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A ADDITIONAL NUMERICAL RESULTS

A.1 ABLATION STUDY AND MORE COMPARISONS

In Section[7} we compared our algorithm with the robust TD algorithm in (Klima et al., 2019). Here,
we compare our algorithm with the algorithms in (Pinto et al., [2017; [Tessler et al.,[2019). The method
in (Tessler et al.| 2019) requires an MDP solver to solve the optimal adversarial policy when the agent
policy is given and the optimal agent policy when the adversarial policy is given. The white-box
MBDP solver requires knowledge of the underline MDP so that there is no learning curve and sample
complexity discussion in (Tessler et al.}[2019). Thus, we implement the algorithms in (Pinto et al.]
2017, [Tessler et al.,[2019) with a Q-learning MDP solver, and compared the final evaluation rewards
and the learning curve. In addition, we implement the ablation study by setting different p and p. In
our experiments, the policy is learned in a clean environment, and is then tested on the perturbed
environment. p is the parameter in algorithm when learning the robust policy. p can be considered as
the agent’s guess about the probability of a disturbance occurring. However, p is the probability that
the perturb happens in the perturbed environment. In the perturbed environment, with probability p,
the action is perturbed by an adversarial action.
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Figure 6: ARRLC v.s. RARL v.s. PR-PI
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In Figure[6, we show the learning curves under different p and p. It can be seen that our ARRLC
algorithm converges faster than the other algorithms. This demonstrates the efficiency of our ARRLC
algorithm to learn optimal policy under policy execution uncertainty.
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Ablation study on InvertedPendulum-v4 with fixed rho
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Figure 7: Ablation study on InvertedPendulum-v4 with fixed p.

In Figure [7, given the agents trained with fixed rho, we test the agents in different disturbed
environments with different p. In Figure[§, we compared the different agents trained with different
rho. The x-axis is the different choice of p or p. The y-axis is the final evaluation rewards.
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Figure 8: Ablation study on InvertedPendulum-v4 with fixed p.

The theoretical guarantee on sample complexity and regret of our algorithm relies on the assumption
of known uncertainty parameter. However, in the experimental results shown in|[7| the parameter can
mismatch with the true disturb probability. In the main paper Figure[9, we test the mismatch of the
uncertainty parameter p and true uncertainty probability p. We trained the agent with p = 0.2, but we
use p = 0.1 in the test. The proposed robust algorithm still outperforms the non-robust algorithm.

A.2 ROBUSTNESS TO DIFFERENT ADVERSARY

In this section we considered different adversary policies include both the fixed policy in the main
page and a random adversary policy. After the agent takes an action, with probability p, the random
adversary will uniformly randomly choose an adversary action to replace the agent’s action. In
Figure[9 and Figure[I0, "fix" represents that the actions are perturbed by a fixed adversarial policy
during the testing, "random" represents that the actions are randomly perturbed during the testing, p
is the action perturbation probability.

Since we do not know whether the fixed policy or the random policy is the strongest adversary
policy against the agent, a more direct comparison is to use the learned worst-case policy in different
algorithms to do a cross-comparison. We used the learned worst-case policies to disturb the different
robust agents. We report the final evaluation rewards in Table [I. We trained our method in 2000
episodes and the approaches of Pinto et al.|(2017); [Tessler et al.|(2019) in 30000 episodes. We set
that p = p = 0.2. The ARRLC agent performs the best against three different adversaries and the
ARRLC adversary impacts the most on three different agents.

Table 1: Final rewards under cross-comparison between ARRLC, PR-PI and RAPL
ARRLC adversary RAPL adversary PR-PI adversary

ARRLC agent 72.536 81.736 89.824
RAPL agent 49.936 72.216 70.6
PR-PI agent 52.788 63.784 86.648
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Figure 10: ARRLC v.s. Robust TD

B PROOF OF PROPOSITION [1]

The uncertainty set of the policy execution has the form in:

7 (m) := {7|Vs, Ta(|s) = (1 = p)m(:|s) + pmh(:[s), 75 (|s) € Aa}- (12)
We define
, H
C;:’W ’p(s) = E Z Rh/ (sh/7ah/)|sh = S,ap ~ %h’(’|5h’)
h'=h
, H
Dy P(s,a) = E Z Ry (spryap)|sn = s,an = a,ap ~ Tp(-|spr)
h’'=h

Robust Bellman Equation First we prove the action robust Bellman equation holds for any policy
m, state s action a and step h. From the definition of the robust value function in (1)), we have

Vii(s)=0,VseS.

We prove the robust Bellman equation by building a policy 7~. Here, policy 7~ is the optimal
adversarial policy towards the policy 7.
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Atstep H, we set m;;(s) = argmin,c 4 Ru (s, a). We have
Vi (s) = min C’Z’W/’p(s)
= (1 = p)[Dry Rl (s) + pmin[Dry, Rl (s) (13)

= (1= p)[Dx, QR](5) + pmin QF; (s,0) = CF™ *(s),
as Vg4, = 0.

The robust Bellman equation holds at step H and ming )., w(s)C’};’W,’p (s) =
> w(s) ming C’Z’"l’p(s) = Y, w(s)CF™ *(s) for any state s and any weighted function
w:S — As.

Suppose the robust Bellman equation holds at step i + 1 and ming ), w(s)C;:_:l, Ps) =

Yo, w(s) ming C’;erl/’p(s) = >, w(s)Cﬁf{’p(s) for any state s and any weighted function
w:S — Ag.

Now we prove the robust Bellman equation holds at step h. From the definition of the robust
Q@-function in (2) and the form of uncertainty set, we have

H

Qr(s,a) = min E Z Ry (Spryan)|sh = s,an = a,ap ~ Tpr(¢|Spr)
Tell(n) W

’
= min Dp™ (s, a)

' \p (14)

:Rh(s, a) + HTlrl/n Es/wph(.|87a)ch+1 (S)
:Rh(S7 a) + :[ES/NP},,(‘ls,(l) IITlrllIl C’Z:—,:'l’,p(!s)
=Ry (s,a) + [PV) 1] (s, a).

We also have that Q7 (s,a) = Dp'™ (s, a).

Recall that a (stochastic) Markov policy is a set of H maps 7 := {7, : S = A}pe(m). From the
definition of the robust value function in and the form of uncertainty set, we have

H

Vhﬂ—(S) :Nmin ]E Z Rh'(Sh’,ah/”Sh = S,ap ~ %h’('|5h’)
Tell(nr) Py

’
= min Crm P (s)

=min  min C’Z’ﬂl’p(s)

' {ﬂ/h/}fj,:h+1

>(1—p) min Eomry (19D " P (s,0) + pmin  min - Eqop oDy (s, a)

OB A}

’ ’
>(1— p)]anwh(~|s) m}i{n D;’” P(s,a) + prn/in IEGNW;IHS) m}{n Dzm #(s,a)
{0y Th 7 b

=(1—p)[Dx, QF](s) + pin Qh(s,a).
(15)

We set 7, (s) = argmin, . 4 QF (s,a) = argming 4 D™ *(s,a).
At step h, we have
Vir(s) <CR™ (s)
=(1 = p)[Dx, D™ () + pmin DI *(s,a) (16)

=(1—p)[Dx,Qr1(s) + pin Qh(s;a),
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where the last equation comes from the robust Bellman equation at step h + 1 and

DZ’”i’p(s, a) = Rp(s,a) + [P;LC';:fli’p](s, a) = Ry(s,a) + [PV 1](s, a).
Thus, the robust Bellman equation holds at step h.

Then, we prove the commutability of the expectation and the minimization operations at step h. For
any weighted function w, we have min., > w(s)Cy"™ *(s) > > w(s) miny C;" P (s). Then,
ming 3, w(s)Cp ™7 (s) < X, w(s)CRT P (s) = X2, w(s) ming CfT P (s).

By inductionon h = H, - - - , 1, we prove the robust Bellman equation.

Perfect Duality and Robust Bellman Optimality Equation We now prove that the perfect duality
holds and can be solved by the optimal robust Bellman equation.

The control problem in the LHS of (@) is equivalent to

H

E Ry (spryan)|sn = s,ap ~ %h/(-|sh/)] = maxmin C;’ﬂ/’p(s). (17)
s U
h'=h

max min E
T wellr(m)

The control problem in the RHS of (4) is equivalent to

H
Z Rh/(sh/, ah/)|sh = S,ap ~ %h/('|sh’)‘| = mi/nmax C;;’Tr,’p(s). (18)
T T
h'=h

min maxE
Tellp(w) =

For step H, we have Ci7™ *(s) = [D((1-pyrtprr) , Bul(8) = (1=p)[Dryy Rir)(5) +p[Dry Rur](s).
Thus, we have

max min C’};’ﬂ,’p(s) =(1 - p) max[Dr, Rul(s) + pmin[D, Ryl(s)

s ™ ) (19)
=(1-p) I;leaj(RH(S, a) + pmin Ry (s,b),
and
minmax O™ #(s) =(1 — p) max[Dy,, Rer)(s) + p1in[Ds, Rerl(s)
s Uy ™ us (20)

=(1- R in Ry (s,b).
(1 - p) max Ry (s, a) + pmin Ry (s, b)

At step H, the perfect duality holds for all s and there always exists an optimal robust policy
7y (s) = argmax,c 4 Q3 (s, a) = argmax,c 4 Ry (s, a) and its corresponding optimal adversarial
policy 7, (s) = arg min, ¢ 4 R (s, a) which are deterministic. The action robust Bellman optimality
equation holds at step H for any stats s and action a.

In addition, max, min. Y, w(s)Cg" (s) = Y, w(s) max, min. C’I’fl’”/’p(s) for any weighted
function w : § — Ag. This can be shown as

s€S
~(1 = p)max 3 w(s)[Dy Birl(s) + prmin 3 w(s)[Dr Rl (o) o
s€S seS
=(1-p) Z w(s) max Ry(s,a)+p Z w(s) %1}41 Ry (s,b).
s€S seES

Suppose that at steps from h + 1 to H, the perfect duality holds for any s, the action robust
Bellman optimality equation holds for any state s and action a, there always exists an optimal robust
policy 7, = argmax, 4 QJ,(s,a) and its corresponding optimal adversarial policy 7,,(s) =
argmin, 4 Q% (s,a), Yh' > h+ 1, which is deterministic, and max, min, Y, w(s)C},;" " (s) =

’
T, ,p

> w(s) max,; minys Cp;" P (s) for any state s, any weighted function w : S — Ag and any
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I > h+1. Wehave Vi (s) = VT (s) = i, ™ *(s) and Q}, (s,a) = Q. (s,a) = Dy, "™ *(s,a)
for any state s and any A’ > h + 1.

We first prove that the robust Bellman optimality equation holds at step h.
We have
Q3 (s,a) = maxmin DZ’T{/”’(S, a)
= max mi/n(Rh(s, a) + [PhC;LTfl/’p](s, a)) )
= Ry(s,a) + [Pp(max min C’Zfll’p)](s,a)
= Rh(sv a) + [thi:;rl](sv CL).
and also Q% (s,a) = QF (s,a) = Df’”i’p(s, a).
From the robust Bellman equation, we have

i (o) =ma (1= 9D, QFI(9) + oy Qs ) )

<U-pmax max [DpQfl(9)+p max minQi(s.a)
a

Th {ﬂ—h}h’:thl Thipl —pt1
<(1—-p)max max [D,, Q}](s)+pmin max Qf(s,a) (23)
LN A o a€A {m}F,_, .|

<1~ p) max[Dy, Q31(s) + pmin Q7 (5,0)
=(1- ; inQ; (s, a).
(1 = p) max @ (s, a) + pmin Q (s, a)
We set 7} (s) = maxqaeca Qj (s, a). According to the robust bellman equation, we have
max Vi (s) > Vi (s) = (1 - p)[Dr; Q7 1(s) + pmin Qf (s,a)
= (1— " : "
(1= p) maxQF (s, a) + pmin Q (s, a) (24)
=(1- ; in Q; (s, a).
(1 = p) max Q4 (s, a) + pmin Qj (s, a)
Thus, the robust Bellman optimality equation holds at step h. There always exists an optimal
robust policy 7, = arg max,c 4 Q7 (s,a) and its corresponding optimal adversarial policy 7, (s) =
argmin, . 4 Q7 (s, a) that is deterministic so that CZ*”Ti’p(s) = Vi (s).

Then, we prove the commutability of the expectation, the minimization and the maximization
operations at step h.

In the proof of robust Bellman equation, we have shown that
min Z w(s)C;:’”/”’(s) = Z w(s) min C,f’”/’p(s)
for any policy 7 and any weighted function w. Hence
max min Z w(s)CZ”T/’p(s) Z = max Z w(s) min C,f’”/’p(s).
First, we have

max E w(s) min C;:”T/’p(s) < E w(s) max min C;lr’ﬂ/’p(s)'
T ! ™ !
s s
Then, we can show

maxZw(s) min C,j’ﬂ/’p(s) > Zw(s) min C}f*’””p(s)

S S

= > w(s)Cp " (s)

S

= Z w(s) max min C’;’ﬂ,’p(s). (25)

S

18
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In summary,

max min w(s)C’;{"”,”’(s) Z = w(s) maxmin C’Z’”l’p(s).

We can show the perfect duality at step h by
max min C;Lr’ﬂl’p(s) = C;;*’Tr_’p(s) =maxCP" P(s) > min max C}f’ﬂ/’p(s). (26)
By induction on h = H, - - - , 1, we prove Proposition|1]

C PROOF FOR ACTION ROBUST REINFORCEMENT LEARNING WITH
CERTIFICATES

. . —k —k Ak
In this section, we prove Theorem Recall that we use 9,V hQZ ,Kk, N ,’f P,’f,rh and Q,I?L to denote

the values of @h,Vh,Qh,Zh, max{Np, 1}, Ph, rp, and 6y, at the beginning of the k-th episode in
Algorithm 1]

C.1 PROOF OF MONOTONICITY
C.1.1 PROOF OF LEMMA [I]

When Nf(s,a) < 1, (8), (9) and (7) hold trivially by the bound of the rewards and value functions.

For every h € [H] the empiric Bernstein inequality combined with a union bound argument, to take
into account that NV, ;’f (s,a) > 11is a random number, leads to the following inequality w.p. 1 — SAH§
(see Theorem 4 in (Maurer & Pontil, 2009))

. 2V pi Vi (5, a)e TH.

’(Pi]f - Ph)V;;"H(s,a)‘ < \/ ;V}f(:, ) + 3(NE(s, ) 27)
and

(P — POV (v < 5| MR | TH. (28)

Pk = POVT (s, < NEGs,a) | 3(Ni(s,a)’
Similarly, with Azuma’s inequality, w.p. 1 — SAH¢

2Var(rk(s,a))e 7L 27 (s, a)L Tt
)= R, [ S oy < N Ty @

where Var(rk (s, a)) is the empirical variance of Ry, (s,a) computed by the N (s, a) samples and
Var(rk(s,a)) < (s, a) .

C.1.2 PROOF OF LEMMA[2]

We first prove that @Z(s,a) > Q5 (s,a) for all (s,a,h,k) € S x A x [H] x [K], by backward

induction conditioned on the event £ N XV Firstly, the conclusion holds for h = H + 1 because
Visi(s) = Vg(s) = 0and Qg 4(s,a) = QHH(s,a) = 0 for all s and a. For h € [H],
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assuming the conclusion holds for i + 1, by Algorithm|I| we have
h(s,a) + PiViei(s,a) + 65(s, ) — Qi (s,a)
=7} (s,0) + P Viia(s,0) + 05 (s,a) — Ra(s,a) — PiViiyi (s, a)
ﬁ(s,a) Ry (s,a) }’f Vh+1 Vh+1) (s,a) + (P}f — PV 1 (s,a) + 92(5, a)

-
Vel (Vhin + VD)2 B (Vi —Vha) (s0)  gp2,

> P - PV
> ( 7)Viy1(s, a) N (s, a) + H * Nf(s,a)

>

2V gy (Vi + Vi) Al P (Vi = Vho) (s0)  sm \/wpm:;l( a)
NE(s,a) H NE(s,a) NE(s,a) ’
(30)

where the first inequality comes from event £%, V1 (s) > V;*, | (s) and the definition of 6} (s, a)
and the last inequality from event £7V. By the relation of V-values in the step (h + 1),

Vi +V *
|W15,’f <h+12h+1> (s,a) fWP:VhH(S,a)

|1 (Vi + Vh)/22 = (BEViE?| (5,0 + | BE IV + V) /28 = PRV (5.0)

<4HP} ’(Vh+1 +VE)/2 - V;Z‘H‘ (s,a)

§2Hp,lf (Vh+1 - K’fL_H) (s,a)

(€29)
and
2Wp:V,j‘+l(s,a)L
NF(s,a)
I

| Ve T + V3250 0)e 4 AHPE (Vi = Vi) (0
B Njy(s,a)

STak k ok (TF k (32)
< QWP;:[(V}LH + Viy1)/2)(s,a)u L 4H Py (Vh+1 _Kh+1) (s;a)
= NE(s,a) NE(sa)

S Vad k ok (TF k
< QWP;f[(VhH + Vii1)/2](s,a)e . Py (Vh+1 _Zh+1) (s,a) N 8H?2,
- Nf(s,a) H Nf(s,a)’

Plugging (32) back into (30), we have 7 (s,a) + PV 1(s,a) + 05 (s,a) > Qi (s,a). Thus,
Qn(s.a) = min{H —h+ 1,7} (s,0) + PV, 41 (s.0) + 0} (s,0)} > Qi (s.a).

From the definition of ¥} (s) and 7%, we have

Vi(s) =(1 = p)@y (5, 75(5)) + pQy (5,75 (5))
>(1 — p)Qn (s, 7.(5)) + pQi (5.7 (5)) (33)
(1 = p)Qi(s,m;,(s)) + pmin Qi (s, a) = V' (s)

Similarly, we can prove that Q:(s, a) < sz (s,a) and V7§ (s) < V}?k (s).
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N(s,a) + PFV, ., (s,a) — 05 (s,a) — Qh (s,a)
. =k
:TZ(S,CL) + thh-&-l(sva’) 95( ) ) - Rh(sva) - Ph‘/h-l—l(gva)
k
h

N —k ~ =k
) = Ru(s,) + Bf (Vyps = Vi ) (s,0) + (B = Pa)Viipa (s,) = 04 (5,a)

—~
»
S

—k
. . Qka[(Vh+1 +Kﬁ+1)/2](s,a)b
(B = Pu)ViTa(s,a) — .

NE(s,a)
"
P]f (Vh+1 Vh+1> (s,a) 8H?%, G4
~ Nf(s,a)
_ QWPthH s,a) Pk Vh+1 +Vh+1)/2](5 a)t
= N[ (s,a) Nk(s,a)
Pk (Vh—i-l Vh+1 (s,a) SH2, <0
- " N <

and

IS

>

—~
»

~
Il

(1- P)QZ(SﬁIZ(S)) +pQ) (s, 75 (5))
<(1-p)Qf (S,WZ(S))ergggQ’;(&a)

—k _k 35
<(1=P)QT (5. 74(9) + Q5. arg min QF (5,0) 53

<= P)QF (5.7h(s) +pmin QF (s,0) = VT ().

C.2 REGRET ANALYSIS
C.2.1 PROOF OF LEMMA 3]

We consider the event £ N EPV. The following analysis will be done assuming the successful event
ER N EFY holds. By Lemma |Z, the regret can be bounded by Regret(K) := Zszl(Vl*(s’f) -

Vi (sh) < SO0 (V3 (sh) — VB (sh)).
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By the update steps in Algorithm[I} we have
Vi(sh) — VE(sh)
=(1— )@ sk, Th(s5)) + pQi (5, mh(sF)) — (1 — )@ (sh, Th (s5)) — pQ" (sh, mh (s5))
S[D%,’;Pflf(vhﬂ — Vi)l(sh) + 2D 01 (s})
=D B (Vi — Vi DIE) — [PE (Vs — VB, 1)1(sE, af) + 2Dz ()
+ [BE(Vhyr — Vi ))(sE,af)
:[]D%,’jpilf(vlfiﬂ - Zi-s-l)](Sh) [Ph (V}L+1 Zﬁ-&-l)](slfgu aﬁ) + Q]D%;jeh(si)
+ [PE(Vhr — VE)I(shaf) — s PV yy — Vi )(shaf)
+ ClPh(VZH h+1)(52’ af) — 02(Vl:z+1 Vh+1)(5]fz+1) + 02(VZ+1 - KZH)(SEH)
=[Das PE(V iy — Vi DIE) = [BE (Vs — Vo ))(sE, af)
FBE (Vi — Vo ))(skaf) — et Pa(Viyy — VE L )(sh af)
+ e Pa(Vinr = VE ) (s af) — (Vi = VB ) (k) + e2(Vhgy = Vi) (k1)

2V o [(Viosr + V1) /2)(sE, 78 (s5))e 7 (sE 7 (50)0
+2(1_p)¢ O Rk e

o 2(1 — p)(24H2 + 7TH + )t
+(1-p) ;]f(V:H Vi ) E 7R (sp)/H + ( 3££(Sz7wﬁtsh)))+ :

7r k k _k(k (36)
N ZP\J QWP;f[(Vh-H + Vii1)/2)(sy, @y (sy,))e 27K (sk, ok (sk))e

%
+2p 2 h\°h>—h\"h//"
Nf(sy. i (s7:)) Nf(sy. )i (s7,))

2p(24H? +TH + 7).
3Nk( hﬂrh(Sh)))
=(1+ 1/H)[D%,’jpllz€(vi+l Vie)l(sh) = (1+ 1/H)[Ph(vh+1 Vi e))(shsar)
+ (L 1/H)BE (Vi — Vi )1k, ab) — 1 (Vi — VEL)(sh af)
(a)
t e Py (Vipy = Vi) (shoal) — ex(Vipy = Vi) (s ) +ea(Viy — Vi )(sk )

P
+ pPY(Vier = Vi) (shmh(sh)/H +

—k
vo1— )y et Ve + i) A TR () 2rkGh TG
p Ni o T (o) OV VG
(b1)

—k
2(1 — p)(24H? + TH + ) 2/)\] 2V pi [(Viga + Vi 1)/2)(sk, mh(sk)e
3NK (sk, T (s5))) Ny (sh, y (%))

(b2)
27K (s Tk (sk))e  2p(24H% + TH + )t
NE Gk mhh) T NFGE 2 6R))

+2p
Bound of the error of the empirical probability estimator (a) By Bennett’s inequality, we have
that wp. 1 — 5§

2P, (s'|s,a)t L
k T ok
Ny(s,a) 3N} (s,a)

|Pr(s'|s, a) — Pu(s'|s,a)| < 37)
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holds for all s, a, h, k, s’.
Thus, we have that
(PF — Pu)(Viyor — V1) (s,0)
—Z (PE(s')s,a) — Pu(s']5,0)) (Vp 1 (8') = VE 1 ()

2P, (s']s,a)t L , SH.
< \%4 -V —
Z Nk; S a) ( h+1( ) 7h+1(5 )) + SN;:(S, Cl)

Pu(s']s,a) I . SH. (38)
< v b 3NF(s, a)
_Zé,:( H +2‘7\7;?((97(1)) ( i (8) = Vi (s )>+3N;’f(3aa)

. . SH? SH.
<P,(Vy,, -V H
SPaVis = Vi), )/ H o S s + 58 )

. SH?,
SPh(Vh-i-l - ZZ—&-l)(S’ a)/H + m,

where the second inequality is due to AM-GM inequality.

Bound of the error of the empirical variance estimator (bl) & (b2) Here, we bound
Vi (Vi1 + VE0)/2)(sh, af).
Recall that C;” TP (5) = {Zh, _y R (snryans)|sn = s,an ~ 7 (|spy) | in Appendlx@ Set k*

here is the optimal policy towards the adversary policy % with 7% (s) = argmax;, cr p (s).
Similar to the proof in Appendix [C.1.2, we can show that Vﬁ(s) > Ch s (s). We also have

that CT = P(s) = max, CI'% *(s) > CT = P(s) > V7 (s) > VE(s) . For any (s,a,h, k) €
S x A x [H] x [K], under event ER N EFV

Vel (Vs +Vh41)/2)(s,0) = Vi, O™ (s,0)
=PV yy + V5 41)/2(s,a) - [Ph<vh+1 + V5 1)/2(s,a)
— PU(C ™ ) (s,0) + (PO = ) (5,0)
S[Ph (Vh+1) (Ph Vh+1) Ph(vh+1) (PhVZ+1)2](5» a)
<IBf — Pu) (Vi i1)?1(5,0) + [(PaV S 40)* — (PEVE 1) (s, 0)
+ (Vi 0)? = (V)% (5,0) + |(PiVpyy)? — (PaVE 1) (5, ),

(39)

where the first inequality is due V:(s) > C;Zk*’ﬂk’p(s) > V5 (s). The result of (Weissman et al.,
2003) combined with a union bound on N} (s, a) € [K] implies w.p 1 — &

R 25t
PE(. — Py(- < 40
H h( |S7a‘) h( |S,CL)H1 — N}’f(s,a) ( )
holds for all s, a, h, k.
These terms can be bounded separately by
Ak —k 2 2 251
|(Py = Pr)(Via)7l(s,0) < H Ni(s,a)’
& 9 250
|(PaV5y1)? (Pth+1) |(s,a) < 2H|(P, — PF)VE 41l <2H N q) (41)
h(sva)

—k —k

Ph‘(vh+1)2 - (ZZ-H)Q‘(S, a) < QHPh(Vh-H - KZH)(S:@),
—k —k

|(thh+1)2 - (PhZZ+1)2|(5:a) < ZHPh(Vh-H - Kfz—l—l)(&a)a
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where the first two inequality is due to . In addition, 3H?2, / 2fL y < <1+ Q?V%Ié4;) . Thus, we
have

a-p) ka[(Vh+1 + Vi) /2 (kTR sk . ka[(Vh+1 + Vi )/20(sk, 7wk (s5)e
g NE(sf 7h(sf)) ’ NE(s5 xh (5F)
ok . ks gk i )
<(1-p) WPhCh—‘rli P (sp T (sk)e P Vp, O™ sk, mh(sh))e
B NE(sp, T (s5)) Ni(sy, iy (s5))
—k . _ —k .
4 (1-p) AH Py (Vg — Kﬁﬂ)(sﬁ,ﬂﬁ(sﬁ))b AHPy (Vg — Kﬁﬂ)(Sﬁ,l’ﬁ(SE))b
NE(sk,mh(s7)) Njy (sh,my(sh))
L (1—p) 1 +p 1 +( p)\/9ISH*./2 N p\/ISH*L/2
Nf (sg. T (s7) Npi(spzmp(si)) — NE(sE,mh(sp))  Ni(sgozi(sy)
Jy— _ ks ke
<(1-p) Vp,Cpy™ P(si,ﬂﬁ(sﬁ)ﬁ ) Ve, Cr ™ Psk,mh(sh))e
a Nf(sk,mh(s7)) N (sy,my(s))
—k L
i (P ke~ VEGE b)) | ova,
2V2H NE(sg, T (sE))

—k o
+p Pr(V5iq _K§+1)(827£Z(8£)) " 2v2H?%
2v2H NE(sg, mh(sf))

+ (1 _ ) ; + ;
PN NEGEARGR) T NEGE k)
N (1—p)\/95H4L/2+ p/9SH4/2

NE(sk, mh(sp))  Ni(si.mi(sh))
whk* gk ke
g | VRGE ehme | VA G e sk )
NE(sk,mh(s5)) Ny (sp,mh(sy))
ID%EPh(Vh-H Vh+1)( ]Z) Q\f(l— p)H?L 2V2pH?1
2v2H NE(sE,mR(sp)) Ny (sk,mri(sr)

T 1N ey (L .
NA(sf, 75 (s5) A CAEACH)
N (1—p)\/9SH4L/2+ P/ ISH* /2

Ny(simh(sh) Ny ()

(42)

where the second inequality is due to AM-GM inequality.
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Recursing on & Plugging and into (36)and setting c; =1+ 1/H and ¢y = (1 +1/H)?,
we have

Vir(sh) = VE(sh)
<L+ 1/H)Da PV yy = Vi DIE) — (1 + L/ H)PE (Vi — V)] (shaf)

(SH + SH?).

—k
+(1/H +1/H)P,(V, ., — VF ¥oak) +
1/ JH?)Py( h+1 —h-i-l)(sh ah) N,’f(s’fb,a’fb)

—k —k —k
+e1Pu(Vig — Z’Z-s-l)(é’z, ap) — 2V — Vh+1)(5]i§+1) +ea(Vig — ZIFCL+1)(SZ+1)

L2 - p) 27K (s, TR (sk))e  2(1 — p)(24H? +TH + T)t
Ny (shmh(s5) 3N (s}, 7 (1))
L2 27K (sk, mh (k)  2p(24H? + TH + )t
Ny (siomi(sy)) — 3NR(sy,mi(s3)

mhk* gk _ mk* gk,
R L R I EL A e
N (sk T (s3)) Ny (sh, @ (sh))

—k
D Ph(Vigr — KZH)(Slﬁ) 8(1—p)H?L 8pH?L
H

Ny (sh.mh(s)) Ny (sp,mh(sh))

VSH*% n 6pV SH*.
R =R s TP — .
NE(sh Th(sh)) Ny (s mi(sh)) — NEGsE7h(sE)) Ny (s)
(43)

We set OF (s, a) = \/SWP” ]’\fg}s ) o) Jr\/N,c ) 4]6\,\,52?{14)5 Since r¥(s,a) < 1, by organizing
h\Ss
the items, we have that
—k
Viu(sh) = Vi(sh)
P P
<+ 1/H)Da P (Vi yy = Vi )I(sh) — (L4 1/ H)EB (Vg = Vi 1))(shs ak)
(SH + SH?).

—k
V/H+1/H)P,(Vy = VEL ) (sh ab) + 2 22—
+( / + / ) h( h+1 —h+1)(5h’ah)+ N}]LC(SZ;GZ)

—k —k 7k

+ ClPh(Vh+1 - VZH)(SQ, aﬁ) - C2(Vh+1 - KZH)(SZH) + CZ(Vh+1 - ZﬁJrl)(slfiJrl)
—k

4 Dz Py (Vi1 — Vh+1)(5}u771}3(3;’§))

7 + Dz O (sh)
<1+ 1/H)Da PE Vg — Vi DNE) — U+ 1/ H)PE (Vi — Vi ))(sE af)
D P(Vhy — VE ) (5h) — Pa(Vigs — V) sk o) (@4
+ (14 3/H +1/H) Py (Vi — Vi) (5h,af) — ex(Vigy — Vi) (s50)
tea(Phpy = V) (shan) + W D, 0k (sh)

3(1+1/H)[D%§pf]f(v:+1 Vi0)l(s5) = (1+1/H)[Ph(vh+1 Vii)(shsaf)
D P(Vhy — VE ) (5h) — PaVigs — Vi) (65 o)

7]6 J—
+ C2Ph(Vh+1 - KZH)(SZa aﬁ) - C2(Vh+1 - ZZ+1)(3;€L+1)
(SH + SH?).

N (sh» ap)

—k )
+eo(Vir = Vi) (shaa) + Dz O} (s7)-
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By induction of 36) on h = 1,--- , H and V:H V§. 1 =0, we have that

K H
Regret(K) <21 ZZ kPh Vh+1 Vii)(sh) — Ph(Vh+1 Vi1)(st, af)
k=1 h=1

1 —k —k
E[]D%}’jph(vh—i-l - ZZ-H)(S?L) — PV — ZZ+1)(5;€L7 ai)]
—k —k
+ Po(Vigr — K’ZH)(SZ, ap) — (Vg1 — K]ZH)(SZH)
(SH + SH?).

+

Nk( sk, h) ID%’,j@]fL(SZ))'
(45)
Here we use (1 + 1/H)3*H < 21.
C.2.2 PROOF OF LEMMA [4]
Recall that My = Y0 S Do P (Vi g — Vi )(s5) — BEV 1y — V1) (k. af)).
Since ]Ea,k;w)yk [ﬁf(V:H — Vii)(sf,af)] = D%ﬁﬁ)}’f(viﬂ — Vii1)(sk), we have that

]D%Zﬁ,’f(vhﬂ Vi () - P’“(Vh+1 V5. 1)(sk,ak) is a martingale difference sequence.
By the Azuma-Hoeffding inequality, with probability 1 — J, we have

Z ’“Ph Vh+1 Vh+1)( ") - Ph(Vh+1 Vh+1)(5h»ah)] < HV2HK.. (46)
k=1h=1
C.2.3 PROOF OF LEMMA[J]
Recall that My = 37, >0, %[]D%;fph(vﬁ+l Vii)(sp) — Ph(Vh+1 Vi) (sk, af)].
Since IEGEND%[P;L(VZH ~ VED)(shaf)] = DaPu(Viyy — VE,)(sh). we have that
]]);}?Ph(V:H Vh+1)(5h) Ph(VhJrl KZ+1)(s’fl,a§) is a martingale difference sequence.

By the Azuma-Hoeffding inequality, with probability 1 — J, we have

H
—k N —k .
Z[]D%;;'Ph(vhﬂ — Vi) (sh) = Pu(Vier = Vi) (shoa)]| < HV2HKL. (47)

C.2.4 PROOF OF LEMMA[G]

K —H —k —k
Recall that M3 = Zk:l Eh:1(Pflf(Vh+1 - Z'Z«H)(Sgy a%) - (Vh+1 - Kﬁﬂ)(sﬁﬂ))-
Let the one-hot vector 1§ (+|s¥, af) to satisfy that 1§ (sf_,|sf,af) = 1 and 1 (s|sf,af) = 0 for

s # sy, Thus, [(PF — ﬂg)(VZH — V5 )|(sF,ak) is a martingale difference sequence. By the
Azuma-Hoeffding inequality, with probability 1 — §, we have

K H
OPp—
S =15 (Vir — Vig)l(sh,a)| < HV2HKL (48)
k=1h=1

C.2.5 PROOF OF LEMMA[7]

We bounded My = Y0 ST [% + ]D%fz,@;j(sﬁ)] by separately bounding the four items.
h h*'"h g

26



Under review as a conference paper at ICLR 2024

2
Bound Zszl Zle % We regroup the summands in a different way.

< (SH + SH*)SAH/*.
k=1h=1

K SH+SH2) ul

(49)

Nk NE(s,a) -

Bound Zle Zthl[(l -p) Nk(s k(s IRELY, N},;(sjibh(sh)) We regroup the summands in a

different way. For any policy 7, we have

H N{((s,a)
Z \/i — Z Z }Z ,/% < 8HVSAK.. (50)
k=1h=1 h? h=1(

s,a)ESx A n=1

p
Recall that @ﬁ(s,a) _ \/SWPh ;L+1sa (s,a)e + \/N si - L 16v/SHT

Bound Y"1, S27 (1 - p) T (‘Lﬁsﬁ 5 oy PR (45655’,;( k))] We regroup the summands in a dif-

ferent way. For any policy 7, we have

KA 46@ Ni (5,a)
ZZ = 46v'S Z > >

4653 AH3,2. 51
Nk sh, ) - ' Gb
k= h=1(s,a)eSxA n=1

S|

K H 8Vp, Chf_*l'”k Psk R (sh)e 8thChf_j Psk Lk (sh))
Bound Zk:l Zh:l (1 - p) Nk(sk 7k(sh)) + p Nk(s T (SI;L)) By

Cauchy-Schwarz inequality,

K H kx ok _
Vp, Crar™ P (s Th(sh))e

Ny (s 7h(sh))

k=1h=1
K H ok K H L
S L L VAT R LY s @
k=1h=1 b1 h=1 Vh \Sh Th{Sh
‘n'k* R p _
< SAHLZZZW& ht1 P(sk, T (sF))-
k=1h=1

Similarly,

K H kx k
ZZ Vp, C}TLr.H p(sﬁaﬂf(sf)ﬁ

N (s w5 (51))

k=1h=1

(53)
K H . .
<\ SAHR2Y N "V, CF " P (sk, ik (s])).
k=1 h=1
By (1 — p)a® + pb® > (1 — p)a+ pb)?,
K H . . K H . .
(1-p) WPhC;:Jrlﬂ (S’ﬁﬁ’ﬁ (sk)) +p ZZW C;Lr+1ﬂ P (s (sh))
k=1 h=1 k=1 h=1 (54)

K H
ko ok . ko k
<UD D (A= p) Ve, Cr ™ P (sh, mh(sE) + pV e, Oy ™ 7 (sk, mh (s5))-
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Now we bound the total variance. Let Dz Py (s'[s) = (1 — p)Pu(s'|s, 75 (s) + pPr(s'|s, 7k (s)),

[Das PaVisal(s) = Y _[(1 = p) Pa(s'ls, Th(5)) + pPu(s'ls, o) () Via (), (55)

s/

and
Vip_, P Vas1(s) = > 11 = p)Pu(s'|, 75 (5)) + pPu(s'ls, 75 ()] [Vaga (s)]

ry

(56)
=D (1= p) P15, 75(5)) + pPals'|5, 75 (5))) Vara ()],

s’/

‘We have that
W[]D kPh]Ch (SI;L)

= ST = ) Pa(Isf 7 (s5)) + pPu(s' sk, b (sEICTAy™ ()2

s/

— D2 (1= ) Puls' I35, Th(55)) + (sl s, b (s))) Oy ™ ()

s/

_ " (57)

>(1- )WPhChH’* p( EEE () + PV, Cryy™ (s, 2l (s])
ok

+(1- p)[PhCh P (s SZ))] + PPh[Cthl ’p(sﬁ,ﬂﬁ

k

Th,

—[Z(l—p)&(s’\sh,ﬂ(s YOI VP () + pPa(s sk, @

’

A
)

( )WPhC}TLr-H,Tr 7p(57w 7rh(sh)) + pw'l:’hC}Tzr-',-l77T 7p<8;€w£;€1,(32))7
where the last inequality is due to (1 — p)a? + pb® > ((1 — p)a + pb)?.
With probability 1 — 24, we also have that

K H
Z Z W[]D,;E P;JCZH’W 7p(5£)
k=1 h=1
K A kx _k 2
=33 (s AT Pk - (Dm P 1060) )
k=1 h=1
K H ko 2
=33 (D P s - (7 k) )
k=1 h=1
K A k 2
+ ZZ ((C;:H’ﬂ 7p(52+1)) <[ kPhC;H’Tr p](slﬁ)) )
k=1h=1

KA kx _k Kk 2 K [
<H? 2Hm+22(<czz =0(sh)? = (IDs PR ™ )(s5)) )—wa (s

K H
§H%/2HKL+2HZZ|C;k*7£k’9(s’,§) kPhch 1t (shy)

k=1h=1
9 K ﬂ,k*ﬂ,kp E H ﬂk*ﬂ,kp k k
<H"V2HK. + QHZ Cy s+ Z (Ch+1’7 P (shy1) — ’“Phch+1 (5h7ah))
k=1 h=1
H>V2HK.,+ 2H?K + 2H*V2HK.

<3H?K + 9H?./2,
(58)

where the first inequality holds with probability 1 — § by Azuma-Hoeffding inequality, the sec-
ond inequality is due to the bound of V-values, the third inequality is due to Lemma [2 so that
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Cﬂ-k*wﬂkvp b ﬂk*7ﬂk7p k ﬂ'k*,ﬂk,p k . . .
i (sp) = DzeDy (sp) = DzePuCy ™ " (sy,), the fourth inequality holds with
probability 1 — § by Azuma-Hoeffding inequality, and the last inequality holds with 2ab < a? + b

In summary, with probability at least 1 -8, we have S, S°1| thVhH(sh,ah) (H*K+H?3).

In  summary, Y, S, D+ O (s7;) < SVSAH?K: + 46S3AH? +
V24SAH3K (2 + 36SAH52 < 8V SAH2K . + 4653 AH3.2 + /24SAH3K 1 + 6V SAH5,.

D MODEL-FREE METHOD

In this section, we develop a model-free algorithm and analyze its theoretical guarantee. We
present the proposed Action Robust Q-learning with UCB-Hoeffding (AR-UCBH) algorithm show in
Algorithm 2| Here, we highlight the main idea of Algorithm 2. Algorithm 2 follows the same idea
of Algorithm E, which trains the agent in a clean (simulation) environment and learns a policy that
performs well when applied to a perturbed environment with probabilistic policy execution uncertainty.
To simulate the action perturbation, Algorithm [2]chooses an adversarial action with probability p. To
learn the agent’s optimal policy and the corresponding adversarial policy, Algorithm [2]computes an
optimistic estimate Q of Q* and a pessimistic estimate @ of Q*k. Algorithm |2 uses the optimistic
estimates to explore the possible optimal policy 7 and uses the pessimistic estimates to explore the
possible adversarial policy 7. The difference is that Algorithm [2Juse a model-free method to update
(@ and V values.

Algorithm 2: Action Robust Q-learning with UCB-Hoeffding (AR-UCBH)

1: Setoy = g—ﬁ Initialize V,(s) = H —h+1,Q(s,a) = H —h+ 1,V (s) =0,

Q,(s,a) =0,7(s,a), Np(s,a) = 0 for any state s € S, any action a € A and any step
he[H]. Viii(s) =Vy(s) =0and Qp (s, a) = @y, (s,a) = 0forall s and a.

A = H. Initial policy 7}, (a|s) and 7} (a|s) = 1/A for any state s, action a and any step
h € [H].

2: for episode k =1,2,..., K do
3: forsteph=1,2,...,Hdo
4: Observe s*.
5: Set @y = argmax, Q,(s¥,a), a¥ = argmin, Q, (s, a), 7F(@y|sk) =1 — pand
i (ahlsh) = p-
6: Take action af ~ 75 (-|s¥).
7: Receive reward 7} and observe sf_ ;.
8: Sett = Ny (sk,ak) < Nu(sk,al) + 1,0, = /H3/t.
9: Qulsk,ap) « (1 —a)Qp(sk,af) + ar(ry + Viga(sfy) + be),
10: Q,(sh,ap) < (1= a0)Q, (s, ap) + ae(ry + Vi (s541) — be).
11: Set*"H(sh) = argmax, Q,(sf,a), mi " (sf) = argmin, Q,(s M a)
12: Vin(sp;) < min{V(s}), (1 - )Qh(s’g,ﬁiﬂl( ))+PQh(5h7 k]:ll(si))}-
130 Vy(sh) < max{V,(sp), (1 —p)Qh(Sﬁﬂr;f (s3)) + pQ,, (s, " (s5)) }-
V() > (- )@, (5 75 (sE)) + pQ, (s, 2 (1)) then
15: 7’4?"!‘1 _ fk’
. h h.
16: end if
17:  end for

18:  Output policy 7*+1 with certificates Zp,, 1 = [V, (s¥), Vi(s¥)] and €11 = |Tp 1.
19: end for

20: return 711

Here, we highlight the challenges of the model-free planning compared with the model-based planing.
In the model-based planning, we performs value iteration and the () values, V' values, agent policy 7
and adversarial policy m are updated on all (s, a). However, in the model-free method, the ) values,

V values are updated only on (s¥, a¥) which are the samples on the trajectories. Compared with
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the model-based planning, the model-free planning is slower and less stable. We need to update the
output policy carefully. In line 14-16, Algorithm 2| does not update the output policy when the lower
bound on the value function of the new policy does not improve. By this, the output policies are
stably updated.

We provide the regret and sample complexity bounds of Algorithm [2]in the following:

Theorem 2 For any 6 € (0, 1], letting 1 = log(2SABH K /0), then with probability at least 1 — 6,
Algorithm[2|achieves:

e Vi(s1) = V7" (s1) < € if the number of episodes K > Q(SAH51/€2 + SAH?/e).
o Regret(K) = 25 (Vi (sh) = VI (s5)) < O(VSAHS K1+ SAH?).

The detailed proof is provided in Appendix [E

E PROOF FOR MODEL-FREE ALGORITHM

In this section, we prove Theorem Recall that we use @ﬁ ,V’Z ,Q’Z ,Zﬁ and N ,’f to denote the values
of @h’vthh’Zh and max{ N}, 1} at the beginning of the k-th episode.

Property of Learning Rate a; We refer the readers to the setting of the learning rate oy := g—ﬁ
and the Lemma 4.1 in (Jin et al., 2018). For notational convenience, define o := H;Zl (1 — o) and

al = q; H;Zl +1(1 — ). Here, we introduce some useful properties of a! which were proved in
(Jin et al.,[2018):

(HY_,ai=1andaf =0fort > 1;

(2)Zt Lol _Oandat =1fort=0;

(3) <Y féff < \/ for every t > 1,

4) Zz 1(%) <22 for every t > 1;

B) >, o < (1 + L) for every i > 1.

Recursion on ) As shown in (Jin et al.,[2018), at any (s, a, h, k) € S x A x [H] x [K], lett =
N[ (s,a) and suppose (s, a) was prev10usly taken by the agent at step h of episodes k1, k2, ..., ki <
k. By the update equations in Algorlthml and the definition of o, we have

—k ; ) —ki )
Qo) = aQ(H — 4 1)+ Y af (ke + Vs (b)) +01) 5

i=1

t (59)
= Zai (Th + Vh+1(5h+1) bz’) .
i=1
Thus,
t
(@ = Qi)(s,a) =af(H —h+ 1)+ > ai (rk + Vil (k) + )
=1
t
. (“?Q“S’“) + D0 (Bu(s,a) + th,:+1<s,a>>>
= (60)

t

—al(H —h+1 - Qi(s.0) + 3 af (Vi = Vi) (ki)
=1
t

+ > at (= Ru(s, @) + Vs (ki) = PaVitya (s,0) 4 0:)
i=1
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and similarly

t
(@ = QF )(s@) =" o (e + Vi (sh50) = b)
=1
t
- (a?cz;;" (s,0)+ Y af (Biuls.0) + PV (s a)))
o 61)
== afQ7 (s,0) + Y af (1P (VL — Vil (5,0))
i=1
t

+Y ai ((r;y — Ry(s,a)) + VE, (shi ) = PR (s,0) — b) .

i=1

In addition, for any &’ < k,lett’ = N ,’f' (s,a). Thus, (s, a) was previously taken by the agent at step
h of episodes k1, ko, ..., ky < k'. We have
t/
’ o o i s 7k
(@~ Q7 )(s.0) = = af Q7 (s,0) + Y b (1P (VY = V)] (5,0))

i=1

. (62)
+ 3"l (= Ruls, @) + V1 (5540) = PaVEL(s,0) = bi)
i=1

Confidence Bounds By the Azuma-Hoeffding inequality, with probability 1 — §, we have that for
all s,a, hand t < K,

t
> ai (= Bis,a)) + Vi (sf0) = PV (s,0))

i=1

(ai)20/2 < \/H3/t.

(63)

At the same time, with probability 1 — §, we have that for all s, a, h and t < K,

t
< VH3/t. (64)

Zai ((T;]fi — Rp(s,a)) + fo+1(5];11) - th,j+1(s,a)>

i=1
In addition, we have /H3./t < 3! aib; < 21/H31/

Monotonicity Now we prove that V:(s) > Vi(s) > V7 (s) > VP(s) and @Z(s,a)
Qi(s,0) > QF (s,a) > QF(s,a) forall (s,a,h,k) € § x A x [H] x [K].

v

At step H + 1, we have V’;Hl(s) = Vi) = Vg:_l(s) = V% .1(s) = 0 and @’;ﬂ_l(s,a) =
Qirp1(s,0) = QZZl(s,a) :Q];H_l(s,a) =0forall (s,a,k) € S x A x [K].

Consider any step h € [H] in any episode k € [K], and suppose that the monotonicity is satisfied for
all previous episodes as well as all steps A’ > h + 1 in the current episode, which is

Vﬁ;( )2 Vi) 2 Vi (s )>V’“?( )V(K' I s) € [k —1] x [H +1] x S,
Qh, s,a) > Q/(s,a) > Qh, (s,a) > QF (s,a) V(K', 1, s,a) € [k — 1] x [H +1] X S x A,
Vh’ ) > Vii(s) > Vi (s) > Vii(s) ¥ > h+ lands € S,

Qv (s,0) > Qu(s,a) > Q7 (s,0) > QF (s,a) VI > h+ Land (s,a) € S x A.

(
(s
(65)

We first show the monotonicity of () values. We have
t

(@ — Qi)(s:0) = af(H = h+1 = Qi(s,0) + Y ai (Ve = Vi) (ki) = 0. (66)

i=1
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and, by to the update rule of V values (line 13) in Algorithm[2]

(@) - QT )(s0) < = QT (5,0 + 3 (IPa(Vis = Vs )

i=1

(67)
< — Q7 (s,a +Zozf(Ph(Vh+1 ViiDl(s,a)) < 0.
In addition, for any k&’ < k,
’ —k
@~ QT )(os) < — QT (s, + (IPa(vhs, = Vil D(s.0))
1= ,1 (68)
—k
- atQh s,a) + Zat’ <Ph(vh+1 Vhﬂ+1)](saa)) <0.
i=1
Then, we show the monotonicity of V' values. We have that
—k —k .
(1= p) max Q) (s,0) + pQ} (s, axg min Q¥ (s, )
—k N .
>(1—p) max Qr(s,a) + pQj (s, arg man’Z(s, a)) )

> (1= p)Qh(s,mi(s)) + pmin Qi (s,a)
> (1= )Qi (s i () + pmin Q7 (s,a) = Vi (s).

By the update rule of V' values (line 12) in Algorithm

V:(s) = min{VZ_l(s)7 (1-p) mgx@:(s, a) + p@ﬁ(s, arg mingz(s, a))} > Vi(s). (70)

Here, we need use the update rule of policy 7 (line 11-16) in Algorithm |Z Define 7(k, h, s) :=

max{k’ : k¥’ < k and Kﬁlﬂ(s) =(1- p)Q:/H(s, arg max, @Z le(s, a)) + pming Q;j/“(s7 a)},

which denotes the last episode (before the beginning of the episode k), in which the 7 and V was

updated at (h, s). For notational simplicity, we use 7 to denote 7(k, h, s) here. After the end of

episode 7 and before the beginning of the episode k, the agent policy 7™ was not updated and V_ was

not updated at (h, s), i.e. Vi(s) = VTH( )= (1=p)Q (s, @7 (5)) + pmin, Q7 (s,a) and
—=7+1

7 (s) =7, (s) = argmax, Qh (s,a)). Thus,
Vi(s) =(1— P)Q;H(S T (s)) + PII{}HQ;H(S’G)
<(1=p)QF (5,77 (s) + pmin Q77 (5,0)

—r —k 71
<= )T (5,4 (6) + Q] s, argmin Q7 (5.0) 7y

<1 - )QT (5. 7h() + pmin QF (s,0) = Vi7" (s).

By induction from h = H + 1to 1 and £ = 1 to K, we can conclude that V’Z(s) > Vi(s) >
V,fk (s) > VF(s)and @:(s,a) > Qi (s,a) > ka (s,a) > Qi(s,a) forall (s,a, h, k) € S x A X
[H] x [K].

Regret Analysis According to the monotonicity, the regret can be bounded by

K

Regret(K) :=Y (V' (s}) -V, Z —Vh(shy). (72)

k=1 k=1
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By the update rules in Algorithm 2] we have
—k
Vi(si) = Via(sh)
—k —k —k .
<(1 — p)Qy(sh, arg max @, (s};, @) + pQy, (s}, arg meZ(SZ, a))
—k
= (1= p)Q} (51, arg max Qy (5, 0) + p@y, (s}, arg min Q} (57, a) (73)

=(1 - p)[@n — (s ah) + pl@), — Q¥I(s}, af)
=(@) — Q¥1(sk, af) + Dz (@ — @O)N(s) — (@ — Q¥1(sh, af).

Set nf = NF(sk, ak) and where k;(sF,af) is the episodekin which (sF,aF) was taken at stelg) h
for the i-th time. For notational simplicity, we set ¢ = V7, (s%) — V¥ (sF) and £F = Dz (@), —

QZ)](SE) — [@: - Qi](s’,‘i, a¥). According to the update rules,

o =Vi(sh) = VE(sh)

k
Ty

i ki(sk,aky &, (s¥,ak) ki(sh,al), ks (s al)
Sa?‘ﬁ(H_h—’—l)—i_Zlan’}; (Vthlh h ( h+1h h ) Vh—i—lh h (Sh+ P )—‘rQb,)
—k —k
Doy (@~ QM(sH) [T — Q¥1(sha)
nh ) ki(sk a®)
=aly (H = h+1)+ > aly (o5 +2b;) + €

i=1

(74)

nh

<a! k(H h+1) +ZO‘ "¢h+i @) + & + 4/ H3e/nk.

i=1

—k . .
We add V, (s§) — v (SZ) over k zllcndkregroup the summands in a different way. Note that for any
episode k, the term >, 0‘2; ¢:ﬁh’a’l) takes all the prior episodes k; < k where (s¥, a}) was taken
into account. In other words, for any episode k', the term ¢Z/+1 appears in the summands at all
posterior episodes k > k' where (sﬁl , aﬁl) was taken. The first time it appears we have nﬁ = nﬁl +1,
and the second time it appears we have ”Z = nﬁl + 2, and so on. Thus, we have
K

S (Va(sh) - VE(sh))

x>
=

K
K ny

O (H —h+ 1)+ 33 alanh "“+Z§h+24\/m

k=11i=1 k=1

K npy , K K
’ nk
A0 (H—h+1)+ > 6y D af™ +> &+ > 4\/Ho/n}
k=1 k=1

— _ k/
k=1 t_nh +1

)=

>
Il
—

(75)

M= T

IN
bl

A (H —h+1)+ (14 1/H) Z(thrl-l—th-i-Zﬁl\/H?’L/nh
=1 k=1 =
1

where the final inequality uses the property >, af < (1 + ) forevery i > 1.

Taking the induction from A = 1 to H, we have
K

S (Vi(sh) — VE(sh)

k

=1
H K H K H K
<3Y D ap(H—h+1)+3Y > &+ > 12y/H%/n}

=1k=1 h=1k=1 h=1k=1

(76)

=
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where we use the fact that (1 + 1/H)" < 3 and ¢%;_, = 0 for all k.

We bound the three items separately.
(1) We have 70 7% a0 (H—h+1)= S S ek =0)(H —h+1) < SAHZ.

(2) Similar to Lemma 4, by the Azuma-Hoeffding inequality, with probability 1 — 4, we have
Zthl Zszl ¢F < HV2HK..

(3) We have Y1 S8 12, [H3u/nf = Y1 S SN O /I < HV2HPSAKL.

In summary,

Regret(K) =Y (Vi (s}) VT (sh) < O(VSAH K. + SAH?)

and
* qout —K+1
Vi(s1) = Vi (s1) <V (s1) = VI (s1)
. —k
= min (Vy(s) = VE(st))

ke[K+1] (77)
5 2
<0 VSAH L+SAH .
K K
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