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A SUMMARY OF NOTATION

In this section we define the mathematical notation that we consistently use throughout the paper.
We consider the successive learning of K datasets Dk =

{
(x

(n)

1:T
(n)
in

,y
(n)

1:T
(n)
out

)
}Nk
n=1

. A data sample

(x1:Tin ,y1:Tout) consists of a sequence of inputs x1:Tin = (x1, . . . ,xTin), xt ∈ RFin , and a sequence
of target outputs y1:Tout = (y1, . . . ,yTout), yt ∈ RFout , where Tin/Tout denote the time dimension and
Fin/Fout the feature dimension, respectively. In general, the number of timesteps is sample-dependent
and not constant.

The main network, which processes data from the datasets {Dk}Kk=1, is an RNN with parameters
ψ. With an abuse of notation, we describe it by ŷ1:Tout = f(x1:Tin , ψ). To express the step-by-step
computation of the RNN we use (ŷt,ht) = fstep(xt,ht−1, ψ). Specifically, we denote by ψhh the
hidden-to-hidden weights, which are a subset of ψ and are exclusively involved in the computation
from ht−1 to ht. The hypernetwork is a feedforward neural network ψ = h(ek, θ) with parameters
θ, that generates the parameters ψ of the main network given the task embedding ek of task k.

B DETAILED DESCRIPTION OF ALL METHODS

Here, we provide a mathematical description of all methods mentioned in Sec. 3, together with an
estimate of their time and space complexity increase when compared to the naive Fine-tuning
baseline.

The task-specific loss functions Ltask(ψ,Dk) applied across all methods are described in Sec. B.5 (cf.
Eq. 7 and Eq. 8).

B.1 FINE-TUNING

Fine-tuning (Li and Hoiem, 2017) refers to sequentially optimizing the task-loss Ltask(ψ,Dk)
for k = 1, . . . ,K without any explicit protection against catastrophic forgetting. However, since each
task has its own output head, the output head weights are task-specific and fixed for past tasks.

Even though Fine-tuning has no built-in mechanism to prevent forgetting, we selected the
hyperparameter configuration based on the best final accuracy. This ensured consistency with
other methods, and allowed directly assessing improvements when employing CL methods.

B.2 TRAINING FROM SCRATCH

From-scratch refers to the independent training of a set of network parameters ψ(k) per task, i.e.,
K separate networks are trained by minimizing Ltask(ψ(k),Dk).

Complexity estimation. This approach does not add time complexity, but leads to a linear increase
in the memory requirements with the number of tasks.

B.3 MULTITASK

Multitask, or joint training (Li and Hoiem, 2017), refers to jointly training on all datasets at once:
minψ

∑K
k=1 Ltask(ψ,Dk). We performed joint training by assembling a mini-batch of size B using

samples equally distributed across all K datasets. Note that in order to provide a fair comparison to
our CL baselines, the main network is still a multi-head network with a task-specific fully-connected
output layer per task. Thus, the task identity has to be provided during inference in order to select the
correct output head.
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Complexity estimation. Even though this approach does not lead to time or memory complexity
increases, it requires all data to be available at all times.

B.4 HYPERNETWORK-PROTECTED MODELS

The hypernetwork-based CL approach, HNET (von Oswald et al., 2020), is an L2-regularization
technique that, in contrast to weight-importance methods, aims to fix certain input-output mappings
of a secondary neural network, instead of directly fixing the weights of a main network (cf. Eq. 2).
The complete loss function for learning the K-th task is given by:4

L(θ, e1, . . . , eK ,DK) = Ltask(θ, eK ,DK) +
β

K − 1

K−1∑
k=1

‖h(ek, θ)− h(ẽ
(K−1)
k , θ̃(K−1))‖22 (2)

where DK is the dataset of task K, Ltask(·) is the loss function of the current task, β is the regulariza-
tion strength and θ̃(K−1), ẽ(K−1)1 , . . . , ẽ

(K−1)
K−1 denote hypernetwork weights θ and task embeddings

that were checkpointed after learning task K − 1. These checkpointed weights are fixed and needed
to compute the regularization targets, which ensure that the output of the network stays constant for
previously learned tasks, thus preventing forgetting.

To establish a fair comparison to other methods (in terms of number of trainable weights), we used
the chunking approach described in von Oswald et al. (2020), who showed that in the non-parametric
limit a chunked hypernetwork can realize all possible continuous mappings between embedding
and weight space. This method splits the vectorized main network weights ψ into equally sized
chunks. Each chunk will be assigned a chunk embedding ci. The hypernetwork can then produce
all weights ψ by processing a batch of chunk embeddings (utilizing parallelization on modern
GPUs): ψ = h(ek, θ = θ̃ ∪ {ci}) = concat([. . . , h̃(ek, ci, θ̃), . . . ]). In our implementation chunk
embeddings are considered to be part of θ and are therefore shared across tasks.

This approach to chunking is agnostic to the structure that ψ takes in the main network through
f ’s architectural design. Therefore, we investigated other approaches to chunking that respect
the architecture of f . For instance, if Whh ∈ Rnh×nh and Wih ∈ Rnh×ni denote the weights
of a recurrent layer, where nh and ni are the number of hidden and input units respectively, the
hypernetwork can be designed to produce chunks Vhh,i, Vih,i = h̃(ek, ci, θ̃), with Vhh,i ∈ Rnc×nh ,
Vih,i ∈ Rnc×ni and 0 ≡ nh (mod nc). However, since we didn’t observe any improvements in a set
of exploratory experiments, all reported results were obtained using the approach suggested in von
Oswald et al. (2020).

In addition, we would like to mention two properties of the hypernetwork approach that have been
empirically verified (von Oswald et al., 2020). First, the approach supports positive forward transfer,
as the knowledge of previous tasks is entangled in the shared meta-model. Experiments on a low-
dimensional task embedding space in von Oswald et al. (2020) seem to indicate that the learned
embedding space possesses a structure that supports transfer. Second, von Oswald et al. (2020)
noted and showed empirically that the regularizer in Eq. 2 does not have to increase linearly with
the number of tasks K, but can instead be subsampled using a random set of C tasks for each loss
evaluation. We verified this in the Permuted Copy Task, where computing the regularizer for a single
randomly chosen task (C = 1) at each loss evaluation did not lead to a performance decrease for
patterns of length p = 5 (data not shown).

Complexity estimation. Independent of its application to CL, the use of a hypernetwork increases
time complexity because weights need to be generated before being used for the forward computation
of the main network. Another factor contributing to the increase in time complexity is the regularizer
(Eq. 2), which is a sum of L2 norms of the hypernetwork output (of size |ψ|) over past tasks, yielding a
time complexity ofO(K|ψ|) if the regularizer is applied to all previous tasks, andO(C|ψ|) otherwise.

4We slightly modified the original regularizer by excluding the lookahead ∆θ used in von Oswald et al.
(2020) and by allowing fine-tuning of previous task embeddings, which requires us to additionally checkpoint
these task embeddings before learning a new task.
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Space complexity also increases due to two factors. First, a second network object (i.e., the hypernet-
work) has to be maintained in memory. Second, the computation of the regularizer (Eq. 2) requires
storing a set of checkpointed hypernetwork weights and task embeddings when training on a new
task. Since we restrict here our analyses to settings where

∣∣θ ∪ {ek}Kk=1

∣∣ ≈ |ψ|, we simply denote
this space complexity increase by O(|ψ|).

B.5 ELASTIC WEIGHT CONSOLIDATION

Here, we quickly recapitulate the basic concepts behind elastic weight consolidation (EWC, Kirk-
patrick et al. (2017a)). Since EWC is a prior-focused method (Farquhar and Gal, 2018), solutions of
upcoming tasks must lie inside the posterior parameter distribution of previous tasks. To achieve this,
EWC approximates the posterior via a Gaussian distribution with diagonal covariance matrix. Note
that this restriction does not apply to task-specific weights, which may be restricted by an arbitrary
choice of the prior. However, to avoid overly cluttered notation, we explicitly ignore the multi-head
setting in this section, where parameters ψ can be split into task-specific (the corresponding output
head’s weights) and task-shared (all weights excluding the output layer) weights.

EWC makes use of the fact that Bayes rule allows the following decomposition of the posterior
parameter distribution:

p(ψ | D1, . . . ,DK) ∝ p(ψ | D1, . . . ,DK−1) p(DK | ψ) (3)

where p(ψ | D1, . . . ,DK−1) is the posterior from previous tasks and p(DK | ψ) the likelihood of the
current task. The precise derivation of the algorithm described here can be found in Huszár (2018),
and has been termed Online EWC in Schwarz et al. (2018).

When learning task K, we aim to find a maximum a posteriori (MAP) solution of p(ψ | D1, . . . ,DK)
maximizing the following loss function:

max
ψ

log p(DK | ψ) + log p(ψ | D1, . . . ,DK−1) (4)

We discuss the likelihood function for sequential data below. To obtain a tractable loss function,
EWC utilizes an approximate posterior q(K−1)ζ (ψ) ≈ p(ψ | D1, . . . ,DK−1), whose parameters ζ are
computed at the end of task K − 1. Specifically, EWC first applies a Laplace approximation MacKay
(1992) (using the MAP solution ψ̃(K−1) obtained at the end of training of task K − 1) to obtain a
Gaussian q(K−1)ζ (ψ) with mean ψ̃(K−1) and precision matrix F =

∑K−1
k=1 F (k), where F (k) denotes

the empirical Fisher matrix.5 As noted in Huszár (2018), this version of Online EWC still does not
carry out the Laplace approximation correctly, as the precision matrix of q(K−1)ζ (ψ) misses the prior
influence and the individual terms F (k) are not properly scaled. However, if the prior influence on
the precision matrix is ignored and dataset sizes are identical, then the proper scaling can be absorbed
into the regularization strength λEWC. As a second approximation, EWC considers all off-diagonal
elements of F to be zero: Fi6=j = 0. Taken together, while ignoring all terms independent of ψ, the
loss described by Eq. 4 is approximated in Online EWC via (cf. Eq. 1):

min
ψ
− log p(DK | ψ) + λEWC

|ψ|∑
i=1

Fii(ψi − ψ̃(K−1)
i )2 (5)

where Fii can be considered as weight-specific importance values and Ltask(ψ,DK) ≡ − log p(DK |
ψ) describes the negative log-likelihood (NLL) detailed below.

Note that the correct deployment of Eq. 4 requires obtaining a MAP estimate for the first task:
ψ̃
(1)
i = arg maxψ log p(D1 | ψ)+log p(ψ). However, we ignored the prior influence when obtaining

ψ̃
(1)
i .

5Schwarz et al. (2018) introduced an additional hyperparameter γF ≤ 1 to explicitly promote forgetting:
F =

∑K−1
k=1 γK−1−k

F F (k). We left γF = 1 throughout this work.
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Negative log-likelihood (NLL) for sequential data. Finally, we discuss how to implement
Ltask(ψ,DK) ≡ − log p(DK | ψ) when applied to sequential data. Note that p(DK | ψ) =∏NK
n=1 p(y

(n)

1:T
(n)
out
| ψ) and that p(y1:Tout | ψ) =

∏Tout
t=1 p(yt | y1, . . . ,yt−1, ψ). Given the autoregres-

sive structure of an RNN, we make the following assumption: p(yt | y1, . . . ,yt−1, ψ) ≈ p(yt |
ht−1, ψ). Hence, we can decompose the NLL as follows:

− log p(DK | ψ) = −
NK∑
n=1

T
(n)
out∑
t=1

log p(y
(n)
t | h(n)

t−1, ψ) (6)

We first consider typical classification problems (cf. Sec. 5.2 and Sec. 5.3). In this case, y(n)
t is a

one-hot encoded representation of a label y(n)t ∈ {1, . . . , Fout}, where Fout denotes the number of
classes. We consider a sofmax output ŷ(n)

t = softmax(β̃tẑ
(n)
t ), where β̃t denotes a timestep-specific

inverse temperature that may be used to bias the loss such that it puts more emphasis on certain
timesteps. For instance, setting β̃t = 0 results in timestep t being ignored for the computation of the
loss. Indeed, for the experiments in Sec. 5.2 and Sec. 5.3, the loss is evaluated solely based on the
prediction of the last timestep T (n)

in of the given input sequence. Using this setting for classification
problems leads to the well-known cross-entropy loss evaluated per timestep and summed over all
timesteps:

−
NK∑
n=1

T
(n)
out∑
t=1

log p(y
(n)
t | h(n)

t−1, ψ) = −
NK∑
n=1

T
(n)
out∑
t=1

Fout∑
c=1

[y
(n)
t = c] log

(
softmax(β̃tẑ

(n)
t )c

)
(7)

where [·] denotes the Iverson bracket and softmax(·)c refers to the c-th entry of the softmax output
vector.

Lastly, we consider the NLL for the Copy Task and its variants (cf. Sec. 5.1), where the output
has to match a binary target pattern. In this case, each pixel in the output pattern will be evaluated
(independent of all other pixels) using a binary cross-entropy loss. Likelihood predictions of pixel
values are obtained via a (tempered) sigmoid: ŷ(n)t,f = sigmoid(β̃t,f ẑ

(n)
t,f ), where ŷ(n)t,f denotes the f -th

entry of ŷ(n)
t , and β̃t,f can be interpreted as an inverse temperature that can be specified per timestep

and feature. Taken together, the NLL loss for matching binary output patterns can be specified via:

−
NK∑
n=1

T
(n)
out∑
t=1

log p(y
(n)
t | h(n)

t−1, ψ) =

NK∑
n=1

T
(n)
out∑
t=1

Fout∑
f=1

(
− y(n)t,f log ŷ

(n)
t,f − (1− y(n)t,f ) log(1− ŷ(n)t,f )

)
(8)

Conceptual differences to a hypernetwork-based approach. An important conceptual difference
between EWC (and prior-focused methods in general) and the hypernetwork-based approach (cf.
Sec. B.4) lies in the nature of Eq. 3. Whereas prior-focused methods aim to find arg maxψ p(ψ |
D1, . . . ,DK) (which necessitates a certain compatibility across tasks), the hypernetwork-based
approach allows task-specific solutions ψ(k) = arg maxψ p(ψ | Dk), where knowledge transfer
between tasks (to exploit compatibilities) is implicitly outsourced to a meta-model (the hypernetwork).

Complexity estimation. The regularization introduced in Eq. 5 leads to a time complexity increase
of O(|ψ|) when computing the loss. Additionally, the computation of Fisher values at the end of
each of the K tasks leads to a further increase in time complexity. Indeed, a forward and backward
computation for each sample is performed, while accumulating importance values for each entry in
ψ. Assuming forward and backward computation only increases linearly with ψ, we can summarize
this contribution via O(|ψ|

∑
kNk), where Nk is the number of samples in task k.

The increase in space complexity arises due to the storage of the diagonal Fisher elements as well as
the most recent MAP solution: O(2|ψ|).
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B.6 SYNAPTIC INTELLIGENCE

Synaptic intelligence (SI, Zenke et al. (2017)) is another weight-importance method that, in contrast
to EWC, computes the importance values online, i.e., during training rather than at the end of training.
The method is based on a first-order Taylor approximation to estimate the loss change after an
optimizer update step. This allows estimating the influence of each individual weight ψi on the loss
change. Thus, at each optimization step s while training task k, an online importance estimate ω̃(k)

i
of ψi is updated via:

ω̃
(k)
i ← ω̃

(k)
i −∆ψi(s)

∂Ltask
(
ψ,B(s)

)
∂ψi

(9)

where ∆ψi(s) is the weight change determined by the optimizer at step s, and B(s) ⊆ Dk is the s-th
minibatch. Importantly, we compute both the optimizer update ∆ψi(s) and the gradient based on the
task-specific loss Ltask(·) only, ignoring potential regularizers such as the SI regularizer itself. To do
so, we compute the update step ∆ψi(s) that would be taken by the optimizer without actually taking
it. Interestingly, we did not observe a noticeable difference between this variant, where importance is
solely based on task-specific influences, and one where the full loss is taken into consideration.

After training of task k is completed, the final importance values Ω
(k)
i are computed as follows:

Ω
(k)
i = Ω

(k−1)
i +

ω̃
(k)
i

∆ψ
(k)
i + ε

(10)

where ∆ψ
(k)
i is the complete weight change (of weight ψi) between before and after training on task

k, and ε (= 1e − 3) ensures numerical stability. If ω̃(k)
i < 0, we clamp its value to zero to avoid

negative importance values. The SI loss function for training task K is:

min
ψ
Ltask(ψ,DK) + λSI

|ψ|∑
i=1

Ω
(K−1)
i (ψi − ψ̃(K−1)

i )2 (11)

Complexity estimation. The increase in time complexity due to the regularization introduced in
Eq. 11 can be summarized as O(|ψ|) per loss evaluation. An additional increase arises due to the
online estimation of importance values (cf. Eq. 9). The contribution is bounded by O(|ψ|) per
training iteration.

The increase in space complexity arises due to the storage of Ω
(K)
i , ψ̃(K−1)

i , ω̃(K)
i , as well as a

temporary copy of ψ from before the current optimizer step in order to compute ∆ψi(s): O(4|ψ|).

B.7 MASKING

Context-dependent gating (or Masking) is a mechanism to alleviate catastrophic interference that
was introduced by Masse et al. (2018). The method stores a random binary mask per task, which is
used to gate all hidden activations. For LSTM layers, this method masks the hidden state ht. For
vanilla RNNs, which in our case are inspired by Elman networks, Masking affects the hidden state
ht as well as the RNN layer output.6 Throughout all experiments, we masked 80% of the hidden
activations. Due to the independent and random generation of masks, small overlaps across tasks may
occur (or if activations are computed using shared weights such as in CNNs). To prevent catastrophic
interference within those overlaps, one may combine Masking with, for instance, SI (cf. Sec. B.6).
If subnetworks are sufficiently task-specific, SI will only influence the overlaps with subnetworks of
previous tasks, without introducing rigidity for the remainder of the current subnetwork.

6Note that for LSTMs the hidden state is also the layer output, whereas a vanilla RNN layer (an Elman
network) has an additional linear readout of the hidden state. If Masking would only affect this readout, then
there would be unhampered catastrophic interference in the crucial hidden-to-hidden computation.
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Complexity estimation. Masking does not introduce an increase in time complexity. On the
contrary, if efficiently implemented, it may decrease time complexity since only activations of the
active subnetwork need to be computed.

Since a binary mask per task needs to be stored, there is an increase in space complexity of O(K|ψ|).
However, binary masks can be stored efficiently, as only one bit per task/activation is required. If
combined with SI, the space and time complexity considerations mentioned in Sec. B.6 also apply.

B.8 CORESETS

Coresets refers to CL methods that store subsets of past data that can be mixed with new data
in order to prevent catastrophic interference (Nguyen et al., 2018; Rebuffi et al., 2017). Rebuffi
et al. (2017) discusses strategies on how to properly select coreset samples. Here, we simply
take a random subset of N input samples from each previous dataset, denoted by Coresets-N ,
for which we aim to keep the network predictions fixed when learning new tasks. Therefore, a
copy of the network ψ̃(K−1)

i before learning task K is generated and used to create soft-targets
ỹ1:Tout = f(x1:Tin , ψ̃

(K−1)
i ), where x1:Tin is a sample taken from a coreset (van de Ven and Tolias,

2019; Li and Hoiem, 2017). The soft-targets ỹ1:Tout are distilled Hinton et al. (2015) into the network
while training on the current task. This can be viewed as a form of regularization that incorporates past
data. In addition to the current mini-batch B(s) ⊆ DK , an additional mini-batch B̃(s) is assembled
from inputs randomly distributed across all K − 1 coresets together with their corresponding soft-
targets. We chose to always assume that both of these mini-batches have the same size. The total loss
for task K can then be described as follows:

min
ψ
Ltask(ψ,B(s)) + λdistillLdistill(ψ, B̃(s)) (12)

where λdistill is a hyperparameter and Ldistill(·) denotes the distillation loss (Hinton et al., 2015).

Complexity estimation. The time complexity of the loss evaluation roughly doubles (the time
complexities of Ltask(·) and Ldistill(·) are comparable).

Storage increases by O(|ψ|) due to the network copy ψ̃(K−1)
i . However, the critical storage increase

is due to the storage of past data, which can be summarized by O(KNFinTin), assuming all samples
within coresets have the same temporal dimension Tout.

B.9 GENERATIVE REPLAY

Conceptually, Generative Replay (Shin et al., 2017; van de Ven and Tolias, 2018) is similar
to Coresets (cf. Sec. B.8), i.e., it is based on the rehearsal of past input data whose soft-targets
are subsequently distilled into the network (cf. Eq. 12). The major difference is that Coresets
directly store past data, while Generative Replay relies on the ability to learn a generative
model of past input data. In this study, we consider Variational Autoencoders (VAE, Kingma and
Welling (2014); Rezende et al. (2014)) as generative models. We first recap the workings of a VAE
on sequential data in Sec. B.10 before explaining in Sec. B.11 how catastrophic interference can be
mitigated in a VAE when learning a set of tasks sequentially.

B.10 SEQUENTIAL VARIATIONAL AUTOENCODER

The traditional VAE (for static data) defines a generative model via marginalization of a hidden
variable model: pν(x) =

∫
Z pν(x | z)p(z)dz. Here, z ∈ Z denotes a latent variable (or hidden

cause), p(z) is the prior and pν(x | z) is a likelihood function defined via a decoder network
whose parameters are denoted by ν. To learn the parameters ν given a dataset D = {xn}Nn=1, the
corresponding hidden causes zn have to inferred from the posterior pν(z | x) ∝ pν(x | z)p(z).
However, the precise value of the posterior is in general intractable. Therefore, VAEs resort to
variational inference (VI) to approximate the posterior using qψ(z | x) ≈ pν(z | x), where qψ(z | x)
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is realized through an encoder network with parameters ψ. VI utilizes the following inequality (cf.
Kingma and Welling (2014) for a derivation):

log pν(x) ≥ −KL
(
qψ(z | x) || p(z)

)
+ Eqψ(z|x)

[
log pν(x | z)

]
(13)

where the right-hand side is commonly known as evidence lower bound (ELBO). VAE training
proceeds by maximizing the ELBO or equivalently by minimizing the negative ELBO which decom-
poses into a prior-matching term KL

(
qψ(z | x) || p(z)

)
and a negative log-likelihood (NLL) term

−Eqψ(z|x)
[

log pν(x | z)
]
.

Next, we discuss how to extend this framework to sequential data (also cf. Chung et al. (2015); Bayer
and Osendorfer (2014)). We use an independence assumption when defining a prior for a sequence of
hidden causes:

p(z1:T ) =
∏
t

p(zt) (14)

In addition, we consider the following decomposition of the likelihood function:

pν(x1:T | z1:T ) =
∏
t

pν(xt | x<t, z≤t) (15)

The decoder network is an RNN defined via [ϕt,h
dec
t ] = fdec,step(zt,h

dec
t−1, ν), where hdec

t denotes the
hidden state of the decoder network and ϕt ∈ Φ denotes the parameters of a parametric distribution
(e.g., a Gaussian), which can be used to tractably compute densities pν(xt | x<t, z≤t) conditioned
on z1:T .

As a last ingredient, we have to define the recognition model qψ(z1:T | x1:T ). If the prior and
likelihood defined above are inserted into Bayes rule, there is no obvious way to simplify the
dependency structure of the true posterior such that the autoregressive nature of an RNN recognition
model is not violated. We therefore apply an additional assumption when defining the decomposition
applied to our recognition model:

qψ(z1:T | x1:T )
chain rule of prob.

=
∏
t

qψ(zt | z<t,x1:T )
filtering assumption

≈
∏
t

qψ(zt | z<t,x≤t) (16)

Analogously to the likelihood, the components qψ(zt | z<t,x≤t) of the approximate posterior are
represented by an RNN encoder network [ξt,h

enc
t ] = fenc,step(xt,h

enc
t−1, ψ), where ξt ∈ Ξ are the

parameters of a distribution over the latent space Z .

At this point, we have all ingredients of the ELBO (cf. Eq. 13) defined and can now focus our
discussion on how to tractably evaluate the ELBO for the case of sequential data. We will start with
decomposing the prior-matching term:

KL
(
qψ(z1:T | x1:T ) || p(z1:T )

)
=

∫
z1:T

∏
t′

qψ(zt′ | z<t′ ,x≤t′)
∑
t

log
qψ(zt | z<t,x≤t)

p(zt)
dz1:T

=
∑
t

∫
z1:T

∏
t′

qψ(zt′ | z<t′ ,x≤t′) log
qψ(zt | z<t,x≤t)

p(zt)
dz1:T

=
∑
t

∫
z1:t

∏
t′≤t

qψ(zt′ | z<t′ ,x≤t′) log
qψ(zt | z<t,x≤t)

p(zt)
dz1:t (17)

Note that the last manipulation is possible since the log-ratio does not depend on zt′ when t′ > t and,
therefore, the log-ratio can be moved outside the respective integrals which evaluate to 1. We can
further simplify the expression as follows:
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KL
(
qψ(z1:T | x1:T ) || p(z1:T )

)
=
∑
t

∫
z1:t−1

∏
t′<t

qψ(zt′ | z<t′ ,x≤t′)
∫
zt

qψ(zt | z<t,x≤t) log
qψ(zt | z<t,x≤t)

p(zt)
dzt dz1:t−1

=
∑
t

∫
z1:t−1

∏
t′<t

qψ(zt′ | z<t′ ,x≤t′)KL
(
qψ(zt | z<t,x≤t) || p(zt)

)
dz1:t−1

=
∑
t

∫
z1

qψ(z1 | x1)

∫
z2

· · ·
∫
zt−1

qψ(zt−1 | z<t−1,x≤t−1)KL(. . . ) dzt−1 . . . dz1 (18)

Note that the KL divergence term KL
(
qψ(zt | z<t,x≤t) || p(zt)

)
in Eq. 18 is analytically solvable

based on a proper choice of prior and likelihood. The surrounding integrals can be estimated via
Monte-Carlo (MC) sampling. In the simplest case, they are estimated by taking one sample per inte-
gral, i.e., given an input sequence x1:T , we use the recognition model [ξt,h

enc
t ] = fenc,step(xt,h

enc
t−1, ψ)

to compute a latent sequence z1:T via zt ∼ qψ(zt | z<t,x≤t) ⇔ zt ∼ pξt(zt), where pξt(·) is an
explicit parametric distribution that we chose for the latent space (typically Gaussian), to evaluate the
KL term. Note, ξt depends on xt and henc

t−1. However, in the implementation that we chose for this
study, henc

t−1 does not explicitly depend on z<t (only implicitly through its distribution determined by
ξt) even though qψ(zt | z<t,x≤t) requires an explicit dependency.7

Taken together, we approximate the prior-matching term as follows:

KL
(
qψ(z1:T | x1:T ) || p(z1:T )

)
≈
∑
t

KL
(
pξt(zt) || p(zt)

)
(19)

Similarly, we can handle the negative log-likelihood (NLL):

NLL = −Eqψ(z1:T |x1:T )

[
log pν(x1:T | z1:T )

]
= −

∫
z1:T

∏
t′

qψ(zt′ | z<t′ ,x≤t′)
∑
t

log pν(xt | x<t, z≤t) dz1:T

= −
∑
t

∫
z1:t

∏
t′≤t

qψ(zt′ | z<t′ ,x≤t′) log pν(xt | x<t, z≤t) dz1:t

= −
∑
t

∫
z1

qψ(z1 | x1)· · ·
∫
zt

qψ(zt | z<t,x≤t) log pν(xt | x<t, z≤t) dzt . . . dz1

MC sample size of 1
≈ −

∑
t

log pν(xt | x<t, z≤t) (20)

If pν(xt | x<t, z≤t) is a Gaussian distribution (which we assume for the SMNIST and AudioSet
experiments), Eq. 20 becomes a sum over mean-squared error (MSE) losses (after dropping constant
terms and assuming the covariance matrix to be a scaled identity matrix τ−1I). Thus, we assume
the output ϕt of the decoder [ϕt,h

dec
t ] = fdec,step(zt,h

dec
t−1, ν) is the mean of a Gaussian distribution

N (xt;ϕt, τ
−1I), therefore X ≡ Φ. One could sample reconstructions from this distribution using

the reparametrization trick (Kingma and Welling, 2014). However, at this level we do not introduce
additional noise and instead aim to match encoder input xt and decoder output ϕt directly:8

NLL ≈
Tin∑
t=1

τ

2
‖xt − ϕt‖2 (21)

7This limitation could be overcome if the RNN definition would be slightly adapted. For instance, if the
definition of the encoder would change to [ξt,h

enc
t ] = fenc,step(xt, zt−1,h

enc
t−1, ψ) with zt−1 ∼ pξt−1(zt−1).

8Note, in contrast to the approximate posterior distribution qψ(zt | z<t,x≤t) (which we crucially require to
replay samples of prior tasks), we only require a sensible mean of the likelihood pν(xt | x<t, z≤t) to represent
reconstructions.
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In case of the Copy Task (and its variants), it makes sense to choose pν(xt | x<t, z≤t) to be a
Bernoulli distribution (assuming the raw decoder output ϕt has been squeezed through a sigmoid):

NLL ≈
Tin∑
t=1

Fin∑
f=1

−xt,f logϕt,f − (1− xt,f ) log(1− ϕt,f ) (22)

B.11 GENERATIVE REPLAY USING A SEQUENTIAL VAE

Above, we describe how we train a VAE on sequential data. In order to use it as a generative model for
CL, we have to employ strategies that mitigate catastrophic interference when training consecutively
on multiple tasks. We therefore explore two strategies inspired by related work on static data, RtF
(van de Ven and Tolias, 2018) (referred to as Generative Replay in the main text) and HNET+R
(von Oswald et al., 2020). In both cases, we use the main model simultaneously as classifier and VAE
encoder [ŷt, ξt,ht] = fstep(xt,ht−1, ψ), where ŷt remains the model’s prediction (cf. Sec. A) and
ξt encodes a mean and diagonal covariance matrix of a Gaussian distribution used to sample latent
representations of the VAE zt ∼ pξt(zt).

RtF (van de Ven and Tolias, 2018) refers to training the VAE on data from all tasks seen so far.
However, in a CL setting, data from previous tasks is not available. Therefore, a checkpointed decoder
ν̃
(K−1)
i is used to replay data from tasks 1 to K − 1 while training on task K. In summary, similar

to Coresets (cf. Sec. B.8), a mini-batch B(s) with data from task K and a mini-batch B̃(s) with
replayed data (using ν̃(K−1)i ) from tasks 1 to K − 1 is assembled. In addition to the distillation loss
(cf. Eq. 12; using hyperparameter λdistill), that only affects the encoder fstep, the reconstruction loss
Lrec(·) (cf. Eq. 20) and prior-matching loss Lpm(·) (cf. Eq. 19) are evaluated on B(s) and B̃(s):

min
ψ,ν
Ltask(ψ,B(s)) + λdistillLdistill(ψ, B̃(s)) + λrecLrec

(
ψ, ν,B(s) ∪ B̃(s)

)
+ λpmLpm

(
ψ, ν,B(s) ∪ B̃(s)

)
(23)

where lambdarec and λpm denote two new hyperparameters. Note, in order to train a multi-head main
network fstep with replayed data, the output head (task identity) of replayed data has to be known. To
achieve this, task identity has to be provided as a one-hot encoding to the decoder in addition to the
latent variable zt.

The generative model used by RtF is therefore continuously retrained on its own replayed data.
Hence, distributional shifts and mismatches accumulate over time, leading to a decrease in quality
of replayed samples (von Oswald et al., 2020). The method HNET+R (von Oswald et al., 2020)
circumvents this problem of RtF by training a task-specific decoder, where decoders of previous
tasks are protected by a hypernetwork (cf. Eq. 2) and only the current task’s decoder is trained on
actual data. To do so, a hypernetwork is introduced for the decoder (and not the main network)
ν = hdec(e

dec
k , θdec). The loss in this case becomes (cf. Eq. 2 ad Eq. 23):

min
ψ,θdec

Ltask(ψ,B(s)) + λdistillLdistill(ψ, B̃(s)) + λrecLrec
(
ψ, θdec,B(s)

)
+ λpmLpm

(
ψ, θdec,B(s)

)
+

βdec

K − 1

K−1∑
k=1

‖hdec(e
dec
k , θdec)− hdec(ẽ

(dec,K−1)
k , θ̃(dec,K−1))‖22 (24)

where βdec, ẽ
(dec,K−1)
k , θ̃(dec,K−1) are defined for the decoder hypernetwork hdec analogously as

described for the main network’s hypernetwork in Sec. 3.

Complexity estimation. RtF and HNET+R are affected from the same complexity considerations
as Coresets (cf. Sec. B.8) except for storing past data (which are instead replayed from a

9
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checkpointed decoder fstep,dec resp. decoder-hypernetwork hdec). Method HNET+R has the additional
complexity increases mentioned in Sec. B.4. Both methods require maintaining an additional decoder
network. Both also require the evaluation of two extra loss terms, Lrec(·) and Lpm(·), whereas this
cost is doubled for RtF as it always evaluates these terms on current and replayed data.

C A THEORETICAL VIEW ON CL IN LINEAR RNNS

In this section, we provide theoretical insights on why high working memory requirements might be
problematic when weight-importance methods such as EWC are applied to RNNs.

We empirically showed in Fig. 3 that increasing pattern lengths p of Copy Task inputs lead to
increasing weight-importance values as calculated by EWC. We also observed that higher working
memory requirements (resulting from increasing pattern length) force the networks to utilize more of
their capacity, which leads to a higher intrinsic dimensionality of the hidden state. These observations
led us to the prediction that high working memory requirements can lead to a saturation of weight-
importance values, thus decreasing performance of methods such as EWC when sequentially learning
multiple tasks.

Here, we examine these statements from a theoretical perspective for the case of linear RNNs.
More specifically, we explore why using a shared set of recurrent weights for several tasks can be
problematic when the intrinsic dimensionality of the hidden state increases. Note that this framework
is therefore applicable to any method that uses a single set of recurrent weights for several tasks, no
matter whether these are learned sequentially or not (which includes weight-importance methods but
also, for instance, replay methods and the multitask setting).

Model. We consider a linear RNN with one recurrent hidden layer ht of dimension nh. The
dynamics of the network are defined as follows:

ht = Whhht−1 +Wxhxt (25)
ŷt = Whyht (26)

with Whh, Wxh and Why weight matrices. We consider a setting in which the network has to learn K
different tasks using the shared weights Whh and Wxh, and a set of task-specific output heads W (k)

hy .

We denote by h
(k)
t ∈ Rnh the content of ht that is utilized for the task-specific processing of task k.

Task. We consider a variant of the Copy Task, in which at timesteps t = 1 : p the network needs to
output a manipulated copy of the network inputs at timesteps t = −p : −1. The input xt is zero for
t > 0, and the specific manipulation of the input is different for all K tasks.

Simplifying assumptions. To make the analysis as clear as possible we make the following simpli-
fying assumptions:

1. Task-specific recurrent processing on ht via Whh is still required for t > 0 in order to
solve task k (i.e. the task-specific output heads W (k)

hy are not rich enough to model all task
variabilities).

2. Each task k needs a completely distinct processing mechanism from other tasks. There is
thus no possibility of transfer-learning across tasks, and if the processing of h(k)

t by Whh

overlaps with the processing of h(l 6=k)
t , the two tasks will interfere with each other, leading

to a drop in performance.

Theoretical analysis of the linear toy problem. Our PCA analyses show that the hidden state
ht is embedded in a lower-dimensional linear subspace of Rnh . Based on the above simplifying
assumptions, the only way for a linear RNN to ensure a task-specific processing is that h(k)

t , the
information within ht relevant for solving task k, populates distinct and non-overlapping linear
subspaces of Rnh for each task across all t > 0:

h
(k)
t ∈ Sk (27)

Sk ∩ Sl 6=k = {0} (28)

10
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If this wasn’t the case and Sk overlapped with other subspaces, h(k)
t could have components in Sl 6=k,

which would be influenced by the task-specific processing of other tasks.

Because Whh is sequentially applied to ht, it must perform a subspace-retaining operation on
h
(k)
t ∈ Sk such that:

h
(k)
t+1 = Whhh

(k)
t (29)

h
(k)
t+1 ∈ Sk (30)

The task-specific output head W (k)
hy can then select a linear subspace Sk of ht that serves as output

for task k. Hence, as long as the Whh can represent a task-specific and subspace-retaining operation
on h

(k)
t , it is possible for the RNN to represent K different tasks that do not interfere with each other,

and the task-specific output head W (k)
hy can select the appropriate subspace of ht to present at the

output.

In the following, we show that it is possible to have such task specific processing of the hidden-state
vectors by Whh if the subspaces Sk are orthogonal to each other and if the intrinsic dimensionality
of task-relevant information within the hidden space is sufficiently small across tasks. We use this
finding as an intuition to justify why increasing intrinsic dimensionality of the hidden state can lead
to interference across tasks when a single matrix Whh is used.

Let’s represent each subspace Sk by the column space of a matrix Uk with orthonormal columns.
Because h

(k)
t only has components in Sk, it can be written as:

h
(k)
t = Ukc

(k)
t (31)

with c
(k)
t ∈ Rpk the coordinates of h(k)

t in the basis Uk. If subspaces are orthogonal and
∑
k pk ≤ nh,

we can state that: Uk is orthogonal to all other Ul 6=k, and that Ū =
[
U1...UKŨ

]nh×nh
is an

orthogonal basis for Rnh , with Ũ orthogonal to all Uk.

Now we can define Q = ŪTWhhŪ , a change of basis of Whh under Ū . Q can be structured in the
following blocks:

Q =


Q11 Q12 . . . Q1∼

Q21
. . .

...
...

. . . QK∼
Q∼1 . . . Q∼K Q∼∼

 (32)

where Qij corresponds to the computation within Whh that leads a subspace transformation from Sj

to Si. Then, h(k)
t+1 is given by

h
(k)
t+1 = Whhh

(k)
t (33)

= WhhUkc
(k)
t (34)

= ŪQŪTUkc
(k)
t (35)

=

K∑
l=1

UlQlkc
(k)
t + ŨQ∼kc

(k)
t (36)

We can easily see that, if Qij = 0 for i 6= j, we obtain:

h
(k)
t+1 = UkQkkc

(k)
t (37)

Therefore, one can easily design Q in such a way that Whh performs a subspace-retaining transfor-
mation on h

(k)
t , i.e. Q needs to have a block diagonal structure. Otherwise, UlQlkc

(k)
t for l 6= k is

non-zero, and h
(k)
t+1 will contain components in Sl 6=k.

11
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To summarize, we see that it is possible for the RNN to have a task-specific processing of the
hidden-state vector for each task, without interfering with the other tasks, as long as

∑
k pk ≤ nh. If∑

k pk > nh, it is not possible anymore to have K orthogonal linear subspaces Sk, which can lead to
interference between tasks and a resulting drop in performance.

Implications for CL. We showed that it is possible to build a linear RNN that doesn’t suffer from
interference across tasks despite using a single set of recurrent weights, as long as the intrinsic
dimensionality of the hidden space is not too large. This observation has clear implications for weight-
importance methods in CL, which progressively restrict the plasticity of a single set of recurrent
weights when sequentially learning different tasks. Theoretically, weight-importance methods can
encourage task-relevant information of the hidden state to be encoded in orthogonal subspaces, such
that the learning of new tasks does not interfere with the previously learned tasks. However, if the
subspace dimensionality pk increases (e.g., for increasing pattern lengths in the Copy Task) or if
the number of tasks is too large, leading to

∑
k pk > nh, the various tasks will start interfering

with each other, and the performance will drop. Even though we consider a simplified scenario
where the recurrent processing cannot be shared across tasks, most commonly tasks will benefit
from some form of shared processing. Crucially, whenever the subspaces associated with individual
tasks may overlap, the overall dimensionality of the used hidden space can be less than the sum of
dimensionalities of individual task-related subspaces. This frees up capacity in the recurrent weights
to learn new tasks. Therefore, together with the working memory of individual tasks and the number
of tasks, task similarity will also play a role in the effectiveness of weight-importance methods for
RNNs. Interestingly, assuming it translates to nonlinear RNNs, one can use this intuition to design
CL methods that avoid interference between tasks, but use shared computation whenever possible, as
demonstrated by concurrent work (Duncker et al., 2020).

Theoretical benefits of hypernetworks for CL. Following the above analysis, we conclude that
hypernetworks provide a theoretical advantage over weight-importance methods. With hypernetworks,
a task-specific W (k)

hh can be generated for every new task, without forgetting W (l)
hh of previous tasks

l < k. Hence, becauseWhh does not need to represent subspace-retaining operations, a hypernetwork-
based CL approach exhibits more flexibility for mitigating the stability-plasticity dilemma.

D FURTHER DISCUSSION OF RELATED WORK

The literature contains a number of studies that touch upon the problem of retaining and transferring
past knowledge when dealing with sequential data. Some of these studies do not directly address the
problem of catastrophic forgetting in the form of retaining performance on old tasks while learning
new tasks, or they are not applicable to the experimental settings investigated in this study. The
purpose of this section is to provide a brief overview over these studies and contrast them to the
subject of this work.

Nowadays, real-world applications of RNNs are almost exclusively trained using backpropagation-
through-time (BPTT) as underlying optimization algorithm. Even though most CL approaches are by
design agnostic to this choice, they are typically tested and benchmarked against each other using
BPTT. The study at hand is no exception in that regard. In contrast, recent work by Ororbia et al.
(2020) has developed a biologically-inspired alternative to BPTT that enables zero-shot adaptation in
a range of sequential generative modelling tasks. They perform Fine-Tuning experiments for a
set of optimization techniques without utilizing explicit mechanisms supporting CL and show that the
choice of optimization algorithm can lead to slight differences in terms of vulnerability to catastrophic
forgetting. However, the applicability of this method outside the domain of token-level generative
modelling remains unclear since, for example, it is not straightforward to adapt to classification
problems.

Li et al. (2020) consider a specific sequential CL setting where it is assumed that the type of
recurrent computation to be processed across tasks is identical. In their particular case, the recurrent
component is frozen after the first task, i.e., recurrent computation is shared across tasks, and therefore
catastrophic forgetting only needs to be prevented in the feedforward component of the architecture
using an existing approach such as EWC Kirkpatrick et al. (2017a).
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The work from Philps et al. (2019) focuses on financial time-series data. Their approach to CL is
memory-based, where tuples of a representation of the training data and the model parameters are
stored. Predictions can then be obtained via a weighted average of existing models, where a model
is given more weight based on how similar its data representation is to the currently observed data.
Such an approach is arguably expensive in terms of memory but also in terms of computation during
inference, as final predictions are obtained by a weighted average of all models in the memory bank.

Learning without task-boundaries is another interesting challenge of CL and has been explored in the
context of NLP tasks by Kruszewski et al. (2020). They provide datasets consisting of either four
or five distinct tasks, which are randomly repeated such that the network observes 100 fragments,
each consisting of samples from a single task. Their proposed method consists of an ensemble
of models whose predictions are averaged using learned weighting factors. The updates of those
weighting factors are faster than those of the ensemble members, implicitly allowing a mechanism
for fast remembering (cf. He et al. (2019)) and therewith avoiding that ensemble members are
completely overwritten upon task switches, which mitigates catastrophic interference. Note, the CL
methods studied in our work can be adapted to an experimental setting where task-boundaries are not
provided during training by either monitoring outliers in the loss or the model’s predictive uncertainty
(assuming tasks with non-overlapping input data distributions).

An approach for efficient knowledge transfer using ideas from CL for sentiment classification has
been proposed by Lv et al. (2019). This approach contains two subnetworks, one that has an explicit
mechanism against catastrophic forgetting (using a soft-masking approach) and a network that has
full flexibility to adapt to the task at hand. The predictions of these two subnetworks are combined
when forming a final decision.

Several studies have used methodologies from the CL literature for solving NLP problems (Wolf
et al., 2018; Madasu and Rao, 2020; Thompson et al., 2019). For instance, Wolf et al. (2018) consider
language modelling and employ a meta-model that can update the parameters of the language model
such that it can focus on the local context. However, this approach is vulnerable to loosing the overall,
pretrained language modelling skills, and therefore benefits from EWC to constrain the updates made
by the meta-model.

E DATASETS AND TASKS

Here we provide details on the datasets and tasks used in this study. All details on preprocessing
or generating data, as well as links for downloading the precise datasets can also be found in the
accompanied code repository.

Table 4: Summary of the data used to train and evaluate one subtask for each of the four datasets. i
and p refer to the input sequence and pattern lengths of the Copy Task, m refers to the number of
digits in a SMNIST sequence. For the PoS dataset we report mean and standard deviation over tasks;
the input feature size is given by the size of the word embeddings.

Copy Task Variants SMNIST AudioSet PoS
Classes N/A 2 10 17
Training samples 100000 2 * 6000 10 * 750 9582 ± 4962
Validation samples 1000 2 * 500 10 * 50 1492 ± 1875
Test samples 1000 2 * 1000 10 * 200 1467 ± 2066
Input feature size 8 4 128 64
Number of timesteps i+ 1 + p 117*m 10 20 ± 6

E.1 VARIATIONS OF THE COPY TASK

The Copy Task (Graves et al., 2014) is a synthetic dataset that we use to investigate different aspects
of CL with sequential data. In this section, we first explain the basic Copy Task, and subsequently
give details about the different manipulations we introduced to create variations of this task. For all
variants, we used the training / validation / testing scheme described in Table 4.
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E.1.1 BASIC COPY TASK

In the basic version of the Copy Task, networks are trained to memorize and reproduce random
sequences, whose input sequence length i is equal to the length of the pattern p to be copied (i = p, cf.
Fig. S1). An input sample x1:T (with T = i+ 1 + p) consists of a random binary pattern at timesteps
t = 1, . . . , p, where only feature dimensions 1 to Fin− 1 are used for the binary pattern, while feature
dimension Fin is reserved for the stop bit. It contains zeroes at timesteps t = i− p, . . . , i, a stop flag
at timestep t = i+ 1 and zeroes at timesteps t = i+ 2, . . . , i+ 1 + p. The target output sequence
y1:T has no feature dimension reserved for the stop bit (Fout = Fin − 1). It consists of zeroes up to
timestep i+ 1 and contains a copy of the random input pattern at timesteps t = i+ 2, . . . , i+ 1 + p
(cf. Fig. S1).

(a) Copy Task                           (b) Padded                                  (c) Permuted              (d) P. Manipulation

i = 5 i = 10
p = 5 p = 5

in
pu

ts
ou

tp
ut

s

XOR

Figure S1: Variants of the Copy Task. The upper and lower rows show example input and output
patterns, respectively. (a) In the basic Copy Task, the input sequence length i is equal to the actual
pattern length p (i = p = 5 in this example), and the output is identical to the input except for the fact
that the stop bit (signaled in red) is omitted. (b) In the Padded Copy Task, the pattern of length p to be
copied is padded with zeros, yielding an input sequence length i > p. (c) In the Permuted Copy Task,
the output corresponds to a time-permuted version of the input (indicated by the arrows). (d) In the
Pattern Manipulation Task, the output is computed from the input pattern by applying a binary XOR
operation iteratively with all of its r permutations, where r allows to control task difficulty. Here we
illustrate the case where r = 1, and the XOR is computed between the input and its permuted version
shown in (c). The blue rectangles highlight this operation for two specific bits.

E.1.2 PADDED COPY TASK

The Padded Copy Task is a simple extension of the basic version described above where i > p. This
variant allows us to assess the effects of increasing sequence length, realized through increasing i
while keeping the complexity of the underlying task constant (i.e., keeping p fixed).

E.1.3 PERMUTED COPY TASK

To adapt the Copy Task to a CL setting, we introduce the Permuted Copy Task. Here, the output
sequence y1:T corresponding to an input sequence x1:T is obtained by permuting the random input
pattern x1:p along the time dimension before assigning it as target to yi+2:i+1+p (cf. Sec. E.1.1). In
our CL experiments, the subtasks differ in the random permutation which is used to generate these
input-output mappings.

E.1.4 PATTERN MANIPULATION TASK

The main challenge of the Copy Task is the memorization and recall of the presented input sequences.
However, we additionally wanted to test how CL methods are affected by data processing requirements
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that go beyond simple memorization and which are different across tasks. The Pattern Manipulation
Task offers a way to gradually increase the difficulty of this processing. Here we exclusively consider
the case where p = i. Target patterns yi+2:i+1+p are generated from input patterns x1:p by iterating
the following procedure r times (where r determines the task difficulty). We start by assigning
yi+2:i+1+p ← x1:p and then iterate for r′ = 1 . . . r

1. Permute x1:p along the time dimension using the r′-th permutation to generate a pattern
x
(r′)
1:p .

2. Update yi+2:i+1+p by computing the logical XOR operation between the current yi+2:i+1+p

and x
(r′)
1:p .

E.2 SEQUENTIAL STROKE MNIST

Stroke MNIST (SMNIST, de Jong (2016)) represents MNIST images as a sequence of quadruples{
dxi, dyi, eosi, eodi

}T
i=1

. The length T of the sequence corresponds to the number of pen displace-
ments needed to define the digit, (dxi, dyi) correspond to the relative offset from the previous pen
position, eosi is a binary feature denoting the end of a stroke, and eodi denotes the end of a digit.
We downloaded the dataset9 and split the 70000 sample digits into training, validation and test sets
(50000, 10000 and 10000 samples respectively). Since samples have different sequence lengths T ,
we zero padded the samples to obtain a uniform input length of 117 (maximal T ). The result of this
procedure is available for download. 10 For our Split Sequential SMNIST experiments, we generated
training, validation and test sample sequences from the corresponding digit sets. For experiments
with m digits per sequence, we generated the same number of samples for all of the possible 2m

binary sequences (e.g. 22, 23, 32 and 33 for m = 2 in the split containing only 2s and 3s). Finally
we randomly assigned the 2m possible sequences to two classes to create a binary decision problem.

E.3 AUDIOSET

AudioSet (Gemmeke et al., 2017) consists of more than two million 10-second audio samples, that are
hierarchically ordered into 632 classes. To generate a set of classification tasks for CL, we selected
and preprocessed a subset of the available data.11 Following Kemker et al. (2018), we selected
classes and samples according to the following criteria. We only considered classes that have (1)
no restrictions according to the AudioSet ontology, (2) no parent-child relationship with any of the
other classes and (3) a quality estimate provided by human annotators of ≥ 70%. Samples were
excluded if they did not contain data for the entire 10 seconds, or if they belonged to multiple of the
considered classes. This procedure yielded a set of 189 classes, out of which 106 had a number of
samples ≥ 1000. To generate a balanced dataset, we randomly selected 1000 samples from each of
the 100 classes with the highest number of samples. Finally, we split the 1000 samples per class into
800 samples for training and 200 samples for testing. The result of this procedure is available for
download.12 For our Split-AudioSet-10 experiments, we randomly grouped the 100 classes into 10
subtasks with 10 classes each. Validation samples were randomly selected from the training data,
while maintaining the balance between classes.

E.4 MULTILINGUAL PART-OF-SPEECH TAGGING

The Universal Dependencies dataset (Nivre et al., 2016) consists of grammar annotation treebanks
from 92 different languages (version 2.6). For our multilingual Part-of-Speech (PoS) Tagging
experiments we chose treebanks from 20 frequently used languages (cf. Plank et al., 2016). If
multiple treebanks are available for a given language, we choose treebanks according to the available
number of samples and whether they use the universal tagset (17 tags). We use the provided splits for
training, test and validation samples. The data we use in our experiments is available for download13,

9https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data/
10https://www.dropbox.com/s/sadzc8qvjvexdtx/ss_mnist_data?dl=1
11https://research.google.com/audioset/download.html
12https://www.dropbox.com/s/07dfeeuf5aq4w1h/audioset_data_balanced?dl=1
13https://www.dropbox.com/s/9xjrtprc2mfxcla/mud_data_2_6.pickle?dl=1
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and the exact choice of treebanks as well as any other preprocessing steps can be reproduced with the
code that accompanies this paper. Lastly, we use pretrained polyglot word embeddings. 14

F EXPERIMENTAL DETAILS

Here we give further details on the results provided in the main text, and describe the procedures that
we used to obtained these results.

F.1 COPY TASK

The analyses on the intrinsic dimensionality of the RNN’s hidden space were performed when
learning a single task of the basic Copy Task setting (cf. Sec. E.1.1), where outputs are a copy of
the inputs. We computed the hidden state activations h1:T on the test set after learning the task.
Then, we performed principal component analysis (PCA) on these activations, independently for each
timestep. Specifically, for each timestep we performed PCA on a matrix of size RN×nh , where N is
the number of samples in the test set, and nh is the number of hidden neurons. We then defined the
intrinsic dimensionality of the hidden space as the number of principal components needed to explain
75% of the variance. Qualitatively similar results can be obtained obtained irrespective of the value
of this threshold (we tested 20%, 30% ... 90%).

F.2 SEQUENTIAL STROKE MNIST

We use LSTM main networks with 256 hidden units and a fully connected output head per task for
all SMNIST experiments. Further parameter choices and hyperparameter searches are detailed in Sec.
F.5. Table 5 shows all during and final accuracies of the SMNIST experiment described in Sec.
5.2.
Table 5: Task averaged during and final test accuracies for the SMNIST experiments (Mean ±
SEM in %, n = 10).

accuracy m = 1 m = 2 m = 3 m = 4

Online EWC
during 98.52 ± 0.11 91.86 ± 1.13 83.62 ± 1.10 92.33 ± 2.49
final 97.05 ± 0.59 76.65 ± 3.39 75.26 ± 1.85 73.16 ± 0.98

HNET
during 99.54 ± 0.02 97.87 ± 0.99 91.63 ± 1.54 95.49 ± 1.13
final 99.52 ± 0.02 94.89 ± 3.81 91.63 ± 1.53 94.42 ± 1.85

Fine-tuning
during 99.67 ± 0.03 99.30 ± 0.04 99.14 ± 0.04 98.96 ± 0.03
final 89.07 ± 1.22 75.23 ± 2.25 68.28 ± 0.72 69.04 ± 0.73

Masking
during 99.63 ± 0.02 99.25 ± 0.02 96.04 ± 1.35 87.78 ± 0.92
final 99.23 ± 0.14 93.96 ± 1.29 86.20 ± 0.95 76.75 ± 1.32

Masking + SI
during 99.68 ± 0.02 99.02 ± 0.04 98.61 ± 0.22 96.42 ± 1.27
final 99.68 ± 0.02 99.02 ± 0.04 98.62 ± 0.22 96.43 ± 1.26

SI
during 99.21 ± 0.04 89.78 ± 1.09 74.74 ± 0.14 69.58 ± 0.55
final 97.08 ± 0.66 85.10 ± 1.57 74.72 ± 0.14 69.58 ± 0.55

From scratch
during 99.70 ± 0.02 95.86 ± 1.16 92.13 ± 1.25 88.48 ± 0.09
final 99.70 ± 0.02 95.86 ± 1.16 92.13 ± 1.25 88.48 ± 0.09

Coresets
during 99.61 ± 0.01 99.05 ± 0.03 98.70 ± 0.05 85.46 ± 1.60
final 99.40 ± 0.03 98.10 ± 0.07 97.60 ± 0.08 82.89 ± 1.80

Multitask
during 99.72 ± 0.02 99.19 ± 0.04 99.06 ± 0.04 98.72 ± 0.06
final 99.72 ± 0.02 99.19 ± 0.04 99.06 ± 0.04 98.72 ± 0.06

F.3 SPLIT-AUDIOSET-10

The experiments are performed using a main network with one LSTM layer with 32 units and a
fully-connected output head per task. We initially used larger LSTM layers but observed extensive
overfitting. Therefore, we ran a fine-tuning hyperparameter search for LSTM layer sizes: 8, 16,
32, 64, 128 and 256 and chose 32 as it resulted in the least amount of overfitting, while not leading

14https://sites.google.com/site/rmyeid/projects/polyglot
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to significant drops in maximum during accuracy. We also increased the hyperparameter search
grid of the Multitask baseline compared to other reported results, incorporating larger batch sizes
since all tasks are trained at once.
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Figure S2: Task-averaged during and final test accuracies for Online EWC AudioSet experi-
ments with varying numbers of classes per task, performed with different values for λEWC (cf. Fig.
5).
For our AudioSet experiments with varying levels of difficulty, we used the best hyperparameter
configurations from our Split-AudioSet-10 experiments (cf. Table 3). For Online EWC, we ran
each experiment with multiple λ values, as this parameter directly controls the trade-off between
stability and plasticity. Fig. S2 shows during and final accuracies in the different settings for
three λ values. For the lowest λ value, during accuracies are highest because few restrictions apply
when solving individual tasks, but the performance drops when testing after all tasks are learned. For
higher λ values, final accuracies get closer to the during performance. This, however, comes at
the cost of decreased during accuracies due to the restrictions imposed by the strong regularization
controlled by λ.

F.4 POS TAGGING

We use bidirectional LSTM main networks with 32 units and a fully connected output head per
task. We decided to not fine-tune word embeddings. Further parameter choices and hyperparameter
searches are detailed in Sec. F.5.

F.5 HYPERPARAMETER SEARCHES

We performed extensive hyperparameter searches for all methods in all experiments. Because of
computational reasons, we limited the number of explored configurations to 100 per method and
experiment (taking a random subset of all possible combinations defined by the search grid). By
default, we tested the run with the best final accuracy on multiple random seeds. If however, the
best run did not prove to be random seed robust, we additionally evaluated the second and third
best runs on multiple random seeds and selected the configuration with the best results across a
set of random seeds. For the HNET, we only searched feedforward fully-connected architectures
that yielded a compression ratio of approximately 1, meaning that the number of weights in the
hypernetwork is approximately equal to the number of weights of the main RNN. All experiments
where conducted using the Adam optimizer. For all results, exact command line calls are provided in
the README files of the published code base.

All experiments were performed with access to 32 GPUs of type NVIDIA RTX 2080 TI and NVIDIA
QUADRO RTX 6000.

F.5.1 BASIC COPY TASK

For basic Copy Task experiments of a single task, used for the analyses on the intrinsic dimensionality
of the RNN’s hidden space, the hyperparameters searches are described in Table 6.
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Table 6: Hyperparameter search for the Basic Copy Task

Hyperparameter Searched values

number of iterations 20000
number of hidden units of the main network 256
main network activation function tanh
batch size 68, 128
learning rate 5e-4, 1e-3, 5e-3, 1e-2
clip gradient norm None, 1, 100
orthogonal initialization True, False
orthogonal regularization strength 0, 1

F.5.2 PERMUTED COPY TASK

For Permuted Copy Task experiments with five tasks and p = i = 5, the hyperparameter searches are
described in Table 7.

Table 7: Hyperparameter search for the Permuted Copy Task

Method Hyperparameter Searched values

All

number of iterations 20000
batch size 128
number of hidden units of the main network 256
main network activation function tanh
learning rate 5e-4, 1e-3, 5e-3, 1e-2
clip gradient norm None, 1, 100
orthogonal initialization True, False
orthogonal regularization strength 0, 0.01, 1

Online EWC λEWC 1e2, 1e3, . . . , 1e10

SI λSI 1e-3, 1e-2, 1e-1, 1, 1e2, 1e3

Masking masked fraction 0.2, 0.4, 0.6, 0.8

Masking + SI
λSI 1e-3, 1e-2, 1e-1, 1, 1e2, 1e3
masked fraction 0.2, 0.4, 0.6, 0.8

Generative Replay

strength of the prior-matching term (λpm) 1, 10
strength of the reconstruction term (λrec) 1, 10
strength of the soft-target distillation loss (λdistill) 1, 10
dimensionality of the VAE latent space 8, 100

HNET

β 1e-2, 1e-1, 1, 1e1, 1e2
SD for the initialization of the task embeddings .1, 1
SD for the initialization of the chunk embeddings .1, 1
HNET hidden layers "", "25,25", "50,50"
HNET output size 2000, 5000
chunk embedding size 16, 32

F.5.3 PADDED COPY TASK

For Padded Copy Task experiments with five tasks and p = 5, i = 25, the hyperparameter searches
for the different methods are specified in Table 8.

F.5.4 PATTERN MANIPULATION TASK

For Pattern Manipulation Task experiments, the hyperparameter searches are described in Table 9.
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Table 8: Hyperparameter search for the Padded Copy Task

Method Hyperparameter Searched values

All

number of iterations 20000
batch size 128
number of hidden units of the main network 256
main network activation function tanh
learning rate 5e-4, 1e-3, 5e-3, 1e-2
clip gradient norm None, 1, 100
orthogonal initialization True, False
orthogonal regularization strength 0, 1

Online EWC λEWC 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10

HNET

β 5, 10, 50
HNET hidden layers "60,60,30"
HNET output size 4000
task embedding size 16, 32
chunk embedding size 16, 32

Table 9: Hyperparameter search for the Pattern Manipulation Task

Method Hyperparameter Searched values

All

number of iterations 20000
batch size 128
number of hidden units of the main network 256
main network activation function tanh
learning rate 5e-3, 1e-3, 5e-4
clip gradient norm None, 1, 100

Online EWC
λEWC 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3
orthogonal regularization strength 1, 10

HNET

β 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3
HNET hidden layers "64,64,64", "64,64,32"
HNET output size 2000, 4000
chunk embedding size 32
task embedding size 32

F.5.5 SEQUENTIAL STROKE MNIST

The hyperparameter searches for Sequential Stroke MNIST experiments are described in Table 10.
The number of iterations was set according to the the number of digits in the sequences used in a
given SMNIST experiment.

F.5.6 AUDIOSET

The hyperparameter searches for Audioset experiments are described in Table 11.

F.5.7 POS TAGGING

The hyperparameter searches for the PoS-Tagging experiments are described in Table 12.
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Table 10: Hyperparameter search for Sequential Stroke MNIST

Method Hyperparameter Searched values

All

batch size 64, 128
number of hidden units of the main network 256
main network activation function tanh
learning rate 1e-3, 5e-3, 1e-4
clip gradient norm None, 1, 100
number of iterations for m = 1 2000, 3000, 4000
number of iterations for m = 2 6000, 8000, 10000
number of iterations for m = 3 8000, 12000, 16000
number of iterations for m = 4 15000, 20000, 25000

Online EWC λEWC 1e1, 1e2, . . . , 1e10

SI λSI 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3

Masking masked fraction 0.2, 0.4, 0.6, 0.8

Masking + SI
λSI 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3
masked fraction 0.2, 0.4, 0.6, 0.8

HNET

β 1e-1, 1e0, 1e1
HNET hidden layers "32,32","32,16","64,32,16","32,32,32"
HNET output size 8000, 16000
chunk embedding size 32, 64
task embedding size 32, 64

Coreset λdistill 1e-1, 1e0, 1e1

Multitask batch size 64, 128, 256, 512

G SUPPLEMENTARY EXPERIMENTS AND FURTHER REMARKS

G.1 PROCESSING SEQUENTIAL DATA WITH RNNS

Although recent results suggest that feedforward networks, which have parallelization and optimiza-
tion benefits during training (Oord et al., 2016a), can successfully process sequential data (Devlin
et al., 2019; Oord et al., 2016b; Radford et al., 2019), RNNs still have theoretical benefits compared
to their feedforward alternatives (Oord et al., 2016b; Vaswani et al., 2017), including an unlimited
receptive field in time, and a linear time complexity in sequence length. We therefore consider
research on RNNs as vital and hope that future works utilizes the insights and baselines provided in
this study to develop CL algorithms tailored to RNNs.

G.2 NOTES ON OPTIMIZATION FOR THE COPY TASK

We observed better empirical results with vanilla RNNs than with LSTMs in the variants of the Copy
Task. We also observed that throughout all CL methods, the Copy Task with vanilla RNNs can only
be solved when using orthogonal regularization (Vorontsov et al., 2017) for all hidden-to-hidden
weight matrices, whereas orthogonal initialization did not seem to play an important role.

The requirement of using orthogonal regularization poses a particular problem in combination
with hypernetworks. In contrast to all other methods, orthogonal regularization will regularize the
output of a neural network and not the weight matrix itself. We consistently observed that the
orthogonal regularization loss is harder to optimize and usually plateaus at higher values when used in
combination with hypernetworks. We unsuccessfully experimented with several potential resolutions
to overcome this problem, but did not use any of them for the results reported in this paper.

We first tried an annealing schedule for the orthogonal regularization strength, starting at very high
values putting the emphasis of the optimizer on producing orthogonal hidden-to-hidden matrices
via the hypernetwork. This can be also viewed as a pretraining phase, where the hypernetwork
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Table 11: Hyperparameter search for Audioset

Method Hyperparameter Searched values

All

number of hidden units of the main network 32
main network activation function tanh
batch size 64, 128
number of iterations 10000, 15000, 25000, 50000
learning rate 1e-3, 1e-4, 1e-5
clip gradient norm None, 1
orthogonal initialization False, True
orthogonal regularization strength 0, .1

Online EWC λEWC 1e-1, 1e0, . . . , 1e10

SI λSI 1e-4, 1e-3, 1e-2, 1e-1, 1, 1e2, 1e3, 1e4

Masking masked fraction 0.2, 0.4, 0.6, 0.8

Masking + SI
λSI 1e-4, 1e-3, 1e-2, 1e-1, 1, 1e2, 1e3, 1e4
masked fraction 0.2, 0.4, 0.6, 0.8

HNET

β 1e-2, 1e-1, 1, 1e1
SD for the initialization of the task embeddings .1, 1
SD for the initialization of the chunk embeddings .1, 1
HNET hidden layers "10,10", "20,20"
HNET output size 1000, 2000
chunk embedding size 32
task embedding size 32

Coreset λdistill 1e-1, 1e0, 1e1

Multitask batch size 64, 128, 256
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Figure S3: Mean importance values (as computed in SI) of hidden-to-hidden weights after learning
the Copy Task (solid line, p = 5, 10, ...40) or the Padded Copy Task (dotted line, p = 5) independently
for an increasing set of sequence lengths i (Mean ± SD, n = 5). Cf. Fig. 3.

is pretrained to produce orthogonal matrices (to sidestep the limitation that we cannot initialize
hidden-to-hidden weights orthogonally when using a hypernetwork).

In another attempt, we periodically measured the highest singular value of the hypernetwork-produced
hidden-to-hidden matrix, and divided the outputted matrix by it (inspired by spectral normalization,
Miyato et al. (2018)). The purpose of this approach is to mitigate exploding activations/gradients and
therefore to avoid the saturation of the tanh nonlinearity, which would lead to vanishing gradients.

However, we did not see consistent improvements using any of the aforementioned approaches and
therefore neglected them for all our experiments.
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Table 12: Hyperparameter search for PoS Tagging

Method Hyperparameter Searched values

All

number of hidden units of the main network 32
main network activation function tanh
batch size 64
number of iterations 2500, 5000
learning rate 5e-3, 1e-3, 1e-4
clip gradient norm None, 100
orthogonal regularization strength 0, 1

Online EWC λEWC 1e1, 1e2, . . . , 1e10

SI λSI 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3

HNET

β 5e-2, 5e-1, 5e0, 5e1
HNET hidden layers "10,10", "25,25,25", "75,125"
HNET output size 190, 1600, 4000
HNET activation function sigmoid, relu
chunk embedding size 8, 32
task embedding size 8, 32

Coreset λdistill 1e-1, 1e0, 1e1

Masking masked fraction 0.2, 0.4, 0.6, 0.8

Masking + SI
λSI 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3
masked fraction 0.2, 0.4, 0.6, 0.8

G.3 ANALYSIS OF SYNAPTIC INTELLIGENCE

We repeated the analysis of weight-importance values for the Copy Task (cf. 4), but this time
computing the weight-importance values as prescribed by SI. We obtained qualitatively similar
results to Online EWC (Fig. S3). Specifically, we observe that weight importance values noticeably
increase when the length of the sequence to be recalled increases (varying p), whereas the increase
is comparatively negligible when the pattern length remains constant (varying i with constant p).
Thus, we were able to empirically validate the hypotheses derived from our linear analysis (cf. SM
C) in nonlinear RNNs for two different weight-importance methods, indicating that the described
mechanisms might in general influence the performance of weight-importance methods in RNNs.

G.4 ANALYSIS OF WEIGHT-IMPORTANCE METHODS IN LSTMS

To test whether our results from the Copy Task (cf. Sec. 4) hold for different types of RNNs, we
extend our analysis by using LSTMs instead of vanilla RNNs. Specifically, we use networks with
an LSTM layer of 256 units, and a fully connected layer of 128 units before the actual output layer.
Because we found it difficult to train LSTMs (cf. Sec. G.2) to recall long sequences in the Copy
Task, we limit our analysis to inputs of length i = 5, 10, ..25. All other details are identical to those
explained in Sec. 4.

The results of this analysis are shown in Fig. S4. We observe that the intrinsic dimensionality of
the LSTM hidden space increases with the length p of the pattern to be copied (Fig. S4a) but not
necessarily with the input length i (Fig. S4). Furthermore, we observe that an increase in the intrinsic
dimensionality of the hidden space relates to an increase in mean importance values as calculated with
Online EWC. Therefore, we observe with LSTMs the same trends we observed for vanilla RNNs.
This validates the observation that working memory requirements, and not necessarily sequence
length, lead to an increase in importance values as computed by weight-importance methods when
sequentially learning a set of tasks with a recurrent network.
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Figure S4: Same analysis as in Fig. 3 but for LSTM instead of vanilla RNNs. (a) Intrinsic dimension-
ality per timestep of the 256-dimensional LSTM hidden space ht for the basic Copy Task, where
input and pattern lengths are tied (i = p). The stop bit (dotted black line) is shown at time t = 0
(Mean ± SD, n = 5). (b) Same as (a) for the Padded Copy Task, where the pattern length is fixed
(p = 5) but input length i varies. In (a) and (b), dimensionality of the hidden state space increases
only during input pattern presentation. (c) Mean Fisher values (weight-importance values in Online
EWC) of recurrent weights after learning the Copy Task (solid line, p = 5, 10, ...25) or the Padded
Copy Task (dotted line, p = 5) independently for an increasing set of sequence lengths i (Mean ±
SD, n = 5).

G.5 DETERMINING TASK-RELEVANT INTRINSIC DIMENSIONALITY

The experiments in Sec. 4 and SM G.3 to analyse the intrinsic task-specific dimensionality of the
hidden-state for varying task complexities relied on unsupervised dimensionality reduction methods.
As such, these methods cannot differentiate between task-unrelated (e.g., random) information
encoded in the hidden state and information extracted by the output heads from those hidden states
in order to perform inference. To overcome this limitation we perform a simple type of supervised
dimensionality reduction, which allows us determine the subspace of the hidden state that contains
the necessary information to carry out predictions. In particular, we are interested to perform this type
of analysis in a CL setting, i.e., studying the evolution of the intrinsic hidden-state dimensionality
when successively learning tasks with comparable complexity.
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Figure S5: To complement our analysis of intrinsic hidden-state dimensionality for tasks with varying
complexity from Sec. 4 and SM G.3, we provide here the evolution of the estimated hidden-state
dimensionality when continually learning five subtasks of the Permuted Copy Task using Online
EWC (cf. 5.1). The plot shows, for any given dimensionality, what predictive performance can be
achieved when choosing the respective hidden-state subspace that maximizes this performance (cf.
SM G.5 for details). The task value indicates the number of tasks that have been learned up to that
point (Mean ± SD in %, n = 5).
In the following, we briefly sketch how we perform supervised dimensionality reduction. We require
the checkpointed RNN model parameters ψ̃(k) obtained after training on task k. We can use these
models to collect the hidden states for samples of all tasks trained so far (i.e., from D1, . . . ,Dk).
We gather those hidden states into the rows of a matrix H(k) and perform a reconstruction from an
nred ≤ nh dimensional subspace using an approximately orthonormal matrix U (k) ∈ Rnh×nh via

23



Published as a conference paper at ICLR 2021

H̃(k) = H(k)U
(k)
:nred(U

(k)
:nred)

T , where U (k)
:nred ∈ Rnh×nred denotes the matrix obtained by taking the first

nred columns from U (k), and nh is the number of hidden neurons. We can then continue obtaining
predictions from the RNN with parameters ψ̃(k) using the reconstructions H̃(k) and compare these to
the ground-truth targets in order to judge the quality of the subspace.

We now describe how we obtain U (k) for each task k. As this process is identical for every k, we omit
the superscript k from our notation. The matrix U is retrieved by an iterative procedure (column-by-
column), where every added column is optimized to extract a new subspace dimension that maximizes
predictive performance. Let ŷ1:T = fout(h1:T , ψ̃) denote the part of the RNN f that generates
predictions from a given hidden state sequence h1:T (note, fout only performs time-independent
feed-forward computation, thus processing hidden states independently). In general, different
timesteps may use different subspaces, so the matrix U should be specific to a predefined timestep
s, such that reconstructed hidden states can be obtained via h̃Ts = hTs U:nredU

T
:nred

, ŷs = fout(h̃s, ψ̃)

and (ŷt, h̃t) = fstep(xt, h̃t−1, ψ̃) for t = s + 1, . . . , T . The network predictions ŷs:T from the
reconstructed hidden states h̃s:T can then be compared to the ground-truth ys:T via some loss
Ltask(ŷs:T ,ys:T ) and U can be optimized to minimize this loss. More precisely, we minimize the
following loss function iteratively for n = 1, . . . , nh:

min
un
‖UT:nU:n − I:n‖2+γLtask(Ỹ,Y) (38)

where γ is a hyperparameter, un denotes the n-th column of U and Ỹ consists of sequences ŷs:T
computed from reconstructed hidden states using U with input samples taken from the training sets
of all previously learned tasks, while Y contains the corresponding ground-truth sequences ys:T .

As this process is computationally quite demanding and it is not a priori clear which timesteps to
focus on, we decided to take a simpler approach and learn a shared matrix U for all timesteps, such
that for every t we compute a reconstruction using h̃Tt = hTt U:nredU

T
:nred

as well as the corresponding
predictions ŷ1:T = fout(h̃1:T , ψ̃). With this procedure, we might overestimate the actual intrinsic
dimensionality required for solving all tasks seen so far, but we can still assess relative differences,
e.g., an increase in intrinsic dimensionality if more tasks are learned.

The results of this analysis on an instance of the Permuted Copy Task are depicted in Fig. S5. We
observe that the number of dimensions required to achieve high accuracy levels increases as more
tasks are being learned. In other words, the task-relevant dimensionality of the hidden space increases
with the number of tasks that has been learned so far, which aligns with the predictions from SM C.

It is worth noting that if fout is a linear operation, one could directly obtain the dimensionality of
task-specific subspaces read by each output head by applying singular value decomposition to the
hidden-to-output weight matrix, and thresholding the singular values. This procedure allows one to
obtain a task-specific basis U (k), which can be compared to other tasks k′ by computing the subspace
similarity sim(k, k′) = ‖U (k)(U (k′))T ‖F and can therefore serve as a proxy for task similarity.

G.6 INCREASED DIFFICULTY OF THE PERMUTED COPY TASK

We empirically observed that the Permuted Copy Task (cf. 5.1) is harder to solve (for both vanilla
RNNs and LSTMs, data not shown). Intuitively, such increase in difficulty can already be anticipated
by analyzing a linear RNN (cf. Eq. 25). The basic Copy Task can be manually implemented as
linear RNN by realizing a queue-like mechanism (i.e., the input-to-hidden weights write inputs into a
subspace of the hidden space, while the hidden-to-hidden weights shift these chunks consecutively
through subspaces until they reach an output subspace which is read out by the hidden-to-output
weights). This specific implementation cannot be trivially extended to the time-permuted case (where
the order in the queue needs to change before elements are shifted to the output subspace), which
indicates why an increase in difficulty may occur.

We hypothesize that the increase in difficulty can also be linked to optimization, and more specifically
to the large variation in backpropagation through time (BPTT) path lengths from each output timestep
to its corresponding input timestep. Note that the mean BPTT path length is the same for the permuted
and unpermuted case, but the standard deviation is zero for the unpermuted case. We observed that
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this variability in BPTT path lengths creates an optimization bias towards pairs of input/output
timesteps that lie closer together in time (data not shown). Furthermore, previous work suggested
in similar sets of experiments that the order of recall matters (e.g., Zaremba and Sutskever, 2014),
providing more evidence that there are indeed intrinsic differences between solving the basic and
Permuted Copy Task.

G.7 REPLAY FOR SPLIT-SMNIST EXPERIMENTS

Table 13: Mean during and final accuracies
for Split-SMNIST rehearsal experiments (Mean ±
SEM in %, n = 10). Method RtF was denoted
Generative Replay in the main text. Both,
RtF and HNET+R, are introduced in Sec. B.11.
Methods denoted with a * use a decoder architec-
ture that has an additional fully-connected layer of
size 256 before and after the LSTM layer.

during final
Multitask N/A 99.18 ± 0.05
Coresets-10 99.64 ± 0.02 96.44 ± 0.25
Coresets-100 99.51 ± 0.01 98.85 ± 0.05
RtF 98.95 ± 0.08 95.01 ± 0.88
RtF∗ 99.51 ± 0.02 98.41 ± 0.22
HNET+R 99.67 ± 0.01 99.34 ± 0.04
HNET+R∗ 99.44 ± 0.03 99.10 ± 0.13

To complement our investigations of the Split-
SMNIST experiments in Sec. 5.2, we provide
further experimental results on rehearsal meth-
ods in this section. As the training of generative
models is challenging on real-world data, we
restrict our exploration in this section to the orig-
inal Split-SMNIST experiment, i.e., difficulty
m = 1 (cf. Sec. 5.2).

The results are shown in Table 13. As can be
seen, hypernetwork-protected replay HNET+R
outperforms other rehearsal approaches and per-
forms on par with Multitask training. How-
ever, when analysing results obtained from meth-
ods based on generative replay, namely RtF and
HNET+R, we realized that even though recon-
struction is feasible, rehearsal via samples ob-
tained from the prior did not lead to visually
meaningful digits.15 Aside from the difficulty of training a generative model, we hypothesize that this
behavior is due to the coarse approximations made in Sec. B.11. Interestingly, we did not observe
these difficulties for the Copy Task, where input samples are sequences without direct temporal
dependencies (aside from the correct placement of the stop bit).

G.8 SEQUENCE LENGTH AND WORKING MEMORY REQUIREMENTS IN REAL WORLD TASKS

Analyzing how sequence length and working memory requirements influence CL in RNNs requires a
setting in which these two factors can be clearly disentangled. The synthetic Copy Task provides the
flexibility to independently manipulate the two aspects and thus isolate their effects. However, it is
unclear whether the observations made on this simple task generalize to more complex, real-world
scenarios. Here we show further experiments that support our Copy Task results in a more practically
relevant scenario related to the concept of temporal resolution.

Sequential data often contains redundant information, e.g. when the sampling process is much faster
than the data generation process. Thus, we can manipulate the length of a sequence without changing
the information it contains by temporal upsampling. In the same way, we can change the sequence
length of a task’s input, without noticeably affecting the working memory required to solve it.

In our sequential SMNIST experiments (cf. Sec 5.2), input sequence length and working memory
requirements both increase with increasing digit sequence length m. Here, we contrast this setting
with Split-SMNIST experiments with fixed working memory requirements (m = 1), but increasing
input sequence length (as dictated by an upsampling factor u ∈ {2, 3, 4}).
We use Online EWC to train networks on five tasks for three different upsampling factors and
display the results in Table 14. Increasing the upsampling factor u does not yield a drop in perfor-
mance. This is contrasted by the sequential SMNIST results, where an increase in the number of
digits m leads to substantially worse results. This difference indicates that the drop in performance
observed for increasing m is caused by higher task difficulty, and is independent of the length of input
sequences. Taken together, these results support our conclusions from the Copy Task experiments
and show that they hold in less artificial settings.

15Note that a sequence of pen-strokes (SMNIST sample) can easily be converted into an image.
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Table 14: Mean final accuracies for Split-SMNIST experiments under different task difficulty
scenarios. l is the factor by which input sequence length is increased w.r.t the original sequence
composed of one digit. This factor can be increased by either increasing the number of digits m (top
row, copied from sequential SMNIST experiments), or by increasing the upsampling factor u (bottom
row). (Mean ± SEM in %, n = 10)

Setting l = 1 l = 2 l = 3 l = 4

Varying m 97.05 ± 0.59 76.65 ± 3.39 75.26 ± 1.85 73.16 ± 0.98
Varying u 97.05 ± 0.59 95.35 ± 1.06 94.65 ± 0.85 96.27 ± 0.66

G.9 PART-OF-SPEECH TAGGING

Part-of-Speech Tagging is a classical NLP task in which words in a sentence are tagged according to
their grammatical properties (e.g. nouns, verbs, etc.). The Universal Dependencies dataset (Nivre
et al., 2016) contains large annotated text corpora from a wide range of languages and has previously
been used in a multitask setting (Plank et al., 2016; Heinzerling and Strube, 2019). We cast this
dataset to a CL setting, by sequentially training RNNs one language at a time. The results of training
bidirectional LSTMs (BiLSTM) on 20 languages are displayed in Table 15.

We can observe a similar trend to other experiments, where HNET outperforms other regularization
methods. The performance of Masking+SI indicates that no good trade-off has been found between
small, distinct but plastic subnetworks and large, overlapping and thus rigid subnetworks. Again the
simple method Coresets exhibits the strongest performance among CL approaches, making it the
preferable choice when data storage is feasible.

G.10 TASK SIMILARITY AND FORWARD TRANSFER

Our analysis on linear RNNs learning multiple tasks relies on the assumption that the tasks are so
different that they cannot share any recurrent computation. This is, however, an extreme scenario
and in practice some level of similarity will exist between the tasks. CL approaches can in theory
exploit this similarity by using some form of shared processing across tasks, and therefore facilitating
knowledge transfer between tasks.

In this section, we provide additional analyses and insights regarding task similarity and transfer of
knowledge. For this, we consider a Permuted Copy Task experiment with ten tasks, where we present
the same set of five tasks to the network twice. A thorough comparison of how each method might
benefit from knowledge transfer is beyond the scope of our work. However, we provide here some
pointers on how weight-importance methods and the hypernetwork approach might reuse previously
acquired knowledge, noting that the two approaches transfer knowledge in a fundamentally different
way.

Weight-importance methods. Since weight-importance methods use the same set of weights for
all tasks, computation relevant for multiple tasks can directly be reused. In the experiment mentioned
above, Online EWC achieves a mean final accuracy of 99.01%. To compare the subspaces read out

Table 15: Mean during and final accuracies for the PoS experiments (Mean ± SEM in %,
n = 10).

during final
Multitask N/A 92.52 ± 0.02
From-scratch N/A 95.04 ± 0.01
Fine-tuning 91.63 ± 0.01 48.62 ± 0.58
HNET 89.83 ± 0.09 89.30 ± 0.09
Online EWC 87.49 ± 0.04 86.89 ± 0.03
SI 85.66 ± 0.06 84.62 ± 0.08
Masking 91.29 ± 0.02 46.76 ± 0.81
Masking+SI 82.60 ± 0.09 82.34 ± 0.09
Coresets-100 91.64 ± 0.02 90.05 ± 0.03
Coresets-500 91.60 ± 0.03 90.63 ± 0.03
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Figure S6: Mechanisms for knowledge transfer in a Permuted Copy Task setting with similarity
across tasks (tasks 1 to 5 are identical to tasks 6 to 10). (a) Subspace similarity between tasks for
Online EWC. (b) Euclidean distance between task-embeddings for HNET. (c) Euclidean distance
in task-specific HNET outputs (i.e. main network weights).

by the task-specific linear output heads, we compute subspace similarities between pairs of tasks by
performing SVD on the head-specific weight matrices, as described at the end of Sec. G.5. Fig. S6a
shows that the subspaces used to solve the first set of tasks are being reused when the network solves
the tasks for the second time, demonstrating that subspace reuse is a possible mechanism for transfer
in weight-importance methods.

Hypernetworks. von Oswald et al. (2020) showed that hypernetworks can benefit from forward
transfer between tasks. Since in this approach a new set of weights is generated for every task,
transfer has to occur in the mapping from task embeddings to main network weights. Indeed, von
Oswald et al. (2020) also showed that this can be mediated by a suitably structured embedding space.
For the Permuted Copy Task version described above, where the hypernetwork approach achieves a
mean final accuracy of 98.74%, transfer could occur by simply reusing the embeddings of the first set
of tasks. However, the pairwise distances between task embedding vectors, as well as between the
generated main network weights do not strongly support this (i.e. only the embeddings and weights
of the tasks 2 and 3 being learned for the second time show some similarity to the original solutions).
This could indicate that, in this setting, HNET finds a different solution when solving a task for the
second time. Alternatively, this can be explained by the fact that Euclidean distances are not an
appropriate measure to capture transfer in this scenario, since proximity in the embedding and weight
spaces does not necessarily reflect similarity in the functional space.

One way to incentivize the reuse of previously found solutions, could be to selectively increase the
learning rate of the embedding optimization when starting to train on a new task. This could allow
for fast exploration of the space of existing solutions and opens interesting avenues for future work.

G.11 DISCUSSION ON TASK-SPECIFIC SOLUTIONS IN CL

In this section, we further discuss differences between CL regularization approaches, specifically
between weight-importance methods and HNET.

We start by reiterating our main motivation for proposing the use of HNET for RNNs. Because RNNs,
just like feedforward networks, have a static set of weights, the regularization employed by HNET is
not affected by the recurrent processing occurring in the main network (cf. Eq. 2). Therefore, the
CL regularization is independent of the choice between an RNN or feedforward network as main
network. Note however, that individual tasks are initially learned through the recurrent main network
while the data is available (thus before CL regularization is required); therefore the sequential nature
of individual tasks does influence hypernetwork optimization (Sec. G.2).

Another benefit of the method HNET becomes apparent when considering the non-parametric limit.
If the hypernetwork is considered a universal function approximator, the generation of a new set
of weights per task can in theory allow CL without any forgetting. In contrast, weight-importance
methods cannot provide the same guarantees even if the main network is considered a universal
function approximator. For instance, it is not guaranteed that the posterior mode found via Online
EWC for the first task contains viable solutions for all upcoming tasks.
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In this work, we show that these intuitions transfer to practical applications and that HNET often
exhibits strong performance advantages over weight-importance methods. To guide future research in
this area, we devote the rest of the section to the main conceptual difference between these methods,
namely that HNET allows task-specific solutions whereas weight-importance methods aim for a trade-
off solution (cf. Fig. 1b). We draw intuition from Bayesian inference and therefore confine ourselves
to a subclass of weight-importance methods that can be interpreted as prior-focused methods (cf.
Farquhar and Gal (2018), e.g., Online EWC). In addition, we ignore knowledge transfer through the
shared meta-model and consider HNET as an approximation to the From-Scratch baseline. In this
simplified setting, From-Scratch/HNET have the ability to gather a sample from a task-specific
posterior (e.g., the maximum-a-posteriori (MAP)), i.e., for tasks k = 1, . . . ,K:

ψ
(k)
MAP = arg max

ψ
p(ψ | Dk) = arg min

ψ
−
(

log p(Dk | ψ) + log p(ψ)
)

(39)

Note, that the right-hand side of the equation above often matches the optimization criterion applied
to the current task, where − log p(Dk | ψ) matches the negative log-likelihood (cf. Eq. 6) and the
prior influence can be realized via weight-decay if p(ψ) is assumed to be an isotropic Gaussian
distribution.

In contrast, a prior-focused method aims to find a single shared solution:

ψ
(1:K)
MAP = arg max

ψ
p(ψ | D1, . . . ,DK) = arg min

ψ
−
(

log p(DK | ψ) + log p(ψ | D1, . . . ,DK−1)
)

(40)

For completeness, if the main network weights ψ are split into a shared body ψshared and task-specific
output-head weights ψ(1)

specific, . . . , ψ
(K)
specific, the equation above becomes

ψ
(1:K)
MAP = arg max

ψ
p(ψ | D1, . . . ,DK) (41)

= arg min
ψ
−
(

log p(DK | ψshared, ψ
(K)
specific) (42)

+ log p(ψshared, ψ
(1)
specific, . . . , ψ

(K−1)
specific | D1, . . . ,DK−1) + log p(ψ

(K)
specific)

)
(43)

However, for the sake of readability, we ignore the multi-head setting in the remainder of the section.

As a way to analyze the stability of the MAP estimates, we perform a Laplace approximation of the
posterior parameter distributions using the solutions obtained in Eq. 39 and Eq. 40 (cf. Sec. B.5 and
Huszár (2018)), yielding:

p(ψ | Dk) ≈ N
(
ψ
(k)
MAP, (Ω

(k))−1
)

and p(ψ | D1, . . . ,DK) ≈ N
(
ψ
(1:K)
MAP , (Ω(1:K))−1

)
(44)

where the precision matrices are given by:

Ω(k) =
1

σ2
prior

I +NkF
(k) (45)

Ω(1:K) =
1

σ2
prior

I +

K∑
k=1

NkF
(k) (46)

assuming an isotropic Gaussian prior p(ψ) = N (0, σ2
priorI). In the equations above, Nk denotes the

dataset size of task k and F (k) the Fisher information matrix estimated on the model after learning
task k.
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Figure S7: Inverse posterior variance for some CL methods. The plot depicts the mean of the diagonal
Fisher matrix as obtained from the during solutions found by different methods. For methods using
task-specific solutions, such as From-Scratch and HNET, robustness only has to be measured
with respect to the current task and therefore the Fisher has been evaluated on the corresponding task
only. For Online EWC, the solution always has to be robust with respect to all tasks seen so far.

Since the Gaussian posterior approximation contains viable solutions for the data to be explained,
high entries in the covariance matrix indicate a flat solution around the MAP estimate. Analogously,
the Fisher information matrix is connected to the expected Hessian of the log-likelihood. Therefore,
low Fisher values correspond approximately to low curvature of the likelihood loss landscape and
are thus indicative of flat minima, which are often considered desirable and have been linked to
better generalization (Hochreiter and Schmidhuber, 1997b; Chaudhari et al., 2019). Incidentally,
flat minima can also be considered desirable for the HNET approach. Because flatness indicates
robustness of the found solutions against parameter perturbations, it loosens the pressure on the L2
regularization applied in Eq. 2, and therefore decreases sensitivity to the regularization strength β.

To test these insights empirically, we studied the mean of the diagonal Fisher matrix obtained in the
during models for the Permuted Copy task with p = i = 5 (cf. Sec. 5.1). The results are plotted
in Fig. S7. The From-Scratch baseline consists of independently trained models and therefore
its solution only has to be stable with respect to the current task. Since the hypernetwork approach
aspires to this behavior while allowing transfer, we treat it identically. Thus, for both methods we
characterize the flatness of the solution using the mean of the corresponding task-specific diagonal
Fisher matrix F (k). As expected, the From-Scratch baseline exhibits low Fisher values that are
similar across tasks, illustrating the flatness of the separately found solutions. For the compressed
hypernetworks used in this work, we do not see a clear trend. Instead, the mean Fisher values are
highly variable and depend on the hyperparameter setting. Therefore, we instead considered an
uncompressed version, where the hypernetwork is allowed to be five times as big as the corresponding
main model (i.e., it consumes roughly the same amount of model parameters as the From-Scratch
baseline). In this case, and as shown in Fig. S7, the mean Fisher values are similar across tasks
and the flatness of solutions is comparable to those found by From-Scratch. This observation is
interesting as it opens up possible avenues for future work. As indicated above, it would be desirable
to obtain flat, task-specific solutions with the HNET approach. Since this does not seem to occur
automatically (at least in the compressed regime), one could enforce flat solutions explicitly. One
could use, for instance, methods such as Entropy-SGD (Chaudhari et al., 2019) that are applicable to
the hypernetwork approach.

Lastly, the solution found by Online EWC has to be robust with respect to all previously seen
tasks and therefore its curvature for task k can be characterized via the sum over all tasks seen so
far
∑
k′<kNk′F

(k′). As expected, mean Fisher values are progressively increasing (Fig. S7). This
has the well known side effect of increasing rigidity and harming flexibility for learning new tasks.
Furthermore, and connecting back to the literature on flat minima, it can be argued that the final
solution found by Online EWC is less desirable as it resides in a sharper minimum of the loss
landscape and empirical evidence suggests that such minima are harmful to generalization.

G.12 INFERRING TASK IDENTITY AT TEST TIME

In this study, we only consider the case where task identity is known to the system during test time.
A more challenging but arguably also more interesting CL scenario overcomes this constraint by
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inferring task identity based on the input sequence.16 However, this is only possible for task sets
where the data input distributions are sufficiently dissimilar to allow discrimination. For instance, the
Copy Task and its variants would not be applicable to this scenario, as all tasks share the same input
data distribution. Thus, inferring the task identity from the input alone is impossible in such a case.17

One possible way to achieve this is by sequentially turning the CL problem into a multitask problem
via replay. For classification problems, the multi-head output could be replaced by a growing softmax
(van de Ven and Tolias, 2018) that is trained analogously as described in Sec. B.8 and B.9.18 However,
this solution relies on successfully training generative models or on storing a sufficient amount of past
data. It also successively turns the CL problem into a multitask problem leading to an undesirable
increase of computational demands.

An alternative approach suggested in von Oswald et al. (2020) relies on outlier detection via predictive
uncertainty. For instance, in a multi-head setting, one could choose the output head with the lowest
predictive uncertainty for classification, as the input sample can be considered "in-distribution"
for this head. Even though proper out-of-distribution detection is a challenging and in itself still
unresolved problem of machine learning (Snoek et al., 2019), it would be an interesting direction for
future work to investigate this approach for RNNs.

Another alternative, utilized in Cossu et al. (2020a;b) on sequential data, is the use of a different
autoencoder per task. The autoencoder with the lowest reconstruction error for a given input sample
will determine the task identity.19 Such an approach also relies on the ability to successfully train
generative models. In addition, the naive implementation requires one autoencoder per task. However,
this last problem can be sidestepped using a hypernetwork-protected autoencoder (cf. method
HNET+R in Sec. B.11).

G.13 THE EFFECT OF MODIFYING THE EXPERIMENTAL SETUP

To further highlight the importance of comparing CL methods within a clearly defined experimental
setting, we perform a few controls where we vary this setting and study the impact on performance,
focusing on Online EWC.

Despite an even distribution of hyperparameter-optimization resources among methods, a comparison
might still be inconclusive if certain experimental variables are misaligned, such as the number of
output heads, the number of model parameters or the availability of task identity information. Such
factors can positively or negatively influence the performance of each method and therefore need to
be carefully controlled for.

Using a single output head. Throughout this study all methods are trained in a multi-head setting,
where a different set of output weights is used for each task, consistent with the first CL scenario
described by van de Ven and Tolias (2019). Another possibility is to use a single head, i.e. a common
set of output weights across all tasks. One can expect that a method producing task-conditional
weights, such as HNET, might be better suited for a single-head setting than a method that has to
progressively adapt its output weights, especially if the output is normalized (e.g., by using a softmax,
since individual weight changes without co-adaptation of other weights in the output layer can
drastically alter all predictions on prior tasks).

To empirically assess whether HNET and Online EWC are differently affected by the type of output
layer used, we rerun the hyperparameter searches for the Permuted Copy Task experiment i = p = 5
from Sec. 5.1 using a single shared output head for all tasks. For fair comparison (cf. paragraph
below), task identity in the form of a one-hot vector is provided as an additional input to the networks
trained with Online EWC.

16This kind of CL scenario was termed CL3 in van de Ven and Tolias (2019) and von Oswald et al. (2020).
17It is however always possible to design an auxiliary system that infers task identity from a given and

appropriately chosen context (von Oswald et al., 2020; He et al., 2019)
18Distillation targets have to be zero-padded as the softmax dimension is growing with each task.
19Note that regularized autoencoders have been shown to elicit properties of the data-generating density

function (Alain and Bengio, 2014). Hence, this method of task inference can be loosely linked to proper
out-of-distribution detection.
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While the performance for HNET is only slightly affected (95.78 ± 2.13 mean final accuracy),
Online EWC drops to 68.41 ± 1.45 % mean final accuracy, which drastically differs from
the multi-head result obtained in Sec. 5.1. This comparison highlights the importance of having
task-specific output weights in a CL setting with dissimilar tasks.

Weight-importance methods with task-conditional computation. This study focuses on com-
paring methods in a CL scenario where task identity is known during inference (cf. SM G.12).
Traditionally, weight-importance methods solely use task identity to select the correct output head in
a multi-head setting. This implies that computation within the RNN is shared among all tasks up
to the output layer, and that all tasks need to be solved in parallel if task identity cannot be inferred
from the provided inputs. To overcome this constraint and allow for task-conditional computation,
task identity can be provided to the network as an additional input (e.g., in the form of a one-hot
encoding).

Table 16: Mean during and final accuracies across several experiments for Online EWC
either without providing the task identity as additional input (left column) or by explicitly enabling
task-conditional computation by giving the task identity as additional input (right column). (Mean ±
SEM in %, n = 10).

w/o task identity with task identity
during final during final

Permuted Copy p = i = 5 99.93 ± 0.01 98.66 ± 0.14 97.61 ± 0.31 97.54 ± 0.30
Sequential Split-SMNISTm = 1 98.52 ± 0.11 97.05 ± 0.59 99.39 ± 0.08 98.36 ± 0.37
Sequential Split-SMNISTm = 2 91.86 ± 1.13 76.65 ± 3.39 95.71 ± 0.53 88.51 ± 1.26
Sequential Split-SMNISTm = 3 83.62 ± 1.10 75.26 ± 1.85 96.63 ± 0.89 93.14 ± 1.24
Sequential Split-SMNISTm = 4 92.33 ± 2.49 73.16 ± 0.98 90.65 ± 1.28 88.94 ± 1.32
Audioset 68.82 ± 0.20 65.56 ± 0.35 71.74 ± 0.20 66.35 ± 0.36
PoS tagging 87.49 ± 0.04 86.89 ± 0.03 89.78 ± 0.03 89.67 ± 0.04

To evaluate whether a weight-importance method (namely Online EWC) can benefit from such
task-conditioning, we rerun the hyperparameter-searches for some of our main experiments while
providing the task-identity as an additional input. The results are depicted in Table 16. We observe
that in some experiments where the main network is an LSTM or BiLSTM, performance can be
greatly improved by introducing task-conditioning. Performance gains are particularly striking in the
Sequential Split-SMNIST experiment. This is somewhat surprising since in this dataset task identity
can be inferred from the inputs alone (even though this might require observing a significant portion
of the input sequence first), which should enable task-conditional processing without the need to
explicitly provide the task identity.

When moving into more difficult CL scenarios, task-identity is not explicitly given to the system
and has to be first inferred from the inputs to allow task-conditional processing. SM G.12 details
several approaches for how an auxiliary system can provide a task-identity signal. However, a
more natural approach for adapting task-conditional EWC to these CL scenarios would be to use
predictive uncertainty (which was suggested by von Oswald et al. (2020) in the context of CL with
hypernetworks). Therefore, one could use the approximate parameter posterior distribution, that has
been obtained during training, also during inference to quantify uncertainty of output heads when
considering all possible task-identity inputs. Note, however, that this increases computational efforts
significantly as (1) an MC estimate of the posterior predictive distribution needs to be obtained and
(2) this process needs to be repeated for every task identity.

In conclusion, this unorthodox but justified use of Online EWC reveals great potential of weight-
importance methods for sequential processing. Because of its performance, ease of implementation
and elegant mathematical derivation, Online EWC might be preferable in simple use cases over
more elaborate methods such as HNET, even though HNET remains the better performing option in
most situations. Therefore, an important contribution of our work is to identify Online EWC as a
strong contender for sequential processing, despite having been questioned by existing work (Asghar
et al., 2020; Cossu et al., 2020a; Li et al., 2020) and despite the shortcomings revealed by our own
study.
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