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A APPENDIX
A.1 PROOF OF THEOREM 4.2

The key to proving Theorem 4.2 is the use of Girsanov’s theorem.

Lemma 1(Girsanov’s theorem) For ¢t € [0, 7], let £; = fot bsd B, where B is a Q-Brownian motion.
Assume Eq fUT [|bs]|* ds < oc. Then, £ is a Q-martingale in L?(Q). Moreover, if

t t
EqQ&(L)r = 1, whereE (L) = exp </ bsdBs — %/ s | d8> ,
0 0
then £(L) is also a Q-martingale and the process
t
t— Bt — / bst
0

is a Brownian motion under P := £r(Q), the probability distribution with density £(L)r w.r.t. Q.

In the proof below, for any fixed ¢t € {2,--- ,H} and (s,a) € § x A, let paata = Ti(-|s, a), we
denote the path measure of the backward SDE 7 and forward SDE 6 (they share the same solution) to
be Q1 := Qr(:|t, s, a). Denote the path measure generated from the conditional likelihood training

to be Pr := Pr(-|t,s,a,,0). Denote 2(, . 5) =Zand Z = Z(-,-, cz~5) By Assumption (1)~(6),
the following analysis holds for any givent = 2, --- | H and (s¢—1,a:—1) € S X A.

Theorem 4.2 Forany ¢t = 2,--- , H and any (s;—1,a:—1) € S x A, suppose the diffusion time
T > max{1, 5}, we have

TV(T(-|s, a), Ty(-|s, a)) < (e + MPL3>TVdh + LMmh)VT.

Proof. We start by proving

N-1
> Eq. /
k=0 k

For r € [kh, (k 4 1)h], we can decompose

(k+1)h

~ ~ 2
HZ(kh, Xin) — ¢V log U(r, X,)|| dr < (€2 + MOL3dh + M2h2m?)T.

h

~ ~ 2
Z(kh, X)) — eV log U(r, X,) ‘

]

—~ ~ 2
Z(kh, Xyn) — ¢V log U (kh, th,)“ ]

]EQT[
5]EQT[

+]EQT[

—~ ~ 2
9V log U(kh, Xn) — gV log U(r, th)H ]

2
]

gV log ]35\2'(7“, Xkn) — gV log ]/Ds\i(r, X,)

T(kh,X
gV log <(kh’ kh))’

+]EQT[

2

<e? +Eg, + M2L*Eg, | X — X,

T(r, Xpn)

Notice that if § : R? — R? is the mapping S(z) = exp(—(r — kh))z, then U(T — kh,-) =
S(U(T—r,)*N(0,1—exp(—2(r—kh)))). We can use Lemma 2 with & = exp(r—kh) = 1+0(h)
and 02 = 1 — exp(—2(r — kh)) = O(h) and obtain

- 2
gV log <\Ii(kh’ th))

~ 2
Ea. S ME(L2dh + L20? |Xin” + L0 9105 B (. X)),

U(r, Xgn)
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Also we have

2

o 2 e 2 — —~
Visi(r,th)H SHVgclog\I/(r,Xr) +valogPsi(r,th)—leog\Il(r,XT)

~ 2
< va log U(r, X,)||” + L2 | X — X, ||

So

]EQT[ ]

<+ MA(L2dh + L*h*Eq, | Xin|® + L2h*Eo,

. N 2
Z(kh,Xp) — cVglog¥(r,X,)

—~ 2
Ve log U(T —r, X,)|| + L2Eqy || Xen — X |%).

Using L-smoothness of V,, log T and Ve log ¥, by (Vempala & Wibisono (2019), Lemma 9) and
(Chen et al. (2023a), Lemma 10) , we have

—~ 2
E valog 30, x,)|| < L4,

and
E||Vglog¥(r, X,)|? < Ld.
On the other hand, for 0 < s < r, by the forward process 6, we have
2

EQT ”X’f‘ - XS”2 :]EQT[ ]

/T(f + 2V log ¥(r, X,.))dr + ¢(B, — By)

g(r—s)/ ]EHf—i—cQleog\I/(r,Xr)H2dr+M(r—s)d

<(r—8)2M?* 4 (r — s)2M*Ld + M(r — s)d
As aresult, we get
E || Xn|® <E||Xol* + T?M? + T>M*Ld + MTd
<m? +T?°M? + T*M*Ld + MTd
and
E | Xgn — X, ||* < h2M? + h2M*Ld + Mhd.

Combining the results above, we get that
~ ~ 2
Eo, [||Z(kh, Xin) — eV log ¥(r, X,) ‘ ]
<e? + M2[L2dh + L2h*(m® + T?M? + T*M*Ld + MTd) + L*h*Ld + L*(h*M? 4+ h>* M*Ld + Mhd)]
<%+ MOL3T?dh 4+ M?L?h*m?.

(Suppose T > 1 and h < ) So we have

N-1

(k+1)h
> Eq, |
k=0

-~ 2 L
Z(kh,Xpp) — Vg logU(r, X,)|| dr < (2 4+ MCL3T2dh+ M?L2h*m*)T.

kh

Now we apply an approximation argument to use Girsanov’s theorem and prove Theorem 4.2.

Forr € [0,T),let £, = [; bsdBs where B is a Q-Brownian motion. For r € [kh, (k4 1)h], define

b, = —cVglog \T/(r, X,) + z(kh Xin)-

From above,
T
Eo., / [bs]? ds < (€2 + MOL3T2dh + M2L?h*m?)T < oo,
0

using (Le Gall (2016), Proposition 5.11), (£(£),)rc[o,r] (see the definition in Lemma 1) is a
local martingale (see Definition 1). Therefore, there exists a non-decreasing sequence of stopping
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time T, 1 T such that (£(L)rat, )refo,r) is @ martingale. Notice that £(L),a1, = £(L]') where
LY = Ly, Since E(L])repo,7) is a martingale, we have

EQrE(L")r = Eq,E(L")o =1,
sothat Eq,.£(L)r, = 1.

Apply Girsanov’s theorem to L)' = for bslio 1,1(s)d B, where B is a Qr-Brownian motion and get
that under P" := £(L)rQr, there exists a Brownian motion 5™ such that for » € [0, T,

dB, = [—cvm log W (r, X,.) + Z(kh, Xgn) | 1.7, (r)dr + dBp.
By the backward SDE 7, under Q1 we have
dX, = —[f — PV4log U(r, X,.)]dr + cdB,, X ~ Pprior-

The equation still holds P™-a.s. since P < Q7. Combining the two equations above then we obtain
that P™-a.s.,

dX, = [_ F + Z(kh, Xy)| 1.7, (r)dr+ [— FtEVglogU(T — 1, XT)] 1z, 7y (r)dr-+cdBr, Xo ~ Dprior-

i.e. path measure P" is the solution to the above SDE. So we have

_ I I
KL(Qr|P") ~Eq, loz£(0);,! = Bay[~Lr, +5 [ Il as) = Baug [ s

1 (T
<Eo,3 [ IR ds S (2 + MOLST ah + ML )T
0
where we used that Eg, L7, = 0 because L is a Qr-martingale and T;, is a bounded stopping

time.(Le Gall (2016), Corollary 3.23)

Consider a coupling of (P"),en, Pr: a sequence of stochastic process (X"),cn over the same
proability space, a stochastic process X and a single Brownian motion W over the same space s.t.

dX" = [— f+ ¢Z(kh, Xgh)} Loz (F)dr + [~ f + V4 log B(T — 1, X;})] 1, 2y (r)dr + eV,

AX, = [~ f + Z(kh, Xpn)| dr + cd W,

Xy = X(T)L ~ Pprior-

By definition of P" and Pr, the distribution of X" (X) is P" (Pr).

Let § > 0 and consider the map 75 : C([0, T]; RY) — C([0, T]; R?) defined by
m5(w)(r) == w(r A(T' = 0)).

Notice that X" = X, for every r € [0,T,,], using Lemma 3, we have 75(X") — m5(X) a.s.,
uniformly over [0, T']. Therefore, w54 P™ — 754 Pr weakly. Using the lower semicontinuity of the
KL divergence and the data-processing inequality (Amb (2005), Lemma 9.4.3 and Lemma 9.4.5), we
get

KL((m5) 4 Qr|(ms) 4 Pr) <liminf KL((75)Qr(7s)4 P")
<liminf KL(Qr|P")
n— oo
<( + MOLPT?dh + M?L*h*m?)T.

Finally, using Lemma 4, m5(w) — w as ¢ — 0 uniformly over [0,7]. Therefore, using (Amb
(2005), Corollary 9.4.6), KL((7s) 4 Q7 |(7s)xPr) — KL(Qr|Pr) as § — 0. Since the marginal

distribution at T = 0 of Q7 is T}(+|s, a) and the marginal distribution at T = 0 of Py is T;(-|s, a),
by data processing inequality we ultimately have

KL(Ty(:|s,a)|Ty(-|s, a)) < (€2 + MOL3T?dh + M>L*h*m?)T.

We conclude the proof using Pinsker’s inequality (TV? < KL). O
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A.2 PROOF OF THEOREM 4.1

In this section, we give the proof of Theorem 4.1, which is our main theorem.

Theorem 4.1 Under Assumptions (1)-(6), let V™ be the output of CDSB estimator, and suppose that
the step size h := % satisfies b < +, where L > 1. Suppose the diffusion time 7' > max{1, 5},
then it holds that

V™ = V™| < Runaxm2H? (e + MPL¥/>TV/dh + LMmh)V'T. (12)
Proof. We have

H
VT = Z Ryi(st, ar)m(at|se) Py (se]si—1) - - - Py (s2|s1)do(s1)dsy - - - dsiday,
t=1/AJS

and

H
VT = Z/ / Ry(sy, an)m(at|st) Pl (se]si—1) - - - Py (s2]s1)do(s1)dsq - - - dsgday.
t=1/AJS!

By Theorem 4.2, assumption (6) and the definition of total-variation norm, for all s € S and all
t € {2,---,T}, we have

/ |Ptﬂ(s/|8) - ﬁt”(8’|8)|d8’ :/ |/ 7T(Cl|8)(Tt(8'|s,a) _ ﬁ(3/|8,a))da|ds
S s Ja
<r(e+ MPLP?TVdh + LMmh)V'T =: &,
/ |Ri(s,a) — Ri(s, a)|da < ¢ S 6o,
A

since 7' > max{1, 5 }.
So
v —vr

H
<7 Z
t=1

/ / Ri(st,as) Pl (s¢|st—1) - - Py (s2]s1)do(s1)dsy - - - dsiday
A JSt

SN

STi/A/St (|(Retstra0) = Ralse,a0)) Pr(sulser) -+ P (salsa)do(s1)|

// ﬁt(st,at)ﬁt’r(sﬂst_l)---ﬁ§(52|51)d0(51)d51---dstdat—
A JSt

Ri(s¢,a0) PT (se|si—1) - - - PJ(sa]s1)do(s1) — Re(se,a0)PT (s¢]si—1) - -+ P (s2]s1)do(s1)|dsy - - - ds;day

| Relsicar) (PF(silsia) - P (salsr) = Pr(silse-1) -+ P (sals1)) do(s1)| ) dsy - - dsiday

H
<ry (/A/ ‘Rt(sf,,at) - Rt(st,at)‘ [P (stlse—1)] [P (se-1lse—2)| -+ | P (s2]s1)do(s1)| dsy - -~ dseday
t=1 st

s [

The summation above contains 2¢~! — 1 items, each term | - | in the integration of each item is
either |PT(s;|sj—1) — P7(s;]sj-1)] (|Re(s¢, ae) — RAt(St»at)D or |PT(sj]sj—1)| (|Rt(ft7at)|) for
J =2, ,t butnotall |P[(s;]s;j—1)|. Relax all the |P] (s;|s;j—1)—P[ (s;]sj—1)| and | Rt (s, ar) —

ﬁt(st,at) — Rt(st,at)‘ ‘ﬁf(st|st_1) — Pgr(st|5t_1)‘ S ‘ﬁ’;(sﬂsl) — P (sas1)|do(s1)dsy - ~-dstdat>
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Ry (8¢, at)] to their uniform upper bound (with respect to s;_; and s;) do. Since PJ?T are non-negative
fort =1,---,t — 1, the terms of each item in the summation are then relaxed to

S [ Rl adPLsidsiien) PR (s s )dolon)ds: - dsada,
JAJSEX-xS

or

537]6/ Ry(st,at) P}, (5,
Sx-- xS

where 1 <k <t—1,j; <--- <jrand {j1, - ,jx} € {2, -+ ,t}. By the definition of PT,it’s
easy to verify that

Sje—1) - Pf (85,85 -1)do(s1)ds¢ - - dsy,

/St PT (35, 870-1) - PT (85, |57, —1)do(s1)dsy - dsy = 1
and
/ /t Ri(st,at) Pl (8j,185,-1) -+ PJ (85,85, -1)do(s1)ds - - - dsyday < Riax
for any 1 ;ksg t—1,51 < - <jrand {j1, - ,jrx} € {2, -+ ,t}. So that the summation

L | Butsvsan) = Butsns ) 1P (sl [P (sealsica] -+ P (salsn (o) o -+ s
Adst

wor [ ]

SRmaX ((58 + t58_1 +---+ t(SO)
=Rumax ((60 +1)" = 1)
SRmax ((60 + ]-)H - ]-) .

Noting that 8y = 7(e + M3 L3/2T\/dh + LMmh)\/T, so for € and h that is sufficiently small, there
exists a universal constant 7, such that

V™ — V™| < HrH Rmaxn00 < Rmax™>H?(e + MPL¥/*T\/dh + LMmh)V'T,
which finishes the proof of Theorem 4.1. O

Rust,a1) = Ra(st, 00)| | P7 (sulse1) = PF(sulsen)| -+« | PF (sls1) = PF (sals)] do(s1)disy

A.3 AUXILIARY LEMMAS

In this section, we presents the definitions and auxiliary lemmas which are used to prove Theorem
4.2.

Definition 1 A local martingale (L;);c[o,7) is a stochastic process such that there exists a sequence
of non-decreasing stopping times T3, — T such that L™ = (L¢aT, )ie[o, 1) iS @ martingale.

Lemma 2(Chen et al. (2023a), Lemma 16) Let 0 < ¢ < 1. Suppose that M, M; € R24*29 are two
matrices, where M is symmetric. Also, assume that [Mo — Izq|,, < ¢, so that M is invertible.

Let q = exp(—H) be a probability density on R?? such that VH is L-lipschitz with L < 4||1v[11 [

it holds that ’

(MO)#q * N(Ov Ml)
q

v log

<9>H < LIV, d+ L o))+ (C+ LMy ,,) [VE)].

The following lemmas are very straightforward, so the proof is omitted.

Lemma 3 Consider f,,, f : [0, T] — R?s.t. there exists an increasing sequence (7}, ),en C [0, T
satisfying T, — T as n — oo and f,(t) = f(¢) for every t < T,,. Then for every € > 0, f,, — f
uniformly over [0, T — ¢]. In particular, f,,(- AT — €) — f(- AT — €) uniformly over [0, T].

Lemma 4 Consider f : [0,7] — R< continuous, and f, : [0,7] — Rés.t. fo(r) = f(r AT —¢))
for € > 0. Then f. — f uniformly over [0, 7] as € — 0.
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A.4 EXPERIMENTS

We have made our code publicly available'.

"https://anonymous . 4open.science/r/bridge_OPE-302D/
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