
A Neural Network Architecture

We use a convolutional neural network architecture for our models. Our code can be found in our
open source repository1

For the auto-encoders used on 64×64-pixel images, we mimic the architecture presented in [11]. We
use 4×4 kernels for all convolutional layers with a stride of 2. We use a ReLU between all layers,
with a final sigmoidal layer on the reconstruction architecture and a Bernoulli loss. In Tables 1 and 2,
“Conv2d” refers to a convolutional layer, “FC” refers to a fully connected layer, “ConvT2d” refers to
convolutional transpose, and the “(× 2)” in the embedding architecture refers to the separate mean
and log variance heads on the shared architecture.

Table 1: Embedding and reconstruction architectures for 64×64-pixel images

Embedding Reconstruction
Input: 64×64, 1 or 3 channels Input: 10 values
Conv2d: 32 channels FC: 256 channels
Conv2d: 32 channels FC: 4×4 image, 64 channels
Conv2d: 64 channels ConvT2d: 64 channels
Conv2d: 64 channels ConvT2d: 32 channels
FC: 256 channels ConvT2d: 32 channels
FC (× 2): 10 values ConvT2d: 64×64, 1 or 3 channels

For the auto-encoders used on 16×16-pixel images (the natural image crops), we use 3×3 kernels for
all convolutional layers and a stride of 2 everywhere except for the last reconstruction layer, which
has a stride of 1. We use a ReLU between all layers, with a final sigmoidal layer on the reconstruction
architecture and a Bernoulli loss.

Table 2: Embedding and reconstruction architectures for 16×16-pixel images

Embedding Reconstruction
Input: 16×16, 1 channel Input: 10 values
Conv2d: 64 channels FC: 128 channels
Conv2d: 128 channels FC: 4×4 image, 64 channels
FC: 128 channels ConvT2d: 64 channels
FC (× 2): 10 values ConvT2d: 32 channels

ConvT2d: stride 1, 64×64, 1 channel

For the loss, We estimate the full Jacobian matrix Jg(z) using the finite difference method along each
latent dimension. That is, for any given latent value z at which we wish to compute the Jacobian
matrix, we generate a set of k data points zi = z + εei, where ε is a small fixed value and ei a unit
vector in the ith latent direction. We then run the forward model on the batch of zi to generate g(zi)
and estimate the ith column of the Jacobian matrix as (g(zi)− g(z))/ε This Jacobian matrix estimate
is itself backward differentiable using standard backward differentiation, and can be directly used in
our JL1-VAE loss.

B Three-dots Experiment Hyperparameters and Additional Results

For the three-dots dataset, We discretize the possible x,y coordinates of the center of each dot to 64
different values. We note that the generative map is not injective, as the dots are identical, so the
same resulting image can be formed from multiple permutations of ground-truth factor values. There
are 646 ∼ 68.7 billion different possible input latent combinations, from which we pre-generate a
cache of 500,000 images on which we train. During evaluation, we generate new images at runtime
based on the desired ground-truth factors of variation.

1https://github.com/travers-rhodes/jlonevae

13



(a) Jacobian matrix columns for β-VAE (b) Jacobian matrix columns for JL1-VAE

Figure 6: Qualitative results for three-dots. Both models used β = 4.0. For JL1-VAE, γ = 0.1. All
Jacobian matrix columns are shown.

We train a β-VAE with β = 4 on a training dataset cache of 500,000 64×64-pixel images of three
black dots on a white background, with x and y values for the dot centers appearing independently
at one of 64 possible discrete locations, evenly spaced horizontally and vertically, across the image.
We embed the dataset into a latent space of 10 dimensions. We train on 300,000 independently
sampled batches of 64 images from the cache, giving a total of 19,200,000 image presentations to the
neural network. Additionally, we train our JL1-VAE with the same β and model architecture on the
same training dataset with our added L1 regularization weighted by a hyperparameter γ = 0.1. The
hyperparameter γ was chosen as the largest tested for which the learning algorithm converged to give
good reconstruction accuracy. We use linear annealing for both the β and γ parameters, annealing
each from 0 to their final values over the first 100,000 batches. We use the Adam optimizer with a
learning rate of 0.0001.

For the baseline comparison models, we use the implementations of β-VAE, FactorVAE, DIP-VAE-I,
DIP-VAE-II, β-TCVAE, and AnnealedVAE from [11], matching their hyperparameter choices. For
implementations that for which they provided a range of tested hyperparameters, we chose near the
middle of their range. Thus, for β-VAE we used β = 4; for Annealed VAE we use cmax = 25,
iteration threshold= 100000, and γ = 1000; for Factor VAE we use γ = 30; for DIP-VAE-I we use
λod = 5 and λd = 50; for DIP-VAE-II we use λod = 5 and λd = 5; and for β-TCVAE we use β = 4.

We note that we modified the reference implementation provided with that work from in order
to have consistent 4×4 kernels as shown in the architecture in Table 1. We include the modified
implementation in our supplemental materials. The reference implementation of that architecture had
unexplained 2×2 convolutional kernels for two layers.

We varied the random model initialization seed ten times and trained ten different models for each
algorithm type. Additionally, we ran a smaller experiment randomizing both the model initialization
seed and using different initial seeds for data sampling as well, getting similar results to those
presented in the paper. The baseline implementation samples batches by epoch, shuffling after each
epoch, while our implementation pulls independent random batches at each training set. Thus, the
results for β-VAE in Figure 4 use independently-sampled random batches, while the results for
β-VAE in 5 use shuffling after each epoch. This did not seem to affect results.

For the local metric calculations, we use the implementation provided by [11]. We sample 20 different
local regions, pulling 10,000 points for each. We use a histogram discretization with 5 bins for mutual
information calculations.

All ten Jacobian columns associated with Figure 2 are shown in Figure 6.

Additionally, we validate that an L2 loss does not have the same disentangling properties as our L1

loss by replacing the L1 loss with an L2 loss and computing the local disentanglement metrics in
Figure 7. We label the JL1-VAE with L1 replaced by L2 a JL2-VAE. All the L2 regularizations are
roughly indistinguishable from the β-VAE result, while the JL1-VAE consistently outperforms for
the full range of tested regularization values γ.

C Natural Image Experiment Hyperparameters and Additional Results

We train a β-VAE with β = 0.01 on a dataset 100,000 16x16-pixel crops from grayscale natural
scenes [7], embedding the dataset into a latent space of 10 variables. We train for 100,000 batches of
128 images, re-shuffling the images after each epoch. We note that due to epoch endings a few of the
batches were incomplete, with fewer than 128 images. Additionally, we train our JL1-VAE with the

14



(a) Local MIG scores (b) Local modularity scores

Figure 7: Local disentanglement scores varying the locality parameter ρ and the regularization factor
γ for JL1-VAE, JL2-VAE, and β-VAE. The regularization factor γ is given in parentheses in the
legend. Ten of each type of model were trained on the three-dots dataset with β = 4. This figure best
viewed in color.

same model architecture and β on the same training dataset with our added L1 regularization cost
weighted by a hyperparameter γ = 0.01. The β was chosen as large as possible that still avoided
significant dimensionality collapse, and then the hyperparameter γ was chosen as the largest tested
for which the learning algorithm converged to give good reconstruction accuracy. We use linear
annealing for both the β and γ parameters, annealing each from 0 to their final values over the first
50,000 batches. We use the Adam optimizer with a learning rate of 0.001.

We show additional Jacobian column results, training on five latent dimensions in Figure 8, and
training on 25 latent dimensions in Figure 9. We also show the top 100 PCA components and 100
trained ICA components in Figure 10.

(a) Jacobian columns for a β-VAE with 5 latent dimensions

(b) Jacobian columns for a JL1-VAE with 5 latent dimensions

Figure 8: Results for β-VAE and JL1-VAE using 5 latent dimensions (instead of the 10 shown in the
main paper). Both are trained with β = 0.01, and JL1-VAE trained with γ = 0.01.

D MPI3D-Multi Experiment Hyperparameters

We train a β-VAE with β = 0.01 on a 2×2 tiling of every-other-pixel downsampling of randomly
sampled images pulled from MPI3D-real, resulting in 64×64-pixel training images. We only sample
MPI3D-real images of a top-down view of the robot holding a large, blue cube, with salmon
background lighting. In this way, our dataset does not vary along unordered/sparse latent factors like
color/shape. This leaves two independent dimensions of variance (horizontal and vertical axis joints)
for each of the 4 tiled robot images. If we were to apply our local disentanglement metrics to discrete
factors of variation that do not come with a natural distance metric such as “shape” or “color,” we
would require equality in order for values to be considered “close.” That is, for any such factor of
variation, a “local” sampled dataset will be constant on that factor.

We embed the dataset into a latent space of 10 dimensions. We train on 300,000 independently
sampled batches of 64 images from the cache, giving a total of 19,200,000 image presentations to the
neural network. The β was chosen to give good reconsruction accuracy. Additionally, we train our

15



(a) Jacobian columns for a β-VAE with 25 latent dimensions

(b) Jacobian columns for a JL1-VAE with 25 latent dimensions

Figure 9: Results for β-VAE and JL1-VAE using 25 latent dimensions (instead of the 10 shown in the
main paper). Both are trained with β = 0.01, and JL1-VAE trained with γ = 0.01.

JL1-VAE with the same β and model architecture on the same training dataset with our added L1

regularization weighted by a hyperparameter γ = 0.01. The hyperparameter γ was chosen as the
largest tested for which the learning algorithm converged to give good reconstruction accuracy. We
use linear annealing for both the β and γ parameters, annealing each from 0 to their final values over
the first 100,000 batches. We use the Adam optimizer with a learning rate of 0.0001.

16



(a) 100 latent PCA directions with the largest explained variance [38]

(b) 100 latent ICA directions fit using FastICA[38, 5]

Figure 10: Latent vectors for PCA and ICA trained on random 16x16 crops from natural images
collected by [7]

17



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [N/A] The

authors were not able to identify potential negative societal impacts of this work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running exper-

iments multiple times)? [Yes] Figure 4 and Figure 5 show results for training each
model ten times with different random seeds

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

18


