Contents

I__Intreduction|

2 Background and Motivation|

2.1 'Two families of compression operators|.

2.2 Error feedback: what 1t 1s good for, and what we still donotknow|

|3 Summary of contributions|

4__Main Results|

4.1 Markov compressors|

4.2 Compressed gradient descent using the Markov compressor|.

Xperiments

|A Extra Experiments|

IA.1 Experiments with nonconvex logistic regression|

IA.1.1 Experiment 1: Stepsize tolerance (extension)|

|IA.1.2 Experiment 2: Fine-tuning & and the stepsizes (extension)|

|IA.2 Experiments with least squares| Lo oL,

|A.2.1 Experiment 1: Stepsize tolerance|

IA.3 Deep learning experiments| o

IA.3.1 Tunedstepsizes| e
IA.3.2 Dependenceon k|

[B~ Proofs for Section[d.1E Distortion of Markov Compressor]

[C_Proofs for Section4.4k Theorem[T|
|C.1 The original error feedback method|
|IC.2 The proof of Theorem|l|.

D" Four Lemmas Needed in the Proofs of TheoremsPland 3]

O© O o0 0 0 g9 N &

15
15
15
19
20
20
25
25
25

26

27
27
28

[E_Proof of Theorem 2| 31

[E__Proof of Theorem[3[] 32
|G EF21+: The Algorithm and its Analysis| 32
(G.1 The EF21+ Algorithm|. 32
(G.2 Analysisof EF21+ 32
[H Dealing with Stochastic Gradients (Details for Section[d.7)] 33
I Computation of \/ *g((f:)) for some Compressors| 35
(.1 From unbiased to biased compressors|, 35
.2 Top-k and a scaled versionof Rand-k| 35

Appendix
A Extra Experiments

We now present several additional experiments. First, in Section[A.T| we comment on experiments
with nonconvex logistic regression (see (I9)), in Section[A.2]we perform experiments on least-squares
problem (as an example of a function that is not strongly convex but satisfies the PL inequality),
and finally, in Section[A-3] we conduct several deep learning experiments. The code is available at
github.com/IgorSokoloff/ef2l_experiments_source_code.

A.1 Experiments with nonconvex logistic regression
A.1.1 Experiment 1: Stepsize tolerance (extension)

This sequence of experiments extends the results presented in the corresponding paragraph of
Section 5] For each dataset, we select the parameter & (varied by rows) within the powers of 2. For
each plot, we vary the stepsize within the powers of 2 starting from the largest theoretically accepted
.

For example, for £ = 2 and EF21+ with mushrooms dataset we consider factors from the set
{1,2,4,8,16, 32,64, 128,256,512, 1024, 2048}

and select the stepsize as a multiple of the upper bound stated in Theorem 2]

Red diamond markers indicate the iterations at which EF21+ method uses mostly DCGD steps.
Precisely, the red diamond marker appears on the plot if the distortion ||C(s) — s|| is smaller that
|M(s) — s]|| for at least half of the workers, where s = V f;(z!*1). For more details, see figures
below, where parameter £ is fixed within each row and each column corresponds to a particular
method.

All of the figures above illustrate that EF21 and EF21+ tolerates much larger stepsizes, which makes
them more efficient in practice. Moreover, in all experiments with large stepsizes (16 x—128x), EF
starts oscillating, which hinders the convergence to the desired tolerance

15

https://github.com/IgorSokoloff/ef21_experiments_source_code

EF EF21

[\\ ‘ ——o g o b\f—\.\k‘ N

M-t CTIT VT

oAV N\ V|
:Enlkkl’k %

25000 50000 75000 0 25000 50000 7500
#bits/n #bits/n

b4 b4 2522::2;
X i X 106 X EF214km2: 16% - ah
0 Honp =Ly
p er2iike2 Eraiy: ko2 120
> > B ra14:kn 2 256
0 25000 50000 7500 0 25000 50000 7500 0 25000 50000 7500
#bits/n #bits/n #bits/n
EF EF21 EF21+
10° 100 100
e oo, 1 u‘w e
—e—@
102 \\kw iy, 102 102 ey
\ y — .
o /\77%’\-\)% N [o a W
z s meianc | 3 [¢
S10-¢ E10¢ S10-+ L —
E = = (—
EF; k=4;1x EF214; k=4; 1x '\
b i b4 b e >
W R e ? 17 R
B erkoa128x B Er1ikea108x B eF21sikod; 128x
0 25000 50000 7500 0 25000 50000 75000 0 25000 50000 7500
#bits/n #bits/n i
EF EF21
10° 10°

-

)
&

-

)
q

R
AT

1IVAx 12
o
S
L

|IVAxH 2
s
3
1

>,

o
N
y \

—321x S AN ikm 3210

1078 @ iR 1078 Qi \ - 0% @ g
EF; k=32 4 EF21; k=32 0 ER2L1km 32 0

0 25000 50000 75000 0 25000 50000 75000 0 25000 50000 75000
#bits/n #bits/n #bits/n

Figure 3: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing step-
sizes. Each row corresponds to a different value of k € {1, 2,4, 32}. The dataset used: phishing.
By 1x,2x,4x (and so on) we indicate that the stepsize was set to a multiple of the largest stepsize
predicted by our theory.

16

EF EF21
100 L 100

B Bi - Y vuw N ﬁ&
. STt @ ouii k
eFi ko1 22 e ko1 320 ,
10-6 ; EF: k=1 64x 10-6 z EF21;k=1; 6ax A - ; 14 kT
£F k= 1; 256x ER21:k-1; 256x x
pEe pE \\\ o\
0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
#bits/n #bits/n #bits/n
EF21+
10°
1072 o'
5
5107

" e o1t kg oae—]
10 . k2 256% 21k kzzsex L
£F; k=2 1024x Er2k k=2 2024 Er21e k=2 1024x PR

B> EF: k=2 2048x B> £F21; k=2 20a8x B> EF214; k=2 2008
0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
#bits/n #bits/n #bits/n
EF EF21+
10° — 10° —e—e —o—g
1072 v w 10-2 **\
k. | k. ‘/«"\/
5104 B 5104 S

EF214i k=4; 1x
EF214; k= 4; 32x
464

—6. EF; k=4; 64x ke 6 1 —6 EF214i k=
10 i - 4 250% er21 k4 350x 10 k=
k-4, 512¢ er21: k=i 1w
>
0

5 ko 4 1024 B e ko 1024 B> s keg;2024%
50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
#bits/n #bits/n #bits/n

EF EF21 EF21+

| TN

\

1IVFx12

€ k681 era k=64 1x P21+ k64, 1x
€k 08y 2 er21, k- 04 26 EF21v; ko 64,2

6| ¥ erikconax 6| W er2nk-onax 6| W erz1vikmsax
10 € ko 6418 10 £521; k- 64, 8x 10 EF214; k- 64, 8¢

er21, k-6 16x EF214; k=64, 16
0

£F; k=64 32¢ D> eran m6 320 B> Er21s;km 64, 32

50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
#bits/n #bits/n #bits/n

Figure 4: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing step-
sizes. Each row corresponds to a different value of k € {1, 2,4, 64}. The dataset used: mushrooms.
By 1x,2x,4x (and so on) we indicate that the stepsize was set to a multiple of the largest stepsize
predicted by our theory.

17

EF EF21 EF21+
of S— o 0
3 —e —e—o0 o 10 T —e o o e 1% %H—.—Q-—
\ TN
Wkl L‘..mh«gmmm ooy e 10-2 e y A 7/\ 10
T gl B \,
P x X
W Wil | S UL, E10-¢ L
= A M| B v ik
Qo b FHh Smnan | L \
E ko oo 107 z ok \ 107 § e
EF: k=1 1024 EF21:k=1;1024x 214 k=1:1024% |\
P> EFik=1; 2048 B> er21:k=1: 2008x D> era1sik=12088x |)
0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000
#bits/n #bits/n #bits/n
EF21+

D> er21ikm2 1020

60000

0 20000 60000
#bits/

EF21

40000
n

1+
EF2141 k=2 256%
B> EF214i k=2 1020x \

0 20000 40000 60000
#bits/n

A
e %o o o
; 3 T |

IColl

2

B er21ei ko s12¢

0 20000 40000

bits/n

EF21+

60000

. 1072 %“VO A
5
=
=3
Er2 o 250
> D> Er21 k= 4; 512x
0 20000 40000 60000 0 20000 40000 60000
its/n #bits/n
EF EF21
!l%! o = 10° !%
w! v %7 # A 2
A
“ 1072
&
51074
Qunny L &
E €Fi k= 64; x E €21 k- 64, 4
€F; k= 64; 8 €521, k= 64,8
5 ko 64; 16 Er21; k- 64 6%
0 20000 40000 60000 0 20000 40000 60000
bits/n #bits/n

1IVFx12

D

EF214; k= 64; 1x

b4

EF214 k= 64; 16%

0 20000 40000

bits/n

60000

Figure 5: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing
stepsizes. Each row corresponds to a different value of k € {1,2,4,64}. The dataset used: a9a.
By 1x,2x,4x (and so on) we indicate that the stepsize was set to a multiple of the largest stepsize
predicted by our theory.

18

EF21 EF21+

10°f s 10°
x o % —e o i —e—0 o
R
10-2 Tawsiy e S o 10-2 }T- g "
< i Ml s | MY YW
g g ~ .
B10-* ” l 107 vV e
< - - | T RAB _J/'(
o S o b S i
E s 10°° ziii?f:i?: 10°° Eiifiii Yot
B> e ko 120 B erou ko1 128 > erav: k01 2008
0.0 0.5 1.0 0 200000 400000 0 200000 400000
#bits/n le6 #bits/n #bits/n
EF EF21 EF21+
10°f 10°) 10°f
N o— —— @&——
o o \M B e g \ T
I — 10-2 N DS S 10 DT R A
b ool = J‘W“] Mﬂ'\y s N h/ \‘\ﬂ
3 % ! %
2 g A A S, 2 |
=3 i = - 210" \ L’k ;10’A Y & 4 \
o - - Y
ey b] oo :;1::1_ " e
wo T o TEi
D> Er2nk=2128x D> EF214; k=2 1034x
0.5 1.0 0 200000 400000 0 200000 400000
#bits/n le6 #bits/n #bits/n
EF EF21 EF21+
\ M
o AL GO, . ~
= LY W T r
& LEAPS Y A =
510 ¥ t = . E
2 X 2
Qo
107 § P :
b
D> EFi k=4 128x D> Er21 k= 4; 128% D> EF214; k=4 1034
0.0 5 10 0 200000 400000 0 200000 400000
#bits/n #bits/n #bits/n
EF21 EF21+
Rs—
4 . —e o g
"
\/M/\} IRAE:
\///\, é
=
era K=ot 1x EF21e k= 1x
I - o | F e kooi o -6 $ e o
10 § - 10 z 07 X i
€ ke 64 16 €r21. k- 64, 30x
D> £Fi k= 64; 32x D> EF21; k= 64; 6ax D> EF214: k= 64; 6ax
0.0 05 1.0 0 200000 400000 0 200000 400000
#bits/n le6 #bits/n #bits/n

Figure 6: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing
stepsizes. Each row corresponds to a different value of k € {1,2,4,64}. The dataset used: w8a.
By 1x,2x,4x (and so on) we indicate that the stepsize was set to a multiple of the largest stepsize
predicted by our theory.

A.1.2 Experiment 2: Fine-tuning & and the stepsizes (extension)

This sequence of experiments extends the results presented in the similar paragraph of Section [3}
In these plots we focus on the effect of the parameter k£ on convergence. For each method, dataset,
and k, the stepsize is fine-tuned (based on the fine-tuning results from Section [A-1.1)). Note that the
theoretical stepsize allowed by Theorem [2]increases with the increase of k.

19

phishing mushrooms

10000 20000 0 100000 200000 20000 40000
#bits/n #bits/n #bits/n

phishing mushrooms a%a w8a

: EF21 k=1 1024

|IVAxh| 12

0 5000 10000 15000 0 100000 200000 0 20000 40000
i bit:

50000 100000
#bits/n #bits/n #bits/n #bits/

s/n

Figure 7: Effect of the parameter k£ on convergence. For each method, dataset and k the stepsize
is fine-tuned. By 1x,2x,4x (and so on) we indicate that the stepsize was set to a multiple of the
largest stepsize predicted by our theory.

phishing mushrooms a%a
T

[IVAxh| [

0 50000 100000 150000 0
#bits/n

1 2 0 200000 400000 0.0 0.5 1.0
#bits/n le6 #bits/n #bits/n le6

Figure 8: GD tuning.

We see that the best choice of k relates to 1, 2 or 4, which confirms that both EF21 and EF are more
communication efficient compared to GD.

A.2 Experiments with least squares

In this section we will test on a function satisfying the PL condition (see Assumption 2). In particular,
we consider the function

1 N
f@) =5 D(ale i)
i=1

where a; € R% y; € {—1,1} are the training data, and N is the total number of datapoints. We
consider the same datasets as for the logistic regression problem (see Table [3).

A.2.1 Experiment 1: Stepsize tolerance

In this set of experiments we test the robustness/tolerance of EF, EF21, and EF21+ to large stepsizes,
using Top-k [Alistarh et al.,2017] as a canonical example of biased compressor C. For each plot, we
vary the stepsize within the powers of 2 starting from the largest theoretically accepted . For example,
for k = 2 and EF21+ with mushrooms dataset we consider factors from the set {1, 4, 64, 256, 1024}
and select the stepsize as a multiple of the upper bound stated in Theorem 2] Red diamond markers
indicate the iterations at which EF21+ method uses mostly DCGD steps. More precisely, the red
diamond marker appears on the plot if the distortion ||C(s) — s|| is smaller that || M (s) — s|| for at
least half of the workers, where s = V f;(x!™1). For more details, see Figures[9H12} where parameter
k is fixed within each row and each column correspond to a particular method.

20

EF21 EF21+

102 102 102 " : T
§ et ol
100 100 100 EF214; k=1 1024
e o \Mrf \O‘r—._._
=102 =107 L =
=3 =3
S T —
LR ARG IA ! \.\A‘ [
107° 107° 10°¢ <
~ A
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
#bits/n #bits/n #bits/n
EF EF21 EF21+
102 b Sihie 10 1\

,_.
<
=

e

7

1 1
~ _ 0%y
B P

kS 080 e o
= 10° N— = 107 \\'* R
S107 2101

1072 A 1072 1072 A T
AR S e N 2 n
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
#bits/n #bits/n #bits/n
EF EF21+
erike2 1x
. go

F k=2 60x
EF; k=2, 256x
B k=2 1024

10° m_ﬁ;\‘\

= % e o
%1072 —] L
g WWW%MW (Nae

104 AR Ll g A ‘\A‘\v\¥\'\‘

A
107° 1076 \ A
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
#bits/n #bits/n #bits/n
EF EF21 EF21+
10° 10® k=g

Eralvikng o

6ax
bkt ol

EF21+ k=2 1020

102 p= RN

PR M
= 0 - e =
100 a0 |1 RN R e e——e
E "\ , B \ -
. — S A
101 \" — 107 v .
A
10-2 ™ W{l %I.A‘l'l.v. At B 10-2 L. - A [E—
haAhA A Wy D — A
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
#bits/n #bits/n #bits/n
EF EF21 EF21+
T e b
3 ; % TP ke b o) % Eraoi ke oox
aike) o e b b 90
e b 1o i
- —e—— —}O‘H
L — A * -
— .

0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
#bits/n #bits/n #bits/n
EF EF21+
103 : a1 m b 1
€214 k=4 4
EF214 ko d
102 §
EF14 ko8 512
¥ 10t ,T
x x
= e =
—&————@ *————0—— b O ——@— L
Lo b= B "1} R = i
3 X
=101 M‘V\ \ = |
A \'\'
-2 W m \ [E—
10 LAN| VVI VWVVU ’\IVUV l\k
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
#bits/n #bits/n #Dbits/n

Figure 9: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing
stepsizes. The dataset used: phishing. By 1x,2x,4x (and so on) we indicate that the stepsize
was set to a multiple of the largest stepsize predicted by our theory.

21

EF21

EF21i k=1 1x
EF21; k= 1 G4

|
104 EF21i k=1, 128x
EF21; k=1, 1024x
€521, k-1, 4096

= 100 Z
2 m s
1074 WA e e e 107*

1076 1076
0 100000 200000 300000 0 100000 200000 300000 [100000 200000 300000
#bits/n #bits/n #bits/n
EF21
: EF21 k=1;1x
10° 10° J‘
% 10t % 10! %
= = =
] 1 |
X107 X107! =
= = =
10-3 10-3
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
; k-2 1
10%) 5 § e
W~ |

= e R
Zy0n ||
E m

S0 ™ Mk A Wt e

1075
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
10 1034 b
Py
Tiie 1 Ta
102} M EF: k=2 1024 102 { EF21+: k=2 1024
_ e o - oItsee o o
X 10t %O ¥ 10 S - —e— o
s \\ Bla s \ e
I 100 T 100
= 10 ~3 - 10 \V\
S [— X 10-1 i S
=10 — =10 \\ -
A
10-2 i /\\‘\ 5 1072 ~—A
= ——— - *\‘
1073 — 1073
0 100000 200000 300000) 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
ok ® ks L e
Ay €F21, ko 4, 64x EF214, ko ;60
e km 512 eF21; ke b 512% EF214 ko512
S —e— ¢ —e—g_
R — | —eo—@ |
e — [e S
\‘\A“\—v__
e
105 —~—
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
bits/n #bits/n #bits/n
EF EF21 EF21+
108 b R @ et
€ ke 64
.t 1206
ol Lo

fixt) = fix*)

fixt) = fix*)
T
2
7
|
#
|
|
\‘
*
|
|
*
flxt) = fix*)

107! A \A‘—?‘
10-2 T
T —
—N
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #Dbits/n

Figure 10: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing
stepsizes. The dataset used: mushrooms. By 1x,2x,4x (and so on) we indicate that the stepsize
was set to a multiple of the largest stepsize predicted by our theory.

22

EF21 EF21+

: EF21 k=1 1%
104 Eehishé 100
b G
102 \ 1021 B
= 10 e—e =100 *—e
£ 02 \\ S0 \
510 \- ——— 510 P ——
- ol S — - _ o S —
10°% % 10°% —
., \K. —~
10°¢ u\\\v-\ 1o A Y
0 100000 200000 300000 0 100000 200000 300000 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
" " wrem "
10° 10 i ES: o 10°
10° 10 X 10°
~ 10 ~ 10 ~ 10
% 101 —e—— @ o % 10t \ ° r’lé 101 e
g 100 | % 100 S g 100 |
= e a | Lol S—
e A ——— \ ol ——
- h b |y [| T -1 \A -1
10 10 \ 10 ~v_
102 102 Y - 10~ \A
AT ——— e —~—
100000 200000 300000 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
104 ; : sm,:ii‘;;x 104 z er21e k=2
10 l\.‘ 10° 1
—e— \0—0 o \H P
L 100 ——— | * 10° & — |
% x \\t\
B \\;**\ Bo” \v\
= | = \ e S
—a Y -4
10 ~a — 10 ~ -—
-
107 106 A 1076 R
0 100000 200000 300000 0 100000 200000 300000 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
: EF214; k=2 1x
103 10° 10° Lo e
102 102 102
- | e —~ -
e \ e e
1 1 I
= 10° ~e—| = 100 = 10° S
X —— | X X P
= TR | & —h— g | = e S
A — —— § N e -
10 ~ —v— 10 10 —y
—— T
10~ b bsvaaibiidaliy 1072 e 10~ —_—
I —A— |
100000 200000 300000 300000 0 100000 200000 300000
#bits/n #bits/n
EF EF21+
M EF214; k= 1x
4 Er2ie: ot on
102 I\P i he. 102 102 1\‘\‘ %EZ:ZZ: e
o —e—e¢ o - —e—o_ o —eo— g
L 100 *\ — % 100 —e—e | % 100 — —e—o
& i & K
|
B2 H Eig-2 e | B
— }
— —aA-
10 10 — 107 s
— |
100000~ 200000 300000 300000 00
#bits/n
EF
: ik=4;8
102 l&._ 102 r J trcesec 10 ILH o
- O P -
T 10 \ T 10 —e- 7 10! —e-
2 —~— | 2 =
£ 100 e & 100 — < 100 e —
& = &
O —v— 5 R ——
1071 A 107t \‘\ 107! \\
1072 1072 A 1072
0 100000 200000 300000 100000 200000 300000 100000 200000 300000
#bits/n #bits/n #bits/n

Figure 11: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing
stepsizes. The dataset used: a9a. By 1x,2x,4x (and so on) we indicate that the stepsize was set to
a multiple of the largest stepsize predicted by our theory.

23

= \ \v\ I o S
2104 .
A —
- i I
Qo : 10-6 Qo A
LohiE Py - e
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
102 10 10?
L —e—e——— | —e—e e o —e—e ' o o |
! T

lxt) = fix*)
S n
L 2
E.‘
{

T
E,
f(xt) = fix*)
=
3
/7
¥
o]
¥

t

|
*

I

|

[

|
fixt) — fix*)
g
—
/ #
¥

|

i

|
*

|

[

|

A
Er21 =1 1x A
F2L4 k=1 6

'S
102 Q: A
EF214 ko1, 2568
10-3 X 10-3 I Frnanhee
100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
10* k21 10* 10*
e ko2 256 .
102 § € k=2, 1024 102 § 10%| 5
EF: k=2 4096 EF21; k=2 4096, 1
] o ® " —e 9o e ¢ o o | F\\H‘Q—P‘Q‘F‘
100/ B e o 100 !\\ o 1000

= o = \\ =
=] i b adiiah - . 3 .
=102 21072 R 21072 B
B mwm ¥ 5 \ e — N 5 \ s — "
= AL = e = ——h— |
o A o \'\\L B \'\\v_\
A

1 - \ — 1074 A —y
- v
A \ A
10-6 1076 ——— & 1076 - A
———
— L
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
et ko2 1x
1 e T gomns | aopy
§ EF. k=2 102 § ER21 k=2 1020 i
102 EF k=2, 4096x 102 EF21 k=2, 4096x 102 L
— lﬁ.——o‘.‘k —~ HP‘G‘H——.—F— — —e—e— —eo— 9o
% 10t % 10! % 10!
< S~ < ~~ S
T ol N %o N T o N
—k—— —r— *—
= | = B S— = B —
. e . I S
Eol N & 0m \\'_\‘ | 5 .
TR b A N Y
A " A ——
1072 1072 < A 1072 A A
T ——
1073 10-3 10-3 L
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
w0 e B i t TR
€ k-8, 128 eF21; ko 4 120x €F214 ko4 128
€ km4; 1026 EF21; ke 1028 o g £F211. k-4, 1024
—e— o e —e—eo—8—o0— —
T
w t “V\;*‘ ——r \V-\;_*'\ e
—y v
s o & A
10 — e
— —‘\—s
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n
EF EF21 EF21+
4
102 102 102 5
!VH—.—\H !R——H——Q—._ ! T —e—¢—o
D 3 10 \\\ RS N\ EF214 k=4 1x
\ *- & * = * b S
T~ | 0 ~—~ | 0. ~—_ -4
' e 110 e 110 e 256
\ \'/\\Vj E—— \ \v\\'*;‘*i N g 024
= —
— 23 — 107 > & —— 107!
x M
g ity '4\
10-2 ~— 10-2
100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
#bits/n #bits/n #bits/n

Figure 12: The performance of EF, EF21, and EF21+ with Top-k compressor, and for increasing
stepsizes. The dataset used: w8a. By 1x,2x,4x (and so on) we indicate that the stepsize was set to
a multiple of the largest stepsize predicted by our theory.

All of the figures above illustrate that in the PL setting, EF21 and EF21+ tolerate much larger
stepsizes than EF, which makes them more efficient in practice. Moreover, in all experiments with
large stepsizes (512x—4096), EF starts oscillating, which hinders the convergence to the desired
tolerance.

24

A.3 Deep learning experiments

In this section, we replace full gradient V f;(x%*1) in the algorithms EF21 and EF by its stochastic
estimator (minibatch without replacement), and conduct several deep learning experiments for multi-
class image classification. In particular, we compare our EF21 method to EF by running ResNet18
[He et al.l 2016]] and VGG11 models on the CIFAR-10 [Krizhevsky et al.l 2009]] dataset.

We implement the algorithms in PyTorch [Paszke et al.,2019] and run the experiments on several

GPUs. We used 3 different GPU cluster node types in total within all experiments:

1. NVIDIA GeForce GTX 1080 Ti;
2. NVIDIA GeForce RTX 2080 Ti;

3. NVIDIA Tesla V100.

The dataset is split into n = 5 equal parts. Total train set size for CIFAR-10 is 50,000. The test set
for evaluation has 10,000 data points. The train set is split into batches of size 7 € {128,1024}. The
first four workers own equal number of batches of data, while the last worker has the rest.

A.3.1 Tuned stepsizes

In our first experiments, summarized in Figures[13]and [T4] we fix k£ ~ 0.05D and 7 = 1024 for
ResNetl8, and 7 = 128 for VGG1 1E| We tune the stepsize starting from 1073 as a baseline, and
progressively increase it by a factor of 2. In Figure[I3]we compare EF, EF21, EF21+, and SGD with
the best tuned stepsizes. The experiment shows that during the training, both EF and EF21 (EF21+)
perform similarly with a slight improvement in the new EF21 method. Moreover, EF21 achieves
better test accuracy for both NN architectures.

Training resnet18@CIFAR1O with k= 0.05D, T=1024

o
>

o
=

119f)11*
Accuracy

v
10 20 0 10 10
#Gbits/n #Gbits/n #Gbits/n

Figure 13: ResNet18 on CIFAR-10.

10
#Gbits/n

Training vgg11@CIFAR10 with k= 0.05D, T=128

[1VAx)

100 0 100 100
#Gbits/n #Gbits/n #Gbits/n

Figure 14: VGG11 on CIFAR-10.

100
#Gbits/n

A.3.2 Dependence on &

In this experiment, we fix the batch size 7 = 1024 and a medium stepsize v = 1.6 - 1072, We demon-
strate that choosing smaller % in the Markov compressor makes the method more communication
efficient, and helps it to achieve higher test accuracy more quickly.

8D is the number of model parameters. For ResNet18, D = 11,511,784, and for VGG11, D = 132,863,336.

25

Accuracy
o
@

°
S

20 40 20 40 20 a 20
#Gbits/n #Gbits/n #Gbits/n #Gbits/n

Figure 15: ResNet18 on CIFAR-10, minibatch size 7 = 1024.

B Proofs for Section 4.1} Distortion of Markov Compressor

We have made a couple statements, without proof, at the end of Section@ which were not critical to
the development of our results. Here we provide the justification.

Lemma 1. Let {v'};>0 be any sequence of vectors in R%. Let

D' M@ o' (20)

be the distortion of the Markov compressor M on input v*. Then
E[D'] <(1-0)E[D°] +8) (1—-6) A" @n

where At % ||thrl — thQ.

Proof. By conditioning on M (v!), we get
E[Dt+1|M(vt)] {HM t+1) t+1H | M(v)]

E [[IM() + ¢ (1 — M) — o1 | Mm0)]

%) (1-a) HvH'l — M) H2
< (-a) [+s) o = ME[*+ @457 [0t = o]
= (1-0)[jo" = M@ +,6At, (22)

where s > 0 is small enough so that that 1 — 6 = (1 — a)(1 + s) < 1, and we define § =
(1-a)(1+s71).
By applying the tower property, we get

E [Dt+l] E [E [Dt+1 | M]]

(1= 0)E [[Jo* — M@")[*] + pa’

g I

(1—60)E [D'] + A"

It remains to unroll this recurrence.

Corollary 1. Assume that A* < (1 — ¢)*A° for all t > 0 and some ¢ > 0. Then

lim E [D] = 0.

t—o0

26

Proof. Using Lemmal[l] we get

o t—1
B T 0-0E[D7) 53 (- 0ya
z=0t71
< (1L-0)'E[D]+BAY (1-0)(1—¢)"
-
< (1-0)'E[D]+BA°D (1 - min{f,¢})"
i=0
= (1-6)'E[D°] +¢(1 — min{f,¢})' BA°.
Clearly, the right hand side converges to 0 as ¢ — oo. O

C Proofs for Section 4.4: Theorem [

In this section we describe the original error feedback (EF) method, restate the EF-EF21 equivalence
theorem (Theorem |I|), and prove it.

C.1 The original error feedback method

The EF method is described in Algorithm 3] We write it in a slightly non-conventional but equivalent
form which facilitates comparison with EF21.

EF works as follows. In iteration t+ = 0, each node i computes its local gradient V f;(2°), and
“would like” to communicate the vector vV f;(2") to the master, which is supposed to perform an
aggregation of these vectors via averaging, and perform the gradient-type step

1< ,
ol =29 — - Z”/Vfi(:z:o).
i=1

This, in fact, is one step of gradient descent. However, the vector 7V f; (10) is hard to communi-
cate. For this reason, this vector needs to be compressed, and the compressed version needs to be
communicated instead. This would lead to the iteration

1 n
1 0 0 0 (.0
— _ = 0) = C(vV [i(2")),
o= ZE 1 w; where w; =C(yV fi(z"))

which is a Variantm of distributed CGD (DCGD).
However, it is well known that DCGD may diverge. The key idea of error feedback is to compute the

=V fi(2?) = C(yV fi(2®)) = 1V fi(2) — wi,
which is the difference between the message vV f;(2") we want to communicate, and the compressed
message w) we actually communicate. This error is then added to the message 7V f;(z') we would
normally want to communicate in the next iteration, providing feedback/compensation for the error
incurred. That is, in the next iteration, node ¢« communicates the compressed vector

w; =C(e! +Vfi(z"))

instead. Note that since in iteration 1 we wanted to communicate the vector ¢! + vV f;(2!), the error
in the next iteration becomes

=l +qVfi(zh) = Cle! + 4V i(xh)) = ef + 9V fi(z!) — w}.

This process is repeated, leading to Algorithm 3]

"This method is DCGD if C is positively homogeneous, i.c., of C(vg) = vC(g) for every v > 0 and g € R,
However, even without positive homogeneity, this variant has the same theoretical properties as standard DCGD.

27

Algorithm 3 EF (Original error feedback)

1: Eachnode i = 1,...,n sets the initial error to zero:
2: Bachnode i = 1,...,n computes w{ = C(7V fi(2")) and sends this to the master
3: fort=0,1,2,...,T —1do

4 Master computes /! = ot — L 37" 4!

5 for all nodes i = 1,...,n in parallel do

6: Compute current error: =cl +9Vfi(z") —w!

7: Compute new local gradient V f; (z*+1)

8 Compute error-compensated (stepsize-scaled) gradient wf“ =((+ AV fi(ztth)
9 Send w! ™! to the master
10 end for
11: end for

C.2 The proof of Theorem[I]

Theorem 1. Assume that C is deterministic, positive homogeneous and additive. Then EF (Algo-
rithm and EF21 (Algorithm@) produce the same sequences of iterates {z'}>(.

t
P =

Proof. To prove this result, it suffices to show that w! = ~g! for all ¢ > 0. We perform this proof by

induction.
Base case (t = 0): Recall thatw) = C(yV f;(2%)) and ¢? = C(V f;(x?)). By positive homogeneity
of C, we have

w; = C(yV fi(a?)) = 1C(Vfi(2°)) = g7

Inductive step: Assume that w! = ~g! holds for some ¢ > 0. Note that in view of how EF operates,
we have

witt =¢C (ef+1 +V i) =C (e + 7V fi(a") — wi + ’nyi(a:tH)) .
Since we assume that C is additive, and because w! = C(el + vV f;(z')), we can write
wtt = C (el +4Vfi(a")) +C (Vi) —wl)
= wl+C (Vi) —wl).

Finally, using positive homogeneity, our inductive hypothesis, and the way ¢! is updated in EF21, we
can write

witt = o (1105 +C (Vfi(xt“) - 1w$)>
Y Y
7 (9; +C (Vfi(z™) — gi))
= g,
which concludes our proof. O

D Four Lemmas Needed in the Proofs of Theorems 2/ and
We first state several auxiliary results we need for the proofs of our main theorems.

D.1 Compression distortion bound

The following lemma play a key role in our analysis. It characterizes the change of the distortion
imparted by the Markov compressor in a single iteration.

Lemma 2. Let C € B(a) for 0 < a < 1. Define G =4 lgt — Vfi(z*)|* and W «
{gt, ..., g, xt, 2t} For any s > 0 we have
E[GI W] < (1= 0(s)Gh + B(s) |V fila" 1) = V()| (23)

28

where
0s)Z1-(1-a)1+s), and Bs)LA-a)1+s1). (24)

Proof.

Elei W) = E [t - VhEP]

E[llgf + (Vi) — gf) = VhitatH|* | W]

NS

(1—a)||Vfilah) = gt
(1—a)(1+5) || Vfilz') — gt
+(1—«) (1 + s_l) HVfi(xtH) — Vfi(xt)|

where the last inequality follows from Young’s inequality, which states that for any a,b € R and any
s> 0wehave ||a+b||> < (1+s) |lal|® + (14 s1) ||b]|>. O

IN

2

)

In particular, consider node ¢ and iteration ¢. Applying Markov compressor specific to node 7 (let
us call it M;) to vf = Vf;(z!), we get g¢ = M;(v!). In the next iteration, we apply Markov
compressor to the new gradient, v! ™! = V f;(x**1), and the compressed vector is g/ = M, (v!T1).
Note that G§ is the distortion of Markov compressor at iteration ¢, and that describes how this
distortion changes from iteration ¢ to iteration ¢ 4+ 1. The expectation on the left hand side is over
the randomness inherent in C (and so, for example, if C is the Top-k compressor, expectation is not

needed).

Note that since the distortion of the Markov compressor at iteration ¢ is equal to
¢ def t t

G; = Hgi — Vfi(x)‘

[23) says that, provided that §(s) > 0, the distortion decreases by the factor of 1 — 6(s), subject to
the additive error

2

)

el(s) & B(s) |V fu(a) = V(b7

That is, (23) can be written in the form

E [[Mi(V i@ ™) = V@ |* 1 W] < (1= 00)) [Ma(V i) = Vila")|* + €4 (s).

Note that since our method converges, the difference V f;(x!*1) — V f;(z*) decreases to zero, and
hence the additive error £!(s) decreases to zero, too.

Note that the distortion evolution mechanism described by Lemma [2] is fundamentally different
from the distortion evolution mechanism behind the vanilla biased compressor C. Indeed, for this
compressor we instead have

E[[lc(vhi@) = VhE | W] < (1= a) [V).

This inequality bounds the distortion, but does not provide a recursion characterizing how the
distortion changes from one iteration to another.

D.2 Optimal choice of s in Lemma 2]

Notice that in Lemma [2] we have some freedom in how to choose s. It turns out, and this will be
apparent from the proofs of Theorems [2and 3] that the optimal way of choosing s is to minimize the

ratio %. The next lemma characterizes the optimal choice of s. Note that the upper bound on s is

equivalent to requiring that 6(s) > 0, i.e., that the first term on the right hand side in (23)) results in a
contraction.

Lemma 3. Let 0 < a < 1 and for s > 0 let 0(s) and B(s) be as in 24). Then the solution of the

optimization problem
min{ﬁ(s) : o<s<0‘a} (25)

is given by s* = —~— — 1. Furthermore, 0(s*) = 1 — /1 — a, B(s*) = —72_ and

Vi—a 1—v/1—a
* 1 1 v1- 2
Blsm) _ 1= ¢ 1<z (26)
0(s*) 11—« a @ e
Proof. After simple algebraic manipulation, it is easy to see that
B(s) 1 1 -t
= - — S
0(s) l—a (1+49)(1-a) ’
and hence the optimization problem is equivalent to the problem
. def 1 a
= O _—
msm{go(s) (1+s)(1—a)+ I }

Note that ¢ is convex, and that ¢(0) = ¢(1%;) = 2. Hence, the global minimum of ¢ must lie

in the interval 0 < s < 2. Thus, we can drop the constraints, and find the solution by looking
for a stationary point (i.e., for s* satisfying ’(s*) = 0), which leads to s* = 1 — /1 — a. The rest

follows by substituting the value s = s* to the expressions for 6(s), 8(s) and /2 é;; . O

D.3 A descent lemma

The next lemma, due to [Li et al.| [2021]], gives a bound on the function value after one step of a
method of the type

pit1 def ¢
xt =g,

where g' € R is any vector, and y > 0 any scalar. The only assumption we need for it to hold is for
f to have L-Lipschitz gradient.

def

Lemma 4 ([Li et al., 2021])). Suppose that function f is L-smooth and let x*+! = zt — vgt, where

gt € R% is any vector, and -y > 0 any scalar. Then we have
1 L
f(xH'l) < f(xt) . % va(xt)H2 _ (_ 2) th+1 - xtH2 i % Hgt _ Vf(l't)HQ . 27

D.4 Stepsize selection

The only purpose of our final lemma is to get an easy-to-write bound on the stepsize. We achieve this
at the cost of a slightly worse theoretical result, by at most a factor of two. In particular, in the proof
of our main theorems, the stepsize needs to satisfy an inequality of the type

ay? +by<1 (28)

where a, b are positive scalars. Instead of writing an algebraic expression for the largest ~y satisfying
this inequality (let’s call this optimal stepsize v*), we first observe that, necessarily,

remn{fl)

Further it is easy to verify that v~ et \fl 5 satisfies the quadratic inequality (28)), and that

does not. So, any 0 < v < 4~ satisfies (28), and the upper bound is at most a factor of 2 worse

+ def

f+b
than ~*.

‘We now formalize the above observations.

Lemma5. Letab > 0. If0 <~ < ﬁ then ay? + by < 1. Moreover; the bound is tight up to

. 1 . 11 2
the factor of 2 since NG < mm{ﬁ, 5} < NGEY

30

E Proof of Theorem
Proof. STEP 1. Recall that Lemma [2]says that
B [l - v 1] B 00 ot - Va6 48 VA6 - ThEO) @)

where 6 = 0(s*) and 8 = S(s*) are given by Lemma[3] Averaging inequalities (29) over i €
{1,2,...,n} gives

E [Gt+1 | Wt] ™ I ZE [Hgtﬂ f+1)H2 | Wt}
2 -0 13 |- v+t ZHVL) = V)
i=1

=

1 n
(1-0)G" +5- SOV il = v fih)|)?

=1
(1- Gf+ﬁ< ZLQ) By

where in the last step we have applied L;-smoothness of functions f; for¢ = 1,2,...,n. Using
Tower property in (30), we proceed to

2 (30)

IN

(£

E[G*] =E[E [GtH (W< A-0)E[G] + BLE [th“ — xt||2} . 3D

2 .
, We obtain

STEP 2. Next, using Lemma and Jensen’s inequality applied to the function z — ||«
the bound

f(xt-i-l) @ f(xt) _ % va(xt)HQ _ (1 _ é’) th+1 t

n

Z ~ Vfi(a"))

2y —
@ 1 L
< @)= 2V - (27 - 2) o+t =t |* + %G‘ (32)

Subtracting i from both sides of (32)) and taking expectation, we get

E[f@*) -] < E[f@) -1 - JE[IVAE)|f]
(5 -5) e[l el + JEG). o9

COMBINING STEP 1 AND STEP 2. Let 5t & E[f(zt) — /], st £ E[G"] and +* &

E {Hxﬂrl — gzt HQ} . Then by adding (33) with a 5;; multiple of (3T) we obtain

t+1 , V41 t 7 ¢ L_E t Yot (a72.t et
07+ 548 <9 2||Vf(as)|| (27 2)7‘ + 58 +29(ﬁLr+(1 9)5)
1 L ~
= o Lt - D) - (27_2_;0@2)#
< 04 st — 2 |V H

The last inequality follows from the bound 'y + L~ < 1, which holds because of Lemmaand
our assumption on the stepsize. By summing up 1nequahtles for t=0,...,7—1, we get

OS6T+%STS50 70 %z_: “Vf }
t=0

31

Multiplying both sides by 7%, after rearranging we get

T-1

S zE[Ivse] < 2+ 2

t=0

It remains to notice that the left hand side can be interpreted as E [HV f(@T) ||2} , where 27 is chosen

from 2°, ', ..., 27! uniformly at random. O

F Proof of Theorem 3

Proof. We proceed as in the previous proof, but use the PL inequality and subtract f(z*) from both
sides of (32) to get
1

E[f("*) = fa")] @”Evuw—ﬂﬂﬂ—QWmef—(%—g)wﬁ*—ﬁW+§@

< a-mwE) -] - (55 - 5) e I 5o

Let &' ¥ E[f(at) — f(z*), st L E[G and r* &' E [||xt+1 - xt||2]. Then by adding the above
inequality with a 7 multiple of (31}, we obtain

1 L ~
6t+1+%8t+1 < (1)t — (_) rt+lst+g((1_9)st+ﬁL2rt)

2y 2 2
0 1 L BEQ’Y
= (1—yp)d + l—-)sf— | ——-=— ¢
(L= +5 (2) § (27 2 ¢)"
. .. . L BL?
Note that our assumption on the stepsize implies that 1 — 5 < 1 —9pand 5=~ — 5 — 55+ > 0. The

last inequality follows from the bound ~2 @ ++vL < 1, which holds because of Lemmaand our
assumption on the stepsize. Thus,

t41 | T _ t Vot
6+ 28 < (1 w)(5+93).

It remains to unroll the recurrence. O

G EF21+: The Algorithm and its Analysis

G.1 The EF21+ Algorithm

In this section we formally present the EF21+ algorithm (see Algorithm[d)), and show that Theorems
and 3] still apply.

G.2 Analysis of EF21+

It is easy to see that both Theorem 2] and Theorem [3|apply for EF21+ as well, under the additional
assumption that C is deterministic, such as Top-k. Note that the properties of C appear in the proofs
only through Lemma 2] which in the language of Algorithm []says that

E[MI | WY < (1-0)GE + B[V et — Vi),
where G = ||g! — V f;(2')||*. On the other hand, due to Step 8 in Algorlthm we know that
G < min{ BT, MY < M

Now, due to to the assumption that C is a deterministic compressor, we have E [Gg“ | Wt] < GE'H.
By stringing these three inequalities together, we arrive at

E[GI | W < (1-60)G: + 8|V fi(a™) - Vi),

and this inequality can be used in the proofs instead. The rest of the proof is identical.

32

Algorithm 4 EF21+ (Multiple nodes)

1: Input: starting point 2° € Rd @) =C(Vv fz(9)) for i = 1,...,n (known by nodes and the
master); learning rate v > 0; g° = 1 ZZ 1 g (known by master)

2: fort=0,1,2,...,T —1do

3: Master computes 2!t = 2t — yg' and broadcasts x'*! to all nodes

4: for all nodes i = 1,...,n in parallel do

5: Compute gradient compressed by biased compressor bt = C (V fi(xtt1))

6 Compute gradient compressed my Markov compressor mitt = gt +C(Vfi(2t1) — gb)

7

Compute distortions: BfH:HbEH V fi(zt 1) H .Mt+1 ||mthl Vfi($t+1)|‘2

| v fmt e < g
5 Set i B i M s Bt
K3 K3
9: end for
10: ~ Master computes gt = 1377 g+t
11: end for

H Dealing with Stochastic Gradients (Details for Section 4.7)

We now describe a natural extension of EF21 to the setting where full gradient computations are
replaced by stochastic gradient estimators, i.e., we use a random vector

9i = Vfi(x")

instead of V f;(x?). This simple change leads to Algorithm where we highlight in red the parts that
differ from the exact/full gradient version of EF21.

Algorithm 5 EF21 (Multiple nodes + Stochastic regime)

1: Input: starting point z° € R%; ¢9 = C(3Y), where §! ~ V f;(2") fori = 1,...,n (known by
nodes and the master); learning rate v > 0; ¢° = = 3™ | % (known by master)
:fort=0,1,2,..., T —1do

3 Master computes z'+! = z! — vg* and broadcasts 2**! to all nodes
4 for all nodes i = 1,...,n in parallel do

5 Compute a stochastic gradient gt ~ Vf (xtt1)

6: Compress ¢t = C(gi™" — gl) and send ¢! to the master

7 Update local state gt+1 =gt+C("" —gh)

8 end for

9 Master computes g'*1 = 23" gl via gttt =gt + L0 o
10: end for

An analysis of this extension/generalization can be done in a similar manner. The key change is the
replacement of Lemma [2]in the proofs of the two complexity theorems, and then accounting for this
change in the proof. However, this is easy to do. We now describe what Lemma 2] should be replaced
with.

We first start with a technical lemma.

Lemma 6. LetC € B(a), and let ¢ € RY be a random vector independent of C, with zero mean and
variance bounded as E [||§H2] < o> Then for any s > 0, we have

E||C(x+¢&)— m\ﬂ <(1-a)(l+s) HJCH2 + ((1 —a)(1+s)+1+ s_l) o2, vz € RY.
Proof. First, due to Young’s inequality, for any s > 0 we have
IC(x +&) —a|* < (1 +) [IC(x +&) — (@ + I + (L +s71) [I€]* (34)

33

By taking conditional expectation, we get

Eflca+o -2l 1] C (+oE[lc@ro—@rol? |+ a+sel?

NG

1+s)(1—a)llz+&)*+ @ +s))
= (I—a)(1+s)lz]” +2(1 — a)(1 +s)(z,)
(1 —a)(1+s)+1+s71) €. (35)

Taking expectation again, applying the tower property, and using the fact that E[(] = 0 and
i {Hf”ﬂ < 02, we finally get

E[lc@+&-al’] = E[E[lc@+& -2l
e 1—a)1+s)|lz)*+ (1 —a)1+s)+1+s71) o>
O

We will choose s < 12—, so that 1 — & &f (1 — a)(1+ s) < 1. The above lemma postulates that for

C € B(«), and under certain assumptions on the noise £, there exist constants & > 0 and 6 > 0 such
that

ElC+&) - al| < (1—a)|al® +6% VzeR% (36)
We will elevate this inequality into an assumption because the particular values for & and & given by

the lemma will not be tight for every compressor C, and we want to formulate our complexity results
with as tight constants as possible.

Assumption 3. Let C : R? — R? be a (possibly randomized) mapping and let ¢ € R? be a random
vector independent of C. We assume that there exist constants & > 0 and & > 0 such that (36) holds
forall x € R%,

We now present an analogue of Lemma [2in the stochastic regime.
Lemma 7. Consider Algorithmand let the the stochastic estimator gt be given by
i = Vi(a') + &,
t+ t . . t def
where & is a random vector. Assume that for & = &, inequality (36) hold Let G; =
lgt — V fi(z")]]* and W' o {gt,....gt, at, 21} Foranyt > 0 we have
E[GH | W] <(1—a)(1+8) G+ (1—a) (1+s) ||V = V@] +6% GT)

1-0(s) B(s)

Proof.

7

B[O W) = B[- VA W]

E|[lg; +C(V i) + €4 = gf) = VA |]

(1—&) ||V fila"™) - g|* + 52
(1—&)(1+9)||Vfilz') — g
(1= @) (1457 [[VAEH) = V)| + 62

IA NG

O

It is straightforward to use this inequality in the proofs of Theorems [2]and [3]to establish complexity
results for our stochastic variant of EF21.

8Recall that by Lemma@ it holds if £ = £! is a zero mean vector with variance bounded by 2.

34

I Computation of

()) for some Compressors

I.1 From unbiased to biased compressors

We start by proving the simple and very well known result about the relationship between the classes
U(w) and B(«) we mentioned in Section 2}

Lemma 8. IfC € U(w), then H—WC EIB%(ler)

Proof. Fix x € R%. Note that for C € U(w) we have

Elc@)] = = (38)
E(lc@l’] < (+w) el (39)
Then
2
e -] - ﬁ E[IC@)?] - 2 ElC(@)a)] + el
< a3)2|| o+ e
@ 1
- (14w

2
14w
1 2
= 1——- .
(1= 2) el

1.2 Top-k and a scaled version of Rand-%

We now compute the value ’;g)) appearing in pour complexity theorems for two well known
compressors belonging to the class B(«).

Example 1. Let C be the Top-k compressor. Then C € B(a) with o = % and

B(s*) V1—Fad
0(s*) 1—+/1—ka

Proof. Tt is well known that C € B(«) with o = § (e.g., see [Beznosikov et al., [2020]]). Then
according to Lemma[3] we have

Bls*) _ V1 —Ha
1—

vi—-a
0) 1-Vi-a 1-i-Wa

O

Example 2. Let C = (H%) C', where C' is the Rand-k compressor. Then C € B(a) with @ = &
and

B(s*) V1 —Fd
0(s*) 1—+/1—FKa

35

Proof. Tt is well known that C’ € B(w) with w = % — 1 (e.g., see [Beznosikov et al., [2020]).
Moreover, using the Lemma we get (ﬁ) C'eB (g) Finally, according to Lemma we have

w

B(s*) Vi-a 1—k/a
0(s*) 1-vVi—-a 1—+/1—Hd

36

	Introduction
	Background and Motivation
	Two families of compression operators
	Error feedback: what it is good for, and what we still do not know

	Summary of contributions
	Main Results
	Markov compressors
	Compressed gradient descent using the Markov compressor
	Distributed variant of EF21
	Relationship between EF and EF21
	Theory
	EF21+: Use C or the Markov compressor, whichever is better
	Dealing with stochastic gradients

	Experiments
	Extra Experiments
	Experiments with nonconvex logistic regression
	Experiment 1: Stepsize tolerance (extension)
	Experiment 2: Fine-tuning k and the stepsizes (extension)

	Experiments with least squares
	 Experiment 1: Stepsize tolerance

	Deep learning experiments
	Tuned stepsizes
	Dependence on k

	Proofs for Section 4.1: Distortion of Markov Compressor
	Proofs for Section 4.4: Theorem 1
	The original error feedback method
	The proof of Theorem 1

	Four Lemmas Needed in the Proofs of Theorems 2 and 3
	Compression distortion bound
	Optimal choice of s in Lemma 2
	A descent lemma
	Stepsize selection

	Proof of Theorem 2
	Proof of Theorem 3
	EF21+: The Algorithm and its Analysis
	The EF21+ Algorithm
	Analysis of EF21+

	Dealing with Stochastic Gradients (Details for Section 4.7)
	Computation of (s*)(s*) for some Compressors
	From unbiased to biased compressors
	Top-k and a scaled version of Rand-k

