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A APPENDIX

A.1 DISCUSSION OF CLUSTERING REGULARIZER

The clustering regularizer by (Li et al., 2020) takes the following form:
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where pki is the predicted soft assignment for i-th sample regarding k-th cluster. For each pki, to
minimize �pki log pki, we have pki ! 1 in its predicted cluster and pki ! 0 in other clusters. Since
the summation in equation 4 is taken over all samples and over all clusters, we can further simplify
the second term as follows:
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where Pka :=
P

ai=a pki. Consider Pka of each group separately, for each Pka, we have 0 < Pka <

|Na|. Since the summation is taken over all cluters, to minimize this term, we need to make sure thatP
k2[K] Pka logPka is as small as possible, where the best possible assignment would be an equally

distributed cluster assignment:
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It is easy to see that this term is in alignment with the balance notion. Similarly, we can further
simplify the third term in equation 4 as
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where the third term encourages samples of same sensitive attribute to have similar predicted soft
assignment. Still, this term is not in accord with our expectation of enforcing high predicted confi-
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dence or low confidence difference. Instead, we only keep the first term as our clustering regularizer:

Lre =
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A.2 ABLATION STUDY

We iclude full results of ablation study in Tab 11-18. We can see from results that contrastive loss
and clustering regularizer help improve clustering accuracy, and Sinkhorn divergence helps reduce
confidence disparities across different sensitive groups.

Method Clustering accuracy NMI
Our method 81.46±2.15% 77.82±1.26%
Our method (w/o contrastive loss) 76.49±2.21% 74.23±1.61%
Our method (w/o Sinkhorn divergence) 82.16±1.71% 78.31±1.22%
Our method (w/o regularization) 81.24±1.37% 77.21±1.26%

Table 11: Ablation study on MNIST-USPS dataset.

Method Balance DI Conf. Dif. EOd
Our method 0.36±0.03 0.10±0.02 0.02±0.01 0.09±0.02
Our method (w/o contrastive loss) 0.34±0.04 0.11±0.02 0.03±0.01 0.08±0.02
Our method (w/o Sinkhorn divergence) 0.21±0.03 0.17±0.04 0.09±0.03 0.14±0.03
Our method (w/o regularization) 0.35±0.03 0.10±0.02 0.02±0.01 0.09±0.02

Table 12: Ablation study on MNIST-USPS dataset.

Method Clustering accuracy NMI
Our method 65.47±1.86% 74.41±2.54%
Our method (w/o contrastive loss) 61.34±1.53% 69.63±1.67%
Our method (w/o Sinkhorn divergence) 67.64±1.45% 75.13±2.12%
Our method (w/o regularization) 65.13±1.42% 74.03±2.29%

Table 13: Ablation study on color reverse MNIST dataset.

Method Balance DI Conf. Dif. EOd
Our method 0.31±0.04 0.09±0.02 0.03±0.01 0.07±0.02
Our method (w/o contrastive loss) 0.29±0.04 0.10±0.02 0.03±0.01 0.08±0.02
Our method (w/o Sinkhorn divergence) 0.27±0.04 0.12±0.02 0.07±0.01 0.15±0.03
Our method (w/o regularization) 0.31±0.03 0.09±0.02 0.04±0.01 0.07±0.02

Table 14: Ablation study on color reverse MNIST dataset.

Method Accuracy NMI
Our method 72.23±1.86% 20.23±1.46%
Our method (w/o contrastive loss) 69.62±1.36% 19.14±1.58%
Our method (w/o Sinkhorn divergence) 74.27±1.62% 20.84±2.31%
Our method (w/o regularization) 71.34±1.18% 19.83±2.64%

Table 15: Ablation study on MTFL dataset.
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Method Balance DI Conf. Dif. EOd
Our method 0.13±0.04 0.09±0.02 0.02±0.01 0.09±0.02
Our method (w/o contrastive loss) 0.12±0.03 0.10±0.02 0.02±0.01 0.11±0.02
Our method (w/o Sinkhorn divergence) 0.08±0.04 0.12±0.02 0.05±0.01 0.16±0.03
Our method (w/o regularization) 0.13±0.04 0.09±0.02 0.03±0.01 0.09±0.02

Table 16: Ablation study on MTFL dataset.

Method Clustering accuracy NMI
Our method 71.36±2.27% 72.31±2.26%
Our method (w/o contrastive loss) 67.57±2.51% 70.52±2.64%
Our method (w/o Sinkhorn divergence) 73.51±1.72% 72.67±1.36%
Our method (w/o regularization) 71.23±1.87% 72.26±2.51%

Table 17: Ablation study on Office-31 dataset.

Method Balance DI Conf. Dif. EOd
Our method 0.11±0.02 0.07±0.02 0.03±0.01 0.07±0.02
Our method (w/o contrastive loss) 0.11±0.02 0.07±0.02 0.04±0.02 0.09±0.02
Our method (w/o Sinkhorn divergence) 0.08±0.02 0.10±0.02 0.06±0.01 0.14±0.02
Our method (w/o regularization) 0.12±0.02 0.07±0.02 0.03±0.01 0.08±0.02

Table 18: Ablation study on Office-31 dataset.
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