
Under review as a conference paper at ICLR 2021

A MECHANISM DESIGN

Mechanism design prescribes a way for resolving compromise between self-interested agents (Nisan
et al., 2007). For example, in the VCG mechanism (Clarke, 1971), all agents must reveal their
incentives to a central coordinator, the principal. This mechanism achieves optimal group behavior
by taxing each agent appropriately but then “burns” the collected payments, failing eliminate all the
original inefficiency (Hartline and Roughgarden, 2008; Green and Laffont, 1979; Rothkopf, 2007),
i.e., VCG is not strongly budget-balanced.

B BAD NASH & FUTILE OPPONENT SHAPING

Here, we present a small two-player game where the Nash equilibrium results in poor outcomes
for both agents individually and as a group. We then point out how although an opponent shaping
approach would typically be able to manipulate players into avoiding such equilibria, it fails in this
specific game. We seek a general algorithm for resolving multi-agent dilemmas and so we propose a
new solution.

B.1 BAD NASH

Game 1 (Nash Paradox) minx12[0,1] f1(x1, x2) = x
2
1+

1
x2
2+

, minx22[0,1] f2(x1, x2) = x
2
2+

1
x2
1+

.

The unique Nash equilibrium of this general-sum game is (x1, x2)=(0, 0) regardless of  2 [0, 1); at
Nash, each player sees a loss of 1


. The minimal total loss solution is (x1, x2) = (

p
1� ,

p
1� )

for  < 1 where each player sees a loss of 2� . The price of anarchy is 1/
2�

which goes to1 as
 ! 0. For  < golden ratio�1 ⇡ 0.618, Nash achieves maximum total loss among all possible
strategy sets. While computing a Nash is an important technical problem, Game 1 proves that even if
a Nash can be computed, it may be undesirable. Thus solving for Nash is orthogonal to this work.

B.2 GRADIENT DESCENT WITHOUT DESCENT

Game 1 shows that the Nash equilibrium can give the worst outcome for all agents. It follows that
agents learning with gradient descent in this game must observe their loss increase upon their final
approach to Nash. Why stick to gradient descent then? In multi-agent games, the adjustment of
another player’s strategy coupled with our own can increase our loss. Let fi(t) be shorthand for
fi(x(t)) where x(t) contains all strategies at time (iteration) t. Then a series expansion (see Eqn (7))
of agent i’s loss around the current time step makes this concrete:

fi(t+�t) = fi(t) +�t
dfi

dt
+

�t
2

2

d
2
fi

dt2
+O(�t

3) (7)

= fi(t) +�t
@fi

@xi

dxi

dt
+

�t
2

2

h
@
2
fi

@x
2
i

⇣
dxi

dt

⌘2
+

@fi

@xi

d
2
xi

dt2
+ 2

X

j 6=i

@2fi

@xi@xj

dxi

dt

dxj

dt

i

+ h(
dxj 6=i

dt
) +O(�t

3) (8)

where �t > 0 is a small learning rate and h(dxj 6=i

dt
) contains terms that agent i cannot manipulate

(i.e., h is constant w.r.t. agent i’s update dynamics, dxi

dt
). We show the full derivation of the series

expansion in Section C for those interested.

B.3 THE UPDATE IS NOT THE ONLY PROBLEM

In Eqn (7), other agents can affect fi(t+�t) through the bold terms and h(dxj 6=i

dt
). The bold terms

indicate where agent i’s update couples with other players’ updates (Schäfer and Anandkumar, 2019).
To account for these terms, agent i must predict the other agents’ updates, dxj

dt
, and understand how

their behaviors affect agent i’s loss, d
2
fi

dxidxj

. Recent methods, such as LOLA, LookAhead and Stable
Opponent Shaping (Foerster et al., 2018; Letcher et al., 2018), model these terms. However, all these

12



Under review as a conference paper at ICLR 2021

methods converge to Nash in Game 1 because d
2
fi

dxidxj

= 0 as do all other mixed derivatives of agent
i’s loss. In contrast, agent i can never mitigate increases in loss due to h. Incorporating more terms in
the expansion generates higher level reasoning, but even the infinite expansion cannot avoid the Nash

paradox in Game 1. If x1 knows x2’s learning trajectory converges to 0, x1 is still incentivized to
play 0. The fault lies in the game, not the learning.

C TAYLOR SERIES EXPANSION

Here, we derive the Taylor series expansion given in Section B.2. The derivation is as follows:

dfi

dt
=

X

j

@fi

@xj

dxj

dt
=

@fi

@xi

dxi

dt
+
X

j 6=i

@fi

@xj

dxj

dt
(9)

d
2
fi

dt2
=

d

dt

⇣
dfi

dt

⌘
=

d

dt

⇣X

j

@fi

@xj

dxj

dt

⌘
=

X

j

d

dt

⇣
@fi

@xj

dxj

dt

⌘
(10)

=
X

j

h
d

dt

⇣
@fi

@xj

⌘
dxj

dt
+

@fi

@xj

d
2
xj

dt2

i
(11)

=
X

j

h⇣X

k

@
2
fi

@xj@xk

dxk

dt

⌘
dxj

dt
+

@fi

@xj

d
2
xj

dt2

i
(12)

= 2
X

j 6=i

@
2
fi

@xj@xi

dxi

dt

dxj

dt
+

@
2
fi

@x
2
i

⇣
dxi

dt

⌘2
(13)

+
X

j 6=i

X

k 6=i

@
2
fi

@xj@xk

dxj

dt

dxk

dt
+
X

j 6=i

@fi

@xj

d
2
xj

dt2
+

@fi

@xi

d
2
xi

dt2
(14)

h(
dxj 6=i

dt
) = �t

X

j 6=i

@fi

@xj

dxj

dt
+

�t
2

2

hX

j 6=i

X

k 6=i

@
2
fi

@xj@xk

dxj

dt

dxk

dt
+

X

j 6=i

@fi

@xj

d
2
xj

dt2

i
(15)

fi(t+�t) = fi(t) +�t
@fi

@xi

dxi

dt
+

�t
2

2

h
@
2
fi

@x
2
i

⇣
dxi

dt

⌘2
+

@fi

@xi

d
2
xi

dt2
+ 2

X

j 6=i

@2fi

@xi@xj

dxi

dt

dxj

dt

i

(16)

+ h(
dxj 6=i

dt
) +O(�t

3). (17)

D DERIVATION OF AN UPPER BOUND ON Local PRICE OF ANARCHY

Definition 2 (Smooth Game). A game is (�, µ)-smooth (Roughgarden, 2015) if:
NX

i=1

f
A

i
(xi, x

0
�i
)  �

NX

i=1

f
A

i
(xi, x�i) + µ

NX

i=1

f
A

i
(x0

i
, x

0
�i
) (18)

for all x, x0
2 X where � > 0, µ < 1, and

P
i
f
A

i
(x) is assumed to be non-negative for any x 2 X .

The last condition is needed for the price of anarchy to be meaningful.
Lemma 2 (Smooth Games Imply a Bound on Price of Anarchy). The price of anarchy, ⇢, the ratio of

the worst case Nash total loss to the minimal total loss, is bounded above by a ratio of the coefficients

of a smooth game (Roughgarden, 2015):

⇢ =
maxX⇤

P
i
f
A

i
(x⇤)

minX
P

i
f
A

i
(x)

� 1 (19)

 inf
�>0,µ<1

h
�

1� µ

i
. (20)

where x
⇤

is an element of the set of Nash equilibria, X
⇤
.

13



Under review as a conference paper at ICLR 2021

Assume the loss function gradients are Lipschitz as well. We say a loss function, f
A

i
(x) =

f
A

i
(xi, x�i), has a �i-Lipschitz gradient for all A if

||rxi
f
A

i
(x)�ryi

f
A

i
(y)||  �i||x� y|| 8x, y,A. (21)

Note that this implies
||rxi

f
A

i
(xi, z�i)�ryi

f
A

i
(yi, z�i)||  �i||xi � yi|| 8xi, yi, z�i, A (22)

as a special case.

The following lemmas are useful in deriving a local notion of smoothness.
Lemma 3. If f

A

i
(xi, x�i) = gi(x) has a �i-Lipschitz gradient, then���||rxi

gi(x)||� ||ryi
gi(y)||

���  �i||x� y|| 8 x, y. (23)

Proof. The proof proceeds in two main steps. First,
||ryi

gi(y)|| = ||rxi
gi(x) +ryi

gi(y)�rxi
gi(x)|| (24)

 ||rxi
gi(x)||+ ||rxi

gi(x)�ryi
gi(y)|| by triangle inequality (25)

 ||rxi
gi(x)||+ �i||x� y|| by Lipschitz gradient (26)

which implies ||ryi
gi(y)||� ||rxi

gi(x)||  �i||x� y||. And vice versa,
||rxi

gi(x)|| = ||ryi
gi(y) +rxi

gi(x)�ryi
gi(y)|| (27)

 ||ryi
gi(y)||+ ||rxi

gi(x)�ryi
gi(y)|| by triangle inequality (28)

 ||ryi
gi(y)||+ �i||x� y|| by Lipschitz gradient (29)

which implies ||rxi
gi(x)|| � ||ryi

gi(y)||  �i||x � y||. The two implications together prove the
lemma.

Lemma 4. If f
A

i
(xi, x�i) = gi(x) has a �i-Lipschitz gradient, then���||rxi

gi(x)||
2
� ||ryi

gi(y)||
2
���  3�2

i
||x� y||

2 + 2�i||rxi
gi(x)||||x� y|| 8 x, y. (30)

Proof. The proof proceeds similarly to before. First,
||ryi

gi(y)||
2 = ||rxi

gi(x) +ryi
gi(y)�rxi

gi(x)||
2 (31)



⇣
||rxi

gi(x)||+ ||rxi
gi(x)�ryi

gi(y)||
⌘2

by triangle inequality (32)

= ||rxi
gi(x)||

2 + ||rxi
gi(x)�ryi

gi(y)||
2 + 2||rxi

gi(x)||||rxi
gi(x)�ryi

gi(y)||
(33)

 ||rxi
gi(x)||

2 + �
2
i
||x� y||

2 + 2�i||rxi
gi(x)||||x� y|| by Lipschitz gradient and Lemma 3

(34)
which implies ||ryi

gi(y)||2 � ||rxi
gi(x)||2  �

2
i
||x � y||

2 + 2�i||rxi
gi(x)||||x � y||. And vice

versa,
||rxi

gi(x)||
2 = ||ryi

gi(y) +rxi
gi(x)�ryi

gi(y)||
2 (35)



⇣
||ryi

gi(y)||+ ||rxi
gi(x)�ryi

gi(y)||
⌘2

by triangle inequality (36)

= ||ryi
gi(y)||

2 + ||rxi
gi(x)�ryi

gi(y)||
2 + 2||ryi

gi(y)||||rxi
gi(x)�ryi

gi(y)||
(37)

 ||ryi
gi(y)||

2 + �
2
i
||x� y||

2 + 2�i||ryi
gi(y)||||x� y|| by Lipschitz gradient and Lemma 3

(38)
which implies ||rxi

gi(x)||2 � ||ryi
gi(y)||2  �

2
i
||x � y||

2 + 2�i||ryi
gi(y)||||x � y||. The two

implications together imply���||rxi
gi(x)||

2
� ||ryi

gi(y)||
2
���  �

2
i
||x� y||

2 + 2�i max{||rxi
gi(x)||, ||ryi

gi(y)||}||x� y||

(39)

 �
2
i
||x� y||

2 + 2�i max{||rxi
gi(x)||, ||rxi

gi(x)||+ �i||x� y||}||x� y||

(40)

= 3�2
i
||x� y||

2 + 2�i||rxi
gi(x)||||x� y|| (41)

14



Under review as a conference paper at ICLR 2021

where the last inequality follows from Lemma 3.

Lemma 5. If f
A

i
(xi, x�i) = gi(x) has a �i-Lipschitz gradient, then there exists a �t > 0 sufficiently

small s.t.

hrxi
gi(x),rx0

i
gi(x

0)i � ||rxi
gi(x)||

2
� �i�t� �i�t

2
� 0 (42)

where x
0
i
= xi � �trxi

gi(x) for each i, �t > 0, �i = �i||rxi
gi(x)||⇣, �i = 2�2

i
⇣
2
, and

⇣ =
qP

j
||rxj

gj(x)||2.

Proof. We begin with the assumption of a Lipschitz gradient which trivially implies the following:

||rxi
gi(x)�ryi

gi(y)||  �i||x� y|| 8x, y (43)

=) ||rxi
gi(x)�ryi

gi(y)||
2
 �

2
i
||x� y||

2
8x, y. (44)

This, in turn, is equivalent to

hrxi
gi(x)�ryi

gi(y),rxi
gi(x)�ryi

gi(y)i  �
2
i
||x� y||

2
8x, y (45)

= ||rxi
gi(x)||

2 + ||ryi
gi(y)||

2
� 2hrxi

gi(x),ryi
gi(y)i  �

2
i
||x� y||

2
8x, y. (46)

Rearranging terms gives

hrxi
gi(x),ryi

gi(y)i �
1

2

h
||rxi

gi(x)||
2 + ||ryi

gi(y)||
2
� �

2
i
||x� y||

2
i
8x, y. (47)

Now let yi = x
0
i
= xi ��trxi

gi(x) for each i. Lemma 4 implies

||rx0
i
gi(x

0)||2 � ||rxi
gi(x)||

2
� 3�2

i
||x� y||

2
� 2�i||rxi

gi(x)||||x� y|| (48)

= ||rxi
gi(x)||

2
� 3�2

i
�t

2
X

j

||rxj
gj(x)||

2

| {z }
⇣2

�2�i�t||rxi
gi(x)||

sX

j

||rxj
gj(x)||2

| {z }
⇣

.

(49)

Then

hrxi
gi(x),rx0

i
gi(x

0)i �
1

2

h
||rxi

gi(x)||
2 + ||rx0

i
gi(x

0)||2 ��t
2
�
2
i

X

j

||rxj
gj(x)||

2
i

(50)

�
1

2

h
2||rxi

gi(x)||
2
� 2�i�t||rxi

gi(x)||⇣ � 3�t
2
�
2
i
⇣
2
��t

2
�
2
i
⇣
2
i

(51)

= ||rxi
gi(x)||

2
��t�i||rxi

gi(x)||⇣ � 2�t
2
�
2
i
⇣
2 (52)

= ||rxi
gi(x)||

2
� �i�t� �i�t

2 (53)

where �i = �i||rxi
gi(x)||⇣ and �i = 2�2

i
⇣
2. Note that ||rxi

gi(x)||2 � 0 and if ||rxi
gi(x)||2 = 0,

then hrxi
gi(x),rx0

i
gi(x0)i = 0.

Lemma 6. If f
A

i
(xi, x�i) = gi(x) has a �i-Lipschitz gradient, then

f
A

i
(xi, x

0
�i
) � f

A

i
(x0

i
, x

0
�i
) + hrx0

i
f
A

i
(x0

i
, x

0
�i
), xi � x

0
i
i �

�i

2
||xi � x

0
i
||
2 (54)

where x
0
i
= xi ��trxi

gi(x) for each i and �t > 0.

Proof. Let fA

i
(xi, x

0
�i
) = hi(xi). We begin with the assumption of a Lipschitz gradient which

implies the following:

||rxi
hi(xi)�ryi

hi(yi)||  �i||xi � yi|| 8x, y (55)

=) |hi(xi)� hi(yi)� hryi
hi(yi), xi � yii| 

�i

2
||xi � yi||

2
8x, y. (56)

15



Under review as a conference paper at ICLR 2021

This then implies

hi(xi) = hi(yi) + hryi
hi(yi), xi � yii+ i||xi � yi||

2
8x, y where i 2 [�

�i

2
,
�i

2
] (57)

Rewriting with f
A

i
for clarity, letting yi = x

0
i
= xi ��trxi

gi(x) for each i, and selecting the lower
bound gives

f
A

i
(xi, x

0
�i
) � f

A

i
(x0

i
, x

0
�i
) + hrx0

i
f
A

i
(x0

i
, x

0
�i
), xi � x

0
i
i �

�i

2
||xi � x

0
i
||
2
. (58)

Lemma 7. If every f
A

i
(xi, x�i) = gi(x) has a �i-Lipschitz gradient, then by Lemmas 5 and 6, there

exists a �t such that
NX

i=1

f
A

i
(xi, x

0
�i
) �

NX

i=1

f
A

i
(x0

i
, x

0
�i
) + ai|{z}

�0

(59)

where x
0
i
= xi ��trxi

f
A

i
(x) and ai = ||rxi

f
A

i
(xi, x�i)||2 � �i�t� �i�t

2
for each i.

Proof. Consider simultaneous gradient descent dynamics. Let x0
i
= xi ��trxi

f
A

i
(x). Then by

Lemmas 5 and 6, we find

f
A

i
(xi, x

0
�i
) � f

A

i
(x0

i
, x

0
�i
) + hrx0

i
f
A

i
(x0

i
, x

0
�i
), xi � x

0
i
i �

�i

2
||xi � x

0
i
||
2 (60)

= f
A

i
(x0

i
, x

0
�i
) +�thrx0

i
f
A

i
(x0

i
, x

0
�i
),rxi

f
A

i
(xi, x�i)i �

�i

2
||xi � x

0
i
||
2 (61)

= f
A

i
(x0

i
, x

0
�i
) +�thrx0

i
f
A

i
(x0

i
, x

0
�i
),rxi

f
A

i
(xi, x�i)i �

�i

2
�t

2
||rxi

f
A

i
(xi, x�i)||

2

(62)

� f
A

i
(x0

i
, x

0
�i
) + ||rxi

f
A

i
(xi, x�i)||

2�t� ⇠i�t
2
� �i�t

3

| {z }
ai

(63)

where ⇠i = �i +
�i

2 ||rxi
f
A

i
(xi, x�i)||2. The parameters ⇠i and �i are bounded, therefore, there

exists a �t > 0 small enough such that ai � 0.

Theorem 8 (Local Smoothness). Given n losses, f
A

i
(x), i 2 {1, . . . , n}, with �i-Lipschitz gradients

there exists a �t > 0 sufficiently small such that the game defined by these losses is smooth only if

NX

i=1

ai  �

NX

i=1

f
A

i
(xi, x�i) + (µ� 1)

NX

i=1

f
A

i
(x0

i
, x

0
�i
) 8xi (64)

where x
0
i
= xi ��trxi

f
A

i
(x) and ai = ||rxi

f
A

i
(xi, x�i)||2�t� ⇠i�t

2
� �i�t

3
� 0. Note this

is a necessary, not sufficient condition for a game to be globally smooth.

Proof. Plugging Lemma 7 into the original definition of smoothness for x0
i
= xi ��trxi

f
A

i
(x)

and �t sufficiently small gives
NX

i=1

f
A

i
(x0

i
, x

0
�i
) + ai 

NX

i=1

f
A

i
(xi, x

0
�i
)  �

NX

i=1

f
A

i
(xi, x�i) + µ

NX

i=1

f
A

i
(x0

i
, x

0
�i
). (65)

Rearranging the outer terms of the inequalities gives
NX

i=1

ai  �

NX

i=1

f
A

i
(xi, x�i) + (µ� 1)

NX

i=1

f
A

i
(x0

i
, x

0
�i
). (66)

Note this is different than the definition of local smoothness in (Roughgarden and Schoppmann,
2015).

16



Under review as a conference paper at ICLR 2021

Theorem 9. Given n losses, f
A

i
(x), i 2 {1, . . . , n}, with �i-Lipschitz gradients there exists a �t > 0

sufficiently small such that the utilitarian local price of anarchy of the game (to O(�t
2)) is upper

bounded by

⇢  max
i

{1 +�tReLU
⇣
d

dt
log(fA

i
(x)) +

||rxi
f
A

i
(x)||2

f
A

i
(xi, x�i)µ̄

⌘
} (67)

where i indexes each agent and µ̄ is a user defined positive scalar.

Proof. To ease exposition, let bi = f
A

i
(xi, x�i) and ci = f

A

i
(x0

i
, x

0
�i
) so that local smoothness

becomes
NX

i=1

ai  �

NX

i=1

bi + (µ� 1)
NX

i=1

ci. (68)

If each agent i ensures local individual smoothness is satisfied, i.e.,

ai  �ibi + (µi � 1)ci, (69)

then this is sufficient to satisfy local smoothness
NX

i=1

ai  max
i

{�i}

NX

i=1

bi + (max
i

{µi}� 1)
NX

i=1

ci. (70)

Rearranging inequality 69 and letting µ̂i = 1� µi, âi = ai/bi, and ĉi = ci/bi gives

�i �
ai

bi
� (µi � 1)

ci

bi
(71)

�i � âi + µ̂iĉi. (72)

Let each agent i attempt to measure the local price of anarchy given the losses it observes on its
trajectory and call this measure ⇢i. Then

⇢i = inf
�i,µ̂i

h
�i

µ̂i

i
(73)

s.t. (74)
�i � âi + ĉiµ̂i (75)
�i � µ̂i (76)
µ̂i > 0 (77)
µ̂i  µ̄ (78)

where constraint 75 ensures local individual smoothness, constraint 76 encodes that price of anarchy
� 1 by definition, and constraint 77 is required by the original conditions on µ for smoothness. Note
that including an additional constraint for �i > 0 would be redundant and so is omitted. Constraint 78
is optional and included to encode a prior by the agents on the smoothness parameters.

Recall that âi and ĉi are both non-negative; ĉi controls the slope of constraint 75. We can solve this
optimization in closed form for the four distinct cases outlined in Figure 6.

Figure 6: From left to right: a) ĉi > 1, b) ĉi = 1, c) ĉi < 1 and ĉi +
âi

µ̄
 1, d) ĉi < 1 and

ĉi +
âi

µ̄
> 1.

Figure 6 shows µ̂ always leads to minimal ⇢i at µ̄, therefore maxi{µi} = maxi{1�µ̂i} = 1�µ̄. And
so ⇢ 

maxi{�i}
µ̄

= maxi{⇢i} = max(1, maxi{âi+µ̄ĉi}
µ̄

) = max(1,maxi{
âi

µ̄
+ ĉi}). Assuming µ̄ is

17



Under review as a conference paper at ICLR 2021

large allows us to approximate with max(1,maxi{ĉi}), so the local price of anarchy is determined
by the largest increase in loss over all the agents; if all losses are decreasing, the local price of anarchy
is 1.

In summary, if ĉi < 1 and µ̄ �
âi

1�ĉi
(the intersection points of constraints 75 and 76), then ⇢i = 1.

The latter inequality, âi

1�ĉi
 µ̄, can be rewritten as ĉi  1� âi

µ̄
. Alternatively, if ĉi = 1 and µ̄!1

(i.e., constraint 78 is omitted), ⇢i also equals 1. In all other cases, ⇢i = âi

µ̄i

+ ĉi. If we assume âi > 0

(i.e., ||rxi
f
A

i
(x)|| > 0), we can reduce the cases above to

(
⇢i = 1, if ĉi  1� âi

µ̄

⇢i = ĉi +
âi

µ̄
, else.

(79)

Let ✏i = âi

µ̄
> 0, then the two cases can be rewritten succinctly as

⇢i = max(1, ĉi + ✏i). (80)

If we expand ĉi as a series we find

ĉi =
f
A

i
(x0)

f
A

i
(x)

(81)

=
f
A

i
(x) + df

A

i
(x)

dt
�t

f
A

i
(x)

+O(�t
2) (82)

= 1 +
df

A

i
(x)

dt

f
A

i
(x)

�t+O(�t
2). (83)

Therefore, to O(�t
2),

⇢i = max(1, 1 +
h df

A

i
(x)

dt

f
A

i
(x)

+

✏iz }| {
||rxi

f
A

i
(x)||2

f
A

i
(xi, x�i)µ̄

i
�t) (84)

= 1 +�tmax(0,
df

A

i
(x)

dt

f
A

i
(x)

+
||rxi

f
A

i
(x)||2

f
A

i
(xi, x�i)µ̄

) (85)

= 1 +�tReLU
⇣
d

dt
log(fA

i
(x)) +

||rxi
f
A

i
(x)||2

f
A

i
(xi, x�i)µ̄

⌘
(86)

= 1 +�tReLU
⇣
d

dt
log(fA

i
(x))

⌘
as µ̄!1. (87)

The following lemma establishes that the proposed bound may be tight in some games although we
do not conjecture that this bound is at all tight in general.
Lemma 10. The local ⇢ bound with µ!1 in Eqn (67) is tight for some games.

Proof. Consider the two player game with loss functions f1(x1) = x1�x2 and f2(x2) = x2�x1

for players 1 and 2 respectively with  > 1. Assume the player strategies are constrained to the line
segment x1(⌧) = x1 � ⌧�t and x2(⌧) = x2 � ⌧�t with ⌧ 2 [0, 1]. Also, let x1 = x2 and recall
each player is assumed to run gradient descent

Then df1

dt
= @f1

@x1
dx1
dt

+ @f1

@x2
dx2
dt

= � 1 > 0. Similarly, df2

dt
= � 1. Given x1 = x2, the price of

anarchy bound simplifies to 1 +�tReLU d

dt
log(fA

i
(x)) = 1 +�tReLUd/dtf

A

i
(x)

fA

i
(x)

= 1 +�t
�1
fi(x)

.

Also, f1(x(⌧)) = x1 � ⌧�t � (x2 � ⌧�t) = x1 � x2 � ⌧�t(1 � ) = f1(x) + ⌧�t( � 1).
Likewise, f2(x(⌧)) = f2(x) + ⌧�t( � 1). By inspection, the Nash occurs where x1 and x2 are
minimal along the segment at ⌧ = 1, so x

⇤
1 = x1 ��t and x

⇤
2 = x2 ��t. The values at Nash are

18



Under review as a conference paper at ICLR 2021

f1(x⇤) = f1(x) +�t(� 1) and f2(x(⌧)) = f2(x) +�t(� 1). In contrast, optimal group loss,
minx1,x2(1� )(x1(⌧) + x2(⌧)), occurs at ⌧ = 0 and with values of f1(x) and f2(x). This implies
the true price of anarchy is 1+�t

2(�1)
f1(x)+f2(x)

. Given x1 = x2, the true price of anarchy simplifies to
1 +�t

�1
fi(x)

which is the same as the upper bound.

The goal of this work is to derive an approximate proxy that can be both easily estimated and
optimized. The bound we derive relies on first order information. It would be interesting to tighten
the bound with second order information or by computing the price of anarchy for an appropriate
polymatrix approximation to the game.

D.1 ACCOMMODATING NEGATIVE LOSS FUNCTIONS

In experiments, we replace the second term, ✏i, with a constant hyperparameter ✏:

⇢i = 1 +�tReLU
⇣
d

dt
log(fA

i
(x)) + ✏

⌘
. (88)

The log term appears due to price of anarchy being defined as the worst case Nash total loss divided by
the minimal total loss. Although we have not defined an alternative price of anarchy, it is reasonable
to believe one which defines the price of anarchy additively might drop the log term, leading to
minimizing the following:

ĉi = f
A

i
(x0)� f

A

i
(x) (89)

= f
A

i
(x) +

df
A

i
(x)

dt
�t� f

A

i
(x) +O(�t

2) (90)

=
df

A

i
(x)

dt
�t+O(�t

2) (91)

so that

⇢i = �tReLU
⇣
d

dt
f
A

i
(x) + ✏̃

⌘
(92)

where ✏̃i ⇡
||rxi

f
A

i
(x)||2

µ̄
is replaced in experiments with a constant hyperparameter, ✏̃ as before. This

objective is appealing as it does not require losses to be positive.

D.1.1 MULTIPLICATIVE VS ADDITIVE PRICE OF ANARCHY

In §2.5, we proposed an alternative gradient direction to the one derived in Eqn (5). This was a
pragmatic change to make D3C amenable to games with negative loss, but may have appeared
theoretically unappealing to the reader. Here, we show that the price of anarchy, as a multiplicative
ratio, is already a somewhat arbitrary and non-robust choice.

Specifically, the price of anarchy of a game is not invariant to a global offset to the loss functions. Let
the original price of anarchy of a game be a

b
. Consider adding a constant c to each of the n losses in

the game; note this does not change the locations of the Nash equilibrium or the total loss minimizer.
However, the new price of anarchy becomes a+nc

b+nc
! 1 as c!1. On the other hand, let c! �b/n

from the right. Then the new price of anarchy approaches infinity. In summary, the price of anarchy,
as defined multiplicatively, can be made arbitrarily large or small by adding a constant to each loss
function in the game.

By removing the log term from the gradient,rAi
⇢i, we effectively removed this effect. Lastly, the

most important and general part of gradient direction, rAi
⇢i, is the the Improve-Stay, Suffer-Shift

component which is retained in r̃Ai
⇢i.

D.1.2 WHY MINIMIZE d

dt
f
A

i
(x) W.R.T. Ai? WHY NOT d

dt
fi(x)?

The local price of anarchy is defined using the time derivative of the transformed loss. Instead, can
agents minimize the time derivative of their original loss w.r.t. Ai? Note the dependence on Ai

appears in the time derivative terms through the update dynamics, e.g. dxi

dt
= dxi

dt
(A).

19



Under review as a conference paper at ICLR 2021

In our loss mixing model, agent i can influence the update of agent j directly through Ai. This occurs
because the transformed losses are computed using A

> and so Aij is used to re-mix agent j’s loss.
This allows agent i to affect the h(dxj 6=i

dt
) terms mentioned back in §B.2 and §B.3, circumventing the

issues originally discussed in those sections.

However, we conducted experiments on the prisoner’s dilemma using this approach, and although
minimizing d

dt
fi(x) w.r.t. Ai worked for the 2-player variant, it failed to minimize the price of

anarchy for 3, 5, or 10 players. Therefore, we discontinued its use in further experiments.

D.2 EGALITARIAN PRICE OF ANARCHY

If the objective of interest is egalitarian rather than utilitarian, then a game is (�, µ)-smooth instead
if:

NX

i=1

f
A

i
(xi, x

0
�i
)  �max

i

f
A

i
(xi, x�i) + µmax

i

f
A

i
(x0

i
, x

0
�i
) (93)

for all x, x0
2 X where � > 0, µ < 1, and maxi fA

i
(x) is assumed to be non-negative for any x 2 X .

The price of anarchy, ⇢e, gives the ratio of the worst case Nash max-loss to the minimal max-loss:

⇢ =
maxX⇤ maxi fA

i
(x⇤)

minX maxi fA

i
(x)

� 1 (94)

 inf
�>0,µ<1

h
�

1� µ

i
(95)

where x
⇤ is an element of the set of Nash equilibria, X ⇤.

Theorem 11. Given n losses, f
A

i
(x), i 2 {1, . . . , n}, with �i-Lipschitz gradients there exists a

�t > 0 sufficiently small such that the local egalitarian price of anarchy of the game (to O(�t
2)) is

upper bounded by

⇢e  1 +�tReLU
⇣
d

dt
log(max

i

{f
A

i
(x)}) +

NX

i=1

||rxi
f
A

i
(x)||2

f
A

i
(xi, x�i)µ̄

⌘
. (96)

where i indexes each agent and µ̄ is a user defined positive scalar.

Proof. By Lemma 7,

NX

i=1

f
A

i
(x0

i
, x

0
�i
) + ai 

NX

i=1

f
A

i
(xi, x

0
�i
)  �max

i

f
A

i
(xi, x�i) + µmax

i

f
A

i
(x0

i
, x

0
�i
). (97)

Rearranging the outer terms of the inequalities gives

NX

i=1

ai  �max
i

f
A

i
(xi, x�i) + µmax

i

f
A

i
(x0

i
, x

0
�i
)�

NX

i=1

f
A

i
(x0

i
, x

0
�i
) (98)

 �max
i

f
A

i
(xi, x�i) + (µ� 1)max

i

f
A

i
(x0

i
, x

0
�i
) (99)

=) a  �b+ (µ� 1)c. (100)

where a =
P

N

i=1 ai, b = maxi fA

i
(xi, x�i), and c = maxi fA

i
(x0

i
, x

0
�i
). The proof proceeds as

before in the utilitarian case except the price of anarchy does not decompose into a max over
agent-centric estimates.

E DESCRIPTION OF GAMES IN EXPERIMENTS

We describe the traffic network and prisoner’s dilemma games in detail here. We point the reader
to (Eccles et al., 2019a) for further details of Coins and (Hughes et al., 2018) for Cleanup.

20



Under review as a conference paper at ICLR 2021

E.1 GENERATING NETWORKS THAT EXHIBIT BRAESS’S PARADOX

In order to randomly generate a traffic network exhibiting Braess’s paradox, it is sufficient to guarantee
two properties. One is that the shortcut route is a strictly dominant path (shorter commute time). This
ensures all agents take the shortcut in the Nash equilibrium. The other is that there exists a joint
strategy avoiding the shortcut with lower total commute time than all agents taking the shortcut. We
assume there are four drivers.

Figure 7: A theoretical traffic nework with congestion parameters, F and G, and constant commute
time parameters C, D, and E.

The shortcut, SABE, is a strictly dominant (strictly shorter commute) if

Fnsa +Gnbe + E < Fnsa + C (101)
Fnsa +Gnbe + E < Gnbe +D (102)

=) E < min{C �Gnbe, D � Fnsa} (103)

=) G <
C

nbe

which is ensured if C > 4G (104)

=) F <
C

nsa

which is ensured if D > 4F. (105)

And there exists a pure joint strategy with at least � less total commute time if

⌧Nash = 4(4(F +G) + E) (106)
⌧Opt = argmin

nsa2{1,2,3},nbe=4�nsa

{nsa(Fnsa + C) + nbe(Gnbe +D)} (107)

⌧Nash > ⌧Opt +� =) E >
⌧opt +�

4
� 4(F +G). (108)

So we can randomly generate a Braess network with Algorithm 4.

Algorithm 4 gen_braess
fail True
while fail do
F ⇠ {1, . . . , 20}
G ⇠ {1, . . . , 20}
C ⇠ {4G+ 10, . . . , 4G+ 20} . 10 is an arbitrary buffer
D ⇠ {4F + 10, . . . , 4F + 20} . 20 is an arbitrary upper limit
⌧Opt  argminnsa2{1,2,3},nbe=4�nsa

{nsa(Fnsa + C) + nbe(Gnbe +D)}

Emin = max{ ⌧Opt+�
4 � 4(F +G), 0}

Emax = min{C � 4G,D � 4F}

if Emin < Emax then
fail False
E ⇠ {Emin, . . . , Emax}

end if
end while
Output: C, D, E, F , G

21



Under review as a conference paper at ICLR 2021

The expected commute times for this Braess network can be computed exactly given stochastic
commuting policies. Consider a network with four drivers and let xij specify the probability of driver
i taking route j through the network. Then let

x =

2

666666664

x11

x12

x13
...

x41

x42

x43

3

777777775

, b =

"
C

D

E

#
, M =

"
F 0 F

0 G G

F G F +G

#
, br =

2

64

b
b
b
b

3

75 , Mr =

2

64

M

M

M

M

3

75 , I =

"
1 0 0
0 1 0
0 0 1

#

(109)

and let

S = [I I I I] , Ai =

2

64

1(i == 1)I 0 0 0
0 1(i == 2)I 0 0
0 0 1(i == 3)I 0
0 0 0 1(i == 4)I

3

75 . (110)

Then ⌧r = MrSx+ br gives commute time for each path replicated for four agents:

⌧r = MrSx+ br (111)

=

2

666666664

top route time for player 1
bottom route time for player 1

shortcut time for player 1
...

top route time for player 4
bottom route time for player 4

shortcut time for player 4

3

777777775

. (112)

The expected commute time for agent 1 is just the inner product of the first 3 entries of this vector
with agent 1’s policy. We use the matrix Ai to effectively select the appropriate commute times from
⌧r. Continuing, let

Qi = A
>
i
MrS (113)

di = A
>
i
br = Aibr (114)

Ci = Cov(xi) = diag(xi)� xix
>
i

(115)
C = Cov(x) = block_diag(Ci). (116)

We can now write agent i’s loss as

li(x) = (Aix)
>⌧r (117)

= x>
Qix+ d

>
i
x (118)

E[li(x)] = E[x>
Qix] + d

>
i
x (119)

= Tr(QiC) + x>
Qix+ d

>
i
x (120)

= Tr(MCi) + x>
Qix+ d

>
i
x (121)

which is easily amenable to analysis and makes the fact that the loss is quadratic, readily apparent.

E.2 A REFORMULATION OF THE PRISONER’S DILEMMA

In an n-player prisoner’s dilemma, each player must decide to defect or cooperate with each of the
other players creating a combinatorial action space of size 2n�1. This requires a payoff tensor with
2n(n�1) entries. Instead of generalizing prisoner’s dilemma (Rapoport et al., 1965) to n players using
nth order tensors, we translate it to a game with convex loss functions. Figure 8 shows how we can
accomplish this. Generalizing this to n players, we say that for all i, j, k distinct, 1) player i wants to
defect against player j, 2) player i wants player j to defect against player k, and 3) player i wants

22



Under review as a conference paper at ICLR 2021

Figure 8: A reformulation of the prisoner’s dilemma using convex loss functions instead of a normal
form payoff table.

player j to cooperate with itself. In other words, each player desires a free-for-all with the exception
that no one attacks it. See §E.2 for more details.

We can define the vector of loss functions succinctly with

f(x) =
⇣
2

4
x>

x>

x>

3

5� C

⌘2
(elementwise) (122)

where x = [xij ] is a column vector (i 2 [1, n], j 2 [1, n� 1], values flattened in major-row order)
containing the player strategies and C is an n⇥ n(n� 1) matrix with entries that either equal 0 or
c 2 R+.

More specifically, C is a circulant matrix with column order reversed. For example, the matrix C

associated with the three player game is

C =

"
0 0 c 0 0 c

0 c 0 0 c 0
c 0 0 c 0 0

#
(123)

where c > 0. Setting xij = 0 encodes that player i has defected against its jth opponent. In the first
row of C above, the first two entries can be read as player 1 is incentivized to defect against players 2
and 3. The next two entries state that player 1 receives a penalty if player 2 doesn’t cooperate, but
wants player 2 to defect against player 3. The final two entries state that player 1 receives a penalty
if player 3 doesn’t cooperate, but wants player 3 to defect against player 2. The matrix, C, can be
constructed for n-player games with numpy (Oliphant, 2006) as

row = numpy.array(([0]*(n-1)+[c])*(n-1))[::-1]
C = scipy.linalg.circulant(row1)[:n,::-1]

Note that this matrix is of size n⇥ n(n� 1) or O(n3) entries.

The minimal total loss for this problem is (n� 1)2c2 and occurs at xij =
c

n
:

ftotal = 1> ~f(x) =
nX

i=1

n�1X

j=1

(n� 1)x2
ij
+ (xij � c)2 (124)

@ftotal

@xij

= 2(n� 1)xij + 2(xij � c) = 0 (125)

=) xij =
c

n
(126)

=) ftotal = n(n� 1)
h (n� 1)c2

n2
+

(n� 1)2c2

n2

i
= (n� 1)2c2. (127)

Nash occurs at the origin. This can be quickly derived by leveraging variational inequality the-
ory (Facchinei and Pang, 2007; Nagurney and Zhang, 2012) and noticing that the Jacobian of gradient

23



Under review as a conference paper at ICLR 2021

descent dynamics is 2I , hence strongly monotone. Strongly monotone variational inequalities
have unique a Nash equilibrium coinciding with the strategy set at which the gradients are all zero
(assuming this point lies in X ). The total loss at Nash (xij = 0) is n(n� 1)c by inspection.

E.2.1 PRISONER’S DILEMMA VARIANT EXPERIMENTS

Figure 9 shows that D3C with a randomly initialized strategy successfully minimizes the price
of anarchy. In contrast, gradient descent learners provably converge to Nash at the origin with
⇢ = n

c(n�1) . The price of anarchy grows unbounded as c ! 0. We set n = 10 and c = 1 in
experiments for a mild ⇢ = 10

9 .

Figure 9: Prisoner’s Dilemma Convergence to ⇢ = 1 (left) and the unique optimal joint strategy
(right) over 1000 runs. The shaded region captures ± 1 standard deviation around the mean (too
small to see on left). Gradient descent (not shown) provably converges to Nash.

Figure 10 highlights a single training run. Both agents are initialized to minimize their original loss,
but then learn over training to minimize the mean of the two player losses.

Figure 10: Prisoner’s Dilemma Single run: relative loss attention measured as ln
�

Aii

Aj 6=i

�
(left) and

player losses, fi, (right).

E.2.2 COOPERATION ROBUST TO MAVERICKS

Proposition 12. In heterogeneous populations containing both D3C agents and selfish (gradient

descent) agents, D3C agents end up with strictly lower loss when playing the proposed reformulation

of the prisoner’s dilemma.

Proof. Note that player i controls variables xij and suffers loss fi(x). Assume some subset of the
players defect and play some fixed strategy. Let this subset be the players 1 through m w.l.o.g.
because the player losses are symmetric. The remaining player (non-defector) losses can be rewritten
as

fi>m(x) = f(x|C{i>m,j>m(n�1)}) +K (128)

where K is some vector-valued constant independent of these non-defectors’ strategies. Due to the
structure of C, the losses that remain simply represent a (n �m)-player prisoner’s dilemma. To
see this, consider player 1 defecting in a 3-player prisoner’s dilemma, i.e., consider the C{i>1,j>2}
submatrix. The loss functions for players 2 and 3 depend in exactly the same way on the variables x21

and x32, i.e., (x21�0)2+(x32�0)2+ · · · , therefore, they will both agree on setting x21 = x32 = 0.
The game that remains is exactly the 2-player prisoner’s dilemma between players 2 and 3. So

24



Under review as a conference paper at ICLR 2021

assuming these players run our proposed algorithm (D3C), they will converge to minimizing total
loss of this subgame.

Of particular interest is the case where the defectors naively play fixed selfish strategies, i.e., xij = 0.
In this case, cooperating agents not only achieve lower subgroup loss, but also lower individual loss.

Recall that the loss for each player when all defect (naive selfish play implies xij = 0) is n� 1. If
only a subset of players defect and the remaining cooperate, the defectors achieve losses greater than
n � 1—this can be seen from the fact that xij = 0 is a strict Nash. Therefore, if we show that a
cooperator’s loss is less than n� 1, we prove that cooperators outperform defectors.

Each defector adds 1 to the loss of a cooperator and the loss due to the cooperators’ subgame
prisoner’s dilemma is (n�m�1)2

n�m
(Eqn (127)). Therefore, the loss of a cooperator is m+ (n�m�1)2

n�m
.

The loss of a defector is always greater:

(n� 1)| {z }
defector

�m�
(n�m� 1)2

n�m| {z }
cooperator

= (n�m� 1)�
(n�m� 1)2

n�m
(129)

=
(n�m)(n�m� 1)� (n�m� 1)2

n�m
=

n�m� 1

n�m
> 0.

(130)

F ADDITIONAL EXPERIMENTS

We present additional results on three RL experiments, one small game as another counterargument
to welfare-maximization, and a negative result for local ⇢-minimization (which D3C is an instance
of).

F.1 TRUST-YOUR-BROTHER

In this game, a predator chases two prey around a table. The predator is a bot with a hard-coded
policy to move towards the nearest prey unless it is already adjacent to a prey, in which case it stays
put. If the prey are equidistant to the predator, the predator flips a coin and moves according to the
coin flip. The prey receive 0 reward if they chose not to move and �.01 if they attempted to move.
They additionally receive �1 if the predator is adjacent to them after moving.

Figure 11: Trust-Your-Brother A bot chases agents around a table. The predator’s prey can only
escape if the other prey simultaneously moves out of the way. Selfish (left), cooperative (right).

The prey employ linear softmax policies (no bias term) and train via REINFORCE (Williams, 1992).
Both prey receive the same 2-d observation vector. The first feature specifies the counter-clockwise
distance to the predator minus the clockwise distance for the blue prey. The second feature specifies
the same for the green prey. Episodes last 5 steps and there are 6 grid cells in the ring around the
table as shown in Figure 11.

Figure 12 shows D3C approaches maximal total return over training; this is achieved by the agents
compromising on their original reward incentives and paying more attention to those of the other
agent during training.

25



Under review as a conference paper at ICLR 2021

Figure 12: Trust-Your-Brother Median return achieved during training for agents trained with
policy gradient vs policy gradient augmented with D3C (left); relative reward attention measured
as ln

�
Aii

Aj 6=i

�
where a positive value corresponds to selfish attention and a negative value to other-

regarding (right). The shaded region captures ± 1 standard deviation around the mean from 1000
runs.

Figure 13: Agents are initialized to attend to their own losses. The trajectory here shows the agents
compromising and adjusting to a mixture of losses (start at green, end at red star).

F.2 LIO COMPARISON

Yang et al. (2020) propose an algorithm LIO (Learning to Incentivize Others) that equips agents
with “gifting” policies represented as neural networks. At each time step, each agent observes the
environment and actions of all other agents to determine how much reward to gift to the other agents.
The parameters of these networks are adjusted to maximize the original environment reward (without
gifts) minus some penalty regularizer for gifting meant to approximately maintain budget-balance. In
order to perform this maximization, each agent requires access to every other agents action-policy,
gifting-policy, and return making this approach difficult to scale and decentralize.

Yang et al. (2020) demonstrate LIO’s ability to maximize welfare and achieve division of labor
on a restricted version of the Cleanup game with high apple re-spawn rates and where agents are
constrained to facing in one direction (compare Figure 3 of (Yang et al., 2020) with Figure 1A
of (Hughes et al., 2018)). While Yang et al. (2020) show AC failing to achieve maximal welfare, we
found the opposite result using A2C (Espeholt et al., 2018) in Figure 14. In Figure 14, we also see
that D3C is able to achieve near optimality. LIO appears to be approach maximal welfare as well in
Figure 6C, therefore, this environment setting does not appear to differentiate the two approaches.

F.3 HARVESTPATCH

McKee et al. (2020) introduce HarvestPatch as a common-pool resource game where apples spawn in
predefined patches throughout a map. Agents must abstain from over-farming patches to the point of
extinction by distributing their apple consumption as a group evenly across patches.

Figure 15 compares D3C against direct welfare maximization (Cooperation) and individual agent RL
(A2C) on HarvestPatch.

26



Under review as a conference paper at ICLR 2021

Figure 14: Mini-Cleanup Comparison against the mini Cleanup environment described in (Yang
et al., 2020). In LIO, each agent requires access to every other agent’s policy which makes imple-
menting it within our decentralized codebase intractable. We suggest comparing the asymptotes of
this plot with that of Figure 6C in (Yang et al., 2020).

Figure 15: HarvestPatch Comparison against the HarvestPatch environment described in (McKee
et al., 2020). D3C is able to increase welfare over the baseline approach of A2C at a slow rate.

F.4 IMPLICIT INEQUITY AVERSION

Welfare optimization can lead to poor outcomes as well, creating great inequity (Bertsimas
et al., 2011; 2012; Gemici et al., 2018). We show that our approach generalizes beyond the
goal of minimizing group loss to other interesting settings. Game 2 (Efficient but Unfair):
minx12R x

2
1, minx22R x

2
2 �

11
10x

2
1.

The minimal total loss solution of Game 2 is (x1, x2) = (±1, 0) where x1 achieves infi-
nite loss and y achieves negative infinite loss. On the other hand, the Nash equilibrium is
(x1, x2) = (0, 0) with a loss of zero for both agents. This hypothetical game may also arise if a loss
is mis-specified. For example, x1’s true loss may have been 2x2

1 implying no inequity issue with total
loss minimization in the original game. The inequity of the cooperative solution to Game 2 may
be undesirable. D3C converges to losses of 1.079 and �1.162 for x1 and x2 respectively (sum is
�0.083) with x1 shifting its relative loss attention to A11

A12
⇡

11
10 effectively halting training.

F.5 LIMITS OF A LOCAL UPDATE

We use a 2-player bilinear matrix game to highlight the limitations of a local ⇢-minimization approach.
Consider initializing Aij =

1
2 so that the agents are purely cooperative. Even in this scenario, there

are games where the agents minimizing local ⇢ will get stuck in local, suboptimal minima of the total
loss landscape. Consider the following game transformed into an optimization problem via Aij =

1
2 :

min
x1

x>
1 B1x2 min

x2

x>
1 B2x2 =) min

x1

min
x2

x>
1 (B1 +B2)x2 = x>

1 Cx2 = fC(x1,x2) (131)

with x1,x2 2 �1. Let C = [a, b; c, d]. Then the Hessian of the cooperative objective fC(x1,x2)
has eigenvalues ±|a� b� c+ d|. This function is generally a saddle with possibly two local minima.
For example, set a = d = 0, b = � 3

4 , and c = �1. With random initializations, gradient descent will

27



Under review as a conference paper at ICLR 2021

converge to (p, q) = (1, 0) 3
7 of the time with a value of b, else (p, q) = (1, 0) with a value of c, so

we cannot expect local ⇢-minimization to solve 2-player bilinear matrix games, in general, either.

G AGENTS

G.1 HYPERPARAMETERS

Game ⌘A � ⌫ ⌧min ⌧max A
0
i

✏ l h

Trust-Your-Brother 1.0 1.0 0.0 10 20 0.99 0.0 �5 5
Coins/Cleanup/HarvestPatch 10�3 10�1 10�6 5 10 0.99 100.0 �5 5

Table 1: D3C hyperparameter settings for Algorithm 1.

Trust-Your-Brother: The reinforcement learning algorithm, L, used for D3C in Trust-Your-Brother
is REINFORCE (Williams, 1992). Policy gradients are computed using batches of 10 episodes (full
Monte Carlo returns, discount � = 1). Each batch of 10 episodes contains 5 episodes initialized
with one prey closer to the predator, having only one grid space between itself and the predator. The
other 5 episodes swap the prey so that each is attacked an equivalent number of times. Both prey
always start in adjacent cells. The baseline subtracted from the returns is computed from linear value
function. This value function is trained via temporal difference learning with a learning rate 0.1. The
learning rate for REINFORCE is 0.1.

Coins/Cleanup/HarvestPatch: The reinforcement learning algorithm, L, used for D3C in Coins,
Cleanup, and HarvestPatch (§F.3) is A2C with V-trace (Espeholt et al., 2018).

Hyperparameter Value
Entropy regularization 0.003
Baseline loss scaling 0.5
Unroll length 100
Discount (�) 0.98
RMSProp learning rate 0.0004
RMSProp epsilon (✏) regularization parameter 10�5

RMSProp momentum 0.0
RMSProp decay 0.99

Table 2: A2C hyperparameter settings for Coin, Cleanup, and HarvestPatch domains. No tuning or
hyperparameter search was performed —these were default values used by our RL stack.

H MISCELLANEOUS

H.1 STEALING VS ALTRUISM

In our proposed mixing scheme, each agent i updates Ai 2 �n�1 and transformed losses are defined
as fA = A

>f . This can be interpreted as each agent i deciding how to redistribute its losses over the
other agents. In other words, agent i is deciding who to steal from (give loss equals steal reward).

Alternatively, we could define a scheme where each agent i updates Ai, however, the transformed
losses are now defined as fA = Af and the columns of A lie on the simplex. This scenario
corresponds to agents taking on the losses of other agents. In other words, deciding which agents
to help. In experiments on the prisoner’s dilemma, this approach did not make significant progress
towards minimizing the price of anarchy so we discontinued its use in further experiments. In theory,
this approach should be viable; it just requires that the information contained in agent j’s loss is
enough to accelerate descent of agent i’s loss faster than the immediate loss (debt) that agent i takes
on.

28



Under review as a conference paper at ICLR 2021

H.1.1 TOWARDS A MARKET OF AGENTS

Expanding on this last perspective, when D3C agents, as defined in the main body, steal from other
agents, they are exchanging immediate reward for information. The agent that is “stolen from"
receives a loss signal that can then be used to derive policy update directions. The agent that is
“stealing" receives immediate relief of loss, a form of payment. This exchange forms some of
the components critical for a market economy of agents. The essential missing component is the
negotiation phase where agents can choose to opt in or out of the exchange. In the current setting, the
agent who steals is always able to force a transaction.

H.2 RECIPROCITY IN COIN DOMAIN

To evaluate the extent to which there was a pattern of reciprocity in agents’ relative reward attention
(i.e., the attention shifted synchronously), we conduct a permutation analysis. This permutation
analysis estimates the probability that the level of synchrony we observe results from random chance.

We measure the synchrony between relative reward attention trajectories through co-integration
(Murray, 1994). Co-integration allows us to estimate the synchrony between two timeseries. To do
so, we take the discrete differences within each timeseries and then take the correlation of those two
sequences of differences. If the timeseries are correlated, their movements should be correlated. This
produces a set of co-integration coefficients ranging from 0.19 to 0.34 (see Figure 16, red).

To ensure that we are not overestimating the significance of these patterns, we employ a permutation
analysis (Tibshirani and Efron, 1993). We resample the trajectories to calculate all possible values of
co-integration coefficients (see Figure 16, blue). Comparing the real set against the full resampled
set allows us to evaluate how extreme the real values are, under the assumption that there is no
relationship between the two curves. The actual co-integration coefficients are the most extreme
values across the full distribution of coefficients. To estimate the overall probability of this occurring,
we evaluate the harmonic mean p-value (Wilson, 2019). We find that the level of synchrony observed
between the relative reward attention of co-learning agents significantly deviates from chance levels
with p = 0.018.

Figure 16: Histogram of co-integration coefficients for actual and resampled relative reward attention
trajectories.

H.3 CONVEX OPTIMIZATION VS SMOOTH 1-PLAYER GAMES

Proposition 13. A convex loss function is not necessarily a smooth game where the players are

interpreted as the elements of the variable to be minimized.

Proof. Consider the following game:

min
x

(x+ y)2 min
y

(x+ y)2. (132)

Recall the definition of a smooth game (Definition 2) and let x = y = 0 and x
0 = �y0 = c. The

game is not smooth for c > 0 for any �, µ even though this is a convex optimization problem.

29



Under review as a conference paper at ICLR 2021

H.4 GAMES WITH MIXING-AGNOSTIC UNIVERSALLY-STABLE NASH

Define the gradient map, FA, and its Jacobian, JA, for a game with loss vector f concisely with

F
A(x) = [hAi,rxf(x)i] (133)

=
hP

j
Aij

@fj

@xi

i
(134)

J
A(x) =

hP
j
Aij

@
2
fj

@xi@xk

i
(135)

=
hP

j
AijH

j

ik

i
(136)

where H
j is the Hessian of fj(x).

Proposition 14. If each H
j

is diagonally dominant, then J
A

is diagonally dominant.

Proof. We are given H
j

ii
>

P
k 6=i

|H
j

ik
|. Then

J
A

ii
=

X

j

AijH
j

ii
>

X

j

Aij

X

k 6=i

|H
j

ik
| by given & Aij � 0 (137)

=
X

j

X

k 6=i

|AijH
j

ik
| by Aij � 0 (138)

=
X

k 6=i

X

j

|AijH
j

ik
| swap sums (139)

�

X

k 6=i

|

X

j

AijH
j

ik
| by �-inequality (140)

=
X

k 6=i

|J
A

ik
|. (141)

Proposition 15. If each H
j

is diagonally dominant and X is unconstrained (i.e., Rd
for some d),

then x⇤
A

is the Nash equilibrium of the transformed game (i.e., with loss vector f transformed by A) .

Proof. Proposition 14 implies the dynamical system ẋ = �FA(x) is globally stable at x⇤
A

for every
fixed A. Proposition 14 also implies that each loss in the transformed game is convex. This is because
J
A

ii
is the Hessian of each loss i in the new game, and we showed these are positive. Moreover, the

unique fixed point of an unconstrained game with convex losses is the solution to a suitably defined
variational inequality: VI(FA

,Rd). This, in turn, implies that the fixed point is the Nash equilibrium
of the game (Cavazzuti et al., 2002).

30


