
Supplementary Material
In this document, we present all the missing proofs from the main paper. We begin by providing
the necessary background on family of sets in Appendix A. In Appendix B we prove Lemma
2. Appendix C is dedicated to prove the guarantees of the helper subroutines used in the proof
of Lemma 2. In particular, in Section C.1, we prove Lemma 5 and present its accompanying
Algorithm 4. The guarantees of Lemma 5 follow from Lemma 6 which in turn uses the Lemma 7
(for MLC queries) and Lemma 8 (for MLR queries) to compute nzcount. The proof of Lemma 6 is
presented in Section C.2, followed by the proofs of Lemma 7, and Lemma 8 in Section C.3.1 and
Section C.3.2 respectively.

Finally, the proof of Theorem 2 is presented in Appendix D.

A Family of sets

We now review literature on some important families of sets called union free families [18] and cover
free families [26] that found applications in cryptography, group testing and 1-bit compressed sensing.
These special families of sets are used crucially in this work.
Definition 6 (Robust Union Free Family (d, t, α)- RUFF [1]). Let d, t be integers and 0 ≤ α ≤ 1. A
family of sets F = {H1,H2, . . . ,Hn} with each Hi ⊆ [m] and |H| = d is a (d, t, α)-RUFF if for
any set of t indices T ⊂ [n], |T | = t, and any index j /∈ T ,

∣∣Hj \ (⋃i∈T Hi)∣∣ > (1− α)d.

We refer to n as the size of the family of sets, and m to be the alphabet over which the sets are defined.
RUFFs were studied earlier in the context of support recovery of 1bCS [1], and a simple randomized
construction of (d, t, α)-RUFF with m = O(t2 log n) was proposed by De Wolf [14].
Lemma 3. [1, 14] Given n, t and α > 0, there exists an (d, t, α)-RUFF, F with m =
O
(
(t2 log n)/α2) and d = O((t log n)/α).

RUFF is a generalization of the family of sets known as the Union Free Familes (UFF) - which
are essentially (d, t, 1)-RUFF. We require yet another generalization of UFF known as Cover Free
Families (CFF) that are also sometimes referred to as superimposed codes [17].
Definition 7 (Cover Free Family (r, t)-CFF). A family of sets F = {H1,H2, . . . ,Hn} where
each Hi ⊆ [m] is an (r, t)-CFF if for any pair of disjoint sets of indices T1, T2 ⊂ [n] such that
|T1| = r, |T2| = t, T1 ∩ T2 = ∅,

∣∣⋂
i∈T1
Hi \

⋃
i∈T2
Hi
∣∣ > 0.

Several constructions and bounds on existence of CFFs are known in literature. We state the following
lemma regarding the existence of CFF which can be found in [37, 20]. We also include a proof in the
supplementary material for the sake of completeness.
Lemma 4. For any given integers r, t, there exists an (r, t)-CFF,F of size n withm = O(tr+1 log n).

B Computing occ(C, a)

In this section, we provide the proof of Lemma 2 that follows from the correctness and performance
guarantees of the following subroutine that for any s < n, computes |

⋃
i∈S occ((i), 1)| for every

subset of indices S of size s.

Let s < n, then using queries constructed from CFFs of appropriate parameters we compute
|
⋃
i∈S occ((i), 1)| for all subsets S ⊂ [n] of size s.

Lemma 5. For any 1 < s < n, there exists an algorithm to compute
∣∣⋃

i∈S occ((i), 1)
∣∣ for all

S ⊆ [n], |S| = s with probability at least 1−O(n−2) using O(`3(`k)s+1 log(`kn) log n/(1− 2η)2)
MLC queries or O(`3(`k)s+1 log(`kn) log n) MLR queries.

The proof of Lemma 5 follows from the guarantees of Algorithm 4 provided in Section C.1.

For the special case of s = 1, we use queries given by a RUFF of appropriate parameters to compute
|occ((i), 1)| for all i ∈ [n] using Algorithm 5 in Section C.2.
Lemma 6. There exists an algorithm to compute |occ((i), 1)| ∀ i ∈ [n] with probability at least
1 − O(n−2) using O(`4k2 log(`kn) log n/(1 − 2η)2) MLC queries, or O(`4k2 log(`kn) log n)
MLR queries.

14

Both the above mentioned algorithms crucially use a subroutine that counts the number of unknown
vectors in V that have a non-zero inner product with a given query vector x. For any x ∈ Rn,
define nzcount(x) :=

∑`
i=1 1[〈vi,x〉 6= 0]. The algorithm to estimate nzcount in the MLC model

is similar to that of [21]. However, in this work we consider the general setting of noisy MLC queries,
i.e., the responses to the queries can be erroneous in sign with some small probability η. Therefore
we include the proof in Section C.3.

Lemma 7. There exists an algorithm that computes nzcount(x) for any vector x ∈ Rn, with
probability at least 1− 2e−T (1−2η)2/2`2 using 2T MLC queries.

The problem of estimating nzcount(x) in the mixed linear regression model is slightly more challeng-
ing due to the presence of additive noise. Note that one can scale the queries with some large positive
constant to minimize the effect of the additive noise. However, we also aim to minimize the SNR, and
hence need more sophisticated techniques to estimate nzcount(x). We restrict our attention to only
binary query vectors x to estimate nzcount in MLR model which is sufficient for support recovery.

Lemma 8. There exists an algorithm to compute nzcount(x) for any vector x ∈ {0, 1}n, with proba-
bility at least 1− 2e−T/36π`

2

using T MLR queries. Moreover, SNR = O(`2 maxi∈[`]
∣∣∣∣vi∣∣∣∣2

2
/δ2).

Using the above mentioned lemmas, we now present the proof of Lemma 2.

Proof of Lemma 2. Observe from Lemma 5 and Lemma 6 that we can compute
∣∣⋃

i∈S occ((i), 1)
∣∣

for all S ⊆ [n] such that |S| ≤ s. In particular we can compute these values using Algorithm 5 for
|S| = 1, and (s− 1) applications of Algorithm 4 for all other values of |S|.
From Lemma 5, we know that each call to Algorithm 4 with any t ≤ s uses
O(`3(`k)t+1 log(`kn) log n/(1− 2η)2) MLC queries, and each succeeds with probability at least
1 − O(1/n2). Therefore, taking a union bound over all t < s, we can compute

∣∣⋃
i∈S occ((i), 1)

∣∣
for all S ⊆ [n], |S| ≤ s using O(`3(`k)s+1 log(`kn) log n/(1 − 2η)2) MLC queries with proba-
bility 1 − O(1/n). Alternately, we can compute the quantities using O(`3(`k)s+1 log(`kn) log n)
MLR queries with probability 1−O(1/n).

We now show using by induction on s that the quantities
{∣∣⋃

i∈S occ((i), 1)
∣∣ ∀ S ⊆ [n], |S| ≤ s

}
are sufficient to compute |occ(C,a)| for all subsets C of indices of size at most s, and any binary
vector a ∈ {0, 1}≤s.
Base case (s = 1): The base case follows since we can infer both |occ((i), 1)| and |occ((i), 0)| =
`− |occ((i), 1)| for every i ∈ [n] from {|occ((i), 1)| | ∀i ∈ [n]}.
Inductive Step: Let us assume that the statement is true for r < s i.e., we can compute |occ(C,a)|
for all subsets C satisfying |C| ≤ r and any binary vector a ∈ {0, 1}≤r from the quantities{∣∣⋃

i∈S occ((i), 1)
∣∣ ∀ S ⊆ [n], |S| ≤ r

}
provided as input. Now, we claim that the statement is

true for r + 1. For simplicity of notation we will denote by Si , occ((i), 1) the set of unknown
vectors which have a non-zero ith entry and also Sci be the set of those unknown vectors that have a 0
in the ith entry. Note that we can also rewrite occ(C,a) for any set C ⊆ [n],a ∈ {0, 1}|C| as

occ(C,a) =
⋂
j∈C′
Sj

⋂
j∈C\C′

Scj

where C′ ⊆ C corresponds to the indices in C for which the entries in a is 1. Fix any set
i1, i2, . . . , ir+1 ∈ [n]. Then we can compute

∣∣∣⋂r+1
b=1 Sib

∣∣∣ using the following equation:

(−1)r+3

∣∣∣∣∣
r+1⋂
b=1

Sib

∣∣∣∣∣ =
r∑

u=1

(−1)u+1
∑

j1,j2,...,ju∈{i1,i2,...,ir+1}
j1<j2<···<ju

∣∣∣∣∣
u⋂
b=1

Sjb

∣∣∣∣∣−
∣∣∣∣∣
r+1⋃
b=1

Sib

∣∣∣∣∣ .

Finally for any proper subset Y ⊂ {i1, i2, . . . , ir+1}, we can compute
∣∣∣⋂ib 6∈Y Sib ⋂ib∈Y Scib ∣∣∣ using

the following set of equations:

15

∣∣∣∣∣∣
⋂
ib 6∈Y

Sib
⋂
ib∈Y
Scib

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⋂
ib 6∈Y

Sib
⋂(⋃

ib∈Y
Sib
)c∣∣∣∣∣∣

=

∣∣∣∣∣∣
⋂
ib 6∈Y

Sib

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋂
ib 6∈Y

Sib
⋂(⋃

ib∈Y
Sib
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
⋂
ib 6∈Y

Sib

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋃
ib∈Y

(⋂
ib 6∈Y

Sib
⋂
Sib
)∣∣∣∣∣∣ .

The first term is already pre-computed and the second term is again a union of intersection of sets.
For any ib ∈ Y , let us define Qib :=

⋂
ib 6∈Y Sib

⋂
Sib . Therefore we have∣∣∣∣∣ ⋃

ib∈Y
Qib

∣∣∣∣∣ =
|Y|∑
u=1

(−1)u+1
∑

j1,j2,...,ju∈Y
j1<j2<···<ju

∣∣∣∣∣
u⋂
b=1

Qjb

∣∣∣∣∣ .
We can compute

∣∣⋃
ib∈Y Qib

∣∣ because the quantities on the right hand side of the equation have
already been pre-computed (using our induction hypothesis). Therefore, the lemma is proved.

Therefore, for any subset T ⊂ {0, 1}s, we can compute {|occ(C,a)| | ∀a ∈ T , C ⊂ [n], |C| = s}
by computing

{∣∣⋃
i∈S occ((i), 1)

∣∣ ∀ S ⊆ [n], |S| ≤ s
}

just once.

C Missing Proofs and Algorithms in computing occ(C, a)

C.1 Computing
∣∣⋃

i∈S occ((i), 1)
∣∣ (Proof of Lemma 5)

In this section we present an algorithm to compute
∣∣⋃

i∈S occ((i), 1)
∣∣, for every S ⊆ [n] of size

|S| = s, using |occ((i), 1)| computed in the Section C.2.

We will need an (s, `k)-CFF for this purpose. Let G ≡ {H1,H2, . . . ,Hn} be the required (s, `k)-
CFF of size n over alphabet m = O((`k)s+1 log n). We construct a set of ` + 1 matrices B =
{B(1), . . . ,B(`+1)} where, each B(w) ∈ Rm×n, w ∈ [` + 1], is obtained from the (s, `k)-CFF G.
The construction of these matrices varies slightly for the model in question.

For the mixture of linear classifiers, we construct the sequence of matrices as follows: For every
(i, j) ∈ [m]× [n], set B(w)

i,j to be a random number sampled uniformly from [0, 1] if i ∈ Hj , and 0

otherwise. We remark that the choice of uniform distribution in [0, 1] is arbitrary, and any continuous
distribution works. Since every B(w) is generated identically, they have the exact same support,
though the non-zero entries are different. Also by definition, the support of the columns of every
B(w) corresponds to the sets in G.

For the mixture of linear regressions, we avoid the scaling of non-zero entries by a uniform scalar.
We set B(w)

i,j to be 1 if i ∈ Hj , and 0 otherwise. Note that in this case each B(w) is identical. We see
that the scaling by uniform scalar is not necessary for the mixtures of linear regressions since the
procedure to compute nzcount in this model (see Algorithm 7) scales the query vectors by a Gaussian
scalar which is sufficient for our purposes.

Let U := ∪i∈[`]supp(vi) denote the union of supports of all the unknown vectors. Since each
unknown vector is k-sparse, it follows that |U| ≤ `k. From the properties of (s, `k)-CFF, we know
that for any ordered tuple of s indices (i1, i2, . . . , is) ⊂ U , the set (

⋂s
t=1Hii)\

⋃
q∈U\{i1,i2,...,is}Hq

is non-empty. This implies that for every w ∈ [`+ 1], there exists at least one row of B(w) that has
a non-zero entry in the ith1 , i

th
2 , . . . , i

th
s index, and 0 in all other indices p ∈ U \ {i1, i2, . . . , is}. In

Algorithm 4 we use these rows as queries to estimate their nzcount. In Lemma 5, we show that this
estimated quantity is exactly |

⋃s
j=1 occ((i), 1)| for that particular tuple (i1, i2, . . . , is) ⊂ U .

16

Algorithm 4 RECOVER UNION-
∣∣⋃

i∈S occ((i), 1)
∣∣ for all S ⊆ [n], |S| = s, s ≥ 2.

Require: |occ((i), 1)| for every i ∈ [n]. s ≥ 2.
Require: Construct B ∈ Rm×n from (s, `k)-CFF of size n over alphabet m = c3(`k)

s+1 log n.
1: Let U := {i ∈ [n] | |occ((i), 1)| > 0}
2: Let batchsize TC = 10`2 log(nm)/(1− 2η)2,
TR = 10 · (36π)`2 log(nm).

3: for every p ∈ [m] do
4: Let count(p) := maxw∈[`+1]{nzcount(B(w)[p])}

(obtained using Algorithm 6 with batchsize TC for MLC, or Algorithm 7 with batchsize TR
for MLR).

5: end for
6: for every set S ⊆ [n] with |S| = s do
7: Let p ∈ [m] such that Bp,t 6= 0 for all t ∈ S, and Bp,t′ = 0 for all q ∈ U \ S.
8: Set

∣∣⋃
i∈S occ((i), 1)

∣∣ = count(p).
9: end for

Proof of Lemma 5. Computing each count (see Algorithm 4, line 8) requires O(T`) queries, where
T = TC for MLC, and T = TR for MLR. Therefore, the total number of queries made by
Algorithm 4 is at most

O(mTC`) = O
((`k)s+1`3 log(`kn) log n

(1− 2η)2
)

O(mTR`) = O((`k)s+1`3 log(`kn) log n)

for m = O((`k)s+1 log n), TC = O(`2 log(nm)/(1 − 2η)2), and TR = O(`2 log(nm)). Also,
observe that each nzcount is estimated correctly with probability at least 1−O

(
1/`mn2

)
. Therefore

from union bound it follows that all the (`+ 1)m estimations of count are correct with probability at
least 1−O

(
1/n2

)
.

Recall that the set U denotes the union of supports of all the unknown vectors. This set is equivalent
to {i ∈ [n] | |occ((i), 1)| > 0}.

Since for every w ∈ [` + 1], the support of the columns of B(w) are the indicators of sets in
G, the (s, `k)-CFF property implies that there exists at least one row (say, with index p ∈ [m])
of every B(w) which has a non-zero entry in the ith1 , i

th
2 , . . . , i

th
s index, and 0 in all other indices

q ∈ U \ {i1, i2, . . . , is}, i.e.,

B
(w)
p,t 6= 0 for all t ∈ {i1, i2, . . . , is}, and

B
(w)
p,t′ = 0 for all t′ ∈ U \ {i1, i2, . . . , is}.

To prove the correctness of the algorithm, we need to show the following:∣∣∣∣∣∣
⋃

p∈{i1,i2,...,is}

occ(p, 1)

∣∣∣∣∣∣ = max
w∈[`+1]

{nzcount(B(w)[p])}

First observe that using the row B(w)[p] as query will produce non-zero value for only those unknown
vectors v ∈

⋃
p∈{i1,i2,...,is} occ(p, 1). This establishes the fact that |

⋃
p∈{i1,i2,...,is} occ(p, 1)| ≥

nzcount(B(w)[p]).

To show the other side of the inequality, consider the set of (`+ 1) s-dimensional vectors obtained
by the restriction of rows B(w)[p] to the coordinates (i1, i2, . . . , is),

{(B(w)
p,i1

,B
(w)
p,i2

, . . . ,B
(w)
p,is

) | w ∈ [`+ 1]}.

For MLC, these entries are picked uniformly at random from [0, 1], they hence are pairwise linearly
independent. For MLR, since the nzcount scales the non-zero entries of the query vector B(w)[p] by a
Gaussian, the pairwise linear independence still holds. Therefore, each v ∈

⋃
p∈{i1,i2,...,is} occ(p, 1)

17

can have 〈B(w)[p],v〉 = 0 for at most 1 of the w queries. So by pigeonhole principle, at least one of
the query vectors B(w)[p] will have 〈B(w)[p],v〉 6= 0 for all v ∈

⋃
p∈{i1,i2,...,is} occ(p, 1). Hence,

|
⋃
p∈{i1,i2,...,is} occ(p, 1)| ≤ maxw{nzcount(B(w)[p])}.

C.2 Computing |occ((i), 1)| (Proof of Lemma 6)

In this section, we show how to compute |occ(i, 1)| for every index i ∈ [n].

Let F = {H1,H2, . . . ,Hn} be a (d, `k, 0.5)-RUFF of size n over alphabet [m]. Construct the binary
matrix A ∈ {0, 1}m×n from F , as Ai,j = 1 if and only if i ∈ Hj . Each column j ∈ [n] of A is
essentially the indicator vector of the setHj .
We use the rows of matrix A as query vectors to compute |occ((i), 1)| for each i ∈ [n]. For each
such query vector x, we compute the nzcount(x) using Algorithm 6 with batchsize TC for MLC,
and Algorithm 7 with batchsize TR for MLR. We choose TC and TR to be sufficiently large to ensure
that nzcount is correct for all the queries with very high probability.

For every h ∈ {0, . . . , `}, let bh ∈ {0, 1}m be the indicator of the queries that have nzcount at least
h. We show in Lemma 6 that the set of columns of A that have large intersection with bh, exactly
correspond to the indices i ∈ [n] that satisfy |occ((i), 1)| ≥ h. This allows us to recover |occ((i), 1)|
exactly for each i ∈ [n].

Algorithm 5 COMPUTE–|occ((i), 1)|
Require: Construct binary matrix A ∈ {0, 1}m×n from (d, `k, 0.5)−RUFF of size n over alphabet

[m], with m = c1`
2k2 log n and d = c2`k log n.

1: Initialize b0,b1,b2, . . . ,b` to all zero vectors of dimension m.
2: Let batchsize TC = 4`2 logmn/(1− 2η)2 for MLC, and TR = 4 · (36π) · `2 logmn for MLR.
3: for i = 1, . . . ,m do
4: Set w := nzcount(A[i])

(obtained using Algorithm 6 with batchsize TC for MLC, and Algorithm 7 with batchsize TR
for MLR.)

5: for h = 0, 1, . . . , w do
6: Set bhi = 1.
7: end for
8: end for
9: for h = 0, 1, . . . , ` do

10: Set Ch = {i ∈ [n] | |supp(bh) ∩ supp(Ai)| ≥ 0.5d}.
11: end for
12: for i = 1, 2, . . . , n do
13: Set |occ((i), 1)| = h if i ∈ {Ch \ Ch+1} for some h ∈ {0, 1, . . . , `− 1}.
14: Set |occ((i), 1)| = ` if i ∈ C`
15: end for

Proof of Lemma 6. Since A has m = O(`2k2 log n) distinct rows, and each row is queried
TC = O(`2 log(mn)/(1 − 2η)2) times for MLC and TR = O(`2 log(mn)) times for MLR,
the total query complexity of Algorithm 5 is O(`4k2 log(`kn) log n/(1 − 2η)2) for MLC, and
O(`4k2 log(`kn) log n) for MLR.

To prove the correctness, we first see that the nzcount for each query is estimated correctly using
Algorithm 6 with overwhelmingly high probability. From Lemma 7 with TC = 4`2 log(mn)/(1−
2η)2, it follows that each nzcount is estimated correctly with probability at least 1− 1

mn2 . Therefore,
by taking a union bound over all rows of A, we estimate all the counts accurately with probability at
least 1− 1

n2 for MLC. The bounds follow similarly for MLRfrom Lemma 8 with TR = 4 · (36π) ·
`2 logmn.

We now show, using the properties of RUFF, that |supp(bh) ∩ supp(Ai)| ≥ 0.5d if and only if
|occ((i), 1)| ≥ h, for any 0 ≤ h ≤ `. Let i ∈ [n] be an index such that |occ((i), 1)| ≥ h, i.e.,
there exist at least h unknown vectors that have a non-zero entry in their ith coordinate. Also,

18

let U := ∪i∈[`]supp(vi) denote the union of supports of all the unknown vectors. Since each
unknown vector is k-sparse, it follows that |U | ≤ `k. To show that |supp(bh) ∩ supp(Ai)| ≥ 0.5d,
consider the set of rows of A indexed by W := {supp(Ai) \ ∪j∈U\{i}supp(Aj)}. Since A is a
(d, `k, 0.5)− RUFF, we know that |W | ≥ 0.5d. We now show that bht = 1 for every t ∈ W . This
follows from the observation that for t ∈ W , and each unknown vector v ∈ occ((i), 1), the query
〈A[t],v〉 = vi 6= 0. Since |occ((i), 1)| ≥ h, we conclude that nzcount(A[t]) ≥ h, and therefore,
bht = 1.

To prove the converse, consider an index i ∈ [n] such that |occ((i), 1)| < h. Using a similar argument
as above, we now show that |supp(bh) ∩ supp(Ai)| < 0.5d. Consider the set of rows of A indexed
by W := {supp(Ai) \ ∪j∈U\{i}supp(Aj)}. Now observe that for each t ∈ W , and any unknown
vector v /∈ occ((i), 1), 〈A[t],v〉 = 0. Therefore nzcount(A[t]) ≤ |occ((i), 1)| < h, and bht = 0 for
all t ∈ W . Since |W | ≥ 0.5d, it follows that |supp(bh) ∩ supp(Ai)| < 0.5d. For any 0 ≤ h ≤ `,
Algorithm 5. therefore correctly identifies the set of indices i ∈ [n] such that |occ((i), 1)| ≥ h. In
particular, the set Ch := {i ∈ [n] | |occ((i), 1)| ≥ h}. Therefore, the set Ch \ Ch+1 is exactly the set
of indices i ∈ [n] such that |occ((i), 1)| = h.

C.3 Estimating nzcount

The main subroutine used to compute both |occ((i), 1)| and |∪j occ((j), 1)| is to estimate nzcount(x)
- the number of unknown vectors that have a non-zero inner product with x ∈ Rn. We now provide
algorithms to estimate nzcount(x) using very few queries in both the models considered in this work.

C.3.1 Estimating nzcount for Mixture of Linear Classifiers (Proof of Lemma 7)

Algorithm 6 empirically estimates nzcount by repeatedly querying with the same vectors x and
its negation −x. Let T denote the number of times a fixed query vector x is repeatedly queried.
We refer to this quantity as the batchsize. We now show that Algorithm 6 estimates nzcount with
overwhelmingly high probability.

Algorithm 6 QUERY(x, T)

Require: Query access to O.
1: for i = 1, 2, . . . , T do
2: Query with vector x and obtain response yi ∈ {−1,+1}.
3: Query with vector −x and obtain response zi ∈ {−1,+1}.
4: end for
5: Let ẑ := round

(
`
∑T
i=1 yi+zi

2T (1−2η)

)
.

6: Return n̂z = `− ẑ.

Proof of Lemma 7. Let us define the quantity zcount(x) to denote the number of unknown vectors
that have a zero inner product with x. Note it is sufficient to estimate this quantity accurately since
nzcount(x) = `−zcount(x) can be inferred directly from it. The algorithm is based on the following
observation that for any fixed query vector x,

E
v∼UV

[O(x)]

=
(

E
v∼UV

[1[〈x,v〉 ≥ 0]]− E
v∼UV

[1[〈x,v〉 < 0]]
)
(1− 2η)

=
(1
`
·
∑̀
i=1

1[〈x,vi〉 ≥ 0]− 1

`
·
∑̀
i=1

1[〈x,vi〉 < 0]
)
(1− 2η).

Note that since
1[〈x,vi〉 ≥ 0]− 1[〈x,vi〉 < 0]

= 1[〈x,−vi〉 ≥ 0]− 1[〈x,−vi〉 < 0] if 〈x,vi〉 = 0

and
1[〈x,vi〉 ≥ 0]− 1[〈x,vi〉 < 0]

= 1[〈x,−vi〉 < 0]− 1[〈x,−vi〉 ≥ 0] if 〈x,vi〉 6= 0.

19

Therefore, we must have

Ev∼UV [O(x) +O(−x)]
2(1− 2η)

=
1

`
·
∑̀
i=1

1[〈x,vi〉 = 0]

=
1

`
· zcount(x)

The algorithm therefore empirically estimates zcount(x) using repeated queries with vectors x and
−x. Let us denote the the T responses from O by y1, y2, . . . , yT and z1, z2, . . . , zT corresponding
to the query vectors x and −x respectively.

From the observations stated above, it then follows that the quantity U = `
(1−2η)

∑
i yi+zi
2T is an

unbiased estimate for zcount(x), i.e. EU = zcount(x). Algorithm 6 therefore makes a mistake in
estimating zcount(x) (i.e., ẑ 6= zcount(x)) only if

|U − EU | ≥ 1− 2η

2`
.

Since the responses to the queries are independent, using Chernoff bounds [7] it then follows that the
algorithm makes an erroneous estimate of zcount(x) with very low probability.

Pr
(
|U − EU | ≥ 1− 2η

2`

)
≤ 2e−

T (1−2η)2

2`2 .

C.3.2 Estimating nzcount for Mixed Linear Regressions (Proof of Lemma 8)

We restrict our attention to only binary queries in this section which is sufficient for support recovery.
Algorithm 7 queries repeatedly with a carefully crafted transformation gγ(x) of the input vector x,
and counts the number of responses that lie within a fixed range [−a, a]. This estimates count the
number of unknown vectors that have a zero inner product with x, and thereby estimates nzcount(x).

For any binary vector x ∈ {0, 1}n, define as follows: gγ : {0, 1}n → Rn

gγ(x)i =

{
0 if xi = 0

N (0, γ2) if xi 6= 0.

For any a, σ ∈ R, let us also define

φ1(a, σ) := Pr
W∼N (0,σ2)

(W ∈ [−a, a]) and

φ2(a, σ, γ) := Pr
W∼N (0,σ2+γ2)

(W ∈ [−a, a]).

From standard Gaussian concentration bounds, we know that

φ1(a, σ) = erf
(

a√
2σ

)
≥
√
2√
π

(
a
σ −

a3

6σ3

)
. (4)

φ2(a, σ, γ) = erf
(

a√
2(σ2+γ2)

)
≤ a

√
2

π(σ2+γ2) . (5)

Algorithm 7 QUERY(x ∈ {0, 1}n, T, a, γ)
Require: Query access to O and known σ, `.

1: for i = 1, 2, . . . , T do
2: Query with vector gγ(x) and obtain response yi ∈ R.
3: end for
4: Let ẑ = round

(
`
∑T
i=1 1[yi∈[−a,a]]
Tφ1(a,σ)

)
.

5: Return n̂z = `− ẑ(x).

20

Proof of Lemma 8. Similar to the proof of Lemma 7 define zcount(x) denote the number of unknown
vectors that have a zero inner product with x. We show that Algorithm 7 estimates this quantity
accurately, and hence nzcount(x) = `− zcount(x) can be inferred from it.

For the set of T responses y1, . . . , yT obtained from O, define U :=
∑
i 1[y

i∈[−a,a]]
T . Then,

E
V,gγ ,Z

[U] = Pr
V,gγ ,Z

(
〈gγ(x),v〉+ Z ∈ [−a, a]

)
. (6)

Note that for any a ∈ R and x ∈ {0, 1}n, we have

Pr
V,gγ ,Z

(
〈gγ(x),v〉+ Z ∈ [−a, a]

)
=

1

`

(∑
i:〈x,vi〉=0

Pr
gγ ,Z

(
〈gγ(x),vi〉+ Z ∈ [−a, a]

)

+
∑

i:〈x,vi〉6=0

Pr
gγ ,Z

(
〈gγ(x),vi〉+ Z ∈ [−a, a]

))

Observe that if 〈x,vi〉 = 0, then 〈gγ(x),vi〉+Z ∼ N (0, σ2), and if 〈x,vi〉 6= 0, then 〈gγ(x),vi〉 ∼
N (0, γ2

∣∣∣∣x� vi
∣∣∣∣2
2
+ σ2), where u� v denotes the entry-wise product of u,v. It then follows that

zcount(x)

`
· φ1(a, σ) ≤ Pr

V,gγ ,Z

(
〈gγ(x),v〉+ Z ∈ [−a, a]

)
≤ zcount(x)

`
· φ1(a, σ) + φ2(a, σ, γδ). (7)

Setting the parameters a = σ/2 and γ = 2
√
2`σ/δ, from Equation 4, we get that

φ1(a, σ) ≥
23
√
2

48
√
π

and φ2(a, σ, γδ) ≤
√
2

4`
√
π
.

and therefore, 4`φ2(a, σ, γδ) ≤ φ1(a, σ).
Combining this observation with Equation 6 and Equation 7, we then get that

zcount(x)

`
· φ1(a, σ) ≤ E

V,gγ ,Z
[U]

≤ zcount(x)

`
· φ1(a, σ) +

1

4`
· φ1(a, σ). (8)

From Equation 8, we observe that if |U − E[U]| ≤ 1
4` · φ1(a, σ), then zcount(x)− 1

4 ≤
`U

φ1(a,σ)
≤

zcount(x)+ 1
2 . Since zcount(x) is integral, it follows that if |U −E[U]| ≤ 1

4` ·φ1(a, σ), the estimate
ẑ = round

(
`U

φ1(a,σ)

)
computed in Algorithm 7 will correctly estimate zcount(x).

The correctness of the algorithm then follows from Chernoff bound[7]

Pr
(
|U − EU | ≥ φ1(a, σ)

4`

)
≤ 2 exp

(
− Tφ1(a, σ)

2

8`2

)
≤ 2 exp

(
− T

36π`2

)
.

Moreover, From the definition of SNR, and the fact that EZ2 = σ2, we have

SNR ≤ 1

σ2
· max
x∈{0,1}n

max
i∈[`]

E〈gγ(x),vi〉2

≤ 1

σ2
· γ2 max

i∈[`]

∣∣∣∣vi∣∣∣∣2
2

= O(`2 max
i∈[`]

∣∣∣∣vi∣∣∣∣2
2
/δ2) for γ = 2

√
2`σ/δ.

21

D Proof of Theorem 2

Theorem (Restatement of Theorem 2). Any n × `, (with n > `) binary matrix with all distinct
columns is p-identifiable for some p ≤ log `.

Proof of Theorem 2. Suppose A is the said matrix. Since all the columns of A are distinct, there must
exist an index i ∈ [n] which is not the same for all columns in A. We must have |occ((i), a)| ≤ `/2
for some a ∈ {0, 1}. Subsequently, we consider the columns of A indexed by the set occ((i), a) and
can repeat the same step. Evidently, there must exist an index j ∈ [n] such that |occ((i, j),a)| ≤ `/4
for some a ∈ {0, 1}2. We can repeat this step at most log ` times to find C ⊂ [n] and a ∈ {0, 1}≤log `
such that |occ(C,a)| = 1 and therefore the column in occ(C,a) is p-identifiable. We denote the
index of this column as σ(1) and form the sub-matrix A1 by deleting the column. Again, A1 has
`− 1 distinct columns and by repeating similar steps, A1 has a column that is log(`− 1) identifiable.
More generally, Ai formed by deleting the columns indexed in the set {σ(1), σ(2), . . . , σ(i− 1)},
has a column that is log(`− i) identifiable with the index (in A) of the column having the unique
sub-string (in Ai) denoted by σ(i). Thus the lemma is proved.

E Jennrich’s Algorithm for Unique Canonical Polyadic (CP) Decomposition

In this section, we state Jennrich’s Algorithm for CP decomposition (see Sec 3.3, [32]) that we use in
this paper. Recall that we are provided a symmetric tensor A of order 3 and rank R as input i.e. a
tensor A that can be expressed in the form below:

A =

R∑
r=1

zr ⊗ zr ⊗ zr︸ ︷︷ ︸ .
Our goal is to uniquely recover the latent vectors z1, z2, . . . , zR from the input tensor A provided
that the vectors z1, z2, . . . , zR are linearly independent. Let A·,·,i denote the ith matrix slice through
A.

Algorithm 8 JENNRICH’S ALGORITHM(A)
Require: A symmetric rank-R tensor A ∈ Rn ⊗ Rn ⊗ Rn of order 3.

1: Choose a,b ∈ Rn uniformly at random such that it satisfies ||a||2 = ||b||2 = 1.
2: Compute T(1) ,

∑
i∈[n] aiA·,·,i,T(2) ,

∑
i∈[n] biA·,·,i.

3: if rank(T 1) < R then
4: Return Error
5: end if
6: Solve the general eigen-value problem T(1)v = λvT

(2)v.
7: Return the eigen-vectors v corresponding to the non-zero eigen-values.

For the sake of completeness, we describe in brief why Algorithm 8 works. Note that
∑
i∈[n] aiA·,·,i

is the weighted sum of matrix slices through A each weighted by ai. Therefore, it is easy to see that

T(1) ,
∑
i∈[n]

aiA·,·,i =
R∑
r=1

〈zr,a〉zr ⊗ zr = ZD(1)ZT

T(2) ,
∑
i∈[n]

biA·,·,i =
R∑
r=1

〈zr,b〉zr ⊗ zr = ZD(2)ZT

where Z is a n×R matrix whose columns form the vectors z1, z2, . . . , zR; D(1),D(2) are R ×R
diagonal matrices whose entry at the ith position in the diagonal is 〈zr,a〉 and 〈zr,b〉 respectively.
Clearly, the matrices T(1),T(2) are of rank R if and only if the vectors z1, z2, . . . , zR are linearly
independent and therefore, this condition is easy to verify in Steps 3-5. Now if the sufficiency
condition is met, then the generalized eigenvalue decomposition will reveal the unknown latent
vectors since the eigenvalues are going to be distinct with probability 1.

22

F Proof of Concept Simulations

We set ` = 3 i.e. we have 3 unknown vectors of dimension 500. For each of the first two vectors,
we design them by randomly choosing 5 indices to be their support along with the constraint that
their supports intersect on exactly 2 indices. We choose the third vector so that its support is the
union of the supports of the other two unknown vectors. Note that with such a choice of the unknown
vectors, the separability assumption in [21] (the support of any unknown vector is not contained
within the union of support of the other unknown vectors) no longer holds true. Let T be the number
of times each distinct query is repeated to estimate the nzcount(·) of the query. For each value of
T ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, we simulate our algorithms 100 times and compute the
fraction of times (let’s call this accuracy) the support of the unknown vectors are recovered exactly.
In order to recover the support, we run Algorithm 1 with p = 2 and Algorithm 2 (with AF just
being A) when the support of the unknown vectors are known to be full-rank (hence we can apply
Jennrich’s algorithm (Algorithm 8) directly). We can also think of Algorithm 8 as a special case
of Algorithm 3 for w = 3 (see Remark 5). Note that in Algorithm 8, the eigenvectors obtained
are not exactly sparse (due to precision issues while solving the generalized eigen-value problem)
and has extremely small non-zero values corresponding to the zero entries of the unknown vectors.
This can be easily resolved by using a post-processing step on the recovered eigenvectors where
we retain only those entries in the support with an absolute value more than 0.002. Similarly, the
zero eigenvalues in Algorithm 8 turn out to be small non-zero values in simulation; again, this can
be resolved by taking the eigenvectors corresponding to the top 8 non-zero eigenvalues, modify
the corresponding eigenvectors by the aforementioned post-processing step and return the distinct
support vectors obtained. In this experiment, the union-free families are simulated by just obtaining a
random design which works with high probability. We obtain the following result (here T can be a
proxy for the total number of measurements, as the later grows linearly with T):

T Algorithm 1(Accuracy) Algorithm 8(Accuracy)

5 0.04 0.0
10 0.2 0.14
15 0.33 0.19
20 0.48 0.5
25 0.45 0.62
30 0.72 0.8
35 0.86 0.9
40 0.87 0.96
45 0.89 0.99
50 0.84 0.99

It is evident that for both algorithms implemented, the accuracy increases with the number of times a
particular vector is repeatedly queried. Comparing the performance of the two algorithms, Jennrich’s
algorithm performance improves much faster than Algorithm 1 with the increase of queries.

23

