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A ADDITIONAL NUMERICAL RESULTS

A.1 ABLATION STUDY AND MORE COMPARISONS

In Section 7, we compared our algorithm with the robust TD algorithm in (Klima et al., 2019). Here,
we compare our algorithm with the algorithms in (Pinto et al., 2017; Tessler et al., 2019). The method
in (Tessler et al., 2019) requires an MDP solver to solve the optimal adversarial policy when the agent
policy is given and the optimal agent policy when the adversarial policy is given. The white-box
MDP solver requires knowledge of the underline MDP so that there is no learning curve and sample
complexity discussion in (Tessler et al., 2019). Thus, we implement the algorithms in (Pinto et al.,
2017; Tessler et al., 2019) with a Q-learning MDP solver, and compared the final evaluation rewards
and the learning curve. In addition, we implement the ablation study by setting different ⇢ and p. In
our experiments, the policy is learned in a clean environment, and is then tested on the perturbed
environment. ⇢ is the parameter in algorithm when learning the robust policy. ⇢ can be considered as
the agent’s guess about the probability of a disturbance occurring. However, p is the probability that
the perturb happens in the perturbed environment. In the perturbed environment, with probability p,
the action is perturbed by an adversarial action.

(a) p = 0.1, ⇢ = 0.1 (b) p = 0.2, ⇢ = 0.1 (c) p = 0.2, ⇢ = 0.2 (d) p = 0.2, ⇢ = 0.3

(e) p = 0.3, ⇢ = 0.3 (f) p = 0.3, ⇢ = 0.4 (g) p = 0.4, ⇢ = 0.4 (h) p = 0.5, ⇢ = 0.5

(i) p = 0.1, ⇢ = 0.1 (j) p = 0.2, ⇢ = 0.1 (k) p = 0.2, ⇢ = 0.2 (l) p = 0.2, ⇢ = 0.3

(m) p = 0.3, ⇢ = 0.3 (n) p = 0.3, ⇢ = 0.4 (o) p = 0.4, ⇢ = 0.4 (p) p = 0.5, ⇢ = 0.5

Figure 6: ARRLC v.s. RARL v.s. PR-PI

In Figure 6, we show the learning curves under different p and ⇢. It can be seen that our ARRLC
algorithm converges faster than the other algorithms. This demonstrates the efficiency of our ARRLC
algorithm to learn optimal policy under policy execution uncertainty.
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Figure 7: Ablation study on InvertedPendulum-v4 with fixed ⇢.

In Figure 7, given the agents trained with fixed rho, we test the agents in different disturbed
environments with different p. In Figure 8, we compared the different agents trained with different
rho. The x-axis is the different choice of ⇢ or p. The y-axis is the final evaluation rewards.

Figure 8: Ablation study on InvertedPendulum-v4 with fixed ⇢.

The theoretical guarantee on sample complexity and regret of our algorithm relies on the assumption
of known uncertainty parameter. However, in the experimental results shown in 7, the parameter can
mismatch with the true disturb probability. In the main paper Figure 9, we test the mismatch of the
uncertainty parameter ⇢ and true uncertainty probability p. We trained the agent with ⇢ = 0.2, but we
use p = 0.1 in the test. The proposed robust algorithm still outperforms the non-robust algorithm.

A.2 ROBUSTNESS TO DIFFERENT ADVERSARY

In this section we considered different adversary policies include both the fixed policy in the main
page and a random adversary policy. After the agent takes an action, with probability p, the random
adversary will uniformly randomly choose an adversary action to replace the agent’s action. In
Figure 9 and Figure 10, "fix" represents that the actions are perturbed by a fixed adversarial policy
during the testing, "random" represents that the actions are randomly perturbed during the testing, p
is the action perturbation probability.

Since we do not know whether the fixed policy or the random policy is the strongest adversary
policy against the agent, a more direct comparison is to use the learned worst-case policy in different
algorithms to do a cross-comparison. We used the learned worst-case policies to disturb the different
robust agents. We report the final evaluation rewards in Table 1. We trained our method in 2000
episodes and the approaches of Pinto et al. (2017); Tessler et al. (2019) in 30000 episodes. We set
that p = ⇢ = 0.2. The ARRLC agent performs the best against three different adversaries and the
ARRLC adversary impacts the most on three different agents.

Table 1: Final rewards under cross-comparison between ARRLC, PR-PI and RAPL

ARRLC adversary RAPL adversary PR-PI adversary

ARRLC agent 72.536 81.736 89.824

RAPL agent 49.936 72.216 70.6
PR-PI agent 52.788 63.784 86.648
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(a) p=0.1, fix (b) p=0.2, fix (c) p=0.1, random (d) p=0.2, random

(e) p=0.1, fix (f) p=0.2, fix (g) p=0.1, random (h) p=0.2, random

Figure 9: ARRLC v.s. ORLC.

(a) p=0.1, fix (b) p=0.2, fix (c) p=0.1, random (d) p=0.2, random

(e) p=0.1, fix (f) p=0.2, fix (g) p=0.1, random (h) p=0.2, random

Figure 10: ARRLC v.s. Robust TD

B PROOF OF PROPOSITION 1

The uncertainty set of the policy execution has the form in:

⇧⇢(⇡) := {e⇡|8s, e⇡h(·|s) = (1� ⇢)⇡(·|s) + ⇢⇡0
h
(·|s),⇡0

h
(·|s) 2 �A}. (12)

We define

C⇡,⇡
0
,⇢

h
(s) := E

"
HX

h0=h

Rh0(sh0 , ah0)|sh = s, ah0 ⇠ e⇡h0(·|sh0)

#

D⇡,⇡
0
,⇢

h
(s, a) := E

"
HX

h0=h

Rh0(sh0 , ah0)|sh = s, ah = a, ah0 ⇠ e⇡h0(·|sh0)

#
.

Robust Bellman Equation First we prove the action robust Bellman equation holds for any policy
⇡, state s action a and step h. From the definition of the robust value function in (1), we have
V ⇡

H+1(s) = 0, 8s 2 S .

We prove the robust Bellman equation by building a policy ⇡�. Here, policy ⇡� is the optimal
adversarial policy towards the policy ⇡.
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At step H , we set ⇡�
H
(s) = argmin

a2A RH(s, a). We have

V ⇡

H
(s) = min

⇡0
C⇡,⇡

0
,⇢

H
(s)

= (1� ⇢)[ ⇡H
RH ](s) + ⇢min

⇡0
[ ⇡

0
H
RH ](s)

= (1� ⇢)[ ⇡H
Q⇡

H
](s) + ⇢min

a2A
Q⇡

H
(s, a) = C⇡,⇡

�
,⇢

H
(s),

(13)

as VH+1 = 0.

The robust Bellman equation holds at step H and min⇡0
P

s
w(s)C⇡,⇡

0
,⇢

H
(s) =

P
s
w(s)min⇡0 C⇡,⇡

0
,⇢

H
(s) =

P
s
w(s)C⇡,⇡

�
,⇢

H
(s) for any state s and any weighted function

w : S ! �S .

Suppose the robust Bellman equation holds at step h + 1 and min⇡0
P

s
w(s)C⇡,⇡

0
,⇢

h+1 (s) =
P

s
w(s)min⇡0 C⇡,⇡

0
,⇢

h+1 (s) =
P

s
w(s)C⇡,⇡

�
,⇢

h+1 (s) for any state s and any weighted function
w : S ! �S .

Now we prove the robust Bellman equation holds at step h. From the definition of the robust
Q-function in (2) and the form of uncertainty set, we have

Q⇡

h
(s, a) = min

e⇡2⇧(⇡)
E
"

HX

h0=h

Rh0(sh0 , ah0)|sh = s, ah = a, ah0 ⇠ e⇡h0(·|sh0)

#

=min
⇡0

D⇡,⇡
0
,⇢

h
(s, a)

=Rh(s, a) + min
⇡0 s0⇠Ph(·|s,a)C

⇡,⇡
0
,⇢

h+1 (s)

=Rh(s, a) + s0⇠Ph(·|s,a) min
⇡0

C⇡,⇡
0
,⇢

h+1 (s)

=Rh(s, a) + [PhV
⇡

h+1](s, a).

(14)

We also have that Q⇡

h
(s, a) = D⇡,⇡

�
,⇢

h
(s, a).

Recall that a (stochastic) Markov policy is a set of H maps ⇡ := {⇡h : S ! �A}h2[H]. From the
definition of the robust value function in (1) and the form of uncertainty set, we have

V ⇡

h
(s) = min

e⇡2⇧(⇡)
E
"

HX

h0=h

Rh0(sh0 , ah0)|sh = s, ah0 ⇠ e⇡h0(·|sh0)

#

=min
⇡0

C⇡,⇡
0
,⇢

h
(s)

=min
⇡0

h

min
{⇡0

h0}H

h0=h+1

C⇡,⇡
0
,⇢

h
(s)

�(1� ⇢) min
{⇡0

h0}H

h0=h+1

Ea⇠⇡h(·|s)D
⇡,⇡

0
,⇢

h
(s, a) + ⇢min

⇡0
h

min
{⇡0

h0}H

h0=h+1

Ea⇠⇡
0
h
(·|s)D

⇡,⇡
0
,⇢

h
(s, a)

�(1� ⇢)Ea⇠⇡h(·|s) min
{⇡0

h0}H

h0=h+1

D⇡,⇡
0
,⇢

h
(s, a) + ⇢min

⇡0
h

Ea⇠⇡
0
h
(·|s) min

{⇡0
h0}H

h0=h+1

D⇡,⇡
0
,⇢

h
(s, a)

=(1� ⇢)[ ⇡h
Q⇡

h
](s) + ⇢min

a2A
Q⇡

h
(s, a).

(15)

We set ⇡�
h
(s) = argmin

a2A Q⇡

h
(s, a) = argmin

a2A D⇡,⇡
�
,⇢

h
(s, a).

At step h, we have

V ⇡

h
(s) C⇡,⇡

�
,⇢

h
(s)

=(1� ⇢)[ ⇡h
D⇡,⇡

�
,⇢

h
](s) + ⇢min

a2A
D⇡,⇡

�
,⇢

h
(s, a)

=(1� ⇢)[ ⇡h
Q⇡

h
](s) + ⇢min

a2A
Q⇡

h
(s, a),

(16)
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where the last equation comes from the robust Bellman equation at step h+ 1 and

D⇡,⇡
�
,⇢

h
(s, a) = Rh(s, a) + [PhC

⇡,⇡
�
,⇢

h+1 ](s, a) = Rh(s, a) + [PhV
⇡

h+1](s, a).

Thus, the robust Bellman equation holds at step h.

Then, we prove the commutability of the expectation and the minimization operations at step h. For
any weighted function w, we have min⇡0

P
s
w(s)C⇡,⇡

0
,⇢

h
(s) �

P
s
w(s)min⇡0 C⇡,⇡

0
,⇢

h
(s). Then,

min⇡0
P

s
w(s)C⇡,⇡

0
,⇢

h
(s) 

P
s
w(s)C⇡,⇡

�
,⇢

h
(s) =

P
s
w(s)min⇡0 C⇡,⇡

0
,⇢

h
(s).

By induction on h = H, · · · , 1, we prove the robust Bellman equation.

Perfect Duality and Robust Bellman Optimality Equation We now prove that the perfect duality
holds and can be solved by the optimal robust Bellman equation.

The control problem in the LHS of (4) is equivalent to

max
⇡

min
e⇡2⇧⇢(⇡)

E
"

HX

h0=h

Rh0(sh0 , ah0)|sh = s, ah0 ⇠ e⇡h0(·|sh0)

#
= max

⇡

min
⇡0

C⇡,⇡
0
,⇢

h
(s). (17)

The control problem in the RHS of (4) is equivalent to

min
e⇡2⇧⇢(⇡)

max
⇡

E
"

HX

h0=h

Rh0(sh0 , ah0)|sh = s, ah0 ⇠ e⇡h0(·|sh0)

#
= min

⇡0
max
⇡

C⇡,⇡
0
,⇢

h
(s). (18)

For step H , we have C⇡,⇡
0
,⇢

H
(s) = [ ((1�⇢)⇡+⇢⇡0)

H
RH ](s) = (1�⇢)[ ⇡H

RH ](s)+⇢[ ⇡
0
H
RH ](s).

Thus, we have

max
⇡

min
⇡0

C⇡,⇡
0
,⇢

H
(s) =(1� ⇢)max

⇡

[ ⇡H
RH ](s) + ⇢min

⇡0
[ ⇡

0
H
RH ](s)

=(1� ⇢)max
a2A

RH(s, a) + ⇢min
b2A

RH(s, b),
(19)

and

min
⇡0

max
⇡

C⇡,⇡
0
,⇢

H
(s) =(1� ⇢)max

⇡

[ ⇡H
RH ](s) + ⇢min

⇡0
[ ⇡

0
H
RH ](s)

=(1� ⇢)max
a2A

RH(s, a) + ⇢min
b2A

RH(s, b).
(20)

At step H , the perfect duality holds for all s and there always exists an optimal robust policy
⇡⇤
H
(s) = argmax

a2A Q⇤
H
(s, a) = argmax

a2A RH(s, a) and its corresponding optimal adversarial
policy ⇡�

H
(s) = argmin

a2A RH(s, a) which are deterministic. The action robust Bellman optimality
equation holds at step H for any stats s and action a.

In addition, max⇡ min⇡0
P

s
w(s)C⇡,⇡

0
,⇢

H
(s) =

P
s
w(s)max⇡ min⇡0 C⇡,⇡

0
,⇢

H
(s) for any weighted

function w : S ! �S . This can be shown as

max
⇡

min
⇡0

X

s2S
w(s)C⇡,⇡

0
,⇢

H
(s)

=(1� ⇢)max
⇡

X

s2S
w(s)[ ⇡H

RH ](s) + ⇢min
⇡0

X

s2S
w(s)[ ⇡

0
H
RH ](s)

=(1� ⇢)
X

s2S
w(s)max

a2A
RH(s, a) + ⇢

X

s2S
w(s)min

b2A
RH(s, b).

(21)

Suppose that at steps from h + 1 to H , the perfect duality holds for any s, the action robust
Bellman optimality equation holds for any state s and action a, there always exists an optimal robust
policy ⇡⇤

h0 = argmax
a2A Q⇤

h0(s, a) and its corresponding optimal adversarial policy ⇡�
h0(s) =

argmin
a2A Q⇤

h0(s, a), 8h0
� h+1, which is deterministic, and max⇡ min⇡0

P
s
w(s)C⇡,⇡

0
,⇢

h0 (s) =
P

s
w(s)max⇡ min⇡0 C⇡,⇡

0
,⇢

h0 (s) for any state s, any weighted function w : S ! �S and any
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h0
� h+1. We have V ⇤

h0(s) = V ⇡
⇤

h0 (s) = C⇡
⇤
,⇡

�
,⇢

h0 (s) and Q⇤
h0(s, a) = Q⇡

⇤

h0 (s, a) = D⇡
⇤
,⇡

�
,⇢

h0 (s, a)
for any state s and any h0

� h+ 1.

We first prove that the robust Bellman optimality equation holds at step h.

We have
Q⇤

h
(s, a) = max

⇡

min
⇡0

D⇡,⇡
0
,⇢

h
(s, a)

= max
⇡

min
⇡0

(Rh(s, a) + [PhC
⇡,⇡

0
,⇢

h+1 ](s, a))

= Rh(s, a) + [Ph(max
⇡

min
⇡0

C⇡,⇡
0
,⇢

h+1 )](s, a)

= Rh(s, a) + [PhV
⇤
h+1](s, a).

(22)

and also Q⇤
h
(s, a) = Q⇡

⇤

h
(s, a) = D⇡

⇤
,⇡

�
,⇢

h
(s, a).

From the robust Bellman equation, we have

max
⇡

V ⇡

h
(s) =max

⇡

✓
(1� ⇢)[ ⇡h

Q⇡

h
](s) + ⇢min

a2A
Q⇡

h
(s, a)

◆

(1� ⇢)max
⇡h

max
{⇡h}H

h0=h+1

[ ⇡h
Q⇡

h
](s) + ⇢ max

{⇡h}H

h0=h+1

min
a2A

Q⇡

h
(s, a)

(1� ⇢)max
⇡h

max
{⇡h}H

h0=h+1

[ ⇡h
Q⇡

h
](s) + ⇢min

a2A
max

{⇡h}H

h0=h+1

Q⇡

h
(s, a)

(1� ⇢)max
⇡h

[ ⇡h
Q⇤

h
](s) + ⇢min

a2A
Q⇤

h
(s, a)

=(1� ⇢)max
a2A

Q⇤
h
(s, a) + ⇢min

a2A
Q⇤

h
(s, a).

(23)

We set ⇡⇤
h
(s) = maxa2A Q⇤

h
(s, a). According to the robust bellman equation, we have

max
⇡

V ⇡

h
(s) � V ⇡

⇤

h
(s) = (1� ⇢)[ ⇡

⇤
h
Q⇡

⇤

h
](s) + ⇢min

a2A
Q⇡

⇤

h
(s, a)

= (1� ⇢)max
a2A

Q⇡
⇤

h
(s, a) + ⇢min

a2A
Q⇡

⇤

h
(s, a)

= (1� ⇢)max
a2A

Q⇤
h
(s, a) + ⇢min

a2A
Q⇤

h
(s, a).

(24)

Thus, the robust Bellman optimality equation holds at step h. There always exists an optimal
robust policy ⇡⇤

h
= argmax

a2A Q⇤
h
(s, a) and its corresponding optimal adversarial policy ⇡�

h
(s) =

argmin
a2A Q⇤

h
(s, a) that is deterministic so that C⇡

⇤
,⇡

�
,⇢

h
(s) = V ⇤

h
(s).

Then, we prove the commutability of the expectation, the minimization and the maximization
operations at step h.

In the proof of robust Bellman equation, we have shown that

min
⇡0

X

s

w(s)C⇡,⇡
0
,⇢

h
(s) =

X

s

w(s)min
⇡0

C⇡,⇡
0
,⇢

h
(s)

for any policy ⇡ and any weighted function w. Hence

max
⇡

min
⇡0

X

s

w(s)C⇡,⇡
0
,⇢

h
(s)
X

s

= max
⇡

X

s

w(s)min
⇡0

C⇡,⇡
0
,⇢

h
(s).

First, we have

max
⇡

X

s

w(s)min
⇡0

C⇡,⇡
0
,⇢

h
(s) 

X

s

w(s)max
⇡

min
⇡0

C⇡,⇡
0
,⇢

h
(s).

Then, we can show

max
⇡

X

s

w(s)min
⇡0

C⇡,⇡
0
,⇢

h
(s) �

X

s

w(s)min
⇡0

C⇡
⇤
,⇡

0
,⇢

h
(s)

=
X

s

w(s)C⇡
⇤
,⇡

�
,⇢

h
(s)

=
X

s

w(s)max
⇡

min
⇡0

C⇡,⇡
0
,⇢

h
(s). (25)
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In summary,

max
⇡

min
⇡0

X

s

w(s)C⇡,⇡
0
,⇢

h
(s)
X

s

= w(s)max
⇡

min
⇡0

C⇡,⇡
0
,⇢

h
(s).

We can show the perfect duality at step h by

max
⇡

min
⇡0

C⇡,⇡
0
,⇢

h
(s) = C⇡

⇤
,⇡

�
,⇢

h
(s) = max

⇡

C⇡,⇡
�
,⇢

h
(s) � min

⇡0
max
⇡

C⇡,⇡
0
,⇢

h
(s). (26)

By induction on h = H, · · · , 1, we prove Proposition 1.

C PROOF FOR ACTION ROBUST REINFORCEMENT LEARNING WITH
CERTIFICATES

In this section, we prove Theorem 1. Recall that we use Q
k

h
,V

k

h
,Qk

h
,V k

h
, Nk

h
, P̂ k

h
,r̂k
h

and ✓k
h

to denote
the values of Q

h
,V h,Q

h
,V

h
, max{Nh, 1}, P̂h, rh and ✓h at the beginning of the k-th episode in

Algorithm 1.

C.1 PROOF OF MONOTONICITY

C.1.1 PROOF OF LEMMA 1

When Nk

h
(s, a)  1, (8), (9) and (7) hold trivially by the bound of the rewards and value functions.

For every h 2 [H] the empiric Bernstein inequality combined with a union bound argument, to take
into account that Nk

h
(s, a) > 1 is a random number, leads to the following inequality w.p. 1�SAH�

(see Theorem 4 in (Maurer & Pontil, 2009))

���(P̂ k

h
� Ph)V

⇤
h+1(s, a)

��� 

s
2

P̂
k

h

V ⇤
h+1(s, a)◆

Nk

h
(s, a)

+
7H◆

3(Nk

h
(s, a))

, (27)

and

���(P̂ k

h
� Ph)V

⇡
k

h+1(s, a)
��� 

vuut2
P̂

k

h

V ⇡k

h+1(s, a)◆

Nk

h
(s, a)

+
7H◆

3(Nk

h
(s, a))

. (28)

Similarly, with Azuma’s inequality, w.p. 1� SAH�

��r̂k
h
(s, a)�Rh(s, a)

�� 

s
2V ar(rk

h
(s, a))◆

Nk

h
(s, a)

+
7◆

3(Nk

h
(s, a))



s
2r̂k

h
(s, a)◆

Nk

h
(s, a)

+
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where V ar(rk
h
(s, a)) is the empirical variance of Rh(s, a) computed by the Nk

h
(s, a) samples and
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C.1.2 PROOF OF LEMMA 2

We first prove that Q
k

h
(s, a) � Q⇤

h
(s, a) for all (s, a, h, k) 2 S ⇥ A ⇥ [H] ⇥ [K], by backward
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assuming the conclusion holds for h+ 1, by Algorithm 1, we have
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where the first inequality comes from event ER, V h+1(s) � V ⇤
h+1(s) and the definition of ✓k
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Plugging (32) back into (30), we have r̂k
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C.2 REGRET ANALYSIS

C.2.1 PROOF OF LEMMA 3

We consider the event ER
\ E

PV . The following analysis will be done assuming the successful event
E
R
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PV holds. By Lemma 2, the regret can be bounded by Regret(K) :=
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By the update steps in Algorithm 1, we have
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Bound of the error of the empirical probability estimator (a) By Bennett’s inequality, we have
that w.p. 1� S�
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where the second inequality is due to AM-GM inequality.

Bound of the error of the empirical variance estimator (b1) & (b2) Here, we bound
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where the second inequality is due to AM-GM inequality.
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Here we use (1 + 1/H)3H < 21.
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and
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We have that
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where the last inequality is due to (1� ⇢)a2 + ⇢b2 � ((1� ⇢)a+ ⇢b)2.

With probability 1� 2�, we also have that
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where the first inequality holds with probability 1 � � by Azuma-Hoeffding inequality, the sec-
ond inequality is due to the bound of V-values, the third inequality is due to Lemma 2 so that
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), the fourth inequality holds with

probability 1� � by Azuma-Hoeffding inequality, and the last inequality holds with 2ab  a2 + b2.

In summary, with probability at least 1��, we have
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In summary,
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D MODEL-FREE METHOD

In this section, we develop a model-free algorithm and analyze its theoretical guarantee. We
present the proposed Action Robust Q-learning with UCB-Hoeffding (AR-UCBH) algorithm show in
Algorithm 2. Here, we highlight the main idea of Algorithm 2. Algorithm 2 follows the same idea
of Algorithm 1, which trains the agent in a clean (simulation) environment and learns a policy that
performs well when applied to a perturbed environment with probabilistic policy execution uncertainty.
To simulate the action perturbation, Algorithm 2 chooses an adversarial action with probability ⇢. To
learn the agent’s optimal policy and the corresponding adversarial policy, Algorithm 2 computes an
optimistic estimate Q of Q⇤ and a pessimistic estimate Q of Q⇡

k

. Algorithm 2 uses the optimistic
estimates to explore the possible optimal policy ⇡ and uses the pessimistic estimates to explore the
possible adversarial policy ⇡. The difference is that Algorithm 2 use a model-free method to update
Q and V values.

Algorithm 2: Action Robust Q-learning with UCB-Hoeffding (AR-UCBH)
1: Set ↵t =

H+1
H+t

. Initialize V h(s) = H � h+ 1, Q
h
(s, a) = H � h+ 1, V

h
(s) = 0,

Q
h
(s, a) = 0, r̂h(s, a), Nh(s, a) = 0 for any state s 2 S , any action a 2 A and any step

h 2 [H]. V H+1(s) = V
H+1(s) = 0 and Q

H+1(s, a) = Q
H+1

(s, a) = 0 for all s and a.
� = H . Initial policy ⇡1

h
(a|s) and ⇡1

h
(a|s) = 1/A for any state s, action a and any step

h 2 [H].
2: for episode k = 1, 2, . . . ,K do

3: for step h = 1, 2, . . . , H do

4: Observe sk
h

.
5: Set ak

h
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a
Q

h
(sk

h
, a) , ak
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) = 1� ⇢ and
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h
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|sk

h
) = ⇢.

6: Take action ak
h
⇠ e⇡k

h
(·|sk

h
).

7: Receive reward rk
h

and observe sk
h+1.

8: Set t = Nh(skh, a
k

h
) Nh(skh, a

k

h
) + 1; bt =

p
H3◆/t.

9: Q
h
(sk

h
, ak

h
) (1� ↵t)Qh

(sk
h
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h
) + ↵t(rkh + V h+1(skh+1) + bt),

10: Q
h
(sk

h
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h
) (1� ↵t)Q

h
(sk

h
, ak

h
) + ↵t(rkh + V

h+1(s
k

h+1)� bt).
11: Set ⇡k+1

h
(sk

h
) = argmax

a
Q

h
(sk

h
, a), ⇡k+1

h
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h
) = argmin
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, a).

12: V h(skh) min{V h(skh), (1� ⇢)Q
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,⇡k+1
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h
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h
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13: V
h
(sk

h
) max{V

h
(sk

h
), (1� ⇢)Q
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14: if V
h
(sk

h
) > (1� ⇢)Q

h
(sk

h
,⇡k+1

h
(sk

h
)) + ⇢Q

h
(sk

h
,⇡k+1

h
(sk

h
)) then

15: ⇡k+1
h

= ⇡k

h
.

16: end if

17: end for

18: Output policy ⇡k+1 with certificates Ik+1 = [V 1(s
k

1), V 1(sk1)] and ✏k+1 = |Ik+1|.
19: end for

20: return ⇡k+1

Here, we highlight the challenges of the model-free planning compared with the model-based planing.
In the model-based planning, we performs value iteration and the Q values, V values, agent policy ⇡
and adversarial policy ⇡ are updated on all (s, a). However, in the model-free method, the Q values,
V values are updated only on (sk

h
, ak

h
) which are the samples on the trajectories. Compared with
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the model-based planning, the model-free planning is slower and less stable. We need to update the
output policy carefully. In line 14-16, Algorithm 2 does not update the output policy when the lower
bound on the value function of the new policy does not improve. By this, the output policies are
stably updated.

We provide the regret and sample complexity bounds of Algorithm 2 in the following:

Theorem 2 For any � 2 (0, 1], letting ◆ = log(2SABHK/�), then with probability at least 1� �,
Algorithm 2 achieves:

• V ⇤
1 (s1)� V ⇡
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1 (s1)  ✏, if the number of episodes K � ⌦(SAH5◆/✏2 + SAH2/✏).
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P
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⇤
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1)� V ⇡
k

1 (sk1))  O(
p
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The detailed proof is provided in Appendix E

E PROOF FOR MODEL-FREE ALGORITHM

In this section, we prove Theorem 2. Recall that we use Q
k

h
,V

k

h
,Qk

h
,V k

h
and Nk

h
to denote the values

of Q
h

,V h,Q
h

,V
h

and max{Nh, 1} at the beginning of the k-th episode.

Property of Learning Rate ↵t We refer the readers to the setting of the learning rate ↵t :=
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and the Lemma 4.1 in (Jin et al., 2018). For notational convenience, define ↵0
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and similarly
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In addition, for any k0  k, let t0 = Nk
0

h
(s, a). Thus, (s, a) was previously taken by the agent at step

h of episodes k1, k2, . . . , kt0 < k0. We have
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Confidence Bounds By the Azuma-Hoeffding inequality, with probability 1� �, we have that for
all s, a, h and t  K,
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At the same time, with probability 1� �, we have that for all s, a, h and t  K,�����
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In addition, we have
p

H3◆/t 
P

t

i=1 ↵
i

t
bi  2

p
H3◆/t.

Monotonicity Now we prove that V
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We first show the monotonicity of Q values. We have

(Q
k

h
�Q⇤

h
)(s, a) � ↵0

t
(H � h+ 1�Q⇤

h
(s, a)) +

tX

i=1

↵i

t

⇣
(V

ki

h+1 � V ⇤
h+1)(s

ki

h+1)
⌘
� 0, (66)
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and, by to the update rule of V values (line 13) in Algorithm 2,
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In addition, for any k0  k,
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Then, we show the monotonicity of V values. We have that
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By the update rule of V values (line 12) in Algorithm 2,
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Here, we need use the update rule of policy ⇡ (line 11-16) in Algorithm 2. Define ⌧(k, h, s) :=
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which denotes the last episode (before the beginning of the episode k), in which the ⇡ and V was
updated at (h, s). For notational simplicity, we use ⌧ to denote ⌧(k, h, s) here. After the end of
episode ⌧ and before the beginning of the episode k, the agent policy ⇡ was not updated and V was
not updated at (h, s), i.e. V k
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By induction from h = H + 1 to 1 and k = 1 to K, we can conclude that V
k

h
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Regret Analysis According to the monotonicity, the regret can be bounded by
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By the update rules in Algorithm 2, we have
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We add V
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h
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) over k and regroup the summands in a different way. Note that for any
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where the final inequality uses the property
P1

t=i
↵i

t
 (1 + 1

H
) for every i � 1.

Taking the induction from h = 1 to H , we have
KX

k=1

(V
k

1(s
k

1)� V k

1(s
k

1))

3
HX

h=1

KX

k=1

↵0
n
k

h

(H � h+ 1) + 3
HX

h=1

KX

k=1

⇠k
h
+

HX

h=1

KX

k=1

12
q

H3◆/nk

h

(76)

33



Under review as a conference paper at ICLR 2024

where we use the fact that (1 + 1/H)H < 3 and �k

H+1 = 0 for all k.

We bound the three items separately.
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