticity, this might not be the case. Within dendritic branches, spatially
clustered and temporally coactive synapses [40] exhibit cooperative plasticity [36, 41]. Multiplicative
weight-dependence also stabilizes Hebbian spike timing–dependent plasticity distributions [6, 7, 84].
As a first step towards incorporating these effects, we consider the dynamics of eq. 2 with c 6= 0.

In this case, steady states of the plasticity dynamics (eq. 2) are a new kind of tensor decomposition: J
is invariant under µ up to a scaling and elementwise exponentiation. Are these steady states attractors
of eq. 2? Unfortunately, the approach we used to prove theorem 1 does not allow us to answer this
question. We next outline the impediment.

Assuming µ is symmetric and odeco, inserting the orthogonal decomposition (eq. 5) and projecting
J onto its factors (as in the proof of theorem 1) yields the dynamics for the eigenvector loadings x:

⌧ ẋ =(Ux)�c �⌃x⌦a
� x �

�
xTU

��c+1
U⌃x⌦a+1 (57)

where x�c is the elementwise power of x and U is the matrix with columns composed of the
orthogonal components of µ (eq. 5). (Compare this to eq. 9 in the proof of theorem 1.) If c 6= 0, the
dynamics of the loadings x are not closed but depend on the structure of the factors in U . A general
analysis of how U impacts the evolution of x for c 6= 0 is beyond the scope of this study. We will
instead consider input distributions that impart simple structure to µ and analyze the fixed points of
eq. 2 for them.

In this section we also generalize the learning dynamics to incorporate a constraint on any p-norm of
the synaptic weight vector, rather than only its Euclidean norm. This introduces a factor of |Jj |p�2

into the second right-hand-side term of eq. 2 (appendix A.1).

A.4.1 Diagonal input correlations

We begin by analyzing inputs with constant-diagonal correlations, µ↵ = ��↵ with � > 0. These
could arise if at each time t, only one synapse can be activated and the remaining inputs are 0. In
that case the only nonzero contribution to µ would be hxb+a

i i. It is possible in this case µ = 0,
for example if xi ⇠ N (0, 1) and a+ b is odd. Then the leading-order contribution to J̇i would be
supralinear in dt. In this case eq. 2 reduces to

⌧

�
J̇i = Ja+c

i � Ji
X

j

Ja+c�1
j |Jj |

p (58)

We will analyze fixed points of eq. 58 and their stability. If J is a steady state of eq. 58, its Jacobian
matrix is

⌧

�

dJ̇i
dJk

= �ik
⇣
(a+ c)Jc+a�1

i �

X

j

Ja+c+1
j |Jj |

p�2
⌘
� (a+ c+ p� 1)JiJ

a+c
k |Jk|

p�2 (59)
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We will see that sparse connectivity, with one synaptic weight at 1 and the rest at zero, is always a
stable equilibrium. In addition, sparse connectivity with one weight at �1 is stable if a+ c is odd.
In addition to these fully sparse steady states, we identify partially sparse and uniform-magnitude
equilibria and conditions for their stability. We first state and prove these results. Then, we present
simulation results showing that even when other stable equilibria exist, the learning dynamics tend to
converge to the fully sparse equilibria.
Theorem 3. Let µ 2 RK⇥K⇥...⇥K = �� be a diagonal tensor of order a + 1 with all diagonal

elements equal to �, � > 0. Let a+ c = 1 with a � 1. Then the `p-sphere in RK
with unit radius is

an attracting slow manifold of eq. 2.

Proof. Setting J̇ = 0 in eq. 58 yields the steady-state requirement

J⇤ = J⇤
⇣X

j

|J⇤
j |

p
⌘

(60)

Whenever ||J⇤
||p = 1,

⇣P
j |J

⇤
j |

p
⌘
= 1 and vice versa. Any J⇤ with ||J⇤

||p = 1 is thus a steady
state of eq. 2. If ||J⇤

||p 6= 1, the only steady state is J⇤ = 0.

We next consider the linear stability to perturbations around an element J⇤ of the `p-sphere. The
Jacobian at J⇤ is of rank one:

dJ̇i
dJk

= �
�p

⌧
J⇤
i
|J⇤

k |
p

J⇤
k

(61)

with eigenvalues �(�p/⌧)�̂, where �̂ is an eigenvalue of A, Aik = J⇤
i |J

⇤
k |

p/J⇤
k . The characteristic

equation for A is

J⇤
i

X

k

|J⇤
k |

p

J⇤
k

v̂k = �̂v̂i (62)

where v̂ is an eigenvector of A. Matching indices, the eigenvector v̂ with unit `p-norm is identical to
J⇤ and it has eigenvalue �̂ = 1. For a+ c = 1, any J⇤ on the p-sphere is thus a steady state with one
Jacobian eigenvalue ��p/⌧ , corresponding to the eigenvector J⇤. The remaining K � 1 eigenvalues
are zero, so the orthogonal complement of J⇤ is a slow subspace for the linearized dynamics. Each
point on the `p K-sphere has such a slow subspace. Together, the `p K-sphere is a linearly stable
slow manifold. Is it globally attracting? Let

L =
KX

i=1

|Ji|
p (63)

The total derivative of L with respect to time is

dL

dt
= p

X

i

Ji|Ji|
p�2J̇i =

p�

⌧
L (1� L) (64)

which has a stable fixed point at L = 1 and an unstable point at L = 0. The full synaptic weight
dynamics thus must admit a globally attracting subspace on the `p K-sphere. Those dynamics are
symmetric with respect to rotations of the axes, so that subspace must be the full sphere.

Remark. Theorem 3 generalizes the corresponding result for Oja’s rule that, when the inputs are

zero-mean and uncorrelated (µi,j = ��i,j), the `2-sphere is a slow manifold of its dynamics. On it,

however, the mean-field dynamics of eq. 58 vanish - so a full accounting of the weight dynamics must

examine fluctuations.

To illustrate these results, we simulated the learning dynamics with individually presented, identically
distributed (standard normal) inputs. Since at each time point only one input is presented, the input
correlation tensors are diagonal. We first examined the classic Oja rule, taking (a, b, c) = (1, 1, 0).
As expected, the synaptic weights exhibited random motion (fig. A.4.1a). Their p-norm was fixed and
synaptic weights initialized off the unit p-sphere quickly converged onto it as predicted by Theorem
3 (fig. A.4.1b).

Next we examined a different parameter set with a+ c = 1: (a, c) = (2,�1). We kept b = 1. In this
case, we observed the synaptic weights converge to a sparse solution with one nonzero synapse with
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Figure 4: Dynamics of nonlinear Hebbian plasticity rules with weight-dependence and diagonal input
correlations: the case a+ c = 1. For all panels, we used K = 10 inputs and a learning rate ⌘ = 10�2.
On each time step one uniformly chosen synapse received a normally distributed (mean 1, variance
1) input and the rest had 0 input. a, b) Example synaptic weight dynamics with p = 2. c, d) Norm
of the synaptic weight vector. Solid lines: mean over 20 random initial conditions. Shaded areas:
standard error. Each curve describes simulations from initial conditions with different norm.

magnitude 1 (fig. A.4.1c). This convergence occurred over a longer timescale than the convergence
to the unit sphere for (a, c) = (1, 0). For that previous parameter set, we did not observe synaptic
weights converge to these sparse solutions even over this longer timescale (simulation not shown).
With (a, c) = (2,�1), the dynamics converged to sparse equilibria for different values of p and
for synaptic weights initialized with different variances (fig. A.4.1d). This solution is on the unit
p-sphere so does not contradict Theorem 3. It is, however, more particular. Next we examine sparse
and partially-sparse equilibria, and their stability, for integer-valued a+ c. We begin by examining
even a+ c, then odd.
Theorem 4. Take a+ c even and µ 2 RK⇥K⇥...⇥K = �� be a diagonal tensor of order a+ 1 with

all diagonal elements equal. Let {J⇤
2 RK

} be the set of n-sparse vectors with n nonzero elements

|J⇤
i | = n�1/p

. Any such vector where all elements share a sign, J⇤
i = ⇠n�1/p

where ⇠ 2 {�1, 1},

is a steady state of eq. 58.

Proof. Let J⇤ be a n-sparse vector with nonzero elements J⇤
i = ⇠in�1/p, where ⇠i 2 {�1, 1}. Note

that with ⇠ = 1, J⇤ is a steady state solution of eq. 58.

Without loss of generality, permute J⇤ so that its first n elements are nonzero and last K�n elements
are zero. Now, set one element ⇠i = �1 and insert this solution for J into the steady-state condition.
Since a+ c is even, this yields

1� n =
nX

j=1
j 6=i

⇠j (65)

⇠j 2 {�1, 1}, so this requires that ⇠ = �1. If one element of ⇠ is negative, all must be. The n-sparse
vector with nonzero elements J⇤

i = �n�1/p is also a steady state of eq. 58.

Corollary 4.1. If c = 0 and a = 2, and µ has finitely many E-eigenvectors, then {J⇤
} contains all

the steady states of eq. 2.
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Proof. Since c = 0, steady state solutions of eq. 2 are also E-eigenvectors of µ. If µ is a tensor of
order 3 with finitely many E-eigenvectors, then it has 2K�1 E-eigenvectors, counted with multiplicity
[50, 51].

The set of n-sparse vectors with elements J⇤
i = ⇠in�1/p, where ⇠ 2 {�1, 1}, contains steady states

of eq. 58. There are
KX

n=1

✓
K

n

◆
= 2K � 1

such steady states with ⇠ = 1. The corresponding E-eigenvalues are � =P
j,↵ Jj |Jj |p�2µj,↵(J

2)↵ = �⇠n�1/p. The factor of ⇠ cancels out in the E-eigenvector/E-eigenvalue
equation. So with c = 0, a = 2, each of the n-sparse steady states with nonzero elements
J⇤
i = ⇠n�1/p is proportional to an E-eigenvector of ��. Any other vector J⇤ proportional to

an E-eigenvector of µ would not be a steady state of eq. 58, since the constant of proportionality
would obtain a power of 2 in one term of eq. 58 and a power of 2 + p in the other term.

Theorem 5. Take a+ c odd and µ 2 RK⇥K⇥...⇥K = �� be a diagonal tensor of order a+ 1 with

all diagonal elements equal. Let {J⇤
2 RK

} be the set of n-sparse vectors with n nonzero elements

J⇤
i = ⇠in�1/p

where each ⇠i 2 {�1, 1}. Any such J⇤
is a steady state of eq. 58.

Proof. Let J⇤ be a n-sparse vector with nonzero elements J⇤
i = ⇠in�1/p, where ⇠i 2 {�1, 1}. Since

a+ c is odd, a+ c� 1 is even and the steady-state condition for J⇤ is invariant to ⇠. Each such J⇤

is a steady state of eq. 58.

Corollary 5.1. If c = 0, a = 3, and µ has finitely many E-eigenvectors, then {J⇤
} contains all the

steady states of eq. 2.

Proof. The proof follows the same construction as for Theorem 4.1. Each steady state of eq. 58
corresponds to an E-eigenvector of µ. For a = 3, there are (if finitely many) (3K � 1)/2 E-
eigenvectors of µ. The set of n-sparse vectors with elements J⇤

i = ⇠in�1/p, where ⇠i 2 {�1, 1},
contains steady states of eq. 58. There are

PK
n=1 2

n
�K
n

�
= 3K � 1 such steady states. For each n,

two of them are equal up to a global sign change which will cancel out with the E-eigenvalue in the
E-eigenvalue / E-eigenvector equation. Any other vector J⇤ proportional to an E-eigenvector of µ
would not be a steady state of eq. 58, since the constant of proportionality would obtain a power of 3
in one term of eq. 58 and a power of 3 + p in the other term and p � 1. So these steady states are
all of the weight vectors corresponding to the E-eigenvectors of µ, and they correspond to all of the
E-eigenvectors.

Theorem 6. Let µ 2 RK⇥K⇥...⇥K = �� be a diagonal tensor of order a + 1 with all diagonal

elements equal. Let {J⇤
} be the set of n-sparse vectors with n nonzero elements and K � n zero

elements, with nonzero elements J⇤
i = ⇠in�1/p

where ⇠ 2 {�1, 1}. Let a+ c 6= 1. Then the vectors

in {J⇤
} that are linearly stable steady states of eq. 2 are:

1. Fully sparse solutions with one synaptic weight at 1, unless a+ c < 1

2. Fully sparse solutions with one synaptic weight at -1, unless either a) a + c is even and

a+ c > 1 or b) a+ c is odd and a+ c < 1,

3. All n-sparse vectors with each ⇠i = 1, if a+ c = 0,

4. Flat solutions at J = K�1/p1, if a+ c  0 and even (if p = 1 it is marginally stable),

5. n-sparse solutions with m � 1 weights at �n�1/p
and n�m weights at n�1/p

, if a+ c < 1
and odd.

Remark. If c = 0 and a 2 {2, 3}, then {J⇤
} contains all steady states of eq. 58; so the only stable

steady states of eq. 58 are those described. Otherwise there might be others.

14



Proof. We separate the proof into sections describing the different equilibria. We begin with the fully
sparse equilibria with one nonzero weight Jj = ⇠, where ⇠ 2 {�1, 1}. Fully sparse equilibria. The
Jacobian, eq. 59, reduces to

⌧

�

dJ̇i
dJk

= ��ik⇠
a+c�1 (a+ c� 1� �ij(a+ c+ p� 1)) (66)

where j is fixed. The Jacobian is diagonal and its eigenvalues are �1 = �⇠a+c�1(a+ c� 1), with
algebraic multiplicity K � 1, and �2 = �⇠a+c�1(a+ c+ p� 1). The fully sparse equilibrium with
⇠ = 1 is thus stable unless a+ c < 1. The fully sparse equilibrium with ⇠ = �1 is unstable if either
1) a + c is odd a + c < 1 or 2) a + c is even and a + c > 1. The opposite conditions guarantee
stability. If a+ c = 1 the sparse solution is neutrally stable.

Now let the first 1 < n  K weights be nonzero and Jj = ⇠jn�1/p, j = 1, . . . , n. The n-sparse
solution has Jacobian

⌧

�

dJ̇i
dJk

=� �ikn
�(a+c+p�1)/p

0

@
nX

j=1

⇠a+c�1
j

1

A

+ ✓(n� i)✓(n� k)
⇣
�ik(a+ c)⇠a+c�1

i n�(a+c�1)/p
� (a+ c+ p� 1)n�(a+c+p�1)/p⇠i⇠k

⌘

(67)
We will first consider the case when a+ c is even and then when a+ c is odd.

Partially sparse and flat equilibria: a+ c even. In this case, all n nonzero weights have the same sign,
⇠, and

⌧

�

dJ̇i
dJk

= �⇠�ikn
�(a+c�1)/p+✓(n�i)✓(n�k)

⇣
�ik(a+ c)⇠n�(a+c�1)/p

� (a+ c+ p� 1)n�(a+c+p�1)/p
⌘

(68)
where ✓(x) is the Heaviside step function. The Jacobian is the sum of a diagonal matrix and a
block-constant matrix. It is similar to a block-diagonal matrix of the form

✓
zeneTn 0

0 0

◆
+

✓
xIn 0
0 yIK�n

◆
(69)

where Iq is the q ⇥ q identity matrix and en = (1, 0, . . . , 0), and the Jacobian eigenvalues are
⌧

�
�1 = x+ z = (a+ c)n�(a+c�1)/p

⇣
⇠ � n(p�1)/p

⌘
� (p� 1)n�(a+c+p�1)/p,

⌧

�
�2 = x = ⇠n�(a+c�1)/p(a+ c), with algebraicmultiplicity n� 1

⌧

�
�3 = y = �⇠n�(a+c�1)/p, with algebraicmultiplicityK� n

(70)

If 1 < n < K, the latter two eigenvalues guarantee instability whether a+ c > 0 or a+ c < 0, since
they share ⇠ = ±1. Let n = K, so �3 doesn’t exist. In this case,

�1 =K�(a+c+p)/p
⇣
(a+ c)

⇣
⇠K(p+1)/p

�K2
⌘
+K1/p(1� p)

⌘
(71)

and �1 is negative if
(a+ c)

⇣
K2�1/p

� ⇠K
⌘
< 1� p (72)

We can determine the behavior of �1 by recalling that p � 1 so K2�1/p
� K with equality at p = 1.

If p = ⇠ = 1, then �1 = 0 and the flat equilibrium has an associated slow direction. The equilibrium,
J = K�1/p1, is then marginally stable if �2  0, which occurs when a+ c < 0.

If p > 1 and a+ c > 0 then �1 > 0 for any K whether ⇠ = 1 or ⇠ = �1. If p > 1 and a+ c < 0,
then �1 < 0 for either sign of ⇠. In that case, �2 < 0 only if ⇠ = 1. So for p > 1 and even a+ c, the
uniform steady states with ⇠ = 1 is stable if a+ c < 0 and unstable if a+ c > 0.

If a+ c = 0, �2 = 0 and there are n� 1 slow directions associated with each n-sparse equilibrium
(since, in the basis of eq. 69, these eigenvalues are associated with the unit basis eigenvectors).
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Inspection of �1,�3 reveals that n-sparse equilibria are linearly stable with ⇠ = 1 and unstable with
⇠ = �1.

Partially sparse and flat equilibria: a+ c odd. Let n � 2. Without loss of generality, let the first
0  m  n nonzero weights be negative, the next n �m weights be positive, and the remaining
K � n weights be 0. The Jacobian is

⌧

�

dJ̇i
dJk

= ��ikn
�(a+c�1)/p+✓(n�i)✓(n�k)

⇣
�ik(a+ c)n�(a+c�1)/p

� (a+ c+ p� 1)n�(a+c+p�1)/p⇠i⇠k
⌘

(73)
which is a sum of block-diagonal and block-constant matrices,

✓
xIn 0
0 yIK�n

◆
+

✓
C 0
0 0

◆
(74)

where C is a n⇥ n block matrix, with entries Cik / ⇠i⇠k. We can calculate the eigenvalues of C by
noticing that it is the sum of constant and diagonal matrices. The final Jacobian eigenvalues are
⌧

�
�1 =n�(a+c�1)/p (a+ c� 1) ,

⌧

�
�2+ =n�(a+c�1)/p (a+ c� 1)

⇣
1 + (p/n)

⇣
m� (n�m) + 2 +

p
(n� 2)2 + 4m(n�m)

⌘
/2
⌘
,

⌧

�
�2� =n�(a+c�1)/p (a+ c� 1)

⇣
1 + (p/n)

⇣
m� (n�m) + 2�

p
(n� 2)2 + 4m(n�m)

⌘
/2
⌘
,

⌧

�
�3 =n�(a+c�1)/p (a+ c� 1) (1 + 2p/n) ,

⌧

�
�4 =� n�(a+c�1)/p, exists if n < K

(75)
If a+ c = 1, these are all zero except �4 which is negative. Take a+ c 6= 1 and odd. a+ c might be
positive or negative. If a+ c > 1, �1 and �3 guarantee instability. If a+ c < 1 then �1,�3,�4 are
all negative and the only possible instability is in �2±. The discriminant appearing inside the square
root in �2±, D, is strictly increasing with respect to n. Take �2+. If a+ c < 1, then for fixed n it is
maximized at m = 0:

�2+ 
�

⌧
n�(a+c�1)/p (a+ c� 1)

⇣
1 +

p

2n

⌘
< 0 (76)

so �2+ < 0 and �2� determines the stability. If a+ c < 1 then for fixed n, �2� is also maximimized
at m = 0:

�2� 
�

⌧
n�(a+c�1)/p (a+ c� 1)

⇣
1 + 2

p

n
� p
⌘

(77)

If a+ c < 1 and p = 1, that upper bound is always negative. If instead p > 1 and n < 2p/(p� 1),
then the upper bound for �2�(m) is positive: as long as m is sufficiently small, �2� can be positive.
�2� is negative if

m >
n(1� p) +

p
n2(p2 � 1) + 2p2(1� n)

2np
(78)

and �2� is positive if the inequality is reversed. That bound is less than or equal to

0 <
1� p+

p
p2 � 1

2p
< 1 (79)

and approaches it from below as n ! 1. So for a + c < 1 and odd (i.e., negative) at least one
negative synaptic weight is required to stabilize a n-sparse steady state.

We have constructed a number of steady states for the nonlinear Hebbian dynamics with weight
dependence and examined conditions for their stability. If c 6= 0 and a + c 6= 1, there are always
K stable sparse equilibria. In several cases, there are also other stable equilibria also (theorem 6).
eq. 2 is a limiting deterministic description (large ⌧ ) of an underlying stochastic dynamics, eq. 3.
Here we asked whether the fixed points we described above accurately describe the stochastic system.
To examine the learning dynamics with diagonal input correlations, we presented i.i.d inputs to one
synapse at a time. Since at each time point only one input is presented, the input correlation tensors
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are diagonal. We examined parameter sets in each of the cases of theorem 6. For odd a+ c > 0, the
only stable n-sparse equilibria are fully sparse with one weight at 1 or -1 (fig. A.4.1a). These were
also the only equilibrium we observed over 50 randomly chosen initial conditions (fig. A.4.1b). For
even a+ c > 0, the only stable equilibrium described in theorem 6 is fully sparse with one weight at
1. For such parameters, that was the only equilibrium we observed (fig. A.4.1c, d).
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Figure 5: Dynamics of nonlinear Hebbian plasticity rules with weight-dependence and diagonal
input correlations. For all panels, we used K = 10 inputs. The learning rate was ⌘ = 10�2 for all
panels except e-h, which had ⌘ = 10�3. a) Convergence to the sparse solution with one Ji = 1 for
a+ c > 0 and odd. b) Histogram of final synaptic weight values after T = 103 time steps, across 50
random initial conditions. Synaptic weights were averaged over the final 500 time points to smooth
out fluctuations for visualization. c) Convergence to the sparse solution with one Ji = 1 for a+ c > 0
and even. d) Histogram of final synaptic weight values (as in panel a). e) Convergence to the flat
solution at J = K�1/p1 for a+ c = 0. f) Histogram of final synaptic weight values (as in panel a).
g) Convergence to a bimodal distribution with 2 synaptic weights at �K�1/p and the remaining 8 at
K�1/p. h) Histogram of final synaptic weight values (as in panel a).

For a + c = 0, theorem 6 describes a combinatorial explosion of equilibria: each of the n-sparse
steady states is stable. There are

PK
n=1

�K
n

�
= 2K � 1 such points, each with n� 1 neutrally stable

directions. In simulations, we only observed convergence to the flat solution with n = K and all
weights at K�1/p (fig. A.4.1e, f). The stochastic dynamics we simulated contain terms proportional
to Jc

i ; this is the origin of the powers of c in eq. 58. Since c < 0 these factors explode for Ji ! 0.
So the only partially sparse solution consistent with the stochastic dynamics is the one with n = K
nonzero weights.

Finally, for a + c < 0, theorem 6 describes an even greater combinatorial explosion of equilibria.
Each n-sparse steady state with 1 < m < n negative weights and n�m positive weights is linearly
stable. There are

PK
n=1

�K
n

�Pn
m=1

�n
m

�
= 3K � 2K such equilibria. As before, however, if any

Ji ! 0 the stochastic dynamics would explode because of the factors Jc
i . (a+ c < 0 requires c < 0

since a > 0 by assumption.) So again, we see that the only possible steady states for the stochastic
dynamics have K nonzero weights (fig. A.4.1g, h). In this case there are

�K
m

�
equilibria with m

negative synaptic weights and
PK

m=1

�K
m

�
= 2K � 1 such equilibria in total. With odd a+ c < 0,

any of these are stable and we observed convergence to various of them (fig. A.4.1g, h). For even
a+ c < 0, only the flat solution with all weights at K�1/p are linearly stable. In simulations, we did
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not observe convergence to this solution. Instead we observed large fluctuations characterized by
prolonged excursions of individual synaptic weights (fig. A.4.1a, b). When a+ c 6= 1, the dynamics
of the synaptic weight norm are not closed. With a + c < 0 and even, the unit-norm `p-sphere
appeared unstable in simulations (fig. A.4.1c, d).
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Figure 6: Large fluctuations in synaptic weights for a+ c < 0 and even. a) Example dynamics for
two different parameter sets. b) Evolution of the synaptic weight norm over 20 realizations. c) Impact
of decreasing the learning rate.

A.4.2 Rank one input correlations

Let µ = ra+1, the (a+1)-fold outer product of the vector r. This corresponds to the case of constant
inputs. The dynamics reduce to

⌧ J̇i = riJ
c
i (r

TJ)a � Ji(r
TJ)a

X

j

rjJ
c�1
j |Jj |

p (80)

and at steady states,
riJ

c
i (r

TJ)a = Ji(r
TJ)a

X

j

rjJ
c�1
j |Jj |

p (81)

Weights orthogonal to the input direction, rTJ = 0, are a steady state. Otherwise, we see that Ji = 0
is always a steady state for c > 0. If ri = 0, then either Ji = 0 or

P
j rjJ

c�1
j |Jj |p = 0. If J is a

steady state, the Jacobian is

⌧
dJ̇i
dJk

= �ik(rJ)
a
�
cJc�1

i ri � Jc�1
j |Jj |

prj
�
+a(rJ)a�1

�
Jc
i ri � JiJ

c�1
j |Jj |

prj
�
rk�(c+p�1)(rJ)aJiJ

c�1
k |Jk|

prk

(82)
where (rTJ)0=1, including at rTJ = 0. At an orthogonal steady state, rTJ = 0, the Jacobian
simplifies to exactly 0 so that direction defines a slow subspace of the linearized dynamics.

By definition, r is an E-eigenvector of µ with eigenvalue ||r||2a2 and µ has a rank one CP decomposi-
tion in r. So if (b, c) = (1, 0), J = r is an attracting steady state of eq. 80 (theorem 1). Here we
focus on the dynamics with weight-dependence. We study the simple case of c = 1 and a piecewise
constant r with n elements equal to r, and the remaining zero. We see that in this case, the unit-norm
n-sphere is an equilibrium set for the dynamics and determine when it is stable.
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Theorem 7. Let µ 2 RK⇥K⇥...⇥K = ra+1
be a rank one tensor of order a + 1, the (a + 1)-fold

outer product of r, where r 2 RK
. Let r be n-sparse and piecewise constant, with n nonzero

elements equal to r and the remaining K � n elements zero. Let

M(J) =
KX

i=1

Ji (83)

and name S the unit `p n-sphere in RK
, with nonzero elements on the dimensions corresponding to

the nonzero elements of r. If c = 1 then

1. The K � n elements of J corresponding to the zero elements of r have a fixed point at zero.

It is stable if M(J) > 0 and unstable if M(J) < 0.

2. S is a slow manifold for the dynamics of the remaining n synaptic weights. It is stable if a
is odd or r > 0 and unstable if both a is even and r < 0.

Proof. Let r be n-sparse and piecewise constant, with its first n elements equal to r and the remaining
K � n elements zero. Assume that J 6= 0. We proceed in order of the claims. First consider the
K � n inputs where ri = 0. For c = 1, their dynamics are

⌧ J̇i = �ra+1Ma(J)L(J)Ji (84)
where

L(J) =
KX

i=1

|Ji|
p (85)

L � 0 by definition with equality only at J = 0. So if ra+1Ma > 0, these weights will converge to
a steady state at zero. If ra+1Ma < 0, these weights will diverge exponentially. If M is fixed at 0
these weights are stable.

Second consider the dynamics of the n weights with nonzero ri, which reduce to

⌧ J̇i = ra+1Ma(J) (1� L(J)) Ji (86)
and the steady state condition for Ji is that either Ji = 0, M = 0 or L = 1. So we have steady states
for the first n elements of J on either the `p n-sphere or on the hyperplane orthogonal to 1 (and the
trivial steady state Ji = 0). Next we examine stability for those n weights at one such point J⇤.
From eq. 82, the Jacobian matrix at J⇤ has rank one

⌧
dJ̇i
dJk

= �pra+1Ma(J⇤)J⇤
i |J

⇤
k |

p (87)

It has one eigenvalue �(p/⌧)ra+1Ma(J⇤)
P

j Jj |J
⇤
j |

p, with associated eigenvector J⇤. The re-
maining n� 1 eigenvalues are zero, and the orthogonal complement of J⇤ is their slow eigenspace.
Each point J⇤ on the `p n-sphere has such a slow eigenspace so the full sphere is a slow manifold.
To determine the stability of the unit-norm n-sphere we will examine the dynamics of the synaptic
weight norm. The dynamics of L and M form a closed system:

⌧ L̇ =pra+1MaL(1� L)

⌧Ṁ =ra+1Ma+1(1� L)
(88)

There are two line equilibria on M = 0 and L = 1 and the Jacobian determinant is pra+3Ma+1(1�
L)2, which is zero on either of those line equilibria so a linear stability analysis is uninformative.
Recall that L � 0 by definition. There are three relevant cases for the dynamics. When a is odd, all
factors of r are positive and so is Ma+1. When a is even, the sign of r impacts the sign of Ṁ . We
next examine the three cases: 1) a odd, 2) a even and r > 0 and 3) a even and r < 0.

First take a odd (fig. A.4.2a). Then L = 1 is attracting when M > 0 but repelling when M < 0. M
is always increasing for L < 1 and decreasing for L > 1. With a even and r > 0, L = 1 is always
attracting (fig. A.4.2b). M = 0 is attracting for L > 1 and vice versa. If a is even and r < 0, L = 1
is always repelling. In this case, if L(0) > 1 the synaptic weights will explode while if L(0) < 1
the synaptic weights will evolve towards the stable equilibrium L = 0,M = 0 (fig. A.4.2c). This
corresponds to J = 0. In sum, the unit-norm solution L = 1 can be attracting or repelling. It is
attracting if a is odd, or a even with r > 0. It is repelling if a is even and r < 0.
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Figure 7: Dynamics of the synaptic weight norm (phase portraits). The vectors L̇, Ṁ are plotted
with unit norm. For each case, we show two corresponding parameter sets. a) Case 1: a odd. b) Case
2: a even and r > 0. c) Case 3: a even and r < 0.
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