
Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

EXPLORING SPARSE ADAPTERS FOR SCALABLE
MERGING OF PARAMETER EFFICIENT EXPERTS

Samin Yeasar Arnob ∗

McGill University, Mila, Microsoft
Zhan Su
Université de Montréal

Minseon Kim
Microsoft

Oleksiy Ostapenko
ServiceNow

Doina Precup
McGill University, Mila

Lucas Page-Caccia
Microsoft

Alessandro Sordoni
Microsoft

ABSTRACT

Model merging aims to integrate knowledge from multiple finetuned experts into
a single, unified multi-task model. To Merging parameter-efficient task experts
has recently gained growing attention as a way to build modular architectures that
can be rapidly adapted on the fly for specific downstream tasks, without requiring
additional fine-tuning. Typically, LoRA serves as the foundational building block
of such parameter-efficient modular architectures, leveraging low-rank weight
structures to reduce the number of trainable parameters. In this paper, we study the
properties of sparse adapters, which train only a subset of weights in the base neural
network, as potential building blocks of modular architectures. First, we propose a
simple method for training highly effective sparse adapters, which is conceptually
simpler than existing methods in the literature and surprisingly outperforms both
LoRA and full fine-tuning in our setting. Next, we investigate the merging prop-
erties of these sparse adapters by merging adapters for up to 20 natural language
processing tasks, thus scaling beyond what is usually studied in the literature. Our
findings demonstrate that sparse adapters yield superior in-distribution performance
post-merging compared to LoRA or full model merging. Achieving strong held-out
performance remains a challenge for all methods considered.

1 INTRODUCTION

Multitask training, e.g. (Raffel et al., 2019), is an effective method to improve the performance of
large language models (LLMs) across different tasks. However, for multitask training, all task-specific
datasets need to be available simultaneously requiring data sharing during training. Model merging
has emerged as an efficient alternative to building multi-task models (Wortsman et al., 2022), which
allows tasks to be trained separately and then combined at the end of the training process, thus
ensuring privacy of data and savings at training time. Recent work shows that model averaging can
improve out-of-distribution performance over multitask training (Yadav et al., 2024b; Ostapenko
et al., 2024). However, merging models do not achieve the same performance as true multitask
training due to weight interference, and requires careful weight manipulation (Ilharco et al., 2023;
Yadav et al., 2023; Akiba et al., 2024; White, 2016; Davar, 2024) during the merging process to
resolve conflicts.

Merging has recently been the focus of modular architectures that re-use parameter-efficient experts
such as LoRA (Hu et al., 2021b) readily available on platforms such as Huggingface Hub (Huang
et al., 2024; Ostapenko et al., 2024; Muqeeth et al., 2024). Recent evidence suggests that carefully
composing LoRA (Hu et al., 2021a) modules can even outperform multi-task training on some
tasks (Prabhakar et al., 2024). The widespread adoption of LoRA is due to the fact that it reduces
the number of task-specific trainable parameters via low-rank decomposition while still maintaining
good task performance. However, merging task-specific LoRA experts might result in significant
parameter interference given that all parameters of a given layer are modified for each task. In
contrast, sparse fine-tuning methods – alternative parameter-efficient fine-tuning methods that train a

∗Corresponding author: samin.arnob@mail.mcgill.ca

1

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

smaller sub-network within the base model for each task, have been proposed (Ansell et al., 2024;
2021b; Frankle & Carbin, 2019) and have shown some promising results in composability (Ansell
et al., 2021b), albeit in a constrained setting of merging a language expert with a task expert for
multi-lingual tasks.

In this paper, we study the properties of sparse adapters as potential building blocks for modular
architectures. We begin by introducing a simple yet straightforward method for training sparse
adapters, which simplifies prior approaches while delivering superior performance compared to
LoRA and full fine-tuning. We leverage connection-sensitivity (Mozer & Smolensky, 1988; Lee et al.,
2018) to identify an important subset of parameters important to the task. We also propose a more
structured sparse representation, block-sparse, which is particularly advantageous due to the efficient
use of CUDA kernels (Yamaguchi & Busato, 2021; Gray et al., 2017; Su et al., 2024). Next, we
investigate the merging properties of sparse adapters by conducting experiments across a set of 20
FLAN Longpre et al. (2023) tasks, expanding the typical scope of sparse adapter merging, which has
been limited to few tasks in prior literature (Ansell et al., 2021a; Panda et al., 2024). We compare the
performance of sparse adapters with LoRA and full fine-tuning. We evaluate performance on both
the test sets of the 20 held-in tasks (held-in) and a set of unseen 10 tasks (held-out). Additionally, we
benchmark recent merging methods, including Task Arithmetic (Ilharco et al., 2023), Ties (Yadav
et al., 2023) and Breadcrumbs (Davar, 2024).

Our results show that sparse adapters outperform both LoRA and full fine-tuning in a single fine-tuning
experiment across 20 tasks. Moreover, merging sparse adapters retains strong held-in performance
while maintaining competitive held-out results. Unlike full-finetuning merging methods, which
degrade in performance when scaled to 20 experts, sparse-adapters prove to be more effective.
Through ablation studies, we identify that the degradation of held-in performance is more due to
parameter modifications outside of the sparse masks, rather than interference within the masks
themselves. Overall, our work demonstrates that sparse adapters offer a scalable and efficient
approach to merging modular architectures for multitask learning, especially when extending beyond
the typical two-task setting explored in previous research. While we show improved generalization
for held-out tasks compared to multitask training, a notable gap remains for held-in performance.

2 RELATED WORK

Parameter-Efficient finetuning (PEFT) enable the efficient adaptation of LLMs through updating
only a small subset of parameters (Han et al.). PEFT approaches directly update the pre-trained
weights in a parameter-efficient manner (Hu et al., 2021a; Zhang et al., 2023; Hayou et al.; Liu et al.,
2024; Dettmers et al., 2024). The most prominent method is Low-Rank Adaptation (LoRA) (Hu et al.,
2021b), which parameterizes incremental weight updates ∆ is the product of two low-rank matrices.
LoRA achieves performance comparable to or even surpassing that of full fine-tuning. More recently
(Hu et al., 2025) introduced a follow-up LoRS method, that achieves better computing and memory
efficiency for fine-tuning sparse LLMs.

Parameter-sparse training has become increasingly popular in deep learning for achieving results
similar to dense training (Frankle & Carbin, 2019; Lee et al., 2018; Wang et al., 2020; Evci et al.,
2021; Arnob et al., 2021; 2025). Recent research on training sparse networks for LLMs has mainly
concentrated on single-task training and merging with a limited number of tasks. (He et al., 2022)
evaluates the performance of various sparse training techniques for LLMs in a single-task context.
Ansell et al. (2021a); Panda et al. (2024) investigates iterative magnitude pruning (Frankle & Carbin,
2019), Ansell et al. (2024) introduces an evolution-based sparse training approach that adopts the
prune-and-grow method described in (Evci et al., 2021). Ansell et al. (2021a); Panda et al. (2024)
shows that sparsity can help prevent catastrophic forgetting when model merging for Task A and
Task B. In this work, we extend sparse adapters merging to the scale of 20 tasks, fine-tuning experts
asynchronously on the FLAN dataset (Longpre et al., 2023) and evaluating performance with various
merging methods.

Expert Merging There is growing interest in aggregating adapters from diverse domains through
model merging techniques (Yadav et al., 2024a). The simplest form of merging involves averaging
the weights of different experts. Expanding on weight averaging, Task Arithmetic (Ilharco et al.,
2023) involving the creation and combination of task vectors facilitated multi-task learning. Beyond
simple averaging, Yadav et al. (2023) propose TIES, and Akiba et al. (2024) introduce DARE, both

2

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

of which reset redundant parameters, resolve sign conflicts, and selectively merge parameters that
demonstrate sign consistency. Similarly, Davar (2024) propose Breadcrumbs, a method that eliminates
weight outliers and filters out negligible perturbations. Some methods like Fisher Merging (Matena
& Raffel, 2022a) and RegMean (Jin et al., 2023b) need training data-based pre-computations to
measure individual parameter importance but these are highly memory and data intensive. All of these
merging methods require tuning merging hyper-parameters and carefully updating weights to avoid
conflicts during model merging. We demonstrate that sparse adapters can be merged using simple
weight averaging, yielding the best performance on held-in datasets while maintaining competitive
generalization on held-out tasks.

3 TRAINING AND MERGING SPARSE ADAPTERS

Algorithm 1 Sparse Adapter Training
Init: # Base params, Trainable params, Sparse
Mask
▷ W ∈ Rd1×d2 , Ŵ = 0d1×d2 , M = 1d1×d2

▷ Training dataset: DT , optimizer(Ŵ)
Training loop:
for epoch = 1 to 5 do

for step = 1 to N do
batch ∼ DT
loss = model(batch, W + Ŵ ·M)
loss.backward()
if epoch == 1 and step % 100 == 0 then
▷ M = TopK(|Ŵ · Ŵ .grad|) # Eq. 1.

end if
optimizer.step()

end for
end for

We learn a sparse adapter for a task, where the
task-dependent shift to the base model weights
∆W is sparse, ∆W = Ŵ · M , where M has
entries in {0, 1} and Ŵ is a dense weight. We
initialize the trainable parameters Ŵ as zeros
and learn the task specific mask M using a pa-
rameter selection criteria that we present next.
We propose two Sparse Adapters: (a) Element-
sparse, where each parameter in a linear layer
is scored individually, and (b) Block-sparse
adapter, where we consider non-overlapping
blocks of size B within a linear layer. To ensure
scalability when training large language models,
we focus on training only the Query-Key-Value
(QKV) layers.

Parameter selection criteria Our parameter
selection criteria is motivated by the saliency
based score proposed by Mozer & Smolensky (1988) and later shown to be effective for deep learning
(Lee et al., 2018; Arnob et al., 2021; 2025) as a method for ranking parameters by their importance
at initialization. We infer the task specific mask using saliency based score, S which measures the
importance of every parameter in the neural network for a given task:

M = Topk

(
S(Ŵ ;DT)

)
, (1)

where DT is the dataset of the current task T , Topk operator selects top-k parameters and sets their
corresponding mask values to 1 while the rest is set to 0.

For the criteria S , we compute the influence of a specific parameter value on the loss function (Mozer
& Smolensky, 1988; Lee et al., 2018). Formally, the effect of a given parameter wq ∈ R on the loss
is:

S(wq) = lim
ϵ→0

∣∣∣∣L(W)− L(W + ϵδq)

ϵ

∣∣∣∣ = ∣∣∣∣wq
∂L
∂wq

∣∣∣∣ , (2)

where δq is a vector whose q-th element equals wq and all other elements are 0. The mask M retains
parameters based on the saliency scores above a given threshold. We use keep-ratio (Kr) to represent
model sparsity, where Kr denotes the proportion of parameters that are trainable. For instance, a
95% sparse model corresponds to a Kr value of 0.05, meaning only 5% of the parameters are kept
trainable. Accordingly, we set k in Equation 1 as Kr × (d1 × d2).

Block sparsity Instead of calculating importance per-weight, we also propose to use block sparsity,
which identifies and retains important regions within a linear layer. Given a keep-ratio value Kr and
a linear layer of size Wd ×Wk, the number of blocks is calculated as:

NB = Kr ∗ (d1 × d2)

B ×B
, (3)

where B denotes the block size. We compute the importance score S for each block and mask the
parameters within the top NB blocks. We refer to block-wise sparse training as Block-Sparse.

3

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

Algorithm

Figure 1: Comparison of sparse adapter, LoRA, and Full
Fine-Tuning on Single-Task Performance. We report the
average rouge-L performance across 20 tasks. We present
performance variations across different ranges of trainable
parameters, adjusting the tuning rank for LoRA and the frac-
tion of parameters for sparse adapter applied over only the
QKV layers. Here we compare (Left:) sparse adapter, LoRA
and FFT (Right:) a more accurate comparison in terms of
numbers of trainable parameters.

See Algorithm 1. We initialize Ŵ = 0
and M = 1. During the first epoch
of fine-tuning, both Ŵ and M are
updated. The mask M is recalcu-
lated using Eq 1 every 100 gradient
steps: we compute Equation equa-
tion 2 after the backward pass to de-
rive the importance score for each
weight. We then select the top-k pa-
rameters based on these scores to con-
struct an updated mask M . After the
first epoch, the mask is kept fixed,
and only the masked weights are fine-
tuned. The overall algorithm is in Al-
gorithm 1. The iterative update of M
outperforms single-shot update (see
Figure 4).

Memory Requirements Our ap-
proach is comparable to full fine-
tuning of QKV layers until the first mask update step (at 100 gradient steps). After this occurs,
we only keep on GPU the selected sparse parameters. Given that the mask is susceptible to change
in the first epoch, we keep the parameters excluded from the current selection on CPU, in the case
some of them might be selected by the successive mask updates. This strategy optimizes memory
usage during training. After completing the first epoch, M is fixed, and we can discard the unmasked
weights.

Comparison with Prior Sparse Fine-tuning Our method is close to previous approaches. Ansell
et al. (2021b); Panda et al. (2024) where a full fine-tuning for at least one epoch is needed to identify
the sparse mask M . We show that updating the mask multiple times during the first epoch is useful.
Ansell et al. (2024) offers a memory-efficient solution by maintaining sparsity throughout the training
via a grow and prune method. We observe that we can maintain sparsity throughout the training with
exception of the first 100 gradient updates. Given that we only we fine-tune only the QKV layers,
memory requirements do not increase significantly. Regarding parameter selection criterion, Ansell
et al. (2021a) use the lottery ticket (Frankle & Carbin, 2019) criterion, while we apply a saliency-based
criterion; a comparison between these criteria would be useful in the future.

Merging Sparse Adapters For each task Ti, i = {1, . . . , N} we have a sparse task-specific shift
∆Wi = Ŵi ·Mi. To perform the adapter merging across tasks, we need to properly account for the
fact that some individual weights might be trained by two or more tasks. In particular, if a weight
element is shared across k different task-specific masks, we need to average the updates for that
weight element by dividing the sum by k. We compute a weight overlapping factor Fo, which reflects
how many tasks have selected a particular weight.The merged update for the weights is:

∆Wm =
1

Fo

N∑
i=1

∆Wi, (4)

where Fo = min(
∑N

i=1 Mi, 1), is the element-wise sum of the masks Mi and
∑N

i=1 Mi represents
the count of how many tasks selected each weight element. We capped at 1 to prevent division by
zero. Finally, the merged model weights are obtained by adding the merged sparse update ∆Wm to
the base model weights: W = W +∆Wm.

4 EXPERIMENTS

We begin by evaluating the performance of sparse adapters in comparison to LoRA and full fine-
tuning in Section 4.1. Following this, we explore various merging techniques applied to sparse
adapters in Section 4.2.

4

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

Figure 2: Performance of sparse adapter with Uniform Merg-
ing on held-in (20 tasks) and held-out (10 tasks) datasets.
(Left:) shows the impact of varying the Kr (fraction of train-
able parameters)in sparse training performance. We compare
the performance of the sparse adapter with the base model
to demonstrate the improvement in fine-tuning. (Right:) We
compare the performance with LoRA, FFT and Multitask
training.

Setup We choose the learning rate
based on the hyper-parameter sweep
for different methods (see Figure 4).
We conduct our experiments using the
FLAN dataset (Longpre et al., 2023)
and sample 20 held-in and 10 held-
out tasks following (Ostapenko et al.,
2024), where each task is sub-sampled
to 10,000 examples. Within these sam-
ples, 1,000 are allocated for validation
and early stopping. For parameter-
efficient fine-tuning, we load the base
model W in bfloat16 format and train-
able parameters Ŵ in float32. As
the base model, we use Phi-3-mini-
4k-instruct (3.8B parameters) (Abdin
et al., 2024) for all our finetuning ex-
periments. For each FLAN task, we
finetune the model for 5 epochs. For the hyperparameter sweep, we randomly select 5 tasks from the
20 held-in tasks and keep them fixed.

4.1 SINGLE TASK FINETUNING

For single-task performance comparison, we finetune 20 FLAN tasks for 5 epochs and provide the
mean Rouge-L performance. In Figure 1, we compare the performance of sparse across different
sparsity levels, alongside LoRA (Hu et al., 2021b) and full fine-tuning (FFT). Specifically, we adjust
the sparsity of by varying the parameter kr, which represents the percentage of parameters retained
during training. For instance, kr = 0.01 corresponds to a sparsity of 99%. In our experiments, both
sparse and LoRA train the QKV layers. To ensure a fair comparison, we also adjust the rank of LoRA
accordingly, maintaining consistency across the evaluation.

Our results show that sparse adapters with kr = 0.01 (99% sparsity) outperforms the fully fine-tuned
model. Performance improves as kr increases up to 0.5, after which we observe a gradual decline in
performance at kr = 0.8. Interestingly, when kr = 1, which corresponds to dense training of the
QKV layers, performance drops further. This suggests that training the QKV layers alone, even when
fully dense, is not sufficient for optimal performance. Instead, selecting an appropriate subspace of
parameters is crucial to achieving better results.

4.2 MODEL MERGING PERFORMANCE

We explore the merging of 20 expert models and compare their performance to multitask training.
Fine-tuning a base model on specialized tasks can often result in a loss of generalization ability
(Wortsman et al., 2022). As a result, we investigate whether combining the expertise of multiple
sparse adapters can improve performance on held-out data over the multitask performance. We select
10 tasks from the FLAN dataset to evaluate the held-out performance of the models.

For model merging, we employ simple uniform weight averaging (Wortsman et al., 2022) while
we benchmark other merging methods next. For sparse merging, we adopt our weighted averaging
accounting for overlap between sparse models 4. We compare the merging performance of full-
finetuning (FFT) and LoRA as baseline models. In the case of full-finetuning, we average the weights
of multiple models equally. For LoRA, we compute the average over the low-rank adapters, by
averaging A and B separately: Am =

∑N
i=1 Ai and Bm =

∑N
i=1 Bi.

Performance under Varying Sparsity: Figure 2(a) shows the performance improvement of the
sparse adapter method over the Phi-3 base model at different Kr values. We find that Kr = 0.1
provides the best merging performance for both held-in and held-out datasets. Although the best
single-task performance without merging is achieved at a Kr = 0.5 (Figure 1), the increased weight
population leads to greater interaction between weights, causing weight corruption that negatively
impacts merging performance. This observation demonstrates a parameter saturation effect: as

5

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

Method Merging % param trainable Hparam Mean Rouge-L
Held-In Held-Out

Full-Finetune
Averaging 100% 45.33 38.98

Task-Arithmetic 100% ✔ 39.40 25.31
Ties 100% ✔ 50.21 46.16

Breadcrumbs 100% ✔ 39.44 25.33

LoRA Averaging 1.54% 45.96 44.01
Sparse Averaging 2.37% 51.44 43.09
Block-Sparse Averaging 2.37% 50.37 43.61

Multitask - 100% 67.15 38.77

Table 1: Comparison of merging performance between full fine-tuning and PEFT methods across
various merging techniques. We report the Rouge-L score for all approaches.

the number of parameters increases, the learning complexity of sparse training grows, leading to
improved merging performance up to Kr = 0.1. However, beyond this point, more weight conflicts
arise, leading to performance degradation when Kr exceeds 0.1.

Performance Compared to Multitask training In Figure 2(b), we compare the performance of
uniformly merged FFT, LoRA (Rank=128), and sparse adapter (Kr = 0.1) with multitask training.
For held-in tasks, multitask training outperforms all merged PEFT methods, while sparse adapter
shows the best model merging performance. However, for out-of-distribution generalization (held-
out), LoRA (> 13.52%) and sparse adapter (> 11.01% for elementwise-sparse, > 12.48% for
block-sparse) significantly outperform multitask training.

Performance Compared to Different Merging Methods Various model merging methods typically
fine-tune a pre-trained base model and compute a task vector (Ilharco et al., 2023) by subtracting the
original model weights from those after fine-tuning on a specific task: τn = Wn

finetune −W . These
task vectors {τ}Nn=1 are then used to adjust the behaviour of the merged model. One straightforward
approach, Task-Arithmetic (Ilharco et al., 2023), sums the task vectors and computes a weighted
merge with the base model: Wnew = W + λ

∑N
n=1 τ

n. To address parameter interference caused by
different task vectors, methods such as TIES (Yadav et al., 2023) trim less impactful task vectors by
setting them to zero, resolving sign conflicts through majority voting among the vectors. Breadcrumbs
(Davar, 2024) proposes filtering out outliers and removing negligible perturbations from the task
vectors to improve merging performance. We also compare Uniform weight-averaging (Wortsman
et al., 2022), which involves averaging the weights of multiple models fine-tuned on different tasks
uniformly. We leave out computationally expensive approaches, such as those involving Fisher
matrices (Matena & Raffel, 2022b), backward passes (Yang et al., 2024), or computing model
activations (Jin et al., 2023a), as these methods do not scale well with large models or a high number
of expert.

Despite employing simple weight averaging, sparse adapters achieve the highest Rouge-L scores
(sparse: 51.44, block-sparse: 50.37) compared to other merging methods across 20 held-in tasks.
Although sparse adapters utilize only 2.37% of the trainable parameters in comparison to FFT, they
surpass the FFT-averaging by 13.48% and 11.12% in performance. Weight interpolation between
pre-trained and fine-tuned models has been shown to improve out-of-distribution performance
(Wortsman et al., 2021). Consistent with recent work (Yadav et al., 2024b), we find that most model
merging methods outperform multitask training in terms of held-out performance. The mean Rouge-L
scores across 10 held-out tasks are compared in Table 1, demonstrating that most of the model
merging methods outperform multitask training in terms of generalization to unseen tasks. Notably,
Ties achieves the best performance, while both sparse adapter and LoRA with simple averaging
demonstrate competitive results.

5 CONCLUSION

In this paper, we explore the potential of sparse adapters as efficient building blocks for modular
architectures in multitask learning. Our proposed method for training sparse adapters is conceptually

6

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

simpler than existing approaches and demonstrates superior performance compared to LoRA and full
fine-tuning in a single fine-tuning experiment across 20 tasks. Additionally, our merging experiments
show that sparse adapters not only retain strong performance on held-in tasks but also maintain
competitive held-out generalization. While full-finetuning merging methods lead to performance
degradation when scaled to 20 experts, sparse adapters prove to be more effective. Our approach
enhances generalization on held-out tasks in comparison to traditional multitask training, though
a performance gap persists when evaluated on held-in tasks. This study highlights the potential of
sparse adapters as a scalable and efficient solution for constructing modular architectures, particularly
as the number of tasks increases. These findings open avenues for future research aimed at closing
the gap and further improving held-out performance.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali
Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes, 2024. URL https://arxiv.org/abs/2403.13187.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning
for cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021a.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulic. Composable sparse fine-tuning
for cross-lingual transfer. CoRR, abs/2110.07560, 2021b. URL https://arxiv.org/abs/
2110.07560.

Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M. Ponti. Scaling sparse
fine-tuning to large language models, 2024. URL https://arxiv.org/abs/2401.16405.

Samin Yeasar Arnob, Riyasat Ohib, Sergey Plis, and Doina Precup. Single-shot pruning for offline
reinforcement learning. arXiv preprint arXiv:2112.15579, 2021.

Samin Yeasar Arnob, Riyasat Ohib, Sergey Plis, Amy Zhang, Alessandro Sordoni, and Doina Precup.
Efficient reinforcement learning by discovering neural pathways. Advances in Neural Information
Processing Systems, 37:18660–18694, 2025.

MohammadReza Davar. Model breadcrumbs: Scaling multi-task model merging with sparse masks,
2024. URL https://arxiv.org/abs/2312.06795.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

7

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2403.13187
https://arxiv.org/abs/2110.07560
https://arxiv.org/abs/2110.07560
https://arxiv.org/abs/2401.16405
https://arxiv.org/abs/2312.06795

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners, 2021. URL https://arxiv.org/abs/1911.11134.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019. URL https://arxiv.org/abs/1803.03635.

Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224, 3(2):2, 2017.

Z Han, C Gao, J Liu, J Zhang, and S Qian Zhang. Parameter-efficient fine-tuning for large models: A
comprehensive survey. arxiv 2024. arXiv preprint arXiv:2403.14608.

S Hayou, N Ghosh, and B Yu. Lora+: Efficient low rank adaptation of large models (jul 2024). arXiv
preprint arXiv:2402.12354.

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and Dacheng Tao. Sparseadapter: An easy
approach for improving the parameter-efficiency of adapters, 2022. URL https://arxiv.
org/abs/2210.04284.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021a. URL
https://arxiv.org/abs/2106.09685.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021b. URL
https://arxiv.org/abs/2106.09685.

Yuxuan Hu, Jing Zhang, Xiaodong Chen, Zhe Zhao, Cuiping Li, and Hong Chen. Lors: Efficient
low-rank adaptation for sparse large language model. arXiv preprint arXiv:2501.08582, 2025.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition, 2024. URL https://arxiv.
org/abs/2307.13269.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/abs/2212.04089.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models, 2023a. URL https://arxiv.org/abs/2212.
09849.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models, 2023b. URL https://arxiv.org/abs/2212.
09849.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
for effective instruction tuning, 2023. URL https://arxiv.org/abs/2301.13688.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2022a. URL
https://arxiv.org/abs/2111.09832.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022b.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in neural information processing systems, 1, 1988.

8

https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2210.04284
https://arxiv.org/abs/2210.04284
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2301.13688
https://arxiv.org/abs/2111.09832

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among specialized
experts for zero-shot generalization. International Conference on Machine Learning, 2024. doi:
10.48550/arXiv.2402.05859.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin, Nicolas Le Roux, Matheus
Pereira, Lucas Caccia, and Alessandro Sordoni. Towards modular llms by building and reusing a
library of loras, 2024. URL https://arxiv.org/abs/2405.11157.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal.
Lottery ticket adaptation: Mitigating destructive interference in llms, 2024. URL https://
arxiv.org/abs/2406.16797.

Akshara Prabhakar, Yuanzhi Li, Karthik Narasimhan, Sham Kakade, Eran Malach, and Samy Jelassi.
Lora soups: Merging loras for practical skill composition tasks. arXiv preprint arXiv:2410.13025,
2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019. URL http://arxiv.org/abs/1910.10683.

Junda Su, Zirui Liu, Zeju Qiu, Weiyang Liu, and Zhaozhuo Xu. In defense of structural sparse
adapters for concurrent LLM serving. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
4948–4953, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.284. URL https://aclanthology.org/2024.
findings-emnlp.284/.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Tom White. Sampling generative networks, 2016. URL https://arxiv.org/abs/1609.
04468.

Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. Robust fine-tuning of zero-shot models. CoRR,
abs/2109.01903, 2021. URL https://arxiv.org/abs/2109.01903.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time, 2022. URL https://arxiv.org/abs/2203.05482.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models, 2023. URL https://arxiv.org/abs/2306.
01708.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen, Mohit
Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging: Recycling and
routing among specialized experts for collaborative learning. arXiv preprint arXiv:2408.07057,
2024a.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
and Tsendsuren Munkhdalai. What matters for model merging at scale?, 2024b. URL https:
//arxiv.org/abs/2410.03617.

Takuma Yamaguchi and Federico Busato. Accelerating matrix multiplication with block sparse
format and nvidia tensor cores, 2021. Accessed: 2025-02-10.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning, 2024. URL https://arxiv.
org/abs/2310.02575.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023.

9

https://arxiv.org/abs/2405.11157
https://arxiv.org/abs/2406.16797
https://arxiv.org/abs/2406.16797
http://arxiv.org/abs/1910.10683
https://aclanthology.org/2024.findings-emnlp.284/
https://aclanthology.org/2024.findings-emnlp.284/
https://arxiv.org/abs/1609.04468
https://arxiv.org/abs/1609.04468
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2410.03617
https://arxiv.org/abs/2410.03617
https://arxiv.org/abs/2310.02575
https://arxiv.org/abs/2310.02575

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

A APPENDIX

Computational Considerations of Model Mering Methods: As shown in Table 1, merging meth-
ods such as Task-Arithmetic (Ilharco et al., 2023), TIES (Yadav et al., 2023), and Breadcrumbs Davar
(2024) require hyperparameter tuning to achieve optimal performance. We used the recommended
hyperparameters for these methods. While sparse adapter only involves averaging weights when
merging models, both TIES and Breadcrumbs require a TopK operation for each expert model to
filter parameters, which is computationally expensive. The time complexity of the TopK operation is
typically O(n log k), where n is the number of elements in the input tensor, and k is the number of
top elements to retrieve. As the number of model parameters increases, the computational cost of this
operation grows significantly.

Importance of Recycling Subspace: The concept Recycling Subspace involves updating a selected
subspace of parameters throughout the training process. Instead of discarding parameters like in
pruning Lee et al. (2018); Arnob et al. (2021), we continuously recalculate their importance and adjust
the subspace by adding or replacing parameters. This process allows for the reuse and recycling of
parameters, improving model performance over time. After the first epoch, the subspace is kept fixed
for the remainder of the fine-tuning. While Lee et al. (2018) proposes the saliency criteria equation 1
for single-shot pruning, we find a significant improvement due to the iterative subspace update when
tested on 5 tasks. Performance comparison is shown in Figure 4.

Which Layer Should We Sparsify? We sparsify only the QKV parameters in the attention layers
of each transformer module. Although the output projection layer, O, can also be fine-tuned (Hu
et al., 2021b), we find that fine-tuning only the QKV parameters leads to better performance. We
present empirical evidence in Figure 3, which compares performance across single-task and merged
models, evaluating both held-in and held-out datasets after fine-tuning with a keep-ratio of 0.1.

Figure 3: Performance of Sparse-Adapter (kr =
0.1) on training QKV vs QKV -O layers in Phi-
3. Mean Rouge-L computed across 20 individual
tasks and merged Performance for 20 held-in and
10 held-out tasks.

Figure 4: Performance of Sparse-Adapter
(Kr=0.1) on single-shot vs iterative update of
the subspace. We compare the mean rouge-L
performance of 5 individually trained tasks.

Learning Rate Hyperparameter Tuning: We conduct a hyperparameter sweep to identify the
optimal learning rate for fine-tuning the sparse-adapter, LoRA and FFT model. The mean performance
presented in Figure 5 is evaluated across five fixed FLAN tasks, with learning rates varied at 1e−3,
1e−4, and 1e−6 to assess their impact on model performance.

Tuning Block-Size Hyperparameter for Block-Sparse: We conduct an exploration of different
block sizes, B in block-sparse training to identify the optimal setting. As shown in Figure 6, we
compare the performance of block-sparse training (with kr=0.1) across block sizes of 8, 16, and 32.
Our results reveal that a block size of 16 delivers the best overall Rouge-L score for five individual
tasks.

10

Published at ICLR 2025 Workshop on Modular, Collaborative, and Decentralized

Figure 5: Performance of different methods un-
der varying learning-rate. We compare the mean
Rouge-L performance of 5 individually trained
tasks to decide the best learning rate for each
method.

Figure 6: Performance of Block-Sparse-Adapter
(Kr=0.1) on varying different block-size. We
compare the mean Rouge-L performance of 5
individually trained tasks to decide the block-
size.

Figure 7: Performance Comparison of Oracle-
Routing of the Sparse-Adapter with Multitask
Performance over 20 Held-in tasks.

Figure 8: Performance comparison of different
merging methods varying number of merged ex-
perts. For any number of experts, the merged
model is evaluated on 20 tasks. The line is the
averaged Rouge-L across all evaluation points.

Performance Under Oracle Routing: After merging the models, we compare the performance of
individual tasks using Oracle routing in Figure 7, where we assume the task at hand is known, and find
this further closes the gap with the multitask model. This approach is especially beneficial in situations
with limited memory capacity, storing many fine-tuned experts is expensive. By using Oracle routing
with sparse adapters, significant performance gains can be achieved, offering a more efficient solution.
For practical implementation, this requires (1) task identification and (2) multiplying the merged
weight in Equation 4 with task-mask: ∆W ∗

m = mi ∗∆Wm. The performance improvement suggests,
that the degradation in held-in performance is more related to parameter modifications made outside
the sparse masks during merging than interference within the weight-overlap within the mask.

Performance with Increasing Number of Experts: In Figure 8, we evaluate the performance on
20 tasks for various merging methods as the number of merging experts, denoted as N , increases
from 2 to 20, with the values N = {2, 5, 10, 20}. For each value of N , we conduct 10 trials and
compute the mean performance across these trials. The figure presents both the performance variation
and the mean performance for each N . We compare the performance of multiple merging methods
on Full-finetuned models. Our findings show that as N increases, the advantages of merging Sparse-
Adapters become more evident, highlighting the benefits of sparsity as the number of experts grows.
By N = 20, this method outperforms the other merging techniques.

11

	Introduction
	Related Work
	Training and Merging Sparse Adapters
	Experiments
	Single task finetuning
	Model merging performance

	Conclusion
	Appendix

