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In the appendix, we will introduce how we select demonstrations
to guide the zero-shot learning and detailed performances on each
disease.

1 DEMONSTRATION SELECTION
For the cross-center evaluation, we used the samples from the vali-
dation set as demonstrations. We conducted the experiments on the
IU-Xray to MIMIC adaptation. As previously mentioned, there are
14 disease categories in the MIMIC dataset. Consequently, we ran-
domly selected one demonstration from each category, totaling 14
demonstrations. We also compared the performance with randomly
selected demonstrations from the overall samples. Furthermore, we
tested the performance using 28 and 42 demonstrations and found
that increasing the number of samples does not significantly im-
prove the NLGmetrics. Notably, these demonstrations were sourced
from the MIMIC validation subset. In Table 1, we presented the
detailed performances. It was observed that using 14 evenly dis-
tributed demonstrations across diseases, our model can achieve
peak performance. Moreover, increasing the number of demonstra-
tions only slightly improves the results. Therefore, we opted to use
14 demonstrations to optimize the query generation process.

2 CROSS-DISEASE EVALUATION
In our cross-disease evaluation, we meticulously maintained a bal-
anced distribution by utilizing 14 demonstrations with equal rep-
resentation across diseases. This strategy ensures that our model

captures multi-modal contextual information from categories it has
not previously learned. By employing this approach, we aimed to
enhance the model’s generalizability and robustness across various
unencountered medical conditions, thereby demonstrating its ef-
ficacy in handling diverse diagnostic scenarios to describe novel
diseases.

3 DETAILED PERFORMANCE ON EACH
DISEASE

In Fig. 1, we present the detailed performance analysis based on
BLEU-4 and Precision metrics for cross-disease evaluation. It is
observed that the term ’No Finding’ achieves the highest values for
both metrics, indicating a strong correlation between the generated
reports and the reference standards in cases where no disease is
observed. Conversely, the category ’Lung Lesion’ proves to be the
most challenging, showing lower scores in both metrics, which may
suggest that this condition is more difficult to describe accurately.
Furthermore, we also note that the generated reports for ’Edema’
exhibit high BLEU-4 scores but lower Precision. This implies that
while the reports may follow a similar structure or template, they
might include varied terminology, which could affect the accuracy
of the diagnostic terms used to describe ’Edema.’
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Table 1: Ablation study of demonstration selection in the IU-Xray to MIMIC adaptation across both NLG and CE metrics, where
rd and ed refer to randomly distributed and equally distributed.

Setting NLG Metrics CE Metrics
BLEU-4 ROUGE METOER CIDEr Precision Recall F1-score

14 (rd) 0.071 0.219 0.106 0.073 0.125 0.118 0.121
14 (eq) 0.106 0.256 0.128 0.142 0.249 0.235 0.237
28 (eq) 0.108 0.257 0.128 0.142 0.251 0.233 0.236
42 (eq) 0.110 0.258 0.130 0.144 0.249 0.238 0.240

Figure 1: Detailed performance on each disease when conducting cross-disease report generation.


	1 Demonstration Selection
	2 Cross-disease Evaluation
	3 Detailed Performance on Each Disease

