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A APPENDIX

A.1 DISCUSSION OF CLUSTERING REGULARIZER

The clustering regularizer by (Li et al., [2020)) takes the following form:

N
LPIQ) =3 3 puilos

i=1 ke[K] ki

B o) o ——
| ‘ (Pri)?/ Fa—a Pri

i=1 ke[ Sirel ((pkﬂ) [ Xas=a Prif )

(ki)” / Y, PEj
=3 > prilogpri — prilog ;
i=1 ke[K] Dk elK] ((Pk%) /Zaj:apkj’)

N
=y —le‘ 10g prs + prilog Y prj+prilog Y <(pk'i)2/ > pki’)
]

i=1 ke[K aj=a k' E[K a;=a

z

=

=

=

N
=> | Y. —prilogpri+ > prilog > pij+log D <pk-’i)2/ > pki’) ;

i=1 |k€[K] ke[K] a;j=a k'€[K] a;j=a
“)

where py; is the predicted soft assignment for i-th sample regarding k-th cluster. For each py;, to
minimize —py; log pr;, we have py; — 1 in its predicted cluster and py; — 0 in other clusters. Since
the summation in equation 4] is taken over all samples and over all clusters, we can further simplify
the second term as follows:
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where Py, := Zai:a pri. Consider Py, of each group separately, for each Py, we have 0 < Py, <
IN,|. Since the summation is taken over all cluters, to minimize this term, we need to make sure that
>k €[K] Pyq log Py, is as small as possible, where the best possible assignment would be an equally
distributed cluster assignment:
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It is easy to see that this term is in alignment with the balance notion. Similarly, we can further
simplify the third term in equation 4] as
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where the third term encourages samples of same sensitive attribute to have similar predicted soft
assignment. Still, this term is not in accord with our expectation of enforcing high predicted confi-
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dence or low confidence difference. Instead, we only keep the first term as our clustering regularizer:
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A.2 ABLATION STUDY

We iclude full results of ablation study in Tab We can see from results that contrastive loss
and clustering regularizer help improve clustering accuracy, and Sinkhorn divergence helps reduce
confidence disparities across different sensitive groups.

Method Clustering accuracy NMI

Our method

Our method (w/o contrastive loss)

Our method (w/o Sinkhorn divergence)
Our method (w/o regularization)

81.46£2.15%
76.49+£2.21%
82.16£1.71%
81.24£1.37%

77.82+£1.26%
74.23+£1.61%
78.31+1.22%
77.21£1.26%

Table 11: Ablation study on MNIST-USPS dataset.

Method Balance DI Conf. Dif. EOd
Our method 0.36+0.03  0.10£0.02 0.024+0.01  0.09+0.02
Our method (w/o contrastive loss) 0.3440.04 0.11+£0.02 0.03£0.01 0.08+0.02
Our method (w/o Sinkhorn divergence) 0.214+0.03 0.17£0.04 0.09+0.03 0.1440.03
Our method (w/o regularization) 0.35+0.03 0.10+£0.02 0.02+0.01 0.09+0.02
Table 12: Ablation study on MNIST-USPS dataset.
Method Clustering accuracy NMI
Our method 65.47+1.86% 74.41+2.54%

Our method (w/o contrastive 1oss)
Our method (w/o Sinkhorn divergence)

61.344+1.53%
67.64+1.45%
65.13+1.42%

69.63+1.67%
75.13+2.12%
74.03+£2.29%

Our method (w/o regularization)

Table 13: Ablation study on color reverse MNIST dataset.

Method Balance DI Conf. Dif. EOd

Our method 0.31+£0.04 0.09£0.02 0.034£0.01 0.07+0.02
Our method (w/o contrastive loss) 0.2940.04 0.10+£0.02 0.03£0.01 0.0840.02
Our method (w/o Sinkhorn divergence) 0.27+£0.04 0.12+0.02 0.07+0.01 0.15+£0.03
Our method (w/o regularization) 0.31+0.03 0.09+0.02 0.04+0.01 0.07+0.02

Table 14: Ablation study on color reverse MNIST dataset.

Method

Accuracy

NMI

Our method
Our method (w/o contrastive loss)

Our method (w/o Sinkhorn divergence)

Our method (w/o regularization)

72.23+1.86%
69.62+1.36%
74.27+1.62%
71.34£1.18%

20.23+£1.46%
19.14+1.58%
20.84£2.31%
19.83+2.64%

Table 15: Ablation study on MTFL dataset.
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Method Balance DI Conf. Dif. EOd
Our method 0.134+0.04 0.09+0.02 0.02+0.01  0.09+0.02
Our method (w/o contrastive loss) 0.12+0.03 0.10+£0.02 0.02+0.01 0.11+£0.02
Our method (w/o Sinkhorn divergence) 0.084+0.04 0.12£0.02 0.05+£0.01 0.1640.03
Our method (w/o regularization) 0.13+0.04 0.09+0.02 0.03+£0.01 0.09+0.02
Table 16: Ablation study on MTFL dataset.

Method Clustering accuracy NMI

Our method 71.36+2.27% 72.31+2.26%

Our method (w/o contrastive loss) 67.57+2.51% 70.5242.64%

Our method (w/o Sinkhorn divergence) 73.51+1.72% 72.67+£1.36%

Our method (w/o regularization) 71.234+1.87% 72.264+2.51%

Table 17: Ablation study on Office-31 dataset.

Method Balance DI Conf. Dif. EOd
Our method 0.114£0.02 0.07+£0.02 0.03+0.01  0.07£0.02
Our method (w/o contrastive loss) 0.11+£0.02 0.07+£0.02 0.04+0.02 0.09+0.02
Our method (w/o Sinkhorn divergence) 0.084+0.02 0.10+£0.02 0.06+0.01 0.1440.02
Our method (w/o regularization) 0.12+0.02 0.07+£0.02 0.03+£0.01 0.08+0.02

Table 18: Ablation study on Office-31 dataset.
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