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A POTENTIAL BIOLOGICAL INSIGHTS

METHYLPROPHET enables genome-wide DNA methylation (DNAm) reconstruction from gene
expression and sequence data alone, providing unique opportunities for advancing biological inter-
pretation, methodological development, and genomic applications. This cross-modality prediction
framework offers several important insights and use cases in real-world biomedical research.

First, METHYLPROPHET facilitates low-cost methylome reconstruction in settings where whole-
genome bisulfite sequencing (WGBS) or array-based profiling is infeasible. Many large-scale
transcriptomic datasets lack matching methylome profiles, and thus cannot be directly leveraged
for epigenetic discovery. For example, the ENCODE consortium has generated 1,699 RNA-seq
samples but only 211 WGBS samples; the TCGA program includes more than 10,426 RNA-seq
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samples but only 32 WGBS samples; and GEO hosts 241,014 RNA-seq samples but just 6,318
WGBS samples. By computationally inferring DNAm in these cohorts, METHYLPROPHET enables
downstream epigenetic analyses without the need for additional profiling.

Second, METHYLPROPHET enhances public and disease biobank resources such as GTEx, ENCODE,
TCGA, and PCAWG by providing whole-genome methylome predictions. This allows for deeper
epigenetic insights, cancer subtype stratification, and biomarker discovery. Prior work, such as (Yang
et al., 2024), predicted DNAm from GTEx and multi-omics TCGA data, but their scope was limited
to [llumina EPIC array CpGs, covering only ~3% of the genome. By contrast, METHYLPROPHET
enables whole-genome prediction at more than 100x the sample scale, thereby extending coverage
from 3% to 100% of the genome and broadening the landscape of epigenetic discovery.

Third, METHYLPROPHET supports sample-level methylation estimation in multi-omic and single-
cell studies, where DNAm data are often sparse or missing. This ability to reconstruct complete
sample-level methylomes from transcriptomic profiles enables downstream tasks such as DNAm
regulation inference, cell-fate trajectory analysis, and multi-omic clustering, all without requiring
methylation-specific assays.

In addition, METHYLPROPHET contributes to predictive biomarker development. For instance, 850K
array-based methylation profiles have been used to predict brain metastases (Zuccato et al., 2025). By
extending methylation reconstruction to the full genome, METHYLPROPHET opens new possibilities
for noninvasive biomarker discovery and risk stratification in cohorts that lack direct methylation
assays.

Another important application is in the development of DNA methylation clocks for aging and disease
phenotyping. Epigenetic clocks such as Horvath and GrimAge estimate biological age based on
a small number of CpGs, but their accuracy is limited by array coverage (1-3% of the genome).
METHYLPROPHET provides genome-wide methylation inference, improving both the resolution
and accuracy of aging models. Furthermore, it enables biological age estimation in transcriptome-
only cohorts, thereby expanding the reach of age-related biomarkers in large-scale population and
longitudinal studies.

Beyond these applications, METHYLPROPHET establishes cross-modality prediction as a powerful
paradigm in multi-omics. Cross-modal inference is increasingly central to computational biology:
studies have predicted DNAm from expression (Yang et al., 2024; Liu et al., 2024), chromatin acces-
sibility from expression and DNA (Zhou et al., 2017), and gene expression from sequence (Avsec
et al., 2021). More recently, ALPHAGENOME leveraged such predictions for virtual perturbation
analyses (Avsec et al., 2025). These efforts collectively reduce experimental cost, enable retro-
spective analyses on existing data, and broaden the scope of multi-omic investigations, especially
in disease contexts such as cancer, heart failure, and leukemia. Within this broader landscape,
METHYLPROPHET demonstrates that accurate genome-wide DNAm prediction from transcriptome
and sequence data is both feasible and biologically meaningful, thereby opening new directions for
integrative epigenomic discovery.

B DAta

B.1 DATA SOURCE

ENCODE data. Processed RNA-seq (TPM) and WGBS (3 values) data were downloaded from The
Encyclopedia of Elements (ENCODE) portal (https://www.encodeproject.org/). We
identified wild-type samples with both RNA-seq and WGBS profiles, along with matched summary
information including species, sex, age, tissue, and bioSample information. Technical replicates were
combined by averaging their gene expression and their DNA methylation profiles. The averaged
TPM values were log,-transformed after adding a pseudocount of 1. For WGBS data aligned to the
hg19 genome, genome coordinates were converted to hg38 using liftover. Samples with WGBS data
covering more than 80% of all CpG sites on autosomes and chromosome X were retained. Finally, all
CpGs located on chromosomes X and Y were removed. A total of 95 samples covering 28,301,739
CpG sites and 55,503 genes were included in the final dataset.

TCGA data. Processed RNA-seq (TPM), 450K array and EPIC (5 values) data were down-
loaded from the Cancer Genome Atlas Program (TCGA) data portal (https://portal.gdc.
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cancer.gov/). Processed whole-genome bisulfite sequencing (WGBS) data (8 values) were
downloaded from a static website provided by TCGA (https://zwdzwd.s3.amazonaws.
com/directory_listing/trackHubs_TCGA_WGBS_hg38.html). For RNA-seq data,
the TPM values were averaged for samples belonging to the same case. The averaged TPM values
were log,-transformed after adding a pseudocount of 1. For 450K array and EPIC data, CpG sites
with missing values across all samples were filtered out, and the [ values were averaged for samples
belonging to the same case. The WGBS data provided 3 values for each case. CpG sites with
missing values across all cases were filtered out, and those located on chromosomes X and Y were
removed. The final dataset included 9,194 450K array samples covering 408,399 CpG sites, 1,706
EPIC samples covering 740,296 CpG sites, and 32 WGBS samples covering 23,047,052 CpG sites.
Additionally, gene expression profiles spanning 60,660 genes were included for each sample.

B.2 DATA PARTITION AND PROTOCOLS

Our model takes CpG-related information and gene expressions as inputs and predicts the methylation
level for the given CpG site. Originally, there are three raw files to be processed, a raw methylation
beta file, a sample gene profile, and a reference human DNA sequence template (hg38. The raw
methylation beta profile consists of a matrix M x N, where there are M CpG sites and N samples,
while the gene expression profile includes the expression of L genes for all samples N. The data
partition pipeline is shown in Figure Al.
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Figure A1: Data partition diagram.

Data sharding and sanity check. Since the raw methylation beta matrix is enormous, reaching an
order of magnitude of billion (2.8 billion for ENCODE WGBS and 3 billion for TCGA Array), we
first split the gigantic matrix into small shards. Sharding can leverage parallel computation and thus
speed up the data pre-processing. We split the methylation beta matrix by rows (i.e., by CpG sites)
where every 10k rows assemble a shard file. During methylation matrix sharding, the corresponding
DNA sequence for each CpG site in a shard is saved simultaneously using the reference human DNA
sequence template (hg38). The window size of DNA sequence is 1Kb for the given CpG site. In
addition, we filter out NaN entries and deduplicate genes and CpG sites.

Sample split. To split samples in to training and validation set, we first count the number of samples
for each tissue / cancer types (ENCODE WGBS, Figure A2; TCGA Array, Figure A3). Then we split
the samples based on the types.

There are 57 tissue types and 95 samples in total in ENCODE. For those tissues with more than one
samples, We randomly sampled half of them as the validation samples. All the rest samples are used
for the training set.

In TCGA, there are 33 cancer types with 9194 samples summed up. We randomly choose 10% of the
samples for each tissue type as validation samples, and the rest are left for training. For those do not
have cancer type assigned, we treat them as type “Unknown”.

CpG split. We first check the methylaton matrix and the corresponding DNA sequence have the
same CpG index. Then we statisticize CpG sites for each chromosome. We randomly pick 10% for
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Figure A2: Samples counts by tissue types in
ENCODE data.
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Figure A3: Samples counts by cancer types
in TCGA data.

CpG sites in each chromosome as training CpG sites. For ENCODE, we temporarly sample another
10% as training split. While for TCGA, we use the rest 90% as training. We supplement TCGA with
addition EPIC and WGBS data which have no intersected with Array data.

CpG-sample split. The CpG sample splits are based on the previous sample and CpG splits. For
ENCODE WGBS and TCGA Array, we would have four splits, where the first split is used for
training, and the rest three splits are used for validation and performance report:

. “Training CpG and Training Sample”, for training;
. “Training CpG and Validation Sample”, for validation;
. “Validation CpG and Training Sample”, for validation;

A W NN =

. “Validation CpG and Validation Sample”, for validation.

To further synergy the limited CpG sites in TCGA array data, we additionally incorporate TCGA
EPIC and TCGA WGBS data, which have no intersections with TCGA array data.

B.3 DATA PRE-PROCESSING

CpG-specific DNA sequence. We extract the DNA sequence around the CpG site to represent the
CpG site. The window size is 1Kb for each site. Besides, we record the CpG island index, as well as
its region types (CpG island, CpG shore, CpG shelf, and CpG ocean). For those sites in CpG ocean,
we assign —1 as their CpG island index. We embed the above information numerically.

Gene expression. The RNA counts are log,-transformed after adding a pseudocount of 1. Genes
with mean and standard deviation below the specified cutoffs (ENCODE: mean = 0.1, std = 0.1;
TCGA: mean = 0.5, std = 0.5) are filtered out. Mitochondrial, proline-rich and ribosomal protein
genes are removed. As a result, 24,337 genes are retained in the ENCODE dataset and 25,017 genes
in the TCGA dataset. Note that both protein-coding and non-protein-coding genes are included prior
to filtering. To mitigate batch effects, we apply the quantization technique(Cui et al., 2024b) where
the log,-transformed RNA counts are quantized based on their probability densities. The quantized
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values are then linearly mapped to the range [0, 1] to mitigate batch effects. The resulting gene
expression vectors are subsequently encoded in the downstream model.

C IMPLEMENTATION DETAILS

C.1 CONFIGURATIONS OF METHYLPROPHET

The implementation details is shown in Table Al. For the experiments on ENCODE WGBS and
TCGA chromosome 1, 2, and 3, we use 64 GPUs with 512 batch size per accelerator, taking about
1 GPU day for each experiment. While for those on TCGA chromosome 1, we use 32 GPUs with
batch size 256, taking about half of GPU day for each experiment. We turn on gradient checkpointing
to reduce memory usage and enable flah-attention 2 to speed up attention operator. The parameters
specification and their computational cost are shown in Table A2.

Table Al: The implementation details.

Optimization
Optimizer AdamW (0.9,0.95)
LR 1.00E-04
LR Decay Ratio 10x
LR Decay cosine
Weight Decay 1.00E-03
LR Warmup Linear
Warmup steps 2000
Gradient Clipping | 1
Data Epoch 1
Batch Size* 256/512
Accelerator Type | NVIDIA L40s
# Accelerator 32/64
Training Precision | Mixed bf16

Table A2: Model size and computation. *: Number of parameters includes the DNA tokenizer
embeddings. T: FLOPs are estiamted with batch size equal 1.

Transformer Size ‘ # of Hidden Layers Hidden Size # of Attention Heads # of Params * FLOPs |

Base | 12 768 12 110M 104G
MLP Size \ # of Hidden Layers Hidden Size Bottleneck Factor # of Params FLOPs
B_6-Wi_1024 6 1024 4 70M 70M

C.2 BASELINES

C.2.1 LEVY-JURGENSON ET AL. (2019B)

We implement the model described in Levy-Jurgenson et al. (2019b), which uses a multi-branch
architecture with four subnetworks: two convolutional neural network (CNN) branches that process
DNA sequences around CpG sites, and two attention-based MLP branches that incorporate gene
expression and CpG-gene distance, respectively. The outputs of all branches are concatenated and
passed through a final regression head to predict DNAm levels. We use the original model structure
as described in the paper. To ensure fairness, we apply the same input preprocessing and trained
on the same data splits as MethylProphet. Our reimplementation is based on the open-source code
available at: https://github.com/YakhiniGroup/Methylation.
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C.2.2 CpGPT (DE LiMA CAMILLO ET AL., 2024)

CpGPT is an imputation-based Transformer model trained via masked modeling on large-scale
CpG methylation data. It learns context-aware representations of CpG sites by predicting masked
methylation values based on the surrounding sequence. In our evaluation, we use the trained CpGPT-
100M model to extract sample-level embeddings for 20 randomly selected samples from the Train
Sample set. These embeddings are then used to predict DNAm levels at the corresponding Val CpG
sites for each selected sample, following the Val CpG — Train Sample evaluation split. We use the
publicly released trained model and inference code from: https://github.com/lcamillo/
CpGPT.

D ADDITIONAL EVALUATION METRICS

To complement the main performance metrics, we provide more evaluations to better understand
model behavior, particularly in capturing biologically meaningful DNA methylation (DNAm) signals.

D.1 ACROSS-SAMPLE PCC BY DNAM VARIABILITY

We stratify CpG sites into bins according to their inter-sample DNAm variability, computed as the
standard deviation of beta values across samples. For each bin, we compute the distribution of
across-sample PCCs between predicted and measured methylation levels.

D.2 PCC orF DNAM CELL-TYPE AND TISSUE DIFFERENCES

To assess the preservation of biological variation, we compare pairwise differences in average
methylation levels between tissues or cell types, calculated for predicted and measured data. For
each tissue or cell-type pair, we compute the PCC between predicted and measured methylation
differences across CpG sites. High correlations indicate that the model captures inter-tissue and
inter-cell-type epigenetic distinctions.

D.3 DMR OVERLAPPING PROPORTION BETWEEN MEASURED AND PREDICTED VALUES
We identify Differentially Methylated Regions (DMRs) from both measured and predicted methylation
matrices using the 1imma R package. We rank DMRs by statistical significance and compute the

overlap proportion between top-ranked regions from the predicted and measured DNAm matrices,
across varying thresholds (e.g., top 1000, 2000 DMRs).

E EVALUATION RESULTS

E.1 ROBUSTNESS TO MISSING CONTEXT DNAM

To assess the reliance on surrounding DNAm context, we conducted an ablation study by progressively
reducing the percentage of available context CpG values for CpGPT. Table A3 and Table A4 report
the performance across 200 held-out test samples.

Table A3: MAS-PCC (median across samples) under different levels of available context CpGs.

% surrounding DNAm | CpGPT | MethylGPT | MethylProphet

100% 0.19 0.23 0.31
80% 0.21 0.18 0.31
60% 0.13 0.15 0.31
40% 0.09 0.12 0.31
20% 0.06 0.08 0.31

When no surrounding context DNAm is available, CpGPT and MethylGPT degenerate (their output
variance collapses), and the PCC metric becomes undefined. In contrast, MethylProphet remains
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Table A4: MAC-PCC (median across CpGs) under different levels of available context CpGs.

% surrounding DNAm | CpGPT | MethylGPT | MethylProphet

100% 0.84 0.78 0.88
80% 0.88 0.69 0.88
60% 0.79 0.63 0.88
40% 0.69 0.54 0.88
20% 0.60 0.49 0.88
TCGA (A) TCGA (A+W) TCGA (A+E) TCGA (A+E+W) ENCODE (W)

PCC across Sample
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Figure A4: The distribution of PCC across Sample / CpG on validation sets for TCGA chromosome
1 data.

stable across all levels of context sparsity due to its reliance on gene expression and DNA sequence
inputs, which are independent of neighboring CpG methylation measurements.

These results highlight that MethylProphet is not only competitive in predictive accuracy but also
substantially more robust and generalizable in low-data or missing-data settings. This robustness
is especially valuable for real-world applications where measured DNAm data may be sparse or
unavailable.

E.2 METHYLPROPHET PERFORMANCE ON TCGA DATA

Figure A4 and Figure A5 illustrate the distribution of PCC for our ablation studies : 1) the effect of
mixing TCGA data with different sequencing techniques. 2) the effect of increasing data scale of
TCGA.

Both across-CpG PCC (Figure A6 (a, b)) and across-sample PCC (Figure A6 (c, d)) reach the highest
values in the Train CpG - Val Sample split, indicating that the model effectively captures site-wise
DNAm patterns while generalizing well to new samples. Specifically, the predictions are consistently
more accurate when generalizing to new samples rather than to new CpGs compared with splits
of Val CpG - Train Sample and Val CpG - Val Sample (Figure A6 (b)). If a sample exhibits high
across-CpG PCC, it suggests that the within-sample variability of CpGs is well captured (Figure A6
(a)). This result is expected, as the overall DNAm profile of a sample consists of a long vector of CpG
elements, and global trends in DNAm are typically easier to learn and predict. For across-sample
PCC (Figure A6 (d)), we observe a large variability, particularly when generalizing to both unseen
CpGs and samples. The CpGs with high across-sample PCC indicate that the model can predict the
CpG’s variability across samples (Figure A6 (c)) well. This is very important because the ability to
predict a CpG’s behavior across individuals is highly related to its potential as a therapeutic target.
We found that the across-sample PCC positively correlates with a CpG’s variability across samples
(Figure A6 (e)). Specifically, the highest median PCC values are observed for CpGs with a standard
deviation (SD) in the range (0.25, 0.36], reaching 0.70 for Train-CpG Val-Sample, 0.63 for Val-CpG
Train-Sample, and 0.60 for Val-CpG Val-Sample.

MethylProphet successfully maintains intra-CGI correlation patterns across different validation splits
(Figure A6 (f)), indicating regional epigenetic regulation.
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Figure A6: Cross-validation results on TCGA chromosome 1 data. (a) An example sample to
demonstrate the calculation of across-CpG PCC. (b) Across-CpG PCC in three validation splits.
(c) An example CpG to demonstrate the calculation of across-sample PCC. (d) Across-sample
PCC in validation splits. (e) Across-sample PCC by DNAm variability in different train/validation
splits, including Train CpG - Val Sample , Val CpG - Train Sample , Val CpG - Val Sample . (f)
Predicted signal similarity within CGls, with the same color scheme as (e). (g) The PCC of DNAm
cell-type differences obtained from predicted and measured values. (h-j) DMR overlapping proportion

between measured and predicted values. (k) UMAP of measured (triangles) and predicted (circles)
samples.

In addition, MethylProphet is able to preserve cancer-specific DNAm differences (Figure A6 (g)).
The Train CpG - Val Sample split exhibits the highest median PCC difference, indicating that the
model effectively maintains cancer-specific DNAm patterns when predicting new samples using a
fixed set of CpGs. However, the Val CpG - Train Sample and Val CpG - Val Sample splits show a
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Figure A7: Cross-validation on ENCODE data. Similar to that of Figure A6, except that the results are
based on the validation on ENCODE data. The sample differences (g) were calculated by comparing
tissue/cell types rather than cancer types.

decline in PCC differences, suggesting reduced performance in capturing cancer-type variation when
generalizing to unseen CpGs.

The differential CpGs achieves the highest overlap between predicted and measured DNAm in the
Train CpG - Val Sample split, followed by Val CpG - Train Sample and Val CpG - Val Sample splits
(Figure A6 (h-j)). In addition, MethylProphet-predicted DNAm landscape successfully preserves
cancer-specific differences, as samples from the same cancer type remain well-clustered (Figure A6

).

E.3 METHYLPROPHET PERFORMANCE ON ENCODE DATA

Unlike TCGA, where MethylProphet performs best in the Train CpG - Val Sample split, ENCODE
shows a different trend across validation splits. For across-CpG PCC (Figure A7 (a, b)), the per-
formance is similar across splits, while for across-sample PCC (Figure A7 (c, d)), MethylProphet
performs best in the Val CpG - Train Sample split, possibly due to the limited testing samples in EN-
CODE data. Similar to that in TCGA, MethylProphet predicts methylation patterns more accurately
for highly variable CpGs, where across-sample PCC increases with CpG variability (Figure A7 (e)).

In this normal tissue cohort, MethylProphet also effectively captures CpG co-methylation dynamics
within CGIs (Figure A7 (f)). In the assessment of MethylProphet’s ability to preserve tissue-specific
DNAm differences, the Val CpG - Train Sample split exhibits the highest median PCC-across-CpG
difference (Figure A7 (g)). This contrasts with TCGA, where the Train CpG - Val Sample split
performed best.

The top-ranked DMRs obtained using predicted and measured DNAm achieve a relatively high
overlap across all validation splits (Figure A7 (h-j)). However, unlike in TCGA, MethylProphet
performs comparably across splits. This suggests that the DMR list is more stable, likely due to the
significantly larger number of CpGs included in ENCODE data. Overall, MethylProphet successfully
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preserves tissue differences (Figure A7 (k)), with predicted and measured samples of the same cancer
types cluster together.

F DISCUSSION

F.1 LIMITATION AND FUTURE WORK

This work should be regarded as a proof-of-concept study that demonstrates the feasibility of
leveraging gene expression and genomic context for whole-genome DNA methylation inference.
While MethylProphet introduces a new paradigm and achieves promising results, we do not propose
fundamentally new model architectures nor do we systematically explore more efficient or specialized
designs. Instead, our focus is on establishing baseline feasibility and potential, rather than optimizing
for computational efficiency or architectural innovation. Future research could address these aspects
by adopting alternative architectures or scaling strategies to further improve performance and resource
efficiency.

F.2 BROAD IMPACT

While our primary objective is to enhance epigenetic research and precision medicine capabilities,
we acknowledge that advances in genomic prediction technologies may have broader societal im-
plications, including privacy considerations and ethical questions regarding genetic information
accessibility. We have focused on developing methods that maintain scientific rigor while adhering to
established ethical guidelines in computational biology and medical research. Our model, data source,
data processing pipelines, and evaluation protocols are designed with transparency and reproducibility
in mind, and we will release all code, data, protocols, and models to facilitate open scientific discourse
and validation.
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