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GS-Pose: Generalizable Segmentation-based 6D Object Pose Estimation
with 3D Gaussian Splatting

Supplementary Material

1. Supplement
1.1. Data Capture with ARKit

We follow OnePose and OnePose++ [1, 6] and leverage the
off-the-shelf ARKit' to capture the RGB reference images
using an iPhone. In our experiments, we take advantage of
the ARKit-based OnePoseCap [6] application initially de-
veloped for OnePose [6]. In OnePoseCap, we first manu-
ally define a simple 3D bounding box around a stationary
object, which serves as a minimal, 3D CAD model-free ge-
ometric proxy. When using this tool to capture the RGB
reference sequence of an object, ARKit automatically tracks
the frame-wise camera poses with respect to the predefined
3D box based on feature matching. These tracked poses are
then transformed into the 3D bounding box coordinate sys-
tem and used as the 6D object pose annotations. We kindly
refer the reader to OnePose/OnePose++ [1, 6] for more de-
tails.

1.2. Preprocessing

In this part, we describe the image pre-processing step for
creating the reference database. Given the reference data
{177 R7eT 17Ty Nr of the target object, where [T e
RAXWX5 denotes the it* RGB 1mage 3D rotation matrix
Rref and 3D translation vector ¢;/, we prepocess these
reference images to obtain normahzed object-centric im-
ages {17/}, with a predefined resolution S x S.

Specifically, we first compute a 2D square bounding box
{crel | 57\ using the ground truth translation vector ¢}/
and the camera intrinsic K"/, where C] ¢/ ¢ R? and
Sr¢ ¢ R are the 2D center and scale of the bounding
box, respectively. In particular, we generate the 2D box
center C7°/ by projecting the 3D translation 7/ to the im-
age lane using K¢/ and then compute the scale factor by
SI = dop; - [/ tzwf where d,p; is the diameter of the
3D object bounding box, fref is the camera focal length,
and tz:ef € R denotes the z-axis component of the 3D
translation vector t:ef . Subsequently, we crop the object re-
gion (I7°/) using the derived bounding box ({C/, §7¢/})
and rescale it to the fixed size S. After preprocessing, the
object in all normalized reference images is assumed to be
located along the camera optical axis [0,0,#7¢/]7 at the
same distance t7¢/ = dy;; - f7//S. We set S = 224 in
all experiments.

' ARKit. https://developer.apple.com/augmented-reality.

Algorithm 1 Iterative Pose Refinement within GS-Refiner

: Input initial pose: P

. Input segmented object image: I'
: Initialize the maximum iteration steps: Ny = 400

- Initialize rotation quaternion parameters: go = [1,0,0, 0]
- Initialize translation parameters: to = [0, 0, 0]

: Initialize iteration counter: ¢ = 0

: Initialize learning rate : ro = 0.005

: Form transformation matrix: Py = MatrixForm(qo, to)

: while ¢ < N, do

10:  Transform object: g"bj = RigidTransform(G°% | P;)
Render object: 17 GausszanRenderer(g"bj pinit)

12 Compute loss: Egé = LossCriterion(I", I55)

13:  Compute gradients: , = M“’S ,0 = aaﬁtf

14:  Update LR: 741 = CosineAnnealmgLRSbheduler(ri)
15: Update params: qi+1 = ¢; + 7i+10q, ti+1 = ti + Ti410¢
16:  Transformation matrix: P;41 = MatrixForm(qi+1,ti+1)
17:  Update iteration counter: ¢ = ¢ + 1

18: if L£g45 converges then

19: break

20: end if

21: end while

22: Update initial pose: P =

que

O 00 1 O W A~ W N =

—_

Pinit P’L

1.3. Iterative Pose Refinement with GS-Refiner

We summarize the iterative pose refinement process in Al-
gorithm 1.

1.4. Additional Results on LINEMOD

Following Gen6D [3], we additionally compare GS-Pose
with baselines on a subset of objects in LINEMOD and
report the results in Table 1. GS-Pose achieves 47.96%
ADD(S)@0.1d without pose refinement and 90.86% after
refinement, surpassing all baseline approaches by a signif-
icant margin. It is noteworthy that without using a subset
of objects included in LINEMOD (using the same setup
as ours) for training, Gen6D achieves 42.72% accuracy af-
ter pose refinement, falling behind even the initial results
of GS-Pose (47.96%). As an additional experiment, we
also leverage the feature volume-based pose refiner (Vol-
Refiner) proposed in Gen6D [3] for pose refinement. Vol-
Refiner improves the initial accuracy to 69.71%, lagging be-
hind 90.86% achieved with GS-Refiner.

We show qualitative examples from LINEMOD in Fig. 1
and report the complete segmentation and detection results
in Tab. 3 and the initial pose estimation results in Tab. 2.
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Figure 1. Qualitative evaluation on LINEMOD. We present the intermediate segmentation mask predictions (for localization) as well as

Input RGB
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Mask prediction

Initial pose

Refined pose

Mask prediction

Initial pose

the estimated 6D poses. Blue, green, and red boxes represent initial, refined, and ground truth poses, respectively.

Table 1. Additional quantitative results on the subset of objects in LINEMOD [2] regarding the ADD(S)@0.1d metric. 1 indicates that
another heldout subset of objects in LINEMOD is included in the training data of the method. ”-” indicates unavailable results. We

Method Pose Refinement cat duck bvise cam driller | Avg.
Gen6D [3]t X 1597 7.89 2548 2206 17.24 | 17.73
LocPoseNet [8]F X - - - - - 27.27
OSOP [5] X 3443 20.08 5041 3230 43.94 | 36.23
GS-Pose (ours) X 48.70 41.97 5587 4431 48.96 | 47.96
OSOP [5] OSOP [5] 4254 22.16 5559 36.21 49.57 | 42.21
Gen6D [3] Vol-Refiner [3] 40.92 1624 62.11 4559 48.76 | 42.72
Gen6D [3]F Vol-Refiner [3] 60.68 4047 77.03 66.67 67.39 | 62.45
LocPoseNet [8]f Vol-Refiner [3] - - - - - 68.58
Cas6D [4]F Cas-Refiner [4] 60.58 5127 86.72 70.10 84.84 | 70.72
GS-Pose (ours) Vol-Refiner [3] 60.68 53.24 83.04 70.10 81.47 | 69.71
GS-Pose (ours) GS-Refiner (ours) | 88.82 74.74 99.61 9598 95.14 | 90.86

highlight the best in Bold.

Refined pose

Method YOLOVS | ape bwise cam can cat driller duck ebox* glue* holep. iron lamp phone | Avg.
GS-Pose init 31.5 559 443 649 4877 49.0 420 928 6777 48.1 472 489 36.0 |52.1
GS-Pose (ours) 59.6 99.6 96.0 97.6 88.9 951 749 993 922 86.8 982 96.7 80.7 |89.7
GS-Pose jpi¢ v 39.3 58.8 45.1 643 536 50.7 38.8 937 744 521 559 563 37.8 |555
GS-Pose (ours) v 71.0 99.8 98.2 97.7 86.7 96.2 77.2 99.6 984 874 99.2 98.9 85.0 |92.0

Table 2. Results on LINEMOD [2] regarding the ADD(S)@0.1d metric. v indicates using the detection results provided by YOLOVS [7].

”imnit”” indicates the initial pose estimation results of GS-Pose.
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Table 3. Complete segmentation and detection results on LINEMOD [2]. ”"BBox” represents the use of square 2D bounding boxes to
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