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A Appendix

A.1 Useful definitions and properties

Definition 13 (Primary Path (Ferreira & Assaad},2024)). Let G* = (V*,E*) be a graph and 7@ = (V}*,--, V) a

walk. The primary path of 7 is noted 7, and is defined iteratively as Uy = V{*, V1<K, U}, = %ax{i‘v*:m}ﬂ
i k

until U, = V.5 with (U - U, ) S 7y (resp. <, =) if (V* maa(i]VF=Ur} V,fmx{i‘v::U;}H) CT (resp. <, «=).

Property 1. Let G* = (V*,E*) be a graph, @ = (V*,--, V) a walk and 70, = (U{,---, U}

) n m

) its primary path.

1. V¥ =Uy and V;; =U},, and

2. 3i:1<i<m, (Uf > Ufy) €7y (resp. <, «») = Jj:1<j<n, U =V, Uy =V, and
(Vi = Vi) €7 (resp. <. o).
Proof. This properties are directly given by Definition [T3] O

Property 2 (Equivalence between blocking walks and paths). Let G* = (V*,E*) be a graph (whether it be
an ADMG or a C-DMG), W* cV* and 7@ = (V{*,--,V.*} be a walk. If 7 is W*-active then its primary path
7p 15 W*-active.

Proof. Let G* = (V*,E*) be a graph (whether it be an ADMG or a C-DMG), W* ¢ V* and 7 = (V{*,--, V)
be an W*-active walk. Suppose that its primary path 7, = (Uf,--,U,;,) is W*-blocked.

o If U eW* or U;;, e W* then using Property. 1tem' Vi e W* or V' e W* and thus 7 is blocked by
W* which contradicts the initial assumption.

Otherwise, take 1 <4 <m such that (U, U, U}

+1

) is W*-blocked.

o If Ur U} - U}, (resp. Uy < Ur=U},;) and U* € W* then, using Property [1] item [2} there
exists 1 < j < n such that U* Viand Uy = Vi, (resp. U~ *, and U} = V¥) and thus

J
Vi = Ve > Vi (tesp. Vo) « V7 "‘“U;+1) isin 7 and V" = Uz* e W* Therefore 7 is W*-blocked

which contradlcts the initial aebumptlon

o If Ut ,+-Ur<U}; and De(U;,G*) n W* = @& then, using Property [1| item there exists 1 <
Jj < n such that U”, = V', ‘and Ut = Vi and V=V is in 7. Take kpin = min{j <
k<n | (Vi =V <Vi,) c 7} and notice that De(V)' ,G*) ¢ De(V;,G*) = De(U;,G") so
De(Vk’inm, G*) nW* = @. Therefore, 7 is W*-blocked which contradicts the initial assumptlon

In conclusion, for any W* ¢ V¥ if a walk is W*-active then its primary path is W*-active as well. O

In the following, we introduce a property of compatibility between mutilated graphs that will be useful for
proving the soundness and the completeness of the do-calculus in C-DMGs.

Property 3. (Compatibility of Mutilated Graphs) Let G = (V,E) be an ADMG, G = (C,E?®) its compatible
C-DMG and Ca,Cpg € C. The mutilated graph Q%ACB is a C-DMG compatible with the mutilated ADMG Gg

where A = Ucec, C and B = Ugec, C

Proof. Let G = (V,E) be an ADMG, G¢ = (C,E®) its compatible C-DMG, Ca,Cg € C, A = Ucec, C and
B= UCGCB c

Firstly, let us show that every arrow in Q&CB corresponds to an arrow in Gzg. Let C,C’ € C such that

C - C"isin E%B. We know that C ¢ Cg and C’ ¢ Ca and that C — C’ is in ES. Therefore, there exists
VeC,V'eC such that V-V’ isin Eand V ¢Band V' ¢ Aso V — V' is in Egg.
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Similarly, let C,C" € C such that C «-» C’ is in EETCB' We know that C,C’ ¢ Cp and that C «-» C’ is in E°.
Therefore, there exists V € C,V’ € C" such that V «-» V' isin E and V,V' ¢ Aso V «» V' is in Exg-

Secondly, let us show that every arrow in Gz corresponds to an arrow in Q%A o’ Let V, V' € Vzg such that

V - V' is in Ezg. Let C = C1(V,G°%) and €’ = CI(V',G°). We know that V ¢ B and V' ¢ A and that V — V”
is in E. Therefore, C' - C’ is in E® and C' ¢ Cg and V' ¢ Cp so C - C’ is in EETCB'

Similarly, let V, V' € Vzg such that V «» V' is in Ezg. Let C' = CI(V,G°) and C' = C1(V',G°) We know that
V,V' ¢ A and that V < V' is in E. Therefore, C' <+ C’ is in E€ and C,C" ¢Cp so V «» V' is in E(C:TCB’ O

A.2 Proof of Theorem [

Proof. Suppose Cx and Cy are d-separated by Cy in G and there exists a compatible ADMG G = (V,E) and
apath = (V1,--, V) in G from V; € X to V,, € Y which is not blocked by W. Consider the walk 7 = (Cy, -, Cy,)
with V1 <4é<n,C; = Cl(V;,G%) and V1 < i < n,(C; > Ci1) € T (resp. «, ) <= (V; - Vii1) © 7 (resp.
«,«»). 7 is a walk from Cx to Cy in G°. Since Cx and Cy are d-separated by Cy, using the contraposition
of Property [2| we know that Cyw blocks 7.

e If C; eWor C, € Cy, then V; e W or V,, € W and thus 7 is blocked by W which contradicts the initial
assumption.

Otherwise, take 1 <4 <n such that (C;_1,C;, Ci41) is Cw-blocked.

o If <Ci—1HCi - Ci+1> cT (resp. <Ci_1 « (= i+1> c ﬁ') and C; € Cy then, (V;‘_l*-kvi - Vi+1) cm
(resp. (Vic1 < Vi=Viyq) € ) and V; € C; €W = Ugec,,- Thus 7 is blocked by W which contradicts
the initial assumption.

o If (C;_1C;«+Ciy1) €7 and De(C;,G%)NCw = @ then, (V;_1+—V;<V;,1) € 7. Moreover, De(V;,G) ¢
Ucepe(c;,ge) C 50 De(Vi, G)NW € Ucepe(c,,ge)ncyw C and De(C;, G°)NCw = @ thus De(V;,G)nW = &.
Therefore, m is blocked by W which contradicts the initial assumption.

In conclusion, d-separation is sound in C-DMGs.

A.3 Proof of Theorem

Proof. Suppose Cx and Cy are not d-separated by Cy in G°. There exists an Cy-active path w = (C, -+, Cy,)
with C; € Cx and C,, € Cy. Because of Assumption [I] we either have no information regarding the size of
the clusters, and thus we can assume that every cluster is of size at least 2, either no two adjacent cluster
in a cycle are both of size 1. Let <p be a total order on C such that for every collider C; in 7 there exists a
descendant path from C; to Cyw which is compatible with the order <p (i.e., V1 < i < n,(Ci_1—~>Ci<+Ciy1) C
m,3rp = (D1 — -+ - Dy,) such that Dy = C;,D,, € Cyw and V1 < j < m,D; <p Dj;1). From the C-DMG
G® = (C,E®) one can build a compatible ADMG G = (V,E) in the following way:

o For every cluster C € C consider two variable V2, V3 € C with V& = V2 if and only if |C| = 1.

E”:={Vi > V4 |VC - C' €E®}
E; ={V2 >V |VC - O cE°
such that (C' - C'yc 7 or (C' < C) c }
Ep ={Vd - V& | VC - C" €E®}
such that C <p C'}
E” :={VE > V3 | VC «» C' € E®}
E:=E” UE  UEjUE"™
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Notice that G is in indeed acyclic and is compatible with the C-DMG G°. Moreover, G contains the path
TG = (VCO1 AETEN Vcon) which is necessarily W-active since 7 is Cy-active. In conclusion, d-separation in C-DMGs
is complete under Assumption O

A.4 Proof of Theorem [3

Proof. Let G° = (C,E®) be a C-DMG and Cx, Cy,Cz, Cw ¢ C be disjoints subsets of vertices. Let X = Ugec, C
Y =Ucec, €, Z=Ucec, C and W = Ucec,, C

Suppose that (CyLyCx | Cz, Cw)g%. Using Property [3| and Theorem 1| we know that for every compatible
Z

ADMG G, (YugX | Z,W)g_. Thus, the usual rule 1 of the do-calculus given by Pearl |1995/ in the case of
ADMGs states that Pr(y | do(z),x,w) = Pr(y|do(z),w).

Suppose that (CyLsCx | Cz, CW)gc . Using Property I 3| and Theorem I we know that for every compatible
ADMG G, (YuX | Z,W)g_, . Thub the usual rule 2 of the do-calculus given by |[Pearl [1995|in the case of
ADMGs states that Pr(y | do(z),do (x),w) = Pr(y | do (z) ,x,w).

Suppose that (Cy1sCx | Cz,Cw)ge . Using Property ggz is compatible with G5 and if 3X € X such

CzCx(Cw)
that X € An(W,G5) then CI(X,G°) € An(CW,géfz). Therefore, VCx € Cx, Cx ¢An(CW,ggfz) = VXe¢

X, X ¢ An(X Gz). Thus, gc ST and QZW)

ev S Thus, the usual rule 3 of the do-calculus given by [Pearl
1995[in the case of ADMGS states that Pr(y|do(z),do(x),w) =Pr(y|do(z),w). O

are compatible, and using Theorem [1| we know that for

A.5 Proof of Theorem [4

Proof. Let G° = (C,E®) be a C-DMG and Cx,Cy,Cz,Cw cC.
Suppose that rule 1 does not apply i.e., (CyfaCx | CZ7CW)g%. Then, using Theorem [2| there exists an
Z

ADMG G compatible with QL in which (YyqX|Z ;W)g. Notice that there exists an ADMG G compatible

with G° such that G5 = G. Therefore G is an ADMG compatible with G in which (Y£sX | Z,W)g_ and thus
the usual rule 1 of the do-calculus given by [Pearl|[1995|in the case of ADMGs does not apply.

Suppose that rule 2 does not apply i.e., (CyfqCx | CZ,CW)gc . Then, using Theorem I there exists an
ADMG G compatible with QC o in which (YUgX|Z,W)g. Notlce that there exists an ADMG G compatible

with G¢ such that Gz, = G. Therefore G is an ADMG compatible with G® in which (Yf;X | Z W)g, and
thus the usual rule 2 of the do-calculus given by [Pearl[1995| in the case of ADMGs does not apply.

Suppose that rule 3 does not apply i.e., (Cyf£sCx | Cz,Cw)ge

CzCx(Cw)
an ADMG Q compatible with G in which (Y§4X | Z,W)s. Using the same idea as in the proof of
CzCx(Cw) G g

Theorem (3, notice that there exists an ADMG G compatible with G® such that gzx(W) G. Therefore, G
is an ADMG compatible with G¢ in which (Y£zX | Z7W)gZm and thus the usual rule 3 of the do-calculus
given by [Pearl|[1995|in the case of ADMGs does not apply. O

. Then, using Theorem E there exists

A.6 Proof of Theorem

Proof. Consider an C-DMG G° = (C,E®), its SC-projection H° and a SC-Hedge F,F’ for Pr(cy | do(cx)). Let
us prove Theorem [5] by induction on the number of bidirected dashed edges in the C-forest F that are in H®
but not in G¢ (i.e., which are artificially induced by cycles). YC € C, take Vg € C.

Firstly, if F,F’ is a Hedge in G then there exists a compatible ADMG G = (V,E) such that C — C" € EF
(resp. «») == Vg — Vgr € E (resp. <) and thus if Fg = ({Vo | C e VF} (Vo - Ve | C - C" e EFY U {Vo <
Ver |Ces C" e EFY) and Fl = ({Vo | C e VE Y {Ve = Ve | C - C" e EF YUV e Ve | C e O € EF V) is a
Hedge for Pr(y | do (X)) and thus Pr(cy | do(cx)) = Pr(y| do(x)) is not identifiable.
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Secondly, if there exists Cx € Cx and Cy € Cy such that Sce(Cx,G%) = Sce(Cy,G°) then, because of
Assumption [1} there exists a compatible ADMG in which there is a directed path from Vi, to V. This
path must be blocked as it is not causal but every vertex on this path is a descendant of V¢, and thus
cannot be adjusted on without inducing a bias. Lastly, assume that Theorem [f] is true for any SC-Hedge
with % bidirected dashed edges which are in H® but not in G and that F has k + 1 such edges. Then, one
cannot identify the macro causal effect by the adjustment formula[Shpitser et al.[(2010|) due to the ambiguity
(Assaad et all |2024) induced by the cycle on Cx or due to the bias induced by the latent confounder of
Cx that cannot be removed without using any rule of the do-calculus. Moreover, any decomposition of the
effect using the do-calculus will necessitate the identification of other macro causal effects. These effects
have sub-C-forests of F,F’ as SC-Hedges and at least one of theses sub-C-forests has at most k artificial
bidirected dashed edges induced by cycles. The associated macro causal effect is therefore unidentifiable by
induction. O
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