
(a) cheetah-medium (b) cheetah-medium-replay (c) cheetah-medium-expert

(d) hopper-medium (e) hopper-medium-replay (f) hopper-medium-expert

(g) walker2d-medium (h) walker2d-medium-replay (i) walker2d-medium-expert

Figure 5: Learning from limited data. We train an S4RL agent and the baselines on a small 5%, 10%, and
25% of the different D4RL data splits. We see that S4RL is consistently the best performing algorithm when
learning from limited data.

A Learning with limited data

Its possible that only a small amount of offline data is available to train an offline agent, which
motivates us to test the agents on learning from limited data. We do this by randomly selecting 5%,
10%, and 25% of the datasets in each data split for the 3 OpenAI Gym tasks on 3 different data splits:
“-medium”, “-medium-replay” and “-medium-expert”. By doing so, we significantly limit the amount
of information the agent has about the environment thereby increasing the difficulty of learning a
good representation from data. We present the normalized reward (y-axis) over the different data
% available (x-axis) in Figure 5. On the Hopper and Walker2d data splits, the S4RL-N agent is
able to learn significantly outperform all the baselines on both environments in each data split and
data-percent. Despite the simplicity and ease of implementation, the agent is able to learn better
representations than CQL+CURL and CQL+VAE.

12



B Online RL with S4RL

SAC SAC+S4RL-N SAC+S4RL-Adv

HalfCheetah-v2 9302 11039 10483
Hopper-v2 3341 3891 3614
Walker2d-v2 3620 4367 4007

Table 3: Results on online RL over 3 benchmark OpenAI Gym environments

We further experiment with online RL using a base SAC agent [17] on 3 benchmark OpenAI Gym
environments (the same ones included in the D4RL benchmark [4]). We report the episodic reward
after 1M timesteps in Table 3, where we continue to see that S4RL significantly outperforms the
baseline SAC agent.

C Full Robotic Experiments

Behaviour CQL CQL
Domain Task policy at 1M CQL CQL+CURL CQL+VAE +S4RL-N +S4RL-Adv

MetaWorld

reach-v1 95% 77% 78% 79% 84% 93%
reach-wall-v1 90% 54% 57% 67% 78% 88%
sweep-into-v1 75% 32% 33% 41% 63% 79%
door-close-v1 35% 21% 25% 30% 30% 39%
push-v1 30% 12% 12% 18% 27% 35%

RoboSuite block-lifting - 28% 28% 37% 45% 53%
pick-and-place-can - 20% 16% 29% 33% 44%

Table 4: Experiments on robotic manipulation in the Metaworld environment [1]. We report the % goals
completed by the behaviour policy at 1M steps for MetaWorld environments. When the offline policy outperforms
the behaviour policy, we highlight that in blue text and when the S4RL agent outperforms the baselines we
highlight it in bold. These are the numerical results used in Figure 4.

D Q-network regularization

CQL CQL CQL
Task CQL +Dropout +L2-Reg +S4RL-Adv
reach-v1 77% 68% 79% 93%
reach-wall-v1 54% 43% 51% 88%
sweep-into-v1 32% 22% 34% 79%
door-close-v1 21% 18% 21% 39%
push-v1 12% 4% 9% 35%

Table 5: Effect of different regularization schemes on the performance over 5 difficult robotic tasks in the
MetaWorld environments [1]. We use p = 0.3 for Dropout and weight decay value of 1 × 10−4 for L2-
Regularization.

Along with self-supervision, in deep learning literature there exist other forms of regularization
methods for training neural networks. We include experiments with two such methods: Monte Carlo
dropout mask (MC-Dropout) [43] and L2-regularization over Q-network weights. The results are
shown in Table 5.

E Ablation over Hyperparamaters

The results for ablation over values of σ and ε for the two best performing methods (S4RL-N and
S4RL-Adv) are presented in Table 6. We see that large values of ε or σ (10−2)significantly hurt the
performance of S4RL, whereas the model is relatively stable within the range of 10−3 and 10−4

13



CQL+S4RL-N CQL+S4RL-Adv
Task (σ = 10−2) (σ = 10−3) (ε = 10−4) (ε = 10−2) (ε = 10−3) (ε = 10−4)
reach-v1 53% 80% 85% 50% 88% 93%
reach-wall-v1 49% 70% 72% 44% 79% 88%
sweep-into-v1 47% 64% 61% 36% 65% 79%
door-close-v1 8% 23% 26% 19% 32% 39%
push-v1 5% 22% 27% 13% 27% 35%

Table 6: Hyperparameter study on the Metaworld environment [1]. We see that S4RL performs best when only
local perturbations are applied to the states. As noted in Section 5, we use σ = 3× 10−4 and ε = 1× 10−4 for
S4RL-N and S4RL-Adv, respectively.

suggesting the need for local perturbations to the proprioceptive information. A large variance or
a large adversarial sample hurts the performance since the new states T (st) may be semantically
different than the original state, since proprioceptive inputs are continuous unlike pixel-based input.

F Implementation details on state-switch

The implementation of the state-switch experiments is done by using ad-hoc rules for each environ-
ment where we only replace dimensions which are similar to each other. Such as a joint-angle is
only replaced by another angle, and a joint velocity is only replaced by another velocity. Using this
scheme ensures that we remain approximately in the same bounds of what is physically realizable,
since its possible that velocities and angles do not work on the same scale. Since state-switch needs
significantly more oracle knowledge of the environment and the state space, it may not be the best
choice of augmentation for environments where the state space is not known. Furthermore, we see
that in practice, state-switch is unable to perform well on most baselines as shown in Table 1, which
consolidates the relative ineffectiveness of the augmentation choice.

G Effect of network width and performance

network width=256 network width=512 network width=1024
CQL CQL+S4RL-Adv CQL CQL+S4RL-Adv CQL CQL+S4RL-Adv

push 12% 35% 11% 33% 4% 33%
door-close 21% 39% 19% 37% 12% 36%
sweep-into 32% 79% 27% 74% 11% 75%

Table 7: Effect of network width of the Q-functions and its effect on performance on the MetaWorld suite of
tasks.

Recent work has tried to shown a relation between the network width and its effect on overfitting,
showing that as the network width increases, the vanilla Q-learning methods start to overfit [15]. We
show similar results in offline RL in Table 7, where we show how similar effect can be seen with the
base CQL algorithm, but using S4RL-Adv, we are able to greatly reduce the performance degradation
as the network width is increased. We note that there is no general consensus on overfitting and how
to measure robustness to overfitting in the community. We simply add these additional experiments,
in accordance with the recent literature, as done by [15], without concluding that S4RL prevents
overfitting to the offline data.

H Measurement noise

We add additional results in measurement model of the robot. During testing, we randomly perturb
the states by using an additive Gaussian noise of the form N (0, 0.001). The results are reported in
Table 8. This experiment further shows that using S4RL, we are able to learn policies that are more
robust to measurement noise when deployed in the environment.

14



CQL CQL+S4RL-N CQL+S4RL-Adv
push 49% 69% 73%
door-close 38% 65% 67%
sweep-into 21% 50% 59%
reach-wall 15% 19% 28%
reach 10% 13% 22%

Table 8: Experiments with measurement noise during evaluation. We add an additive Gaussian noise during
evaluation. The noise is randomly sampled fromN (0, 0.001) and added to the states input to the policy.

I Details about Robosuite experiments

Robosuite [2] datasets were collected by first training a Soft Actor Critic [44] RL agent from scratch
on the Lift and Can tasks. Agent checkpoints were saved regularly during training – 5 checkpoints
for the Lift task, and 17 checkpoints for the Can task. For each checkpoint, 300 agent rollouts
were collected (with horizon 150) for a total of 1500 Lift trajectories and 5100 Can trajectories.
Consequently, these datasets contain a mixture of expert and suboptimal trajectories, and resemble
datasets from common offline RL benchmarks [4, 9].

15


	Learning with limited data
	Online RL with S4RL
	Full Robotic Experiments
	Q-network regularization
	Ablation over Hyperparamaters
	Implementation details on state-switch
	Effect of network width and performance
	Measurement noise
	Details about Robosuite experiments

