
Under review as a conference paper at ICLR 2024

PriViT G MPCViT PriVit R MPCViT+

Acc Latency (s) Acc Latency (s) Acc Latency (s) Acc Latency (s)

96.31 21.13 94.3 10.39 94.45 18.74 93.3 5.57
95.31 19.27 94.2 9.85 92.45 17.83 93.9 6.38
95.58 15.99 94.1 9.39 92.36 13.26 94.2 7.39
95.14 14.43 93.6 8.96 92.39 13.01 94.3 6.83
94.52 14.37 91.08 10.24
94.44 11.6

Table 6: Benchmarking PriViT and MPCViT over CIFAR 10 dataset on SEMI2k protocol.

A SUPPLEMENTARY RESULTS

Additional PI results Following Zeng et al. (2022) we benchmark our method over SEMI2k using
secretflow framework, the client and server are 64GB RAM, Intel(R) Xeon(R) Platinum 8268 CPU @
2.90GHz. We run PI over LAN settings between two nodes of HPC cluster, hence there is a variation
of the total inference latency from what is reported in Zeng et al. (2022), but to keep a consistent
comparison, we benchmark both PriViT and MPCViT under our system settings. We report additional
bench marking results on CIFAR 10 data in the table 6.

Analysis of performance degradation. In this analysis, we aim to compare the performance of
trained PriViT models with their finetuned versions. Our analysis is based on the class-level accuracy
metric from the Tiny ImageNet dataset, which consists of 200 classes. We focus on three specific
parameters to understand the performance degradation:

Maximum Difference in Accuracy: We assess the greatest disparity in accuracy across all 200 classes
between the PriViT and finetuned models.

Overall Accuracy Difference: We compute the average accuracy difference between the finetuned
and the PriViT models across all 200 classes.

Variance in Accuracy Difference: We analyze the consistency of the differences in accuracy across
the 200 classes by calculating the variance.

Table 7 highlights that average accuracy degradation is anywhere between 1-13% for different non-
linearity budgets but certain classes seem to be more adversely affected even in low budgets as the
max class level difference in accuracy is consistent around 30%.

Table 7: Performance degradation of PriViT models compared to finetuned model on tinyimagenet.

Accuracy Latency (M) Max Difference Mean Difference Variance (10⇥ 10�3)

69.8 151.75 30.00% 1.85% 6.8
66.98 128.23 34.00% 4.68% 6.9
64.46 110.60 34.00% 7.21% 8
60.53 93.72 40.00% 11.13% 9
59.55 86.51 34.00% 12.12% 9.4
59.58 84.78 36.00% 12.08% 9.8
59.04 84.13 36.00% 12.63% 9.9
58.74 69.42 40.00% 12.92% 9.4
58.2 67.43 36.00% 13.48% 8.7

Fine-grained versus layer-wise Taylorization PriVit employs a unique approach where it selectively
Taylorizes softmax and GELU operations in models. To probe the effectiveness of this method, we
contrasted it with an alternative PriViT approach that Taylorizes a ViT model progressively, layer by
layer.

As illustrated in Table 8, our observations underscored the superiority of selective Taylorization.

13

Under review as a conference paper at ICLR 2024

Table 8: Performance comparison of PriViT versus layerwise linearization of GeLU in a ViT model
with 200k GeLUs. Twelve models were generated by sequentially replacing up to 12 GeLU layers
with Identity. PriViT was also evaluated with varying GeLU budgets below 200k.

Layerwise GELU linearizing Pri-ViT
Gelus (K) Accuracy Gelus (K) Accuracy

197 96.07 200 95.59
196 96.07 150 95.34
193 95.91 100 95.58
190 95.35 50 94.98
187 94.28 10 94.24
184 93.75 1 93.96
181 93.33
178 92.99
174 93.04
171 92.88
164 92.06
123 82.48

0 56.64

This superiority was especially pronounced under constrained non-linearity budgets.

Delving deeper, our experiment commenced with a foundational ViT model populated with 200k
GeLUs, while the remaining operations were Identity-based. From this foundation, we crafted a
series of models, each with an increasing number of GeLU layers swapped for Identity, creating a
spectrum from 1 to 12 GeLU replacements. Post-finetuning, the performance metrics of these models
were recorded. In parallel, we evaluated PriViT under a gamut of GeLU budgets, all set below the
200k threshold, thereby exploring its capability for dynamic GeLU retention.

Hyperparameter Tuning Following (Hassani et al., 2021) we use CutMix (Yun et al., 2019), Mixup
(Zhang et al., 2017), Randaugment (Cubuk et al., 2020), and Random Erasing (Zhong et al., 2020) as
data augmentation strategy. We probed multiple hyperparameter strategies for the joint optimization
phase of PriViT to ensure consistent good performance over multiple configurations of non-linearity
budgets of softmax and GELUs. Specifically we describe these strategies as follows:

Late-Binarized Epoch (Strategy 1): This strategy involved 10 post-linearization training epochs.
The binarization of auxiliary parameters, s and c, occurred late in the process, specifically after the
linearization was complete. The penalty increment condition for this method was checked when the
reduction in the softmax and GELU coefficients per epoch was less than 200 and 2, respectively.
Both masks began with identical penalties, signifying an ’equal’ starting penalty.

Late-Binarized Incremental (Strategy 2): This strategy also encompassed 10 training epochs with
late binarization. Here, the penalty increment condition was activated with an increase in the softmax
and GELU coefficients per epoch. The starting penalty for both masks was ’equal’.

Late-Binarized Divergent Penalty (Strategy 3): Much like Strategy 2, this involved 10 epochs with
late binarization and an increment condition based on softmax and GELU coefficient rises. However,
the initial penalty was set to ’unequal’, making the softmax penalty 20 times higher than the GELU
penalty.

Early-Binarized Incremental (Strategy 4): This strategy shared several similarities with Strategy
2, including 10 training epochs and an increment condition based on coefficient increases. The
difference, however, lay in its early binarization, occurring during the freezing of the auxiliary
parameters. The starting penalty was kept ’equal’ for both masks.

Prolonged Early-Binarized Epoch (Strategy 5): Spanning 50 post-linearization training epochs,
this strategy adopted an early binarization approach. The penalty increment condition was activated
when the reduction in softmax and GELU coefficients per epoch was under 200 and 2, respectively.
The masks were initialized with ’equal’ penalties.

14

Under review as a conference paper at ICLR 2024

Each of these strategies offered unique configurations in terms of epoch durations, binarization
timings, increment conditions, and starting penalties, enabling a comprehensive assessment of the
PriViT algorithm’s performance under various conditions.

We test the different finetuning strategies described here by taylorizing PriViT for different softmax
and GELU budgets and compare the test accuracy of the resulting model over CIFAR100. Table 9
highlights the comparative performance of all the strategies that we described. Strategy 5 seems to be
performing best over different configuration of nonlinearity budget which is important as we would
want to find the best model peformance for a particular non-linearity budget.

Table 9: We test the different finetuning strategies described in A. We run PriViT for different
softmax and GELU budgets and compare the test accuracy of the resulting model over CIFAR100.
We observe that strategy 5 works the best across a wide range of target softmax and GELU budgets.

Softmax # Gelu Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5
(K) (K) (Acc. %) (Acc. %) (Acc. %) (Acc. %) (Acc. %)

10 5 77.68 76.74 - 77.82 78.83
5 5 76.27 75.99 75.72 - 77.63
5 1 76.73 75.21 76.24 - 77.08
2 10 76.04 75.23 - 74.65 76.35
2 1 75.92 74.84 76.45 - 76.97
1 5 76.12 74.99 76.32 - 76.96

Grid search of softmax and GELU configuration. In order to elucidate the nuanced trade-off
between softmax and GeLU operations, we executed a systematic grid search across an extensive
parameter space encompassing varied softmax and GeLU configurations. Upon analysis of models
exhibiting iso-latencies, as demarcated by the red lines in figure 7, it became evident that the trade-off
dynamics are non-trivial. Specifically, configurations with augmented softmax values occasionally
demonstrated enhanced performance metrics, whereas in other scenarios, models optimized with
increased GeLU counts exhibited superior benchmark results.

0.2 0.4 0.6 0.8 1

·104

50

100

150

200

250

300

Softmax

G
E
L
U
(K

)

Grid search on CIFAR-100

76

77

78

79

80

Acc.

Figure 7: The PriViT algorithm produces a Pareto surface mapping the tradeoff between GeLU and
softmax budgets over cifar 100.

Taylorizing only one type of non-linearity. The PriViT algorithm’s standout capability is its simulta-
neous linearization of GELU and softmax operations, enabling a myriad of model configurations. In
our focused experiment, we exclusively linearized GELU operations and anchored the auxiliary soft-
max parameter S, binarizing it to activate only the SoftmaxAttention mechanism. Despite extensive
GELU substitutions, as reported in 8 the PriViT model displayed notable resilience on CIFAR10 and
CIFAR100 datasets, with only slight performance drops, underscoring its robustness in varied setups.

Effect of using pre-trained checkpoints. To further investigate why using pretrained checkpoint is
improving performance, we report the non-linear distributions searched by PriViT and compare it with
PriViT without pretrain for the nonlinearity budget of 315k and 320k respectively. We observe from
our findings in figures 9,10 that the distribution found by the two methods differs across each layer.

15

Under review as a conference paper at ICLR 2024

02004006008001,0001,2001,4001,6001,8002,000

80

90

100

GELU (K)

A
cc

ur
ac

y
(%

)

CIFAR-100
CIFAR-10

Figure 8: PriViT’s ability to linearize GeLU operations visualized through performance on CIFAR
datasets. As GELU operations decrease, CIFAR-100 and CIFAR-10 accuracies are affected, showcas-
ing the trade-off between operation count and accuracy.

This supports our theory as to how PriViT operates under a strategic ’top-down’ paradigm. Starting
with a fine-tuned model, it has the advantage of an architecture that has not just discerned overarching
generalization patterns but has also selectively pruned irrelevant information, streamlining its focus
for a specific downstream task. This reduction of redundancy, undertaken from a vantage point of a
pre-existing knowledge base, gives PriViT an edge.

1 2 3 4 5 6 7 8 9 10 11 12

0

100

200 197

1 1 1 1 1 1 1 1 1 1 1

127

1

41

6 5 6 6 4 1 1 1 1

Layer Index

G
el

us

PriViT w/o pretrain
PriVit

Figure 9: We compare the distribution of 208 GELU and 200 GELU operations
distributed by PriViT w/o pretrain and PriViT respectively over tiny imagenet
dataset.

1 2 3 4 5 6 7 8 9 10 11 12

0

200

400

600 591

352

3 3 3 3 3 3 3 3 3 3

381 393

205

0 2 0 2 3 3 3 3 3

Layer Index

So
ftm

ax

PriViT w/o pretrain
PriVit

Figure 10: We compare the distribution of 973 softmax operations and 998
softmax operations operations distributed by PriViT w/o pretrain and PriViT
respectively over tiny imagenet dataset.

B SUPPLEMENTARY GRAPHICS

The following figure shows a graphical representation of the switching operation.

Search granularity. An important characteristic of PriViT is it’s flexibility to search over different
granularity of non-linearities. GELU is a pointwise functions, thus PriViT can search either at
embedding level or at a token level. On the other hand, softmax is a token level operation, thus it

16

Under review as a conference paper at ICLR 2024

Figure 11: Parameterized Gelu and Self-Attention operations. Top: Tokens undergo softmax and
squared attention in training. Post-training, parameter S is frozen and binarized, selecting only
one operation. Bottom: Embeddings pass through GeLU and Identity during training. Afterwards,
parameter C is frozen and binarized, choosing a single operation.

cannot be broken into a finer search space. Note that softmax operations can be extended to search
over the head space or layer space, and similarly GELU can be searched over the layer space. Fig 12
illustrates the search granularity over token and embedding space.

Figure 12: Left: The green blocks are SQUAREDATTENTION, and the grey blocks are Softmax
Attention. For parametric attention, tokens emerge from a blend of softmax and square attention (refer
to fig 11). Post-training, auxiliary variable S is set to 0 or 1, resulting in 2N⇥H potential combinations
per encoder block. Right: The green blocks are Identity function, and the grey blocks are GELU
activation. Embeddings combine GELU and identity operations during training, as seen in fig 11.
After training, parameter C is frozen and binarized. This yields potential combinations of either
2H⇥N or 2N⇥H⇥m for each ViT encoder block. Note that GELU being a pointwise function, we
possess the flexibility to expand our search space either to tokens or directly to individual embeddings.

C PRIVIT ALGORITHM

We provide detailed pseudocode for PriViT here.

17

Under review as a conference paper at ICLR 2024

Algorithm 1 PRIVIT: Privacy Friendly ViT
1: Inputs: fW: pre-trained network, �s: Lasso coefficient for Softmax mask, �g: Lasso coefficient for GeLU

mask, : scheduling factor, G: GeLU budget, S: Softmax budget, ✏: threshold.
2: Set C = 1: same dimensions to all GeLU mask.
3: Set S = 1: same dimensions to all Attention Heads.
4: Set Cbudget = False: GeLU budget flag.
5: Set Sbudget = False: Softmax budget flag.
6: W (W,C,S)
7: Lowest GeLU Count k (C > ✏)k0
8: Lowest Softmax Count k (S > ✏)k0
9: while GeLU Count > G or Softmax Count > S do

10: Update W via ADAM for one epoch.
11: GeLU Count k (C > ✏)k0
12: Softmax Count k (S > ✏)k0
13: if Lowest GeLU Count - GeLU Count < 2 then
14: �g  · �g .
15: end if
16: if Lowest Softmax Count - Softmax Count < 200 and Sbudget = False then
17: �s  · �s.
18: end if
19: if Lowest GeLU Count > GeLU Count then
20: Lowest GeLU Count GeLU Count
21: end if
22: if Lowest Softmax Count > Softmax Count then
23: Lowest Softmax Count Softmax Count
24: end if
25: if GeLU count <= G and Cbudget = False then
26: C (C > ✏)
27: Cbudget = True
28: W (W,S)
29: end if
30: if Softmax count <= S and Sbudget = False then
31: S (S > ✏)
32: Sbudget = True
33: W (W,C)
34: end if
35: end while

PriViT MPCViT TinyImagenet MPCViT CIFAR10/100
Function # ReluOps Function # ReluOps Function # ReluOps

Softmax(197) 18586 ReLU Softmax(257) 4428 ReLU Softmax(65) 1133
Layernorm(192) 6504 Layernorm(192) 6504 Layernorm(256) 8614
GeLU(1) 270 GeLU(1) 270 GeLU(1) 270
x2(197) 3248

Table 10: Non-linearity cost normalized to the cost of one ReluOp which is 1 ReLU operation over
a scalar value. Bracket considers amortizing to a vector of inputs, e.g., a Layernorm(192) is an
operation over a vector length of 192 is equivalent to 6504⇥ than the cost of a ReLU.

D LATENCY BENCHMARKS

We conduct thorough benchmarking by creating GC circuits for the non-linearity functions found in
ViT, and also benchmark specific functions used in MPCViT so as to enable us to compare the two
methods under the same protocol DELPHI. In order to compare the different cost of non-linearity
we bring them down to a common benchmark of ReluOps, where 1 ReluOp is the cost incurred
for performing a GC evaluation of ReLU of one scalar value. Figure 14 shows how we count the
non-linearity cost of softmax. The front and end consider Secret Sharing similar to Circa Ghodsi et al.
(2021). Since the GC cost of each operation is known, we add them up as the final cost of softmax.

18

Under review as a conference paper at ICLR 2024

Figure 13: Left: Step 1 - Fine-tuning of a pretrained ViT over target dataset to produce the ’teacher
ViT’. Middle: Step 2 - Duplicate teacher ViT, introduce parametric GELUs and attention mask to
form ’student ViT’. Train using cross-entropy loss, KL divergence, and L1 penalty to gradually find a
sparse mask. Binarize the mask post desired non-linearity budget. Right: Step 3 - With a frozen,
binarized mask, further fine-tune the student model using cross-entropy loss and KL divergence with
the teacher.

=

add
× n

exp
 × n

sum():
add × (n-1)

inverse():
div × 1

mul
 × n

add
× n

Figure 14: Detailed steps of benchmarking the non-linearity cost for softmax. Denominator is calculated once
and reused for all indices of the vector.

E ATTENTION VARIANTS

Here we describe formally the different attention variant we ablated. Uniform form attention is
basically described by the following equation

UNIFORMATTN(X) =
(1)

N
WvX, (7)

Where N is the number of tokens, so for each token the attention is equal hence the name UniformAt-
tention.

ScaleAttn is the softmax candidate used in the work Zeng et al. (2022) which is essentially described
as

SCALEATTN(X) =
(XWqWkX)

N
WvX, (8)

19

	Introduction
	Preliminaries
	PriViT: Privacy Friendly Vision Transformers
	Setup
	PriViT Algorithm
	Training PriVit

	Results
	Experimental Setup
	Comparison with prior art
	Ablation studies

	Conclusion
	Supplementary results
	Supplementary graphics
	PriViT Algorithm
	Latency benchmarks
	Attention Variants

