
A Appendix

Python notebooks producing the figures of this paper are available at https://github.com/
iggallagher/Dynamic-Network-Embedding.

Proof of Theorem 1

Given the factorisation

f(x,y) =
DX

i=1

�iui(x)ui(y), (12)

define a map � : Z ! RD by setting the ith coordinate of �(z) to be |�i|1/2ui(z), so that for any
x,y 2 Z we have f(x,y) = �(x)>Ip,q�(y) (where Ip,q is the diagonal matrix whose entries are
the signs of the eigenvalues �i). Let F⇤ be the joint distribution on RTD obtained by first assigning
a random vector ⇣ = (⇣1| · · · |⇣T ) via F and then applying the map � to each of the components
⇣t, and let F⇤

1
, . . . ,F⇤

T denote the corresponding marginal distributions on RD. Given ⇠ ⇠ F⇤ and
⇠t ⇠ F⇤

t , define the second moment matrices � = E[⇠⇠>] 2 RTD⇥TD and �t = E[⇠t⇠>t ] 2 RD⇥D,
and let r = rank(�) and rt = rank(�t).

Let M 2 Rr⇥TD be a matrix whose rows form a basis of supp(F⇤
), and similarly let Nt 2 Rrt⇥D

be a matrix whose rows form a basis of supp(F⇤
t ). Let N = diag(N1, . . . ,NT ), and define the

matrix ⇧ := MDN> 2 Rr⇥(r1+...+rT ), where D = diag(Ip,q, . . . , Ip,q). Construct the singular
value decomposition ⇧ = U⌃V>, with U 2 O(r⇥d), ⌃ 2 Rd⇥d and V 2 O((r1+ · · ·+rT )⇥d),
and d = rank(⇧). Writing V = (V1| · · · |VT ), where Vt 2 Rrt⇥d has rank dr, we can then
construct the singular value decompositions Vt = Ut⌃tW>

t , with Ut 2 O(rt ⇥ dt), ⌃t 2 Rdt⇥dt

and Wt 2 O(d⇥ dt), where dt = rank(Vt).

Define ⇤ = ⌃W 2 Rd⇥(d1+···+dT ), where W = (W1⌃1| · · · |WT⌃T ), and let L : RTD ! Rd

be the linear map sending the ith row of M to the ith row of U, and similarly let Lt : RD ! Rdt

be the linear map sending the ith row of Nt to the ith row of Ut. Finally, let ' : RTk ! Rd and
't : Rk ! Rdt be the maps satisfying '(z) = L

�
(�(z(1))| · · · |�(z(T )

)
�

and 't(z(t)) = Lt

�
�(z(t))

�

for any z = (z(1)| · · · |z(T )
) 2 RTk.

Then, setting G to be the joint distribution on Rd ⇥ Rd1 ⇥ · · ·RdT obtained by first assigning a
random vector ⇣ = (⇣1| · · · |⇣T ) via F and then sending this to the tuple

�
'(⇣),'1(⇣1), . . . ,'t(⇣t)

�

and letting Xi = '
�
Zi

�
and Y(t)

i = 't

�
Z(t)

i

�
, we find that (A,X,Y) ⇠ MRDPG(G,⇤). ⇤

Proof of Proposition 2

This follows directly from Theorem 1 in [17], which states that there exist sequences of matrices
Rt = Rt(n) 2 Rdt⇥d and W̃ 2 O(d) such that

kŶ(t) �Y(t)RtW̃
>k2!1 = O

⇣
log

1/2
(n)

⇢1/2n1/2

⌘
(13)

almost surely, where the matrices Rt satisfy Ỹ(t)
= Y(t)RY,t, and W̃ 2 O(d) is the solution to the

one-mode orthogonal Procrustes problem

W̃ = argmin

Q2O(d)
kUAQ�UPk2F + kVAQ�VPk2F , (14)

where A and P admit the singular value decompositions A = UA⌃AV>
A + UA,?⌃A,?V>

A,?
and P = UP⌃PV>

P respectively. Observing that the 2-to-infinity norm of a matrix is known to
be equivalent to its maximum Euclidean row norm (and consequently is invariant under orthogonal
transformations) gives the desired result. ⇤

Proof of Proposition 3

From the proof of Theorem 1 in [17], we find that

n1/2
(Ŷ(t)W̃ � Ỹ(t)

) = n1/2
(A(t) �P(t)

)UP⌃
�1/2
P + n1/2E, (15)
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where the residual term E satisfies kn1/2Ek2!1 ! 0. We can rewrite this as

n1/2
(Ŷ(t)W̃ � Ỹ(t)

) = n1/2
(A(t) �P(t)

)XL⌃�1

P + n1/2E, (16)

where L 2 GL(d) (the general linear group of invertible d⇥ d matrices) satisfies X = X̃L, which is
known to exist by Proposition 16 of [17].

We begin by showing that there exists a sequence of orthogonal matrices W 2 O(d) and a fixed
matrix L̃ 2 Rd⇥d such that LW⇤ ! L̃, for which we adapt the arguments of Theorem 1 and
Corollary 2 of [2].

To begin with, note that the mapping v 7! X(X>X)
�1/2v sends the eigenvectors of the matrix

(X>X)
1/2⇤Y>Y⇤>

(X>X)
1/2 to the left singular vectors of P, since if v is such an eigenvector

(with corresponding eigenvalue �) then

PP>X(X>X)
�1/2v = X⇤Y>Y⇤>

(X>X)
1/2v (17)

= X(X>X)
�1/2

(X>X)
1/2⇤Y>Y⇤>

(X>X)
1/2v (18)

= �X(X>X)
�1/2v (19)

as required. Thus we may write UP = X(X>X)
�1/2V, where V is a matrix of eigenvectors of

(X>X)
1/2⇤Y>Y⇤>

(X>X)
1/2, and consequently observe that

L = (X>X)
�1X>XP (20)

= (X>X)
�1X>X(X>X)

�1/2V⌃1/2
P (21)

= (X>X)
�1/2V⌃1/2

P (22)

=

⇣
X>X

n

⌘�1/2
V
⇣

⌃P
n

⌘1/2
. (23)

Let GX and GY,t denote the marginal distributions of G, and define the second moment matrices �X =

E[⇠⇠>] and �Y,t = E[⇠t⇠>t ], where ⇠ ⇠ GX and ⇠t ⇠ GY,t, and let �Y = diag(�Y,1, . . . ,�Y,T ).
Then the law of large numbers tells us that the first and last terms in (23) converge to (⇢n�X)

�1/2

and (⇢n⌃̃)
1/2 respectively, where ⌃̃ is the diagonal matrix whose entries are the square roots of the

eigenvalues of �1/2
X

⇤�Y⇤>
�

1/2
X

(see, for example, Proposition 7 of [17]). Note that V is also the
matrix of eigenvectors of

⇣
X>X

n

⌘1/2⇣
⇤Y>Y⇤>

n

⌘⇣
X>X

n

⌘1/2
(24)

which converges to �
1/2
X

⇤�Y⇤>
�

1/2
X

by the law of large numbers. Consequently, for each distinct
eigenvalue of �1/2

X
⇤�Y⇤>

�
1/2
X

we may apply the Davis-Kahan theorem to find that the principal
angles between the resulting eigenspace and the subspace spanned by the corresponding columns
of V vanish, and thus V converges to Ṽ up to some block-orthogonal transformation W 2 O(d),
where Ṽ is a fixed matrix of eigenvectors of �1/2

X
⇤�Y⇤>

�
1/2
X

. Since W by definition commutes
with ⌃̃, we find that

LW ! �
�1/2
X

Ṽ⌃̃1/2 (25)
as required.

Multiplying (16) by W, we find that

n1/2
(Ŷ(t)

i W̃ � Ỹ(t)
i )W ⇡ n⇢n

"
1

n1/2⇢n
(A(t) �P(t)

)X

#

i

L⌃�1

P W (26)

and note that the term n⇢nL⌃
�1

P W converges to L̃⌃̃�1 from our previous discussion. Moreover,
"

1

n1/2⇢n
(A(t) �P(t)

)X

#

i

=
1

n1/2⇢n

nX

j=1

(A(t)
ij �P(t)

ij )Xj (27)

=
1

(n⇢n)1/2

nX

j=1

(A(t)
ij �P(t)

ij )'(Zj). (28)
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Conditional on Z(t)
i = z, we have P(t)

ij = ⇢nf(z,Z
(t)
j ), and so the sum in (28) is a scaled sum of

n� 1 independent, identically distributed zero-mean random variables, each with covariance matrix

E⇣

h
f(z, ⇣t)

�
1� ⇢nf(z, ⇣t)

�
· '(⇣)>'(⇣)

i
(29)

where ⇣ ⇠ F , from which the result follows by setting R⇤ = ⌃̃�1L̃> and applying the multivariate
versions of the central limit theorem and Slutsky’s theorem. ⇤

Proof of Corollary 5

Note that for any t 2 [T ] the equality X̃Ỹ(t)>
= P(t) holds, and so Ỹ(t)

= P(t)X̃(X̃>X̃)
�1 (since

P(t) is symmetric). Consequently, for any i 2 [n] we find that Ỹ(t)
i = (X̃>X̃)

�1X̃>P(t)
i , where

P(t)
i denotes the ith row of P(t) (again due to symmetry of P(t)). Thus for any exchangeable pair

(z, t) and (z0, t0), if Z(t)
i = z and Z(t0)

j = z0 then the equality of the rows P(t)
i and P(t0)

j implies

the equality of Ỹ(t)
i and Ỹ(t0)

j . Moreover, from the definition of exchangeability it is clear that the

matrices ⌃t(z) and ⌃t0(z0) present in the limiting distributions for Ŷ(t)
i and Ŷ(t0)

j in Proposition
3 are equal, and since the matrices W, W̃ and R⇤ are independent of t and t0 equality of the full
covariance matrices follows.

An analogous argument holds in the case that (z, t) and (z0, t0) are exchangeable up to degree. ⇤
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Lyon primary school data: other embeddings

In this section, we show the spectral embeddings for the Lyon primary school data for two other
embedding algorithms: independent adjacency spectral embedding and omnibus embedding.

First, for the adjacency matrices A(1), . . . ,A(20), we construct the adjacency spectral embeddings
Ŷ(1), . . . , Ŷ(20) 2 Rn⇥10, using the same dimension as the equivalent UASE for this data. This
takes approximately 0.2 seconds on a 2017 MacBook Pro. Figure 4 shows the first two dimensions of
this embedding to visualise some of the structure in the data.

Figure 4: First two dimensions of the embeddings Ŷ(1), . . . , Ŷ(20) of the adjacency matrices
A(1), . . . ,A(20). The colours indicate different school years while the marker type distinguishes the
two school classes within each year.

From this plot, we see that there is no longitudinal stability using individual adjacency spectral
embedding. The classes shown in the leading two dimensions are not the same between time periods.
Therefore, we cannot make any inference about how the behaviour of students changes over time.

Secondly, we construct the omnibus matrix Ã 2 RnT⇥nT , where the n-by-n block of the matrix
corresponding to times s, t is given by Ãs,t = (A(s)

+A(t)
)/2 2 Rn⇥n. We construct the spectral

embedding of Ã into d̃ = 10 dimensions (as with the other embeddings), to obtain Ŷ 2 RnT⇥10.
This is divided to get the omnibus embedding for each time period, Ŷ = (Ŷ(1)| · · · |Ŷ(20)

). This
takes approximately 30 seconds on a 2017 MacBook Pro. Figure 5 shows the first two dimensions of
this embedding to visualise some of the structure in the data.
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Figure 5: First two dimensions of the embeddings Ŷ(1), . . . , Ŷ(20) of the omnibus matrix Ã. The
colours indicate different school years while the marker type distinguish the two school classes within
each year.

The rough temporal alignment of the point clouds shows the benefits of omnibus embedding in
providing longitudinal stability. However, the lunchtime periods (days 1 and 2, 12:00-14:00) best
demonstrate the effect of a lack of cross-sectional stability. Some of the teachers are embedded among
what we believe are largely spurious clusters of students during these lunch periods. Empirically,
teachers interact much less frequently with students in these periods. Moreover, such a sharp
classroom-wise clustering at lunchtime is not present in the independent embedding and seems
inconsistent with personal experience. We believe these effects are due to the averaging of past and
future behaviours inherent in omnibus embedding, which causes cross-sectional instability.

Lyon primary school data: classification

An alternative use of UASE is to analyse the trajectory of each node through time, in embedded space.
Because of the longitudinal stability of UASE, standard multivariate time series analysis techniques
can be used to detect trends and seasonal behaviour. These, in turn, could enable latent position
forecasting and, from this, link prediction. As background, in such analyses, the time series model is
usually incorporated in the embedding process, for example, via a Markov model for the communities
[5, 12, 54], or a seasonal autoregressive integrated process on the adjacency matrices [37].

In this section, we instead consider the task of time series classification. Given the trajectory for
each student, the goal is to predict their school class. Given a arbitrary time series, this is often done
using dynamic time warping [42] or convolutional neural networks [53] to allow for misalignment in
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time. However, in this simple example with fixed classroom times, we simply fit a random forest
classifier with 100 trees to the concatenation of the spectral embeddings (⇥(1)| · · · |⇥(T )

) 2 Rn⇥9T ,
each using five randomly selected features. The 10-fold cross-validation accuracy is 0.983± 0.035,
taking approximately two seconds on a 2017 MacBook Pro.

When classifying a time series in this way, auto-correlation makes feature importance harder to
measure. Nevertheless, certain features appear not to be important for classification, in particular,
we find that the two lunchtime periods (time windows 12:00-13:00 and 13:00-14:00) are not useful,
confirming what is shown by those spectral embeddings in Figure 2.

Using this classifier, we can predict the class of the 10 teachers. While we do not expect them to
behave exactly as the students, we might hope to match a teacher to their class. Figure 6 shows the
proportion of random forest trees classifying each teacher to each school class. Without truth data it
is impossible to know if these labels are correct, but the most likely classification assigns exactly one
teacher to each class.

Figure 6: Heat map showing the proportion of random forest trees assigning the spectral embedding
trajectory for each teacher to the ten school classes 1A–5B. The colour represents the school class,
matching the colours used in Figure 2, where larger proportions are more opaque. Missing values
represent a proportion of 0.
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