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Abstract

In constrained multi-objective RL, the goal is to learn a policy that achieves the best
performance specified by a multi-objective preference function under a constraint.
We focus on the offline setting where the RL agent aims to learn the optimal policy
from a given dataset. This scenario is common in real-world applications where
interactions with the environment are expensive and the constraint violation is
dangerous. For such a setting, we transform the original constrained problem into
a primal-dual formulation, which is solved via dual gradient ascent. Moreover, we
propose to combine such an approach with pessimism to overcome the uncertainty
in offline data, which leads to our Pessimistic Dual Iteration (PEDI). We establish
upper bounds on both the suboptimality and constraint violation for the policy
learned by PEDI based on an arbitrary dataset, which proves that PEDI is provably
sample efficient. We also specialize PEDI to the setting with linear function
approximation. To the best of our knowledge, we propose the first provably
efficient constrained multi-objective RL algorithm with offline data without any
assumption on the coverage of the dataset.

1 Introduction

There has been increased interest in multi-objective RL in recent years. Compared with traditional
single-objective RL, the goal of the multi-objective one depends on a preference function, which takes
the multiple objectives as input and outputs a scalar. The multi-objective optimization problems are
usually constrained, as otherwise, it may cause danger or malfunction in applications. For example,
consider a home automation system that helps humans monitor and control home attributes which can
be regarded as multi-objectives. Users at different times may value different aspects of its services.
Some may think highly of lighting at night, while others may concern the climate. We can formulate
the users’ preference as a preference function on the multiple objectives. Therefore, the system is
dealing with a multi-objective optimization problem. However, the system cannot optimize this
problem without any constraints, which might go against human’s will, such as generating extreme
climate inside a house or performing unacceptably energy-consuming operations.

We formulate the constrained multi-objective Markov decision process (CMOMDP), which is similar
to the constrained Markov decision process (CMDP) (Altman, 1999). The difference is that the
objectives are multiple and constraints can be nonlinear. We aim to minimize the value of a preference
function, which takes multiple objectives as input and outputs a scalar.
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Most existing RL methods assume full accessibility of the environment for the agent, which tends to
be impractical as the exploration could be expensive (Gottesman et al., 2019) and dangerous (Shalev-
Shwartz et al., 2016). Hence, we consider the offline case where the agent has only a historical dataset
collected a priori and has no further interactions with the environment. This setting is common and
embodied in various scenarios such as healthcare (Chakraborty and Murphy, 2014) and auto-driving
(Sun et al., 2020). However, offline RL is less understood theoretically (Levine et al., 2020) than
online RL, and how to maximally exploit the dataset remains unclear.

In this paper, we study the offline CMOMDP. The challenges are threefold:

(i) Different from CMDPs, the nonlinearity of the preference function and constraints of
CMOMDPs makes the analysis challenging. Moreover, constraints can be neither convex
nor concave in the policy, which means the optimization problems are usually non-convex. It
brings great difficulty to designing a provably efficient algorithm.

(ii) Since further interaction with the environment is prohibited, the dataset’s quality is not guaran-
teed. The data collected by the experimenter may not sufficiently cover the trajectories induced
by the optimal policy. Therefore, the information of the optimal policy could be limited, which
probably makes the suboptimality and constraint violation arbitrarily large.

(iii) As the CMOMDP can be considered a generalization of CMDP (see the reduction in Appendix
C), any difficulties emerging in the CMDP will arise here too. For example, due to constraints,
the Bellman optimality equation may not hold anymore. Therefore, most existing offline RL
algorithms based on dynamic programming are inapplicable.

Challenge (i) is inherent in CMOMDPs, and certain requirements on the preference function and
constraints are inevitable. Hence, We suppose they satisfy some conditions. For instance, a geometric
analog of Slater’s condition, which is usually assumed in CMDPs, is imposed. To tackle challenge
(ii), existing works have put a great effort. One possible principle is pessimism, which applies
penalties to ensure pessimistic estimation. This method is successful in ordinary RL, and we extend
it to CMOMDPs. We also note that we only impose a minimal assumption on the offline dataset’s
compliance in our analysis. For challenge (iii), we apply the convex conjugate and Fenchel’s duality
to transform the problem into a primal-dual formulation.

In summary, our work answers the following question:

Is it possible to develop a provably efficient offline algorithm for constrained multi-objective
reinforcement learning with minimal assumptions on the dataset?

We propose the Pessimistic Dual Iteration (PEDI) algorithm. Theoretical contributions are as follows:

(i) By transforming the original constrained optimization problem of CMOMDPs into a primal-dual
formulation via convex conjugate and duality, we develop the algorithm for general CMOMDPs
with offline dataset, which iterates in a dual gradient ascent manner. Then, we instantiate the
algorithm for linear kernel CMOMDPs, which is a large class of CMOMDPs that includes the
tabular case.

(ii) We show in Appendix F the significance of pessimism in offline CMOMDPs. To summarize,
we decompose the discrepancy between a value function and the optimal one into spurious
correlation, intrinsic uncertainty, and optimization error, among which the spurious correlation
is the most difficult to control. However, by maintaining pessimistic estimates of the value
functions, PEDI eliminates the spurious correlation.

(iii) We establish theoretical guarantees for PEDI. Specifically, we demonstrate that two metrics,
the suboptimality and the constraint violation, can be bounded from above by the optimiza-
tion error of O(1/

√
K) and the intrinsic uncertainty, where K is the number of iterations.

When specialized to linear kernel CMOMDPs, the upper bound of suboptimality matches the
information-theoretic lower bound up to the optimization error and multiplicative factors of
constants related to the CMOMDP, which suggests the near-optimality of PEDI.

(iv) We show that the error of PEDI is data-dependent, i.e., it depends on how well the dataset
covers the trajectories induced by the optimal policy. When the trajectories are assumed further
to be sufficiently covered, the suboptimality and constraint violation are Õ(1/

√
N) where N is

the number of trajectories in the dataset.
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To the best of our knowledge, we are the first to propose a provably efficient offline algorithm that
considers the constrained multi-objective RL without any assumptions on the coverage of the dataset.
As a by-product, our method can be viewed as a highly generalized one as it can easily reduce to
certain simpler cases such as CMDPs, which is discussed in Appendix C.

1.1 Related works

Constrained RL. Our work is closely related to CMDPs (Altman, 1999). Several recent works
(Efroni et al., 2020; Ding et al., 2021; Qiu et al., 2020; Brantley et al., 2020; Tessler et al., 2018) have
studied the MDP with linear constraints and others (Bhatnagar and Lakshmanan, 2012; Chow et al.,
2017; Paternain et al., 2019) have considered RL with more complex constraints. Most of them have
provided algorithms with both regret and total constraint violation guarantees. However, while these
approaches are successful in CMDPs, they cannot be applied to CMOMDPs where objectives are
multiple and constraints can be nonlinear. The difference between their methods and ours are (i) they
usually assume the Slater’s condition, while we consider its geometric analog, and (ii) most works
utilize the Lagrangian multiplier to handle constraints, while in our method, we obtain a primal-dual
formulation via conjugate.

Multi-objective RL. Existing studies on multi-objective RL can be divided into two groups: the first
maintains a set of Pareto-optimal policies (Barrett and Narayanan, 2008; Castelletti et al., 2011, 2012;
Wang and Sebag, 2013), and the second collapses multi-objective vector into a scalar and then apply
a standard RL method (Barrett and Narayanan, 2008; Natarajan and Tadepalli, 2005; Van Moffaert
et al., 2013; Cheung, 2019). However, these methods are available in unconstrained multi-objective
RL but unsuitable for constrained cases. The difficulty is that the constraints invalidate the Bellman
optimality principle, which is the cornerstone of these works.

Offline RL. Recent successful offline RL (Lange et al., 2012; Levine et al., 2020) methods (Fujimoto
et al., 2019; Laroche et al., 2019; Jaques et al., 2019; Wu et al., 2019; Kumar et al., 2019, 2020;
Agarwal et al., 2020; Yu et al., 2020; Kidambi et al., 2020; Siegel et al., 2020; Nair et al., 2020; Liu
et al., 2020; Wang et al., 2020a,b; Tosatto et al., 2017; Farahmand et al., 2016, 2010) fall into two
categories (Buckman et al., 2020): (i) uncertainty-aware pessimistic algorithms and (ii) proximal
pessimistic algorithms. (i) gives a lower estimate for states and actions less covered by the dataset,
while (ii) avoids visiting these less visited states and actions by regularization. However, existing
methods are largely based on approximate dynamic programming and do not take constraints into
account, thus failing to apply. Our proposed method generalizes the ordinary pessimistic algorithm
so that it is compatible with multiple objectives and constraints.

In the analysis, we only assume the compliance of the dataset. In comparison with existing works,
which assume the sufficient coverage of the dataset such as the finite concentrability coefficients
(Antos et al., 2008; Farahmand et al., 2010; Scherrer et al., 2015; Le et al., 2019; Chen and Jiang,
2019; Fu et al., 2020) and uniformly lower bounded densities of visitation measures (Yin et al.,
2021), we require no assumptions as they often fail to hold in practice. As Wang et al. (2020a) have
studied the influence of insufficient coverage of the dataset, their conclusion is also reflected in our
main results. Moreover, we do not impose any constraints on the affinity of the behavior policy and
the learned policy (Liu et al., 2020). In addition, our general algorithm uses convex conjugate, a
technique used similarly in Yu et al. (2021); Miryoosefi and Jin (2021) but their method cannot apply
to offline situations and Yu et al. (2021) do not address the function approximation setting.

1.2 Notations

For simplicity, we write 〈f, g〉X =
∫
X f(x)g(x) dx as the inner product on space X for functions

f, g : X → R. We also define the norms ‖f‖2,X =
√
〈f, f〉X and ‖f‖∞,X = supx∈X |f(x)|.

We denote by [n] the set of positive integers not greater than n, i.e., [n] = {i ∈ Z | 1 ≤
i ≤ n}. For two vectors x,x′ ∈ RD, we write x ≥ x′ (or x ≤ x′) if x is not smaller
(or larger) than x′ in an elementwise manner. We set |x| = (|x1|, |x2|, . . . , |xD|)> and x+ =
(max{x1, 0},max{x2, 0}, . . . ,max{xD, 0})>. We denote by BD theD-dimensional unit Euclidean
ball, i.e., BD = {x ∈ RD : ‖x‖2 ≤ 1}. The set of probability distributions on a set X is denoted by
∆(X ). We denote by Õ(·) the big O notation ignoring logarithmic factors.
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2 Preliminaries

2.1 Constrained multi-objective Markov decision process (CMOMDP)

We consider an episodic CMOMDP given by M = (S,A, H,P, c) where S is a state space, A
is an action space, H ∈ N+ is the horizon, P = {Ph}Hh=1 is a collection of transition kernels
Ph : S × A → ∆(S), and c = {ch}Hh=1 is a collection of cost functions ch : S × A → [0, 1]D.
Note that by P we mean both the probability density function and the probability mass function, as
they can be unified (see Appendix A for details). We suppose a fixed initial state s ∈ S for simplicity.
However, a stochastic initial state poses no extra difficulty to our analysis. In each episode, given a
policy π = {πh}Hh=1 where πh : S → ∆(A), the agent interacts with the environment as follows. At
state sh, the agent takes action ah ∈ A according to πh(· | sh), and then receives a stochastic cost
ch ∈ [0, 1]D, for which we assume E[ch|sh, ah] = ch(s, a). The system then transits to the next
state sh+1 according to Ph(· | sh, ah). The episode terminates at state sH+1 where no action is taken
and the cost is zero.

Given a policy π, the state-value function V π
h : S → [0, H]D and the action-value functionQπ

h : S ×
A → [0, H]D at the h-th step are defined as V π

h (s) = Eπ[
∑H
i=h ci(si, ai) | sh = s] andQπ

h(s, a) =

Eπ[
∑H
i=h ci(si, ai) | sh = s, ah = a] where the expectation Eπ is taken with respect to ai ∼ πi(· | si)

and si+1 ∼ P(· | si, ai) for i ∈ [h : H]. Note that those value functions are D-dimensional vector-
valued, and we use bold letters to represent vectors. We denote their i-th scalar components by V i,πh
and Qi,πh respectively. For notational simplicity, we write: Ph[V ](s, a) = Es′∼Ph(· | s,a)[V (s′)],
Bh[V ](s, a) = ch(s, a) + Ph[V ](s, a), and Dπ[Q](s) = Ea∼π(· | s)[Q(s, a)]. Thereby, the Bellman
equation for any (s, a) ∈ S × A and h ∈ [H] can be written as Qπ

h(s, a) = Bh[V π
h ](s, a), and

V π
h (s) = Dπ[Qπ

h](s). Our goal is to minimize the value of a preference function subject to some
constraints. Formally, we define g : RD → R as the preference function and assume that g is
1-Lipschitz and convex and that g(x) ≥ g(x′) holds as long as x ≥ x′. For example, g(x) can be
the summation over {xi}ni=1 or the maximum among {xi}ni=1. We aim to find the optimal policy π∗
of the following constrained optimization problem,

min
π∈∆(A |S,H)

g
(
V π

1 (s)
)

s.t. V π
1 (s) ∈ W∗, (1)

whereW∗ ⊆ [0, H]D is a target set. We use V ∗1 (s) = V π∗

1 (s) to denote the state-value function of
the optimal policy of (1) for simplicity.

Solving (1) is impossible when we have no geometric requirements on the target set W∗. Cor-
responding to the Slater’s condition1 commonly imposed in CMDPs, we establish its geometric
analogue for CMOMDPs, as studied in Yu et al. (2021). Let V be the set of achievable values, i.e.,
V = {V π

1 (s) : any policy π}, andW = V ∩W∗ be the achievable values within the target set. We
suppose W is nonempty. We denote by ∂W∗ and ∂V the boundaries of W∗ and V , respectively.
With a little abuse of notations, we set ∂W = ∂W∗ ∩ ∂V as the intersection of boundaries. If ∂W is
nonempty, then for eachW ∈ ∂W , we define the angle between support vectors2 atW as

γ(W ) = min
{
∠(a, b) |a, b are support vectors ofW∗ and V atW , respectively

}
where ∠(a, b) denotes the angle between a and b. We impose geometric requirements on the target
setW∗ as stated below.
Assumption 1. We assume the target setW∗ is closed and convex, and there exists an upper bound
γmax ∈ [π2 , π) such that maxW∈∂W γ(W ) < γmax. Moreover, we assumeW∗ is a lower set, i.e.,
for anyW ∈ W∗, it holds thatW ′ ∈ W∗ for any 0 ≤W ′ ≤W .

We write ρ = 2/ sin(γmax) for notational simplicity. Explanations and justifications of Assumption 1
are provided in Appendix B where we show that this assumption is reasonable and closely related to
Slater’s condition. However, the optimization problem (1) is still hard even with these assumptions.
Instead, we solve it by considering the suboptimality and constraint violation as performance metrics,
which are defined as

SubOpt(π) = g
(
V π

1 (s)
)
− g
(
V ∗1 (s)

)
, Violation(π) = dist

(
V π

1 (s),W∗
)
, (2)

1For CMDPs with constraints in the form of V π ≤ b, the Slater’s condition assumes the existence of a policy
π such that V π < b.

2The support vectors at a point are normals to the support hyperplanes at this point.
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where we define dist(V π
1 (s),W∗) = minW∈W∗ ‖V π

1 (s)−W ‖2.

To show that the formulation of CMOMDPs is reasonable, we state the relationship between
CMOMDPs and CMDPs in the following proposition, which suggests that the CMOMDP is a
generalization of the CMDP. The proof is deterred to Appendix C.1.
Proposition 1. The CMDP is a special case of the CMOMDP, and the Slater’s condition assumed in
CMDPs corresponds to the existence of γmax in Assumption 1 in CMOMDPs.

2.2 Offline learning

We consider the offline setting where we only have access to a dataset D = {(sτh, aτh, cτh)}H,Nh,τ=1 with
N trajectories collected a priori by an experimentor. We only make the following assumption on the
data collecting process.
Assumption 2 (Compliance of dataset). We assume that the dataset D is compliant with the
CMOMDPM, i.e., for any c ∈ [0, 1]D, s′ ∈ S, h ∈ [H], and τ ∈ [N ],

PrD
(
sτh+1 = s′, cτh = c

∣∣Fτh) = Pr
(
sh+1 = s′, ch = c

∣∣ sh = sτh, ah = aτh
)
, (3)

whereFτh is the σ-algebra generated viaFτh = σ({(sni , ani , cni ) | (n−1)H+i ≤ (τ−1)H+h}). The
probability on the left-hand side of (3) is with respect to the joint distribution of the data collecting
process, and that of the right-hand side is with respect to the underlying CMOMDP.

Assumption 2 is adapted from Jin et al. (2020b). It implies that the dataset D is generated from the
CMOMDP and possesses the Markov property. Such an assumption holds when the experimenter
collects the dataset by interacting with the CMOMDP. In particular, we do not require that the
data collecting process well explores the state-action space. In other words, we do not impose any
assumption on the coverage of the dataset.

3 Pessimistic Dual Iteration (PEDI)

In this section, we first motivate our method to solve CMOMDPs in Section 3.1. Then, we develop
our algorithm, Pessimistic Dual Iteration (PEDI), for general CMOMDPs in Section 3.2 and introduce
an instantiation for linear kernel CMOMDPs in Section 3.3.

3.1 Primal-dual formulation

To solve problems like (1), recent works usually apply Lagrangian multipliers to handle the constraints.
However, we seek to use another dual method. Specifically, we consider the following problem:

p∗ = min
π

(
SubOpt(π) + ν Violation(π)

)
, (4)

where ν is a scaling constant that serves as a trade-off between suboptimality and constraint violation.
In Appendix D, we show that when ν > 1, (1) and (4) share the solution, and thus they are equivalent.
We note that the formulation of (4) is different from existing works on CMDPs where ν usually
plays the role of the Lagrangian multiplier. Intuitively, a large ν lies more emphasis on satisfying the
constraints, while a small ν focus on reducing the suboptimality.

However, p∗ is hard to solve in (4), since the relationship between the objective and the policy π is
complex. Therefore, we substitute the policy π with the state-value function in the following way,

p∗ = min
π

(
g
(
V π

1 (s)
)
− g
(
V ∗1 (s)

)
+ ν dist

(
V π

1 (s),W∗
))

= min
V ∈V

(
g(V )− g

(
V ∗1 (s)

)
+ ν dist(V ,W∗)

) (5)

Nevertheless, solving this problem is still hard since the objective is nonlinear in V and thus standard
RL cannot apply. Therefore, we utilize the convex conjugate to “linearize” the objective. This
technique is widely used in related works (Miryoosefi and Jin, 2021; Yu et al., 2021). Specifically, by
convex conjugate, we have

g(V ) = max
β∈BD

(
β>V − g∗(β)

)
, dist(V ,W∗) = max

α∈BD
(α>V − max

x∈W∗
α>x) (6)
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for any V ∈ V . The effective domains, BD, of both α and β are obtained by the 1-Lipschitzness and
Corollary 13.3.3 in Rockafellar (1970). To see why the second equality of (6) holds, we notice that

dist(V ,W∗) = max
α∈BD

(
α>V − max

x∈RD

(
α>x− dist(x,W∗)

)
︸ ︷︷ ︸

(∗)

)
,

and (∗) attains the maximum when x ∈ W∗ since α ∈ BD. We call α and β the dual variables
throughout this paper. By plugging (6) into (5), we have

p∗ = min
V ∈V

max
α,β∈BD

L(V ;α,β) = β>V − g∗(β)− g
(
V ∗1 (s)

)
+ να>V − ν max

x∈W∗
α>x. (7)

Its dual problem can be written as d∗ = maxα,β∈BD D(α,β), where D(α,β) is the dual function
defined as D(α,β) = minV ∈V L(V ;α,β). We notice that L(V ;α,β) is convex in V ∈ V and
concave in α,β ∈ BD, which implies the strong duality, p∗ = d∗. Hence, dual methods can apply.

When α and β are fixed, solving D(α,β) is a planning problem. When the model is known, it
suffices to conduct value iteration on the model. However, what we have is a dataset collected a priori
in offline RL. Therefore, we develop the offline planning algorithm that is a pessimistic variant of
the value iteration (Jin et al., 2020b), which applies penalties to ensure pessimism. We explain why
pessimism is crucial to offline CMOMDP in Appendix F. We now describe the high-level intuition of
our approach. Consider a meta-algorithm that constructs the empirical transition kernel P̂ and the
empirical cost function ĉ based on the dataset D. As defined below, we introduce the uncertainty
quantifier that bounds the estimation error from above with a confidence parameter ξ ∈ (0, 1).
Definition 1 (ξ-uncertainty quantifier). We call {(ΓPh ,Γch)}Hh=1 a ξ-uncertainty quantifier if the
following event

E =
{∣∣P̂h(s′|s, a)− Ph(s′|s, a)

∣∣ ≤ ΓPh (s, a, s′),
∣∣ĉih(s, a)− cih(s, a)

∣∣ ≤ Γc
i

h (s, a)

for all (s, a, s′) ∈ S ×A× S, h ∈ [H], i ∈ [D]
} (8)

holds with probability at least 1− ξ. Here we write Γch = (Γc
1

h ,Γ
c2

h , . . . ,Γ
cD

h ).

Then, we can construct the empirical counterparts of Ph and Bh by P̂h[V ](s, a) =

〈V (·), P̂h(· | s, a)〉S and B̂h[V ](s, a) = ĉh(s, a) + P̂h[V ](s, a). Note that for any function
V : S → [0, H], under the event E , it holds for any (s, a) ∈ S ×A and any h ∈ [H] that∣∣(P̂h − Ph)[V ](s, a)

∣∣ =

∣∣∣∣ ∫
S

(
P̂h(s′|s, a)− Ph(s′|s, a)

)
V (s′) ds′

∣∣∣∣ ≤ H ∫
S

ΓPh (s, a, s′) ds′.

Therefore, we define Γh(s, a) = H
∫
S ΓPh (s, a, s′) ds′, which quantifies the uncertainty arising from

the transition kernel. We use the ξ-uncertainty quantifier as the penalty function for pessimistic
planning, which leads to a conservative estimation of the value function. We formally describe our
planning method in Algorithm 1, where θ denotes a projection vector to be specified later. By adding
the pessimistic penalty Γh · 1 + Γch to the estimated value, we ensure a conservative estimation. We
also truncateQk

h and V k
h in [0, H − h+ 1]D to improve the estimation.

It remains to solve maxα,β∈BD D(α,β). We utilize the projected subgradient method which produces
a sequence of dual variables {αk}Kk=1 and {βk}Kk=1 that approximately solves the dual problem.
A detailed description of projected subgradient method is provided in Appendix H.6.2. For a brief
description, we update the dual variables via

αk+1 ← ΠBD
{
αk + ηk(V k − arg max

x∈W∗
(αk)>x)

}
,

βk+1 ← ΠBD
{
βk + ηk

(
V k − ∂g∗(βk)

)}
.

(9)

where V k ∈ arg minV ∈V L(V ;αk,βk) and ηk is the step length at the k-th iteration.

As claimed in Proposition 1, the CMDP is a special case of the CMOMDP. Moreover, we show
in Appendix C.2 that when reducing to the CMDP, the objective (7) reduces to the Lagrangian
formulation of the CMDP problem. Hence, our proposed method has good generalization ability.
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Algorithm 1 Pessimistic planning.

1: function PESSPLANNING(θ,D,
{

(ΓPh ,Γ
c
h)
}H
h=1

)
2: for step h = H,H − 1, . . . , 1 do
3: Qh(·, ·)← ĉh(·, ·) + P̂h[Vh+1](·, ·) + Γh · 1 + Γch
4: Qh(·, ·)← min

{
Qh(·, ·), (H − h+ 1) · 1

}
+

5: πh(·)← arg mina∈AQh(·, ·) · θ
6: Vh(·)← Dπh [Qh](·)
7: end for
8: return π = {πh}Hh=1,Q = {Qh}Hh=1,V = {Vh}Hh=1
9: end function

3.2 General CMOMDPs

Based on the above analysis, we now develop the Pessimistic Dual Iteration (PEDI) (Algorithm 2)
for general CMOMDPs, which is motivated by the dual gradient method in solving the minimax
optimization problem. Specifically, PEDI solves D(α,β) via PESSPLANNING (Algorithm 1) and
updates dual variables via (9), alternately. The output policy π̂ is a mixed policy executed by randomly
selecting a policy πk from {πk}Kk=1 with equal probability beforehand and then exclusively following
πk thereafter. Hence, it holds that, for the mixed policy π̂, V π̂

1 (s) = 1
K

∑K
k=1 V

πk

1 (s). Note that the
mixed policy may not be a Markov policy (Altman, 1999). However, it would be useful to extend the
definition of a policy π = {πh}Hh=1 so as to allow πh to depend not only on h but also on some initial
randomizing mechanism. That is, we may have a set of policies U and a distribution q ∈ ∆(U). Then
we define the mixed policy of U , πU , as a policy to be executed by first using q to choose some policy
π ∈ U and then proceeding with only that policy. The optima of (1) over the mixed policy is still
attained by the Markov policy π∗. Thus, SubOpt(π̂) remains a reasonable performance metric of
our algorithm.

Algorithm 2 Pessimistic Dual Iteration (PEDI).

Input: offline dataset D, step length {ηk}Kk=1, scaling parameter ν
Output: the mixed policy π̂ = {π̂h}Hh=1 of {πk}Kk=1

1: randomly initialize dual variables α1,β1 ∈ BD, and set θ1 = να1 + β1

2: construct {ĉh}Hh=1 and {P̂h}Hh=1 based on D
3: construct the ξ-uncertainty quantifier {(ΓPh ,Γch)}Hh=1 based on D
4: for iteration k = 1, 2, . . . ,K do
5: πk,Qk,V k ← PESSPLANNING

(
θk,D,

{
(ΓPh ,Γ

c
h)
}H
h=1

)
6: update αk,βk to αk+1,βk+1 via (9)
7: θk+1 ← ναk+1 + βk+1

8: end for

3.3 Linear kernel CMOMDPs

In this section, we study PEDI on settings with linear function approximation such as linear kernel
CMOMDPs. To that end, we first introduce the linear kernel CMOMDP, which is a generalization of
the linear kernel MDP (Yang and Wang, 2019; Jin et al., 2020a; Cai et al., 2020). Then, we propose
an instantiation of Algorithm 2 for linear kernel CMOMDPs.

Definition 2 (Linear kernel CMOMDP). The CMOMDP (S,A, H,P, c) is a linear kernel CMOMDP
with a known kernel feature map ψ : S×A×S → Rd1 and a known value feature map ϕ : S×A →
Rd2 , if for any h ∈ [H] there exist unknown vectors θh ∈ Rd1 and θc

i

h ∈ Rd2 for any i ∈ [D] such
that for any (s, a, s′) ∈ S ×A× S ,

Ph(s′ | s, a) = ψ(s, a, s′)>θh, cih(s, a) = ϕ(s, a)>θc
i

h .
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Let d = max{d1, d2}. We assume there exists a constant R > 0 such that

R−2 max
s′∈S

(
y>ψ(s, a, s′)

)2 ≤ ∫
S

(
y>ψ(s, a, s′)

)2
ds′ ≤ d

for any (s, a) ∈ S ×A and y : ‖y‖2 ≤ 1. Moreover, we assume ‖θh‖2 ≤
√
d and ‖θcih ‖2 ≤

√
d for

i ∈ [d].

The existence of constantR naturally holds when ψ(s, a, ·) is upper bounded and Lipschitz continuous
for all (s, a) ∈ S×A. Note that the tabular CMOMDP is a special case of the linear kernel CMOMDP
with R = 1 (see Appendix G for a detailed discussion).

An instantiation of PEDI for linear kernel CMOMDPs is deferred to Appendix E where we propose
a method to estimate the empirical transition kernel P̂ and cost function ĉ and thereby construct a
ξ-uncertainty quantifier.

4 Theoretical results

In this section, we first show upper bounds for suboptimality and constraint violation for PEDI
on general CMOMDPs in Section 4.1. In Section 4.2, we show that PEDI achieves the minimax
optimality up to the optimization error and multiplicative factors of constants related to the CMOMDP
when specified to linear kernel CMOMDPs. Moreover, when the dataset has sufficient coverage over
the trajectories induced by the optimal policy, the intrinsic uncertainty is guaranteed to be Õ(1/

√
N)

where N is the number of trajectories in the dataset.

4.1 Results of general CMOMDPs

By using pessimistic planning (Algorithm 1), we ensure a pessimistic policy π̂. We formally state
this notion in the following lemma.
Lemma 1 (Pessimism). Suppose that Assumptions 1 and 2 hold. By Algorithm 2, under event E
defined in (8), for any (s, a) ∈ S × A and h ∈ [H], it holds that V k

h (s) ≥ V πk

h (s), Qk
h(s, a) ≥

Qπk

h (s, a), and dist
(
V k

1 (s),W∗
)
≥ dist

(
V πk

1 (s),W∗
)
. Furthermore, it holds that

g
(
V̂1(s)

)
≥ g
(
V π̂

1 (s)
)

and dist
(
V̂1(s),W∗

)
≥ dist

(
V ∗1 (s),W∗

)
,

where V̂1(s) = 1
K

∑K
k=1 V

k
1 (s) and π̂ is the output of Algorithm 2.

Proof of Lemma 1. See Appendix H.1 for a detailed proof.

We are now ready to establish the following theorem, which characterizes the suboptimality and
constraint violation of PEDI for general offline CMOMDPs.
Theorem 1 (Suboptimality and constraint violation for general CMOMDPs). Suppose that Assump-
tions 1 and 2 hold. Under event E defined in (8), for the output policy π̂ of Algorithm 2, when we set
ν = ρ and ηk = 2G−1

√
D/k (or 2G−1

√
D/K if K is predefined), where G = 2(1 + ν)H

√
D, it

holds that

SubOpt(π̂) ≤ εK + IntUncertπ
∗

D , Violation(π̂) ≤ 2

ρ
(εK + IntUncertπ

∗

D ), (10)

where we let C denote an absolute constant and define

εK = C(1+ρ)

√
DH2

K
, IntUncertπ

∗

D = 2(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah)+‖Γch(sh, ah)‖∞ | s1 = s

]
.

Proof of Theorem 1. See Appendix H.2 for a detailed proof. Here we provide a proof sketch, which
consists of two steps.

First step: upper bounding SubOpt(π̂) + ν Violation(π̂), which is our objective (4). Here π̂
is the output of PEDI (Algorithm 2). By pessimism, we have SubOpt(π̂) + ν Violation(π̂) ≤

8



g(V̂ 1(s))− g (V ∗1(s)) + ν dist(V̂ 1(s),W∗) where V̂ 1(s) = 1
K

∑K
k=1 V

k
1(s). We do linearization

via convex conjugate (6) and then get

SubOpt(π̂) + ν Violation(π̂) ≤K−1 max
‖β‖≤1

{
β ·

K∑
k=1

V k
1(s)−

K∑
k=1

g∗(β)

}
− g (V ∗1(s))

+K−1ν max
‖α‖≤1

{
α ·

K∑
k=1

V k
1(s)−

K∑
k=1

max
x∈W∗

α · x

}
.

Recall that PEDI uses the projected subgradient method, which approximates the max operator above
by a sequence of variables at the expense of a sublinear approximation error, which leads to

SubOpt(π̂) + ν Violation(π̂) ≤K−1
K∑
k=1

{(
βk
)>
V k

1(s)− g∗
(
βk
)}
− g (V ∗1(s))

+K−1ν

K∑
k=1

{(
αk
)>
V k

1(s)− max
x∈W∗

(
αk
)>
x

}
+ C(1 + ν)

√
DH2/K,

where C is a constant. We rearrange the right-hand side above with some tricks and then obtain

SubOpt(π̂) + ν Violation(π̂) ≤ K−1
K∑
k=1

[(
θk
)> (

V k
1(s)− V ∗1(s)

)]
+ C(1 + ν)

√
DH2/K.

The last term in the right hand side above is exactly εK . Intuitively, the term (θk)>(V k
1(s) −

V ∗1(s)) indicates the projected difference of state-value functions along θ, which motivates the
PESSPLANNING (Algorithm 1). We apply results from this pessimistic approach and then conclude

SubOpt(π̂)+ν Violation(π̂) = g
(
V π̂

1 (s)
)
−g
(
V ∗1(s)

)
+ν dist

(
V π̂

1 (s),W∗
)
≤ εK+IntUncertπ

∗

D .

Second step: upper bounding SubOpt(π̂) and Violation(π̂) individually. This is done by two facts:
(i) dist (·, ·) ≥ 0, and (ii) g(V π̂

1 (s))− g (V ∗1(s)) ≥ −ν dist(V π̂
1 (s),V ∗1(s))/2. We plug them into

the resulting inequality in the first step and then complete the proof.

As shown in Theorem 1, our pessimistic algorithm bounds the suboptimality and constraint violation
from above by the sum of the optimization error εK ∈ O(1/

√
K) and the intrinsic uncertainty

IntUncertπ
∗

D . The optimization error εK vanishes as K goes into infinity. Later, we will show that
the intrinsic uncertainty, IntUncertπ

∗

D , is impossible to eliminate through an analysis of PEDI on
linear kernel CMOMDPs in Section 4.2.

4.2 Results of linear kernel CMOMDPs

The following theorem characterizes the suboptimality and constraint violation of PEDI for linear
kernel CMOMDPs. Recall that we instantiate PEDI to linear kernel CMOMDPs in Appendix E.
Theorem 2 (Suboptimality and constraint violation for linear kernel CMOMDPs). We set λ = 1 and
κ = CR

√
d log(dN) + log(DH/ξ) where C > 0 is an absolute constant. Then, under Assumptions

1 and 2, {ΓPh ,Γrh}Hh=1 defined in (24) (Appendix E) is a ξ-uncertainty quantifier. Hence, under the
same settings of ν and ηk in Theorem 1, (10) holds with probability at least 1− ξ for the output π̂,
and the intrinsic uncertainty is specified to

IntUncertπ
∗

D = 2(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
H

∫
S
κ·‖ψ(sh, ah, s

′)‖Λ−1
h

ds′+κ·‖ϕ(sh, ah)‖Λ−1
ϕ,h
|s1 = s

]
.

Proof of Theorem 2. See Appendix H.3 for a detailed proof.

In what follows, we show that when the dataset sufficiently covers the trajectories of the optimal
policy, the intrinsic uncertainty is O(1/

√
N) where N is the number of trajectories in the dataset.
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Corollary 1 (Dataset with sufficient coverage). Suppose that the τ -th trajectory
{

(sτh, a
τ
h, c

τ
h)
}H
h=1

of the dataset D is generated by a behavior policy πb,τ for τ ∈ [N ]. Meanwhile, we assume that
there exists a constant ς > 0 such that µ∗h(s, a)/µb,τ

h (s, a) ≤ ς for any h ∈ [H], τ ∈ [N ], and
(s, a) ∈ S ×A. Here {µ∗h}Hh=1 and {µb,τ

h }Hh=1 are the visitation measures of π∗ and πb,τ . Then, we
have with probability at least 1− ξ that

IntUncertπ
∗

D ∈ Õ
(
Cςκ(1 + ρ)H2

√
d|S|/N

)
.

Proof of Corollary 1. See Appendix H.5 for a detailed proof.

Here |S| denotes a certain measure on S. For instance, when S = [0, 1] and we take the Lebesgue
measure, we have |S| = 1. Note that Corollary 1 holds under a weaker condition than the uniform
coverage (Wang et al., 2020a; Rashidinejad et al., 2021), where the condition is maxπ µ

π/µb ≤ C
for a certain constant C. However, our algorithm is still able to achieve the intrinsic uncertainty of
Õ(
√

1/N). In particular, our condition, µ∗/µb ≤ ς , can hold when we have expert demonstration in
the dataset D (Buckman et al., 2020).

In Theorem 2, we notice that when the number of iteration K goes into infinity, the optimization
error εK vanishes, and the suboptimality and constraint violation are bounded from above by the
intrinsic uncertainty IntUncertπ

∗

D only. However, this is the best effort that we can put. The following
theorem indicates that the term IntUncertπ

∗

D is impossible to eliminate since it arises from the
information-theoretic lower bound.

Theorem 3 (Information-theoretic lower bound). For the output π̂ of any algorithm of offline
CMOMDPs, there exists a linear kernel CMOMDPM with initial state s ∈ S and a dataset D
compliant withM, such that

ED

 SubOpt(π̂)∑H
h=1 Eπ∗

[
‖ϕ(sh, ah)‖Λ−1

ϕ,h
+ |S|−1

∫
S ‖ψ(sh, ah, s′)‖Λ−1

h
ds′
∣∣∣ s1 = s

]
 ≥ c,

where the expectation is taken with respect to the data collecting process, and c > 0 is an absolute
constant.

Proof of Theorem 3. See Appendix H.4 for a detailed proof.

By Theorem 2 and Theorem 3, we find that the upper bound of suboptimality of Algorithm 2 for
linear kernel CMOMDP matches the information-theoretic lower bound up to the optimization error
O(1/

√
K) and some multiplicative factors of horizons, dimensions, and geometric properties of the

target set, which means that PEDI is near-optimal for linear kernel CMOMDP.

5 Experimental Results

We also conduct numerical experiments to verify our theory. Please see Appendix I for details. The
results show that the proposed algorithm is not only provably efficient but also applicable.

6 Conclusion

In this paper, we propose a general algorithm, Pessimistic Dual Iteration (PEDI), for constrained multi-
objective reinforcement learning with offline data. We show our algorithm delivers a data-dependent
upper bound for suboptimality and constraint violation. The upper bound is composed of the
optimization error and the intrinsic uncertainty. Moreover, we show that the bound of suboptimality
is minimax optimal for linear kernel CMOMDPs up to the optimization error and multiplicative
factors of constants related to the CMOMDP. When the trajectories of optimal policy are sufficiently
covered, the intrinsic uncertainty is proved to be Õ(1/

√
N) where N is the number of trajectories in

the dataset.
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A Generalization of the definition

Adapted from Bäuerle and Rieder (2010), a more general definition of an episodic CMOMDP with
horizon H ∈ N is given by a sequence of sets of data {(S,A,Xh,Prh, ch)}Hh=1, where

• S is the state space equipped with a σ-algebra FS .
• A is the action space equipped with a σ-algebra FA.
• Xh is a measurable subset of X = S ×A, which denotes the set of accessible state-action

pairs at time h.
• Prh is a stochastic transition kernel at time h. For any fixed (s, a) ∈ Xh, the mapping S 7→

Prh(S | s, a) is a probability measure on S. Moreover, the mapping (s, a) 7→ Prh(S | s, a)
is measurable with respect to (s, a) for all S ∈ FS . Intuitively, Prh(S | s, a) gives the
probability that the next state is in S if the current state is s and action a is taken at time h.

• ch : Xh → RD is a measurable function, which defines the expected cost at time h if the
current state is s and action a is taken.

For any h ∈ [H] and (s, a) ∈ S ×A, we define Ph(· | s, a) as the density of Prh(· | s, a) relative to
a certain measure µ by the Radon–Nikodym derivative, i.e., Ph = d Prh/dµ. We usually let µ be
the Lebesgue measure when the state is continuous and be the counting measure when S is discrete.
For example, for measurable real-valued function f , when S is discrete, Ph(· | s, a) is the probability
mass function and

∫
S f dµ coincides with

∑
s∈S f(s). When S is continuous, Ph(· | s, a) is the

probability density function and
∫
S f dµ denotes the Lebesgue integration. Our proposed method is

able to handle both of the above situations. For notational simplicity, we omit the dependence on µ
through the paper.

B Explanations and justifications of Assumption 1

In this section, we explain and justify Assumption 1 imposed on the target set. This assumption is a
stronger version of the one used in Yu et al. (2021) whereW∗ is not assumed to be a lower set.

B.1 Nonsingular intersections

We first explain the meaning of nonsingular intersection, namely the existence of γmax. The intuition
is that the target setW∗ and the achievable values V do not share the same support hyperplane.

W∗ V

(a) Nonsingular inter-
section.

W∗ V

(b) Singular intersection.

Figure 1: The illustration of two types of intersections: the nonsingular intersection and the singular
intersection. The target set W∗ is represented by a red square and the achievable values V is
represented by a blue circle. The intersection is in grey.

We illustrate it via a two-dimensional example in Figure 1. The target setW∗ is represented by a
red square and the achievable values V is represented by a blue circle. The intersection is in grey.
In (a), the intersection is nonsingular, which guarantees the existence of γmax < π. However, in
(b), V intersects withW singularly, leading to the inexistence of an upper bound γmax. We notice
that Figure 1 also intuitively shows why the Slater’s condition implies our assumption, since interior
points guarantee the nonsingular intersection.

As we see in related proofs, for any W ∈ V , nonsingular intersection enables us to reduce the
calculation of dist(W ,W∗) to dist(W ,W) multiplied by the sine of the included angle. We note
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that when this geometric requirement is not satisfied (i.e., when the intersection is singular), this
reduction may not exist. The reason is that when V is not of full dimension, W can be arbitrarily
close toW∗ while remains far away fromW , making the reduction impossible (Yu et al., 2021).

B.2 Being a lower set

Now we discuss the assumption of being a lower set. It is much milder than at first glance and can be
easily relaxed. For target setW∗ which is not a lower set, we can transform it into a lower set with at
most D · 2D dimensions. We achieve this by cutting the boundary ofW∗ into at most 2D pieces. We
provide a two-dimensional example as shown in Figure 2. The target set is defined as

W∗ =
{

(c1, c2) | c1 + c2 ≥ H/2, c1 + c2 ≤ 3H/2, c1 − c2 ≥ −H/2, c1 − c2 ≤ H/2
}
.

H/2 H

H/2

H

c1

c2

Figure 2: An example of target setW∗ = {(c1, c2) | c1 + c2 ≥ H/2, c1 + c2 ≤ 3H/2, c1 − c2 ≥
−H/2, c1 − c2 ≤ H/2}. Although it does not satisfy Assumption 1 of being a lower set, we can cut
its boundaries into four pieces, each of which corresponds to a partial constraint. Since each partial
constraint can be expressed in a way that is a lower set, the target setW∗ can be reformulated as the
combination of those partial constraints to satisfy the lower set requirement at the expense of higher
dimension.

We cut its boundaries into four pieces: the upper left one, the upper right one, the bottom left one,
and the bottom right one. For the upper right boundary, it corresponds to the partial constraint:{

(c1, c2) | c1 + c2 ≤ 3H/2
}
.

It is a little tricky to represent the other three. We take the upper left boundary, c2 − c1 ≤ H/2, for
an example. To that end, we notice that it is equivalent to c2 + (H − c1) ≤ 3H/2. Hence, we set
c3 = H − c1 and c4 = c2. Then we can represent this boundary by c3 + c4 ≤ 3H/2, which satisfies
Assumption 1 of being a lower set with respect to c3 and c4. Analogously, we introduce c5 to c8 for
the other two boundaries. Finally, we obtain a new target set with 8 objectives, c1, . . . , c8, that meet
Assumption 1. Hence, we successfully relax the constraint of being a lower set.

B.3 Summaries

In a word, our assumption is mild, and thus target sets that satisfy Assumption 1 are very common
in applications. For example, we can defineW∗ asW∗ = {W ∈ [0, H]D : W ≤ b} for b ∈ RD,
which is equivalent to the formation of constraints in CMDPs.
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C Reducing CMOMDPs to CMDPs

C.1 Proof of Proposition 1

Proof of Proposition 1. We first show that the CMDP is a special case of the CMOMDP. Then, we
point out the correspondence between the assumptions imposed on CMDPs and on CMOMDPs. To
be specific, we show that Slater’s condition imposed on CMDPs is equivalent to the existence of
γmax in Assumption 1. Hence, the CMOMDP is a reasonable generalization of CMDPs.

Reducing to CMDPs. An episodic CMDP is usually given byM = (S,A, H,P, c,u), where S
is a state space, A is an action space, H is the horizon, P = {Ph}Hh=1 is a collection of transition
kernels Ph : S ×A → ∆(S), c = {ch}Hh=1 is a collection of cost functions ch : S ×A → [0, 1], and
u = {uh}Hh=1 is a collection of utility functions uh : S ×A → [0, 1]D.

The CMDP aims to solve the following problem:
min

π∈∆(A |S,H)
V c,π1 (s) s.t. V u,π1 (s) ≤ b, (11)

where V c,π and V u,π are the state-value functions for cost c and utility u, respectively. Here we
assume b ∈ [0, H]D to avoid triviality.

Now we construct a CMOMDP M′ that is equivalent to M. To that end, we set M′ =
(S,A, H,P, c′) where S,A, H , andP are same asM. We define c′ = {c′h}Hh=1 as the concatenation
of c and u, i.e., c′h = (ch,u

>
h )> ∈ [0, 1]D+1 for h ∈ [H].

The preference function g : RD+1 → R is defined as the first coordinate map, i.e., we define
g(x1, . . . , xD+1) = x1.

We set the target setW∗ asW∗ = {W ∈ [0, H]D+1 : W2:(D+1) ≤ b} whereW2:(D+1) denotes the
D-dimensional vector obtained by removing the first coordinate ofW .

The CMOMDPM′ seeks to solve the following optimization problem

min
π∈∆(A |S,H)

g
(
V c

′,π
1 (s)

)
s.t. V c

′,π
1 (s) ∈ W∗. (12)

A careful analysis will reveal that, by the construction ofM′, (12) is equivalent to (11). Hence,
CMDP is a special case of CMOMDP.

Correspondence of assumptions. Under the above definition, it is clear that g is 1-Lipschitz and
convex and that g(x) ≥ g(x′) as long as x ≥ x′ for any x,x′ ∈ RD+1. In addition,W∗ is a lower
set, and it is close and convex.

It remains to show that the existence of γmax in Assumption 1 is satisfied. However, this is equivalent
to Slater’s condition on the CMDPs. Recall that Slater’s condition supposes the existence of an
interior point, which is equivalent to a nonsingular intersection between the target set and the set of
achievable values. Hence, it is exactly the geometric analog of Slater’s condition.

C.2 PEDI on CMDPs

Now we analyze PEDI on CMDPs. Recall that the core of PEDI is solving (7). Based on the
analysis in Appendix C.1, as we have specified g as the first coordinate map, we can derive its convex
conjugate,

g∗(x∗) = sup
x

(
x>x∗ − g(x)

)
= sup

x

(
x>x∗ − x1

)
=

{
0, x∗ = (1, 0, . . . , 0)>

+∞, otherwise
. (13)

Therefore, solving (7) is equivalent to solving

p∗ = min
V ∈V

max
α∈BD

V 1 − V 1,∗ + να>V − ν max
x∈W∗

α>x, (14)

since the objective attains the maximum with respect to β when β = (1, 0, . . . , 0)>. Here, by V 1 and
V 1,∗ we mean the first coordinates of V and V ∗, respectively. Now we consider maxx∈W∗ α

>x.
Recall that we constructW∗ by

W∗ = {W ∈ [0, H]D+1 : W ≤ b′}, (15)
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where we suppose b′ = (H, b>)> for simplicity. We observe this constraint is element-wise, i.e.,
different coordinates ofW are independent. Hence, we have

max
x∈W∗

α>x = max
x∈W∗

D+1∑
i=1

αixi = max
0≤xi≤bi,
i∈[D+1]

D+1∑
i=1

αixi =

D+1∑
i=1

max
0≤xi≤bi,
i∈[D+1]

αixi = α>i,+b
′, (16)

where α>i,+ denotes (α>i )+. Then, we have

p∗ = min
V ∈V

max
α∈BD

V 1 − V 1,∗ + ν
(
α>V −α>+b′

)
. (17)

A good observation is that α ≥ 0 always holds (otherwise, we can increase the negative component
of α to make the objective larger). Therefore, the optimization problem is actually

p∗ = min
V ∈V

max
α∈BD+

V 1 − V 1,∗ + να(V − b′)

= min
V ∈V

max
α∈BD+

V c,π1 (s)− V c,∗1 (s) + να
(
V u,π1 (s)− b

)
,

(18)

where the second equality is by definition and the fact that b′1 = H ≥ V 1. We notice that να
can be considered the Lagrangian multiplier. Hence, we conclude that the objective reduces to the
Lagrangian formulation of the CMDP optimization problem, and our algorithm reduces to the dual
gradient method.

D Equivalence of problems

In this section, we show that (1) and (4) share the same solution.

For convenience, we denote by p∗1 the original problem (1), and by p∗2 the new problem (4). We first
substitute their variables π with the state-value function.

For p∗1, we have
p∗1 = min

π
g
(
V π

1 (s)
)

s.t. V π
1 (s) ∈ W∗

= min
V ∈V

g
(
V
)

s.t. V ∈ W∗
(19)

while for p∗2, we have

p∗2 = min
π

(
SubOpt(π) + ν Violation(π)

)
= min

π

(
g
(
V π

1 (s)
)
− g
(
V ∗1 (s)

)
+ ν dist

(
V π

1 (s),W∗
))

= min
V ∈V

(
g(V )− g

(
V ∗1 (s)

)
+ ν dist(V ,W∗)

)
= min
V ∈V

g(V ) + ν dist(V ,W∗)

(20)

We suppose that V † is the solution of p∗2. To show that V † is also the solution of p∗1, it suffices to
verify dist(V †,W∗) = 0.

Suppose dist(V †,W∗) 6= 0, i.e., V † 6∈ W∗. We consider its projection onW∗, V § =
∏
W∗ V

†.
Since g is 1-Lipschitz, when ν > 1, it holds that

g(V §)− g(V †) < ν dist(V †,V §). (21)

Then, by (21), we have

g(V §) + ν dist(V §,W∗)
<g(V §)− g(V §) + g(V †) + ν

(
dist(V §,W∗) + dist(V †,V §)

)
=g(V †) + ν dist(V †,W∗),

where the last equality is for dist(V §,W∗) = 0. It contradicts our assumption that V † is the solution
of p∗2. Therefore, we conclude that the solution V † of p∗2 should lie inW∗, which completes the
proof of the equivalence between (1) and (4).
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E An instantiation of PEDI for linear kernel CMOMDPs

This section serves as complements for Section 3.3.

We now propose a method to estimate the empirical transition kernel P̂ and cost function ĉ and
thereby construct a ξ-uncertainty quantifier to specify Algorithm 2 for linear kernel CMOMDPs. We
construct the empirical transition kernel by ridge regression on the offline dataset D as follows,

P̂h(s′ | s, a) = ψ(s, a, s′)>θ̂h

where θ̂h = arg min
θ∈Rd1

N∑
τ=1

∫
S

(
δsτh+1

(s′)− ψ(sτh, a
τ
h, s
′)>θ

)2
ds′ + λ‖θ‖22.

Here δsτh(s) is the Dirac function centered at sτh for continuous space and indicator function for finite
space, and λ > 0 is the regularization parameter. Note that we can obtain the following closed form
of θ̂h,

θ̂h = Λ−1
h

N∑
τ=1

ψ(sτh, a
τ
h, s

τ
h+1) where Λh =

N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)ψ(sτh, a

τ
h, s
′)> ds′+λI. (22)

We construct ĉ in an analogous way by ridge regression,

r̂ih(s, a) = ϕ(s, a)>θ̂c
i

h where θ̂c
i

h = arg min
θ∈Rd2

N∑
τ=1

(
ci,τh − ϕ(sτh, a

τ
h)>θ

)2
+ λ‖θ‖22.

and θ̂cih has the closed form

θ̂c
i

h = Λ−1
ϕ,h

N∑
τ=1

ci,τh · ϕ(sτh, a
τ
h) where Λϕ,h =

N∑
τ=1

ϕ(sτh, a
τ
h)ϕ(sτh, a

τ
h)> + λI. (23)

Moreover, we construct the ξ-uncertainty quantifier for h ∈ [H] below

ΓPh (s, a, s′) = min
{
κ ·
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

, 1
}
, Γc

i

h (s, a) = min
{
κ · ‖ϕ(s, a)‖Λ−1

ϕ,h
, 1
}
, (24)

where κ > 0 is a scaling parameter to be specified later. By plugging (24) into the pessimistic
planning (Algorithm 1), we finish the establishment of PEDI on linear kernel CMOMDPs.

F Pessimism is all you need

This section studies the effectiveness of the pessimistic approach for offline CMOMDPs. To that
end, we first introduce the model evaluation error and then develop the decomposition lemma, which
decomposes the discrepancy between the state-value functions of the learned policy and the optimal
policy into three parts: the spurious correlation, the intrinsic uncertainty, and the optimization error.
Then, we show that our proposed method successfully eliminates the spurious correlation, which is
the most difficult one to control.

We consider a meta-algorithm that constructs a sequence of policies {πk}Kk=1 which ideally converges
to the optimal policy. At the k-th iteration, the algorithm constructs the estimations {V k

h }Hh=1 and
{Qk

h}Hh=1 such that V k
h (s) = Dπk [Qk

h](s). We define the model evaluation error below, which
characterizes the error of estimating the Bellman equations.

Definition 3 (Model evaluation error). The model evaluation error for the k-th iteration is defined as

ιkh(s, a) = Qk
h(s, a)− BhV k

h+1(s, a).

We denote its i-th scalar component by ιi,kh (s, a), i.e., ιi,kh (s, a) = Qi,kh (s, a)− BhV i,kh+1(s, a).

Utilizing the model evaluation error, the discrepancy between any state-value function and the optimal
one admits a decomposition as shown in the following lemma.
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Lemma 2 (Decomposition of state-value function). Let {V k
h }Hh=1 and {Qk

h}Hh=1 be any state-value
function and action-value function such that V k

h (s) = Dπk [Qk
h](s) for any s ∈ S and any h ∈ [H].

Then, it holds that

V k
1 (s)− V ∗1 (s) =

H∑
h=1

Eπ∗ [ιkh(sh, ah) | s1 = s]

+

H∑
h=1

Eπ∗
[〈
Qk
h(sh, ·), (πkh − π∗h)(· | sh)

〉
A

∣∣∣ s1 = s
]

and that

V πk
1 (s)− V ∗1 (s) =−

H∑
h=1

Eπk
[
ιkh(sh, ah)

∣∣ s1 = s
]

︸ ︷︷ ︸
(i) Spurious Correlation

+

H∑
h=1

Eπ∗
[
ιkh(sh, ah)

∣∣ s1 = s
]

︸ ︷︷ ︸
(ii) Intrinsic Uncertainty

+

H∑
h=1

Eπ∗
[〈
Qk
h(sh, ·), (πkh − π∗h)(· | sh)

〉
A

∣∣∣ s1 = s
]

︸ ︷︷ ︸
(iii) Optimization Error

,

where Eπk and Eπ∗ are taken with respect to the trajectories induced by πk and π∗ in the underlying
CMOMDP, respectively.

Proof of Lemma 2. See Appendix H.6.1 for a detailed proof.

Lemma 2 is the vectorized analogue of Lemma 3.1 in Jin et al. (2020b). It suggests that we can
decompose the discrepancy between the state-value function of learned policy and the optimal one
into (i) spurious correlation, (ii) intrinsic uncertainty, and (iii) optimization error. Among them, (i) is
the most difficult to control since it depends on both πk and ιkh that spuriously correlated with each
other. As the learner has no control over the data collecting process, this spurious correlation could
be large even in a multi-armed bandit setting (Jin et al., 2020b). Term (ii) is easier to control since π∗
is intrinsic to the underlying CMOMDP and therefore not spuriously correlated with ιkh.

As proved in Section 4.1, our proposed algorithm successfully eliminates term (i) through pessimism.
In Section 4.2, we have shown that (ii) is impossible to eliminate as it arises from the information-
theoretic lower bound of linear kernel CMOMDPs.

G Reducing linear kernel CMOMDPs to tabular CMOMDPs

All we need is to represent the transition kernel P and cost function c of tabular CMOMDP in the
form of linear kernel CMOMDP.

We set d1 = |S||A||S| and d2 = |S||A| and set ψ(s, a, s′) = e(s,a,s′), (θh)(s,a,s′) =

P(s′ | s, a), ϕ(s, a) = e(s,a), and (θcih )(s,a) = cih(s, a).

Here we denote by e the canonical basis. It can be verified that the definition of linear kernel MDP
(Definition 2) is satisfied with R = 1.

H Proofs for Section 4

For notational simplicity, we sometime use the shorthand ιkh, Qh, Vh, πh to denote ιkh(sh, ah),
Qh(sh, ah), Vh(sh), and πh(ah | sh) when there is no risk of confusion.

H.1 Proof of Lemma 1

Proof of Lemma 1. The proof is by backward induction. Suppose the inequality holds for Q-values
in the (h+ 1)-th step. Then, it holds that for any s ∈ S, i ∈ [D],

V i,kh+1(s) = Dπkh
[
Qi,kh+1

]
(s) ≥ Dπkh

[
Qi,π

k

h+1

]
(s) = V i,π

k

h+1 .
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For any (s, a) ∈ S×A, i ∈ [D], whenQi,kh (s, a) = H−h+1, it holds thatQi,kh (s, a) ≥ Qi,π
k

h (s, a).
Otherwise, by the definition of ξ-uncertainty quantifier defined in Definition 1, it holds that

Qi,kh (s, a) ≥ĉih(s, a) + P̂kh
[
V i,kh+1

]
(s, a) + Γh + Γc

i

h

≥cih(s, a) + Pkh
[
V i,kh+1

]
(s, a)

≥cih(s, a) + Pkh
[
V i,π

k

h+1

]
(s, a)

=Qi,π
k

h (s, a)

under event E . Thus, by induction, it holds for all h that Qi,kh ≥ Q
i,πk

h .

Then, by the fact that g(x) ≥ g(x′) holds as long as x ≥ x′, we have

g
(
V̂1(s)

)
≥ g
(
V π̂

1 (s)
)
.

For the constraint violation, we consider the pointW = V πk

1 (s) +
∏
W∗ V

k
1 (s)− V k

1 (s). By the
fact thatW∗ is a lower set in Assumption 1, it holds thatW+ ∈ W∗ and

dist
(
V πk

1 (s),W∗
)
≤ dist

(
V πk

1 (s),W
)
≤ dist

(
V k

1 (s),W∗
)
.

Thus, we complete the proof of Lemma 1.

H.2 Proof of Theorem 1

Proof of Theorem 1. In the following lemma, we show that the difference between any state-value
function and the optimal one, as stated in Lemma 2, can be bounded from above by the ξ-uncertainty
quantifier with high probability when projected along with θk.

Lemma 3 (Upper bound of projected difference of state-value functions). Suppose {(ΓPh ,Γch)}Hh=1
in Algorithm 2 is a ξ-uncertainty quantifier. Then under event E , we have

(θ
k
)>
(
V k

1 (s)− V ∗1 (s)
)
≤ 2(1 + ρ)

√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞

∣∣ s1 = s
]

Proof of Lemma 3. See Appendix H.6.3 for a detailed proof.

In what follows, we suppose the event E holds, which has probability at least 1− ξ. Applying Lemma
1, we have

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

≤K
[
g
(
V̂1(s)

)
− g
(
V ∗1 (s)

)
+ ρdist

(
V̂1(s),W∗

)]
.

By the convex conjugate in (6) and the fact that V̂1(s) =
∑K
k=1 V

k
1 (s), we get

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

= max
‖β‖≤1

{
β ·

K∑
k=1

V k
1 (s)−

K∑
k=1

g∗(β)
}
−Kg

(
V ∗1 (s)

)
+ ρ max

‖α‖≤1

{
α ·

K∑
k=1

V k
1 (s)−

K∑
k=1

max
x∈W∗

α · x
}

We observe these two terms

max
‖β‖≤1

{
β ·

K∑
k=1

V k
1 (s)−

K∑
k=1

g∗(β)
}
, max
‖α‖≤1

{
α ·

K∑
k=1

V k
1 (s)−

K∑
k=1

max
x∈W∗

α · x
}
,
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are the “single best desicion” in hindsight in the projected subgradient method. By setting ηk =

2G−1
√
D/k (or 2G−1

√
D/K if K is predefined), we apply Theorem 5 with R = 2 and G =

2(1 + ρ)H
√
D (to verify the conditions, note that g∗ is H

√
D-Lipschitz) to get

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρ dist

(
V π̂

1 (s),W∗
)]

≤
K∑
k=1

{
(βk)>V k

1 (s)− g∗(βk)
}
−Kg

(
V ∗1 (s)

)
+ ρ

K∑
k=1

{
(αk)>V1

k(s)− max
x∈W∗

(αk)>x
}

+ C(1 + ρ)
√
DH2K

(25)

where C is a constant. Then, by observing

g∗(βk) = max
V

{
(βk)>V − g(V )

}
≥ (βk)>V ∗1 (s)− g

(
V ∗1 (s)

)
,

max
x∈W∗

(αk)>x ≥ (αk)>V ∗1 (s),

we have for (25) that

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρ dist

(
V π̂

1 (s),W∗
)]

≤
K∑
k=1

{
(βk)>V k

1 (s)− (βk)>V ∗1 (s) + ρ
(
(αk)>V k

1 (s)− (αk)>V ∗1 (s)
)}

+ C(1 + ρ)
√
DH2K

=

K∑
k=1

[
(θk)>

(
V1

k(s)− V ∗1 (s)
)]

+ C(1 + ρ)
√
DH2K

(26)
Applying Lemma 3, we have

K
[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

≤2K(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞ | s1 = s

]
+ C(1 + ρ)

√
DH2K

=K(εK + IntUncertπ
∗

D ),

where we define

εK = C(1+ρ)

√
DH2

K
, IntUncertπ

∗

D = 2(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah)+‖Γch(sh, ah)‖∞ | s1 = s

]
.

Note that dist(WK ,W∗) ≥ 0. Therefore, we can bound the suboptimality from above by

g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
≤ εK + IntUncertπ

∗

D .

To obtain an upper bound of the constraint violation, we employ the following lemma.

Lemma 4. Let W ∗ denote a return vector in set W that achieves the lowest cost, i.e. ∀W ∈
W, g(W ) ≥ g(W ∗). Then, under Assumption 1, it holds for anyW ∈ RD that

g(W )− g(W ∗) ≥ −dist(W ,W∗)/ sin(γmax).

Proof of Lemma 4. See Lemma 16 in Yu et al. (2021) for a detailed proof.
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We notice that by definition, W ∗ = V ∗1 (s). Therefore, applying Lemma 4 with W = V π̂
1 (s), we

have

dist
(
V π̂

1 (s),W∗
)

≤dist
(
V π̂

1 (s),W∗
)

+ sin(γmax)

[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+

dist
(
V π̂

1 (s),W∗
)

sin(γmax)

]
= sin(γmax)

[
g
(
V π̂

1 (s)
)
− g
(
V ∗1 (s)

)
+ ρdist

(
V π̂

1 (s),W∗
)]

≤2

ρ
(εK + IntUncertπ

∗

D ).

where the last inequality follows from (26). Thus, we complete the proof of Theorem 1.

H.3 Proof of Theorem 2

Proof of Theorem 2. It suffices to show that {(ΓPh ,Γch)}Hh=1 defined in (24) is a ξ-uncertainty quanti-
fier as stated in the following lemma.

Lemma 5. Under Assumptions 2, we set

λ = 1, κ = CR
√
d log(dN) + log(DH/ξ),

where C > 0 is an absolute constant and ξ ∈ (0, 1) is the confidence parameter. Then,
{(ΓPh ,Γch)}Hh=1 in (24) is a ξ-uncertainty quantifier.

Proof of Lemma 5. See Appendix H.6.5 for a detailed proof.

By Theorem 1, we have that

SubOpt(π̂) ≤ εK + IntUncertπ
∗

D , Violation(π̂) ≤ 2

ρ
(εK + IntUncertπ

∗

D )

where we define

εK = C(1 + ρ)

√
DH2

K
, IntUncertπ

∗

D = 2(1 + ρ)
√
D

H∑
h=1

Eπ∗
[
Γh(s, a) + ‖Γch(s, a)‖∞

∣∣ s1 = s
]
.

By Lemma 5 and the ξ-uncertainty quantifier defined in (24), we finish the proof.

H.4 Proof of Theorem 3

Proof of Theorem 3. The following lemma is adopted from Jin et al. (2020b), which characterizes
the information-theoretic lower bound of offline RL.

Theorem 4. For the output π̂ of any offline RL algorithm, there exists a tabular MDPM with initial
state s ∈ S and a dataset D compliant withM, such that

ED

[
SubOpt(π̂)∑H

h=1 Eπ∗
[
1/
√

1 + nh(sh, ah)
∣∣ s1 = s

]] ≥ C
where C > 0 is an absolute constant. Here nh(sh, ah) =

∑N
τ=1 1{sτh = sh, a

τ
h = ah} for

(sh, ah) ∈ S ×A.

Proof of Theorem 4. See Theorem 4.6 in Jin et al. (2020b) for a detailed proof.

Note that we can view the MDP as a special case of CMOMDP with the target setW∗ = RD, D = 1
and g being the identity function. Hence the hard instance in Theorem 4 is also a hard instance of
CMOMDP. It remains to reduce the tabular MDP there to a linear kernel MDP defined in Definition
2. To that end, we set d1 = |S||A||S| and d2 = |S||A| and set ψ(s, a, s′) = e(s,a,s′), (θh)(s,a,s′) =
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P(s′ | s, a), ϕ(s, a) = e(s,a), and (θcih )(s,a) = cih(s, a). Here e denotes the canonical basis. It can be
verified that Definition 2 is satisfied with R = 1.

Then, it holds that

Λh = λI +

N∑
τ=1

∑
s′∈S

ψ(sτh, a
τ
h, s
′)ψ(sτh, a

τ
h, s
′)> = λI +

∑
(s,a)∈S×A

∑
s′∈S

nh(s, a)E(s,a,s′),(s,a,s′)

where E(s,a,s′),(s,a,s′) is the matrix in which entries at
(
(s, a, s′), (s, a, s′)

)
is 1 and other entries are

all 0. We note that λ = 1 and Λh is diagonal and thus we have∥∥ψ(s, a, s′)
∥∥

Λ−1
h

≤ 1√
1 + nh(s, a)

(27)

Following the same derivation we get

‖ϕ(s, a)‖Λ−1
ϕ,h
≤ 1√

1 + nh(s, a)
(28)

Then, by Theorem 4, (27), and (28), we have

ED

[
SubOpt(π̂)∑H

h=1 Eπ∗
[
‖ϕ(sh, ah)‖Λ−1

ϕ,h
+ |S|−1

∫
S ‖ψ(sh, ah, s′)‖Λ−1

h
ds′
∣∣ s1 = s

]]

≥ED

[
SubOpt(π̂)

2
∑H
h=1 Eπ∗

[
1/
√

1 + nh(sh, ah)
∣∣ s1 = s

]]
≥c/2.

which completes the proof of Theorem 3.

H.5 Proof of Corollary 1

Proof of Corollary 1. By the property of visitation measure, we have that

Eπ∗
[
Γh(sh, ah) + Γcih (sh, ah) | s1 = s

]
=Eµ∗h

[
Γh(s, a)

]
+ Eµ∗h

[
Γcih (s, a)

]
≤

(
sup

(s,a)∈S×A

µ∗h(s, a)

µb,τ
h (s, a)

)
·
(
Eµb,τ

h

[
Γh(s, a)

]
+ Eµb,τ

h

[
Γcih (s, a)

])
≤ς ·

(
Eµb,τ

h

[
Γh(s, a)

]
+ Eµb,τ

h

[
Γcih (s, a)

])
,

(29)

where the first inequality follows from Hölder’s inequality and the last inequality follows from the
condition. We will upper bound the term Eµb,τ

h

[
Γh(s, a)

]
and Eµb,τ

h

[
Γcih (s, a)

]
respectively.

Let Xci,τ
h = Eµb,τ

h

[
Γcih (s, a)

]
− Γcih (sτh, a

τ
h), which is a martingale difference process with respect

to the filtration {Fτh}Nτ=1. To see this, we have

E[Xci,τ
h | Fτ−1

h ] = E[Xci,τ
h ] = 0

Note that |Xci,τ
h | is bounded by 2, and thus Azuma’s inequality implies for all h ∈ [H] that

N∑
τ=1

Xci,τ
h ≤ C

√
N log(DH/ξ) (30)

holds with probability at least 1− ξ/(D + 1). Here C denotes an absolute constant.

Moreover, by the Cauchy-Schwarz inequality, it holds that

N∑
τ=1

Γcih (sτh, a
τ
h) ≤

N∑
τ=1

κ
√
ϕ(sτh, a

τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h) ≤ κ

√√√√N

N∑
τ=1

ϕ(sτh, a
τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h),

(31)
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and by the property of trace, we have

N∑
τ=1

ϕ(sτh, a
τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h)

= tr
( N∑
τ=1

ϕ(sτh, a
τ
h)>Λ−1

ϕ,hϕ(sτh, a
τ
h)
)

= tr
( N∑
τ=1

ϕ(sτh, a
τ
h)ϕ(sτh, a

τ
h)>Λ−1

ϕ,h

)
= tr

(
(Λϕ,h − λI)Λ−1

ϕ,h

)
= tr

(
I − λ diag(λ1, λ2, . . . , λd2)−1

)
≤d2,

(32)

where in the last equality we denote by λ1, λ2, . . . , λd2 the eigenvalues of Λϕ,h. By plugging (32)
into (31) we have

N∑
τ=1

Γcih (sτh, a
τ
h) ≤ κ

√
dN. (33)

Combining (30) and (33), we have

N∑
τ=1

Eµb,τ
h

[
Γcih (s, a)

]
=

N∑
τ=1

Xci,τ
h +

N∑
τ=1

Γcih (sτh, a
τ
h) ≤ Cκ

√
dN log(DH/ξ) (34)

with probability at least 1− ξ/(D + 1).

For term Eµb,τ
h

[
Γh(s, a)

]
, we follow a similar derivation. Let Xτ

h = Eµb,τ
h

[
Γh(s, a)

]
− Γh(sτh, a

τ
h)

be a martingale difference sequence with bound 2H for each Xτ
h . Then, by the Azuma’s inequality,

it holds that
N∑
τ=1

Xτ
h ≤ CH

√
N log(DH/ξ) (35)

with probability at least 1− ξ/(D + 1). Similarly, we have

N∑
τ=1

Γh(sτh, a
τ
h) ≤

N∑
τ=1

H

∫
S
κ
√
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

≤ κH

√√√√|S|N N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

(36)

and note that
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

= tr

(
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)>Λ−1

h ψ(sτh, a
τ
h, s
′) ds′

)

= tr

(
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)ψ(sτh, a

τ
h, s
′)>Λ−1

h ds′

)
≤d1.

(37)

Combining (35), (36) and (37), we have

N∑
τ=1

Eµb,τ
h

[
Γh(s, a)

]
=

N∑
τ=1

Xτ
h +

N∑
τ=1

Γh(sτh, a
τ
h) ≤ CκH

√
dN |S| log(DH/ξ) (38)
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holds with probability at least 1− ξ/(D + 1).

Taking the union bound for (34) and (38), by (29), we have

IntUncert π
∗

D = 2(1 + ρ)

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞

∣∣ s1 = s
]

≤ 2ς(1 + ρ)

H∑
h=1

N−1
N∑
τ=1

(
Eµb,τ

h

[
Γh(s, a)

]
+ Eµb,τ

h

[
‖Γch(s, a)‖∞

])
≤ Cςκ(1 + ρ)H2

√
d|S|/N log(DH/ξ)

with probability at least 1− ξ. Thus, we complete the proof of Corollary 1.

H.6 Supporting lemmas and proofs

H.6.1 Proof of Lemma 2

Proof of Lemma 2.

Lemma 6 (Extended value difference (Cai et al., 2020)). Let π = {πh}Hh=1 and π′ = {π′h}Hh=1 be
two arbitrary policies and let {Qh}Hh=1 be any given Q-functions. For any h ∈ [H], we define a
value function Vh : S → R by letting Vh(s) = 〈Qh(s, ·), πh(· | s)〉A for all s ∈ S. Then, we have

V1(s)− V π
′

1 (s) =

H∑
h=1

Eπ′
[〈
Qh(sh, ·), πh(· | sh)− π′h(· | sh)

〉
A

∣∣∣ s1 = s
]

+

H∑
h=1

Eπ′
[
Qh(sh, ah)− (BhVh+1)(sh, ah)

∣∣ s1 = s
]
.

where s is an initial state.

Proof of Lemma 6. See Section B.1 in Cai et al. (2020) for a detailed proof.

Applying Lemma 6 with π = πk, π′ = π∗, and Qh = Qi,kh , we get

V i,k1 (s)− V i,∗1 (s) =

H∑
h=1

Eπ∗
[〈
Qi,kh , πkh − π∗h

〉 ∣∣∣ s1 = s
]

+

H∑
h=1

Eπ∗
[
ιi,kh

∣∣∣ s1 = s
]
. (39)

Moreover, applying Lemma 6 with π = π′ = πk, we get

V i,π
k

1 (s)− V i,k1 (s) = −
H∑
h=1

Eπk
[
ιi,kh
∣∣ s1 = s

]
. (40)

Since for any k ∈ [K],

V πk

1 (s)− V ∗1 (s) = V πk

1 (s)− V k
1 (s) + V k

1 (s)− V ∗1 (s), (41)

we are done by plugging (39) and (40) into (41).

H.6.2 Projected subgradient method

Our algorithm benefits from the online projected subgradient method for the update of dual variables.
We formally state it below for compactness.

Online learning. Online learning involves two players: the adversary and the player. The online
learning protocol is shown in Algorithm 3.
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Algorithm 3 Protocol of Online Learning

1: for t = 1, . . . , T do
2: The player chooses an action xt.
3: The adversary picks a function ft.
4: The player obtains reward ft(xt).
5: The player learns via ft.
6: end for

Note that there is no assumption on how the adversary will pick the function ft, and it may be
adversarially chosen. The player aims to minimize the regret:

Regret = max
x

T∑
t=1

ft(x)−
T∑
t=1

ft(xt), (42)

which measures the quality of the player’s strategy x1, . . . , xT compared with the single best desicion
in hindsight.

Projected subgradient method. The projected subgradient method is a particular case of mirror
descent/ascent with Euclidean distance. Applying this method to online learning produces a regret
bound of the order O(

√
T ).

We suppose that the actions xt are required to be contained in some convex set X , i.e., xt ∈ X .
Let gt ∈ ∂ft(xt) denote a subgradient of ft at xt and G and R denote two constant bounds such
that maxx,y∈X ‖x− y‖2 ≤ R and maxt∈[T ] ‖∂ft(xt)‖2 ≤ G. We set the step length ηt at the t-th
iteration to R

G
√
t

if we do not know the number of iterations T in advance and to R
G
√
T

if we have the
knowledge of T . The latter case will leads to an upper bound with a smaller constant multiplicative
factor. With these notations, the update rule of projected subgradient method can be expressed as

xt+1 ← arg max
x∈X

{
ft(xt) + 〈ηtgt, x− xt〉 −

1

2
‖x− xt‖22

}
.

We describe the complete method in Algorithm 4.

Algorithm 4 projected subgradient method

1: Arbitrarily initialize x1 ∈ X .
2: for t = 1, . . . , T − 1 do
3: xt+1 ← arg maxx∈X

{
ft(xt) + 〈ηtgt, x− xt〉 − 1

2‖x− xt‖
2
2

}
4: end for

By this method, the regret is guaranteed to increase sublinearly as stated in Theorem 5.

Theorem 5. Using projected subgradient method mentioned in Algorithm 4, it holds that for the
regret (42) that

Regret ≤ CRG
√
T ,

where C is an absolute constant.

Proof of Theorem 5. See Zinkevich (2003) for a detailed proof.

H.6.3 Proof of Lemma 3

Proof of Lemma 3. The model evaluation error can be upper bounded by the ξ-uncertainty quantifier.
We formally state it below.

Lemma 7. Under event E , it holds that for any k ∈ [K] and h ∈ [H],

0 ≤ ιkh(s, a) ≤ 2
(
Γh(s, a) · 1 + Γch(s, a)

)
.

Proof of Lemma 7. See Appendix H.6.4 for a detailed proof.
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By Lemma 2, it holds that

(θk)>
(
V k

1 (s)− V ∗1 (s)
)

=

H∑
h=1

Eπ∗
[
(θk)>ιkh

∣∣∣ s1 = s
]

︸ ︷︷ ︸
(i)

+

H∑
h=1

Eπ∗
[ 〈

(θk)>Qk
h, π

k
h − π∗h

〉
A

∣∣∣ s1 = s
]

︸ ︷︷ ︸
(ii)

.

We bound these two terms above separately. For (ii), since πk in Algorithm 2 is greedy (see Line 5),
we have (ii)≤ 0. For (i), by Lemma 7, we get

(i) ≤ 2|θk|>
H∑
h=1

Eπ∗
[
Γh(sh, ah) · 1 + Γch(sh, ah)

∣∣ s1 = s
]
.

By plugging them back and applying Hölder’s inequality, we have

(θ
k
)>
(
V k

1 (s)− V ∗1 (s)
)
≤ 2(1 + ρ)

√
D

H∑
h=1

Eπ∗
[
Γh(sh, ah) + ‖Γch(sh, ah)‖∞

∣∣ s1 = s
]
,

where we notice that ‖θk‖1 ≤ (1 + ρ)
√
D. Thus, we finish the proof of Lemma 3.

H.6.4 Proof of Lemma 7

Proof of Lemma 7. For any i ∈ [D], recall that we have

Qi,kh (s, a) = min
{
Q
i,k

h (s, a), H − h+ 1
}

+
.

Under event E , we have

Q
i,k

h (s, a) =ĉih(s, a) + P̂h[V i,kh+1](s, a) + Γh + Γc
i

h

≥cih(s, a) + Ph[V i,kh+1]

≥0,

where the last inequality follows from V i,kh+1 ∈ [0, H − h]. Therefore, it holds that Qi,kh (s, a) ≤
Q
i,k

h (s, a) and

Qi,kh (s, a) = min
{
Q
i,k

h (s, a), H − h+ 1
}

+

≥min
{
cih(s, a) + Ph[V i,kh+1], H − h+ 1

}
+

=cih(s, a) + Ph[V i,kh+1],

which implies

ιi,kh (s, a) = Qi,kh (s, a)−
[
cih(s, a) + PhV i,kh+1(s, a)

]
≥ 0.

It remains to establish an upper bound for ιi,kh (s, a). To that end, we have

ιi,kh (s, a) =Qi,kh (s, a)−
[
cih(s, a) + PhV i,kh+1(s, a)

]
≤Qi,kh (s, a)−

[
cih(s, a) + PhV i,kh+1(s, a)

]
=
[
ĉih(s, a) + P̂h[V i,kh+1](s, a) + Γh(s, a) + Γc

i

h (s, a)
]
−
[
cih(s, a) + Ph[V i,kh+1](s, a)

]
=
[
Γc

i

h (s, a)− cih(s, a) + ĉih(s, a)
]

+
[
Γh(s, a)− PhV i,kh+1(s, a) + P̂h[V i,kh+1](s, a)

]
≤2
(
Γh(s, a) + Γc

i

h (s, a)
)
,

where the last inequality follows from the definition of the ξ-uncertainty quantifier. Thus, we finish
the proof of Lemma 7.
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H.6.5 Proof of Lemma 5

Proof of Lemma 5. In what follows, we show that {(ΓPh ,Γch)}Hh=1 defined in (24) are ξ-uncertainty
quantifier for linear kernel CMOMDP.

Uncertainty quantifier for P . We first show that ΓPh is the ξ-uncertainty quantifier of P .

By definition, we have

Ph(s′ | s, a) = ψ(s, a, s′)>θh = ψ(s, a, s′)>Λ−1
h Λhθh

= ψ(s, a, s′)>Λ−1
h

(
N∑
τ=1

∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ + λθh

)
.

Thus, by the closed form of θ̂h in (22), we have

Ph(s′ | s, a)− P̂h(s′ | s, a)

= Ph(s′ | s, a)− ψ(s, a, s′)>θ̂h

= ψ(s, a, s′)>Λ−1
h

(
N∑
τ=1

( ∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

))
︸ ︷︷ ︸

(i)

+λ · ψ(s, a, s′)>Λ−1
h θh︸ ︷︷ ︸

(ii)

.

(43)

For term (i), by Cauchy-Schwartz inequality, we have

|(i)| ≤
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

·

∥∥∥∥∥
N∑
τ=1

( ∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

)∥∥∥∥∥
Λ−1
h

≤ C1R ·
√
d log(dN) + log(DH/ξ) ·

∥∥ψ(s, a, s′)
∥∥

Λ−1
h

, ∀(s, a, s′) ∈ S ×A× S, h ∈ [H]

with probability at least 1− ξ/(D + 1). Now we prove the last inequality of the above derivation.
To that end, we need the following lemma that generalizes the Theorem 1 in Abbasi-Yadkori et al.
(2011) to function-valued process.

Lemma 8 (Self-normalized bound for function-valued Process). Let Ω be a probability space and
{ηt}∞t=1 be a function-valued stochastic process with a filtration {Gt}∞t=0, i.e., ηt : Ω× S → R. We
assume that ηt | Gt−1 is zero-mean and σ−sub-Gaussian, i.e.,

E
[
ηt(s)

∣∣Gt−1

]
= 0, ∀s ∈ S,

logE
[

exp
(
〈f, ηt〉

) ∣∣∣Gt−1

]
≤ ‖f‖2∞ · σ2/2, ∀f : S → R.

Let {Xt}∞t=0 be an Rd-function-valued stochastic process, i.e., Xt : Ω× S → Rd, and suppose Xt

is Gt−1-measurable. We further assume that

‖λ>Xt‖∞ ≤ R · ‖λ>Xt‖2 (44)

almost surely for any λ ∈ Rd. Let V ∈ Rd×d be a positive definite matrix. We define

V t = V +

t∑
τ=1

∫
S
Xτ (s)Xτ (s)> ds

and

St =

t∑
τ=1

〈Xτ , ητ 〉S .

Then for any δ > 0, with probability at least 1− δ, it holds that for any t ≥ 0,

‖St‖2Vt−1 ≤ 2σ2R2 log

(
det(V t)

1/2

δ det(V )1/2

)
.
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Proof of Lemma 8. See Appendix H.6.6 for a detailed proof.

We consider the filtration {Fτh}
H,N
h,τ=1 defined in Assumption 2. Then it holds that

E
[
δsτh+1

(s′) | Fτh
]

= Ph(s′ | sτh, aτh).

For any f : S → R, by Hölder’s inequality, it holds that 〈f,Ph(· | sτh, aτh) − δsτh+1
〉S ≤ 2‖f‖∞,

which implies

logE
[

exp
(
〈f,Ph(· | sτh, aτh)− δsτh+1

〉
) ∣∣∣Fh,τ] ≤ 4‖f‖2∞/2.

It corresponds to the conditional 2-sub-Gaussianity. Moreover, noticing that ψ(sτh, a
τ
h, s
′) is Fτh -

measurable and both P(· | sτh, aτh) and δsτh+1
are Fτh+1-measurable, we apply Lemma 8 with Xτ =

ψ(sτh, a
τ
h, ·), ηh = Ph(· | sτh, aτh)− δsτh+1

and V = λI to get∥∥∥∥∥
N∑
τ=1

( ∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

)∥∥∥∥∥
2

Λ−1
h

≤ 8R2 · log
(
H/p · det(Λh)1/2 det(λI)−1/2

) (45)

with probability at least 1− p/H . It remains to upper bound det(Λh).

By Definition 2, we have

y>Λhy = λ‖y‖22 +

N∑
τ=1

〈
y>ψ(sτh, a

τ
h, ·), y>ψ(sτh, a

τ
h, ·)

〉
≤ λ · ‖y‖22 + dN · ‖y‖22,

which implies ‖Λh‖2 ≤ λ+ dN , and therefore,

det(Λh) ≤ ‖Λh‖d2 ≤ (λ+ dN)d. (46)

Setting λ = 1 and plugging (46) back into (45), we get∥∥∥∥∥
N∑
τ=1

(∫
S
ψ(sτh, a

τ
h, s
′)Ph(s′ | sτh, aτh) ds′ − ψ(sτh, a

τ
h, s

τ
h+1)

)∥∥∥∥∥
2

Λ−1
h

≤ 8R2 ·
(
1/2 · d log(1 + dN) + log(H/p)

)
≤ CR2 ·

(
d log(dN) + log(H/p)

)
(47)

holds with probability at least 1− p/H . Here C is an absolute constant. By the union bound, (47)
holds for all h ∈ [H] with probability at least 1− p.

For term (ii) in (43), by setting λ = 1, we have

|(ii)| ≤
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

· ‖θh‖Λ−1
h
≤
√
d ·
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

(48)

where the last inequality is due to the definition of linear kernel MDP (Definition 2) and ‖Λ−1
h ‖2 ≤ 1.

By plugging (47) and (48) into (43), we get, for all h ∈ [H], (s, a, s′) ∈ S ×A× S ,

|Ph(s′ | s, a)− P̂h(s′ | s, a)| ≤ CR
√
d log(dN) + log(DH/ξ) ·

∥∥ψ(s, a, s′)
∥∥

Λ−1
h

≤ κ ·
∥∥ψ(s, a, s′)

∥∥
Λ−1
h

(49)

holds with probability at least 1− ξ/(D + 1).

29



Uncertainty quantifier for c. Due to the closed form solution of θ̂c
i

h in (23), we have∣∣cih(s, a)− ĉih(s, a)
∣∣

=|ϕ(s, a)>(θc
i

h − θ̂c
i

h )|

=|ϕ(s, a)>Λ−1
ϕ,h

( N∑
τ=1

ci,τh · ϕ(sτh, a
τ
h)− Λϕ,hθ

ci

h

)
|

=|ϕ(s, a)>Λ−1
ϕ,h

( N∑
τ=1

ϕ(sτh, a
τ
h)
(
ci,τh − ϕ(sτh, a

τ
h)>θc

i

h

)
− λθc

i

h

)
|

≤‖ϕ(s, a)‖Λ−1
ϕ,h
· ‖

N∑
τ=1

ϕ(sτh, a
τ
h)
(
ci,τh − ϕ(sτh, a

τ
h)>θc

i

h

)
‖Λ−1

ϕ,h
+ λ‖θc

i

h ‖Λ−1
ϕ,h

Following a similar argument as we did for P , we obtain a result analogous to (49),

‖cih(s, a)− ĉih(s, a)‖ ≤ κ · ‖ϕ(s, a)‖Λ−1
φ,h
.

with probability at least 1− p.

Finally, by setting p = ξ/(D + 1) and taking union bound for P and ci (i ∈ [D]), we complete the
proof of Lemma 5.

H.6.6 Proof of Lemma 8

Proof of Lemma 8. We generalize the proof of Abbasi-Yadkori et al. (2011) as follows.

Lemma 9. Let λ ∈ Rd be an arbitrary vector and

Mλ
t = exp

[
t∑

τ=1

(〈
λ>Xτ , ητ

〉
σ2R2

− ‖λ
>Xτ‖22

2

)]
.

Let T be a stopping time with respect to {Gt}∞t=1. Then Mλ
T is almost surely well-defined and

E[Mλ
T ] ≤ 1.

Proof of Lemma 9. We first show that {Mλ
t }∞t=0 is a supermartingale. To see this, we have

E
[
Mλ
t

∣∣Gt−1

]
= Mλ

t−1 · E

[
exp(

〈
λ>Xt, ηt

〉
σ2R2

− ‖λ
>Xt‖22

2
)

∣∣∣∣∣Gt−1

]

≤Mλ
t−1 · E

[
exp(

‖λ>Xt‖2∞
2R2

− ‖λ
>Xt‖2∞
2R2

)

∣∣∣∣Gt−1

]
= Mλ

t−1.

where the inequality is due to the conditional σ-sub-Gaussianity of ηt and the condition in (44). It also
implies E[Mλ

t ] ≤ 1 for any t ≥ 0. By martingale convergence theorem, with t → ∞, Mλ
t almost

surely converges to a random variable Mλ
∞ with finite expectation, and thus Mλ

T is well-defined
almost surely. Applying Fatou’s lemma, we have

E
[
Mλ
T

]
= E

[
lim inf
t→∞

Mλ
T∧t

]
≤ lim inf

t→∞
E
[
Mλ
T∧t
]
≤ 1.

Lemma 10. Let T be a stopping time with respect to {Gt}∞t=0. Then the following holds with
probability at least 1− δ

‖ST ‖2Vt−1 ≤ 2σ2R2 log

(
det(V t)

1/2

δ det(V )1/2

)
.
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Proof of Lemma 10. For notational simplicity, we assume σ ·R = 1. We define

Vt =

t∑
τ=1

∫
S
Xτ (s)Xτ (s)> ds

and therefore V t = Vt + V . Then we can write Mλ
t = exp(λ>St − ‖λ‖2Vt/2). Let Λ be a

Rd-valued Gaussian random variable with covariance V −1 and that it is independent of {Gt}∞t=0.
Let Mt = E

[
MΛ
t

∣∣G∞] where G∞ = σ(cup∞t=0Gt). Let q denote the density of Λ and v(A) =∫
exp(−x>Ax/2) dx =

√
(2π)d/ det(A) for any positive definite matrix A.

Then, we have

Mt =

∫
Rd

exp(λ>St − ‖λ‖2Vt/2)q(λ) dλ

=

∫
Rd

exp(−‖λ− V −1
t St‖2Vt/2 + ‖St‖2V −1

t
/2)q(λ) dλ

=v(V )−1 · exp(‖St‖2V −1
t
/2) ·

∫
Rd

exp
(
−
(
‖λ− V −1

t St‖2Vt + ‖λ‖2V
)
/2
)

dλ.

(50)

Note that

‖λ− V −1
t St‖2Vt + ‖λ‖2V = ‖λ− V −1

t St‖2V t + ‖V −1
t St‖2Vt − ‖St‖

2

V
−1
t

= ‖λ− V −1

t St‖2V t + ‖St‖2V −1
t
− ‖St‖2V −1

t

.
(51)

By plugging (51) into (50), we get

Mt = v(V )−1 · exp
(
‖St‖2V −1

t

/2
)
·
∫
Rd

exp
(
− ‖λ− V −1

t St‖2V t/2
)

dλ

=
v(V t)

v(V )
· exp

(
‖St‖2V −1

t

/2
)

=

√
det(V )/ det(V t) · exp

(
‖St‖2V −1

t

/2
)
.

Hence, we have

P
(
‖ST ‖2V −1

T

> 2 log
(det(V T )1/2

δ det(V )1/2

))
= P(δ ·MT > 1) ≤ E[δ ·MT ] ≤ δ,

which completes the proof of Lemma 10.

We construct a stopping time as below.

T = inf

{
t ≥ 0 : ‖St‖2V −1

t

> 2 log
( det(V t)

1/2

δ det(V )1/2

)}
Then, we have

P
(
∃t ≥ 0, ‖St‖2

V
−1
t

> 2 log
(

det(V t)
1/2

δ det(V )1/2

))
= P(T <∞)

= P
(
‖ST ‖2

V
−1
T

> 2 log
(

det(V T )1/2

δ det(V )1/2

)
, T <∞

)
≤ P

(
‖ST ‖2

V
−1
T

> 2 log
(

det(V T )1/2

δ det(V )1/2

))
≤ δ,

which completes the proof of Lemma 8.
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I Experiments

Experiments are conducted on tabular CMOMDPs as follows. We define the constraint set as
W∗ = {x ∈ RD : ‖x‖2 ≤ 1} for simplicity, and one can verify that it satisfies Assumption 1.
The transition kernel P and cost function c are generated uniformly at random from [0, 1] (and
we conduct normalization for P). We make the cost deterministic for simplicity. In addition, we
set Ph(s0 | s0, a0) = 1 and ch(s0, a0) = 0 for a certain state action pair (s0, a0) ∈ S × A for all
h ∈ [H], and the initial state is set to s0. The intuition here is to ensure that the optimal policy, which
always takes action a0, achieves zero total cost and zero constraint violation for simplicity. The
dataset is generated by a uniformly random experimenter, i.e., it picks a ∈ A uniformly at random at
each step. Hyperparameters are listed in Table 1.

Table 1: List of hyperparameters
Hyperparameter Value

H: horizon 5
D: dimension of cost function 6
|S|: cardinality of state space 5
|A|: cardinality of action space 5
|D|: dataset size 50000
K: number of iteration of PEDI 100
δ: confidence level 0.9
η: step length 0.01
ν: scaling constant 3

In our implementation, PEDI estimates the transition and cost functions by the empirical mean,
i.e., P̂h(s, a) = nh(s, a, s′)/nh(s, a) and ĉih(s, a) = f ih(s, a)/nh(s, a) for i ∈ [D] where nh(s, a)
is the number of visits to (s, a) at step h and f ih(s, a) is the sum of the i-th cost incurred in the
dataset when visiting (s, a) at step h. We construct the Hoeffding-style uncertainty quantifiers, i.e.,
ΓPh (s, a, s′) =

√
log(2H|S||A||S|/δ)/(2nh(s, a)) and Γch =

√
log(2DH|S||A|/δ)/(2nh(s, a)).

We can verify that they satisfy the definition (Definition 1).

We conduct experiments to see how PEDI converges to the optimal policy with different preference
functions: quadratic functions, polynomial functions, and their combinations.

Quadratic Functions. Suppose the interplay of cost functions can be modeled by a positive definite
matrix A, a vector b and a constant c, i.e., the preference function is defined as

g(x) =
1

2
x>Ax+ b>x+ c,

where A is positive definite. For simplicity, we assume b is the zero vector and c = 0. To guarantee
1-Lipschitzness, it suffices to restrict the spectral radius λmax. In particular, we require λmax(A) ≤
1/(2HD1/2) since ‖∂xg‖2 = ‖2Ax‖2 ≤ 2λmax(A)HD1/2. For the convex conjugate, we can
verify that g∗(x∗) = 1

2 (x∗ − b)>A−1(x∗ − b)− c = 1
2x
∗A−1x∗. In the numerical experiment, the

matrix A is randomly generated with the mentioned spectral radius requirement. The results are given
in Table 2.

Table 2: Results of quadratic preference functions
Iteration k Suboptimality Constraint Violation

1 0.067 0.880
2 0.505 4.007
3 0.067 0.880
4, 5, . . . , 100 0.000 0.000

As we see, it converges to the optimal policy in mere four iterations and stays optimal permanently.
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Polynomial Functions. Suppose the preference function is polynomial, i.e.,

g(x) =

D∑
i=1

ci|xi|pi .

For simplicity, we assume p = pi = pj and c = ci = cj for any 1 ≤ i, j ≤ D. To en-
sure 1-Lipschitzness, it suffices to set c = 1/(pHp−1D1/2) for all i which results in ‖∂xg‖2 =

cpxp−1D1/2 ≤ 1 for x ≥ 0. Then, we have g∗(x∗) =
∑D
i=1

|x∗i |
q

cq−1pq−1q where 1
p + 1

q = 1. In the
numerical experiment, we set p = 2. The results are shown in Table 3.

Table 3: Results of polynomial preference functions
Iteration k Suboptimality Constraint Violation

1 0.165 1.009
2 0.139 0.844
3, 4, . . . , 100 0.000 0.000

As we see, it reaches the optimal solution in only three iterations.

Combination of Quadratic Functions and Polynomial Functions. We consider more complex sce-
narios where preference functions are combinations of quadratic functions and polynomial functions,
i.e., g(x) = g1(x1) + g2(x2) with

g1(x) =
1

2
x>Ax+ b>x, g2(x) =

D2∑
i=1

ci|xi|pi .

Here x = (x>1 , x
>
2 )> with x1 ∈ RD1 , x2 ∈ RD2 and D1 + D2 = D. It is clear that g∗(x∗) =

g∗1(x∗1)+g∗2(x∗2). In experiments we setD1 = D2 = D/2. Moreover, we impose similar requirements
and restrictions as we did previously to ensure 1-Lipschitzness. The numerical results are in Table
4, which show that the suboptimality and constraint violation decrease as the number of iterations
increases, and PEDI finds the solution in nine iterations.

Table 4: Results of functions that are a combination of quadratic functions and polynomial preference
functions

Iteration k Suboptimality Constraint Violation

1 1.517 6.033
2 1.490 6.000
3, 4, 5 1.438 5.864
6 1.333 5.609
7 0.811 4.152
8 0.093 0.884
9, 10, . . . , 100 0.000 0.000

The following two remarks discuss (1) possibilities to handle other (even more general) preference
functions and (2) some practical variants of PEDI for application, which is left to future work, as this
paper is mainly theoretical.
Remark 1 (General Preference Function). In addition to the above demonstration, PEDI is also
easily applicable to preference functions from many function classes such as exponential function,
logarithmic function, and entropy function. Even when the exact expression of the preference function
g is not good or even unknown, PEDI applies as long as we can approximate g∗ by some numerical
methods, say, by directly approximating supx(〈x∗, x〉 − g(x)), which is the definition of the convex
conjugate. To obtain the subgradient, we can use certain techniques such as numerical differentiation.
Remark 2 (General Planning Algorithm). For a real-world application, the pessimistic planning
(PESSPLANNING, see Algorithm 1) may seem too heavy. It can be replaced by any algorithms as
long as it approximately produces the desired policy πk and a pessimistic estimation of the value
functions V k at each iteration. For example, we can apply policy iteration algorithms or even any
neural network-based approximate algorithms.
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