
Predicting Label Distribution from Multi-label
Ranking

Yunan Lu, Xiuyi Jia
School of Computer Science and Engineering

Nanjing University of Science and Technology, Nanjing 210094, China
{luyn, jiaxy}@njust.edu.cn

A Appendix

A.1 Proof of Theorem 1

Theorem 1 If an instance is annotated by a multi-label ranking σ, m is the number of relevant
labels, δ and δ̂ are the implicit and explicit margins, respectively, then the EAE of σ is

εδ,δ̂σ =
m

6(m+ 1)

(
(m+ 1)2(δ2 + δ̂2)− 2m(δ + δ̂)− (4m+ 2)δδ̂ + 2

)
. (1)

Proof. The expected approximation error arising from multi-label ranking comes mainly from the
relevant labels, hence we only need to consider the relevant labels. We denote the number of relevant
labels asm, the true importance degree of label yσi as si, and the estimated importance degree of label
yσi as ŝi. In order to ensure that ∀i ∈ [m], si ∈ [δ, 1], we must have ∀i ∈ [m− 1], si ∈ [iδ, si+1− δ]
and sm ∈ [mδ, 1]. Similarly, ∀i ∈ [m− 1], ŝi ∈ [iδ̂, ŝi+1 − δ̂] and ŝm ∈ [mδ̂, 1]. Therefore, we can
obtain the volume of theh space S δ̂σ:

V δ̂σ =

∫ 1

mδ̂

∫ sm−δ̂

(m−1)δ̂
· · ·
∫ s2−δ̂

δ̂

ds1 · · · dsm−1dsm. (2)

We use the mathematical induction method to calculate V δ̂σ . By observing the calculation results for
the cases m = 1, 2, 3, 4, we make the following conjecture:

F1(k) =

∫ sk−δ

(k−1)δ̂

∫ sk−1−δ̂

(k−2)δ̂
· · ·
∫ s2−δ̂

δ̂

ds1 · · · dsk−2dsk−1 =
(sk − kδ̂)k−1

(k − 1)!
. (3)

It is obvious that Eq. (3) holds for k = 2. For k + 1, we have:

F1(k + 1) =

∫ sk+1−δ̂

kδ̂

(sk − kδ̂)k−1

(k − 1)!
dsk =

(sk+1 − (k + 1)δ̂)k

k!
. (4)

Therefore, Eq. (3) holds for k = 2, 3, · · · . Then we can obtain V δ̂σ = (1−mδ̂)m
m! by substituting sk+1

in Eq. (4) for 1 + δ̂. Similarly, we have V δσ = (1−mδ)m
m! . Next we use the same idea to integrate the

squared Euclidean distance between [si]
m
i=1 and [ŝi]

m
i=1. By observing the calculation results for the

cases m = 1, 2, 3, 4, we make the following conjecture:

F2(k) =

∫ sk−δ

(k−1)δ
· · ·
∫ s2−δ

δ

∫ sk−δ̂

(k−1)δ̂
· · ·
∫ s2−δ̂

δ̂

k−1∑
i=1

(si − ŝi)2dŝ1dŝk−1ds1dsk−1

=

(
(kδ − sk)(kδ̂ − sk)

)k−1
6k!(k − 2)!

(
k2(δ2 + δ̂2) + 2k(s2k + ŝ2k − δsk − δ̂ŝk)− (4k − 2)ŝksk

)
.

(5)
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It is obvious that Eq. (5) holds for k = 2. For k + 1, we have:

F2(k + 1) =

∫ sk+1−δ

kδ

∫ ŝk+1−δ̂

kδ̂

F2(k)dskdŝk

=

(
((k + 1)δ − sk+1)((k + 1)δ̂ − sk+1)

)k
6(k + 1)!(k − 1)!

·
(

(k + 1)2(δ2 + δ̂2)

+ 2(k + 1)(s2k+1 + ŝ2k+1 − δsk+1 − δ̂ŝk+1)− (4k + 2)ŝk+1sk+1

)
.

(6)

Therefore, Eq. (5) holds for k = 2, 3, · · · . By substituting sk+1 and ŝk+1 for 1 + δ and 1 + δ̂,
respectively, we have:∫

z∈Sδσ

∫
ẑ∈S δ̂σ

‖z − ẑ‖22dẑdz =

(
(1−mδ)(1−mδ̂)

)m
6(m+ 1)!(m− 1)!

·
(

(m+ 1)2(δ2 + δ̂2)

− 2m(δ + δ̂)− (4m+ 2)δδ̂ + 2
)
.

(7)

Therefore, Eq. (1) can be obtained by combining Eq (7) and V δ̂σV
δ
σ = (1−mδ̂)m(1−mδ)m

(m!)2 . �

A.2 Proof of Lemma 1

Lemma 1 If an instance is annotated by a multi-label ranking σ, then the margins δ and δ̂ satisfy
that 0 ≤ δ ≤ m−1 and 0 ≤ δ̂ ≤ m−1.

Proof. To ensure Sδσ 6= ∅, we can obtain that there is at least one label importance vector z satisfying
(∀k ∈ σ, zk ∈ [δ, 1])∧ (∀i ∈ [|σ| − 1], zσi ≤ zσi+1

− δ)∧ (∀j ∈ [M ]\σ, zj = 0). Accordingly, we
can obtain

δ ≤ zσ1
≤ zσ2

− δ ≤ zσ3
− 2δ ≤ · · · ≤ zσm − (m− 1)δ ≤ 1− (m− 1)δ.

Therefore, δ ≤ 1− (m− 1)δ, i.e., δ ≤ 1
m . Similarly, δ̂ ≤ 1

m . �

A.3 Proof of Corollary 1

Corollary 1 If an instance is annotated by a multi-label ranking σ, m is the number of relevant
labels, the explicit margin δ̂? minimizing the EAE of σ is δ̂? = ((2m+ 1)δ +m)(m+ 1)−2.

Proof. It is obvious that εδ,δ̂σ is a quadratic function of δ̂ and the second order derivative of εδ,δ̂σ w.r.t. δ̂
is a positive number, hence the only stationary point δ̂ of εδ,δ̂σ , i.e., δ̂? = (2m+1)δ+m

(m+1)2 , is the optimal
one that minimizes the expected approximation error. �

A.4 Proof of Corollary 2

Corollary 2 If an instance is annotated by a multi-label ranking σ, m is the number of relevant
labels, 0 ≤ δ ≤ m−1, m(m+ 1)−2 ≤ δ̂ ≤ m−1, then the EAE of σ is bounded by:

0 ≤ εδ,δ̂σ ≤
m(m2 + 4m+ 2)

6(m+ 1)3
<

1

5
. (8)

Proof. It is obvious that εδ,δ̂σ ≥ 0 holds, and limδ→ 1
m ,δ̂→

1
m

= 0. Since εδ,δ̂σ ≥ 0 is a quadratic

function of δ̂ and δ, and the second order derivative ∂εδ,δ̂σ /∂δ̂ > 0 and ∂εδ,δ̂σ /∂δ > 0, the maximum
value of εδ,δ̂σ is taken at the boundary of δ and δ̂. Therefore, we only need to check the following four
equations, the largest of which is the maximum value of εδ,δ̂σ :

εδ,δ̂σ

∣∣∣
δ=0,δ̂= m

(m+1)2

=
m(m2 + 4m+ 2)

6(m+ 1)3
, εδ,δ̂σ

∣∣∣
δ= 1

m ,δ̂=
1
m

= 0,

εδ,δ̂σ

∣∣∣
δ= 1

m ,δ̂=
m

(m+1)2

=
(2m+ 1)2

6m(m+ 1)3
, εδ,δ̂σ

∣∣∣
δ=0,δ̂= 1

m

=
m+ 1

6m
.

(9)

2



Obviously, εδ,δ̂σ takes the maximum value when δ = 0 and δ̂ = m
(m+1)2 , i.e., εδ,δ̂σ ≤

m(m2+4m+2)
6(m+1)3 .

Further, it is easy to verify that the following formula holds for any positive integer m:

5m3 + 20m2 + 10m < 6m3 + 18m2 + 18m+ 6, (10)

then we have m(m2+4m+2)
6(m+1)3 < 1

5 . Therefore, the formula (8) is proved. �

A.5 Proof of Theorem 2

Theorem 2 If an instance is annotated by a logical label vector l, m is the number of relevant labels,
δ and δ̂ are the implicit and explicit margins, respectively, then the EAE of l is

εδ,δ̂l =
m

6
(2δ2 + 2δ̂2 − δ − δ̂ − 3δδ̂ + 1). (11)

Proof. The expected approximation error arising from logical labels comes mainly from labels with
a logical value of 1, hence we consider only the relevant labels. We denote the number of relevant
labels as m, i.e., m =

∑M
i=1 I(li = 1). We first calculate V δ̂l :

V δ̂l =

∫ 1

δ̂

∫ 1

δ̂

· · ·
∫ 1

δ̂

dz1dz2 · · · dzm = (1− δ̂)m. (12)

In the same way, we can obtain V δl = (1− δ)m. In the following we integrate the squared Euclidean
distance between z and ẑ:∫

z∈Sδl

∫
ẑ∈S δ̂l

m∑
i=1

(zi − ẑi)2dẑdz =

∫ 1

δ

· · ·
∫ 1

δ

∫ 1

δ

· · ·
∫ 1

δ

m∑
i=1

(zi − ẑi)2dz1 · · · dzmdẑ1 · · · dẑm

=
m

6
(1− δ)m(1− δ̂)m(2δ2 + 2δ̂2 − δ − δ̂ − 3δδ̂ + 1).

(13)
Finally, we can obtain the EAE of l by combining Eq. (12) and Eq. (13). �

A.6 Proof of Corollary 3

Corollary 3 If an instance is annotated by a multi-label ranking σ, m is the number of relevant
labels, δ and δ̂ are uniform over

[
0,m−1

]
and

[
m(m+ 1)−2,m−1

]
, respectively, then we have:

E
δ,δ̂

[
εδ,δ̂σ

]
=

2m4 + 8m3 + 8m2 + 4m+ 1

36m(m+ 1)3
. (14)

Proof.

E
δ,δ̂

[
εδ,δ̂σ

]
= m

(
1

m
− m

(m+ 1)2

)−1 ∫ 1
m

0

∫ 1
m

m
(m+1)2

Eq. (1)dδ̂dδ

=
2m4 + 8m3 + 8m2 + 4m+ 1

36m(m+ 1)3
.

(15)

�

A.7 Proof of Corollary 4

Corollary 4 Suppose that εδ,δ̂ll and εδ,δ̂σσ are the EAE of the logical label vector l and the EAE of the
multi-label ranking σ, respectively, we have the following inequality holds for m ≥ 3:

εδ,δ̂ll − εδ,δ̂σσ ≥ 7m

48
(δ2 − 2δ) +

m(m− 1)(7m2 + 20m+ 9)

48(m+ 1)3

>
7m5 −m4 − 46m3 − 30m2 + 7m+ 7

48m(m+ 1)3
> 0.

(16)
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Proof. Since εδ,δ̂ll is a quadratic function of δ̂l and the coefficient of the quadratic term is a positive

number, the minimum value of εδ,δ̂ll w.r.t. δ̂l is 7m(δ−1)2
48 . According to Corollary 2, we have

εδ,δ̂σσ ≤ m(m2+4m+2)
6(m+1)3 . Then we have

εδ,δ̂ll − εδ,δ̂σσ ≥ 7m

48
(δ2 − 2δ) +

m(m− 1)(7m2 + 20m+ 9)

48(m+ 1)3
. (17)

Since δ2 − 2δ > 1
m2 − 2

m , we can obtain the Eq (16) by substituting δ for 1
m . Obviously,

7m5−m4−46m3−30m2+7m+7
48m(m+1)3 > 0 holds for m ≥ 3. �

A.8 Details of DRAM

The probability density function of Dirichlet distribution is

Dir(d|µ) =
1

B(µ)

M∏
i=1

dµi−1i , B(µ) =
1

Γ(
∑M
i=1 µi)

M∏
i=1

Γ(µi), Γ(µ) =

∫ ∞
0

xµ−1e−xdx.

The mean of Dirichlet distribution is

E
d∼Dir(d|µ)

[d] =
1

Zµ
µ, Zµ =

M∑
i=1

µi.

A.9 Monte Carlo Approximation for Ep?(d) [ln p(d|x)]

Let the importance sampling distribution be p̃(d) = 1
Zp̃

∫∞
0

I(td ∈ S δ̂σ)dt; then, the negative
cross-entropy can be approximated by:

p?(d)/p̃(d) =

1
Zp?

φ (d;θ)
∫∞
0

I(td ∈ S δ̂σ)dt

1
Zp̃

∫∞
0

I(td ∈ S δ̂σ)dt
=

Zp̃
Zp?

φ(d;θ),

E
p?(d)

[ln p(d|x)] ≈
L∑
i=1

φ(d(i);θ)∑L
j=1 φ(d(j);θ)

ln p(d(i)|x).

(18)

We can draw samples from p̃(d) = 1
Zp̃

∫∞
0

I(td ∈ S δ̂σ)dt as follows:

z(i) ∼ Uni(z|S δ̂σ), d(i) =
1

Z(i)
z(i). (19)

A.10 Details of Experiments

The information of the datasets we used is shown in Table 1. The first four rows in Table 1 are
the existing label distribution datasets; the last three rows in Table 1 are the datasets we created.
Since some examples in the original label distribution datasets do not satisfy the prerequisites of
our paper (i.e., there are some examples (x,d) such that there exist relevant labels with identical
label description degrees), we remove these examples from the dataset to obtain such a dataset:
{(x,d) ∈ D|∀(di 6= 0, dj 6= 0), di 6= dj}, where D = {(xn,dn)}Nn=1. In Table 1, N1 → N2

means that the original dataset with N1 instances is reduced to the dataset with N2 instances. Since
the instances in Emotion6, Twitter-LDL and Flickr-LDL are images, we use a VGG16 [2] network
pre-trained on ImageNet [1] to extract 1000-dimensional features. For the NSRD dataset, we use the
feature vectors suggested in [3]. Besides, we use the random search method as the hyperparameter
optimization technique, and the number of searches is set to 30.
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Table 1: Statistics of datasets.
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