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A Appendix

A.1 Useful definitions and properties

Definition 13 (Primary Path (Ferreira & Assaad, 2024)). Let G∗ = (V∗, E∗) be a graph and π̃ = ⟨V ∗1 ,⋯, V ∗n ⟩ a
walk. The primary path of π̃ is noted π̃p and is defined iteratively as U∗1 = V ∗1 , ∀1 ≤ k, U∗k+1 = V ∗max{i∣V ∗i =U∗

k
}+1

until U∗k+1 = V ∗n with ⟨U∗k → U∗k+1⟩ ⊆ π̃p (resp. ←, ) if ⟨V ∗max{i∣V ∗i =U∗
k
}
→ V ∗max{i∣V ∗i =U∗

k
}+1⟩ ⊆ π̃ (resp. ←, ).

Property 1. Let G∗ = (V∗, E∗) be a graph, π̃ = ⟨V ∗1 ,⋯, V ∗n ⟩ a walk and π̃p = ⟨U
∗
1 ,⋯, U∗m⟩ its primary path.

1. V ∗1 = U∗1 and V ∗n = U∗m, and

2. ∃i ∶ 1 ≤ i < m, ⟨U∗i → U∗i+1⟩ ⊆ π̃p (resp. ←, ) Ô⇒ ∃j ∶ 1 ≤ j < n, U∗i = V ∗j , U∗i+1 = V ∗j+1, and
⟨V ∗j → V ∗j+1⟩ ⊆ π̃ (resp. ←, ).

Proof. This properties are directly given by Definition 13.

Property 2 (Equivalence between blocking walks and paths). Let G∗ = (V∗, E∗) be a graph (whether it be
an ADMG or a C-DMG), W∗ ⊆ V∗ and π̃ = ⟨V ∗1 ,⋯, V ∗n ⟩ be a walk. If π̃ is W∗-active then its primary path
π̃p is W∗-active.

Proof. Let G∗ = (V∗, E∗) be a graph (whether it be an ADMG or a C-DMG), W∗ ⊆ V∗ and π̃ = ⟨V ∗1 ,⋯, V ∗n ⟩
be an W∗-active walk. Suppose that its primary path π̃p = ⟨U

∗
1 ,⋯, U∗m⟩ is W∗-blocked.

• If U∗1 ∈ W∗ or U∗m ∈ W∗ then using Property 1 item 1, V ∗1 ∈ W∗ or V ∗n ∈ W∗ and thus π̃ is blocked by
W∗ which contradicts the initial assumption.

Otherwise, take 1 < i <m such that ⟨U∗i−1, U∗i , U∗i+1⟩ is W∗-blocked.

• If U∗i−1∗−

∗U∗i → U∗i+1 (resp. U∗i−1 ← U∗i ∗−

∗U∗i+1) and U∗i ∈ W∗ then, using Property 1 item 2, there
exists 1 < j < n such that U∗i = V ∗j and U∗i+1 = V ∗j+1 (resp. U∗i−1 = V ∗j−1 and U∗i = V ∗j ) and thus
V ∗j−1∗−

∗V ∗j → V ∗j+1 (resp. V ∗j−1 ← V ∗j ∗−

∗U∗j+1) is in π̃ and V ∗j = U∗i ∈ W∗. Therefore, π̃ is W∗-blocked
which contradicts the initial assumption.

• If U∗i−1∗→U∗i ←

∗U∗i+1 and De(U∗i ,G∗) ∩ W∗ = ∅ then, using Property 1 item 2, there exists 1 <
j < n such that U∗i−1 = V ∗j−1 and U∗i = V ∗j and V ∗j−1∗→V ∗j ⋯←

∗is in π̃. Take kmin = min{j ≤
k < n ∣ ⟨V ∗k−1∗→V ∗k ←

∗V ∗k+1⟩ ⊆ π̃} and notice that De(V ∗kmin
,G∗) ⊆ De(V ∗j ,G∗) = De(U∗i ,G∗) so

De(V ∗kmin
,G∗) ∩W∗ = ∅. Therefore, π̃ is W∗-blocked which contradicts the initial assumption.

In conclusion, for any W∗ ⊆ V∗, if a walk is W∗-active then its primary path is W∗-active as well.

In the following, we introduce a property of compatibility between mutilated graphs that will be useful for
proving the soundness and the completeness of the do-calculus in C-DMGs.
Property 3. (Compatibility of Mutilated Graphs) Let G = (V, E) be an ADMG, Gc = (C, Es) its compatible
C-DMG and CA, CB ⊆ C. The mutilated graph Gc

CACB
is a C-DMG compatible with the mutilated ADMG GAB

where A = ⋃C∈CA
C and B = ⋃C∈CB

C.

Proof. Let G = (V, E) be an ADMG, Gc = (C, Ec) its compatible C-DMG, CA, CB ⊆ C, A = ⋃C∈CA
C and

B = ⋃C∈CB
C.

Firstly, let us show that every arrow in Gc
CACB

corresponds to an arrow in GAB. Let C, C ′ ∈ C such that
C → C ′ is in Ec

AB
. We know that C ∉ CB and C ′ ∉ CA and that C → C ′ is in Ec. Therefore, there exists

V ∈ C, V ′ ∈ C ′ such that V → V ′ is in E and V ∉ B and V ′ ∉ A so V → V ′ is in EAB.
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Similarly, let C, C ′ ∈ C such that C C ′ is in Ec
CACB

. We know that C, C ′ ∉ CA and that C C ′ is in Ec.
Therefore, there exists V ∈ C, V ′ ∈ C ′ such that V V ′ is in E and V, V ′ ∉ A so V V ′ is in EAB.

Secondly, let us show that every arrow in GAB corresponds to an arrow in Gc
CACB

. Let V, V ′ ∈ VAB such that
V → V ′ is in EAB. Let C = Cl(V,Gc) and C ′ = Cl(V ′,Gc). We know that V ∉ B and V ′ ∉ A and that V → V ′

is in E. Therefore, C → C ′ is in Ec and C ∉ CB and V ′ ∉ CA so C → C ′ is in Ec
CACB

.

Similarly, let V, V ′ ∈ VAB such that V V ′ is in EAB. Let C = Cl(V,Gc) and C ′ = Cl(V ′,Gc) We know that
V, V ′ ∉ A and that V V ′ is in E. Therefore, C C ′ is in Ec and C, C ′ ∉ CA so V V ′ is in Ec

CACB
.

A.2 Proof of Theorem 1

Proof. Suppose CX and CY are d-separated by CW in Gc and there exists a compatible ADMG G = (V, E) and
a path π = ⟨V1,⋯, Vn⟩ in G from V1 ∈ X to Vn ∈ Y which is not blocked by W. Consider the walk π̃ = ⟨C1,⋯, Cn⟩

with ∀1 ≤ i ≤ n, Ci = Cl(Vi,G
c) and ∀1 ≤ i < n, ⟨Ci → Ci+1⟩ ⊆ π̃ (resp. ←, ) ⇐⇒ ⟨Vi → Vi+1⟩ ⊆ π (resp.

←, ). π̃ is a walk from CX to CY in Gc. Since CX and CY are d-separated by CW, using the contraposition
of Property 2, we know that CW blocks π̃.

• If C1 ∈W or Cn ∈ CW, then V1 ∈W or Vn ∈W and thus π is blocked by W which contradicts the initial
assumption.

Otherwise, take 1 < i < n such that ⟨Ci−1, Ci, Ci+1⟩ is CW-blocked.

• If ⟨Ci−1∗−

∗Ci → Ci+1⟩ ⊆ π̃ (resp. ⟨Ci−1 ← Ci∗−

∗Ci+1⟩ ⊆ π̃) and Ci ∈ CW then, ⟨Vi−1∗−

∗Vi → Vi+1⟩ ⊆ π
(resp. ⟨Vi−1 ← Vi∗−

∗Vi+1⟩ ⊆ π) and Vi ∈ Ci ⊆ W = ⋃C∈CW
. Thus π is blocked by W which contradicts

the initial assumption.

• If ⟨Ci−1∗→Ci←

∗Ci+1⟩ ⊆ π̃ and De(Ci,G
c)∩CW = ∅ then, ⟨Vi−1∗→Vi←

∗Vi+1⟩ ⊆ π. Moreover, De(Vi,G) ⊆

⋃C∈De(Ci,Gc)C so De(Vi,G)∩W ⊆ ⋃C∈De(Ci,Gc)∩CW
C and De(Ci,G

c)∩CW = ∅ thus De(Vi,G)∩W = ∅.
Therefore, π is blocked by W which contradicts the initial assumption.

In conclusion, d-separation is sound in C-DMGs.

A.3 Proof of Theorem 2

Proof. Suppose CX and CY are not d-separated by CW in Gc. There exists an CW-active path π = ⟨C1,⋯, Cn⟩

with C1 ∈ CX and Cn ∈ CY. Because of Assumption 1 we either have no information regarding the size of
the clusters, and thus we can assume that every cluster is of size at least 2, either no two adjacent cluster
in a cycle are both of size 1. Let ≤D be a total order on C such that for every collider Ci in π there exists a
descendant path from Ci to CW which is compatible with the order ≤D (i.e., ∀1 < i < n, ⟨Ci−1∗→Ci←

∗Ci+1⟩ ⊆
π,∃πD = ⟨D1 → ⋯ → Dm⟩ such that D1 = Ci, Dm ∈ CW and ∀1 ≤ j < m, Dj ≤D Dj+1). From the C-DMG
Gc = (C, Ec) one can build a compatible ADMG G = (V, E) in the following way:

• For every cluster C ∈ C consider two variable V 0
C , V 1

C ∈ C with V 0
C = V 1

C if and only if ∣C ∣ = 1.

E→ ∶={V 0
C → V 1

C′ ∣ ∀C → C ′ ∈ Ec
}

E→π ∶={V
0

C → V 0
C′ ∣ ∀C → C ′ ∈ Ec

such that ⟨C → C ′⟩ ⊆ π or ⟨C ′ ← C⟩ ⊆ π}

E→D ∶={V
1

C → V 1
C′ ∣ ∀C → C ′ ∈ Ec

}

such that C ≤D C ′}

E ∶={V 0
C → V 0

C′ ∣ ∀C C ′ ∈ Ec
}

E ∶=E→ ∪ E→π ∪ E→D ∪ E
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Notice that G is in indeed acyclic and is compatible with the C-DMG Gc. Moreover, G contains the path
πG = ⟨V

0
C1

,⋯, V 0
Cn
⟩ which is necessarily W-active since π is CW-active. In conclusion, d-separation in C-DMGs

is complete under Assumption 1.

A.4 Proof of Theorem 3

Proof. Let Gc = (C, Ec) be a C-DMG and CX, CY, CZ, CW ⊆ C be disjoints subsets of vertices. Let X = ⋃C∈CX
C,

Y = ⋃C∈CY
C, Z = ⋃C∈CZ

C and W = ⋃C∈CW
C.

Suppose that (CY ⊧dCX ∣ CZ, CW)Gc
CZ

. Using Property 3 and Theorem 1 we know that for every compatible
ADMG G, (Y ⊧dX ∣ Z, W)GZ

. Thus, the usual rule 1 of the do-calculus given by Pearl 1995 in the case of
ADMGs states that Pr(y ∣ do (z) , x, w) = Pr(y ∣ do (z) , w).

Suppose that (CY ⊧dCX ∣ CZ, CW)Gc
CZCX

. Using Property 3 and Theorem 1 we know that for every compatible
ADMG G, (Y ⊧dX ∣ Z, W)GZX

. Thus, the usual rule 2 of the do-calculus given by Pearl 1995 in the case of
ADMGs states that Pr(y ∣ do (z) , do (x) , w) = Pr(y ∣ do (z) , x, w).

Suppose that (CY ⊧dCX ∣ CZ, CW)Gc
CZCX(CW)

. Using Property 3, Gc
CZ

is compatible with GZ and if ∃X ∈ X such
that X ∈ An(W,GZ) then Cl(X,Gc) ∈ An(CW,Gc

CZ
). Therefore, ∀CX ∈ CX, CX ∉ An(CW,Gc

CZ
) Ô⇒ ∀X ∈

X, X ∉ An(X,GZ). Thus, Gc
CZCX(CW)

and GZX(W) are compatible, and using Theorem 1 we know that for
every compatible ADMG G, (Y ⊧dX ∣ Z, W)G

ZX(W)
. Thus, the usual rule 3 of the do-calculus given by Pearl

1995 in the case of ADMGs states that Pr(y ∣ do (z) , do (x) , w) = Pr(y ∣ do (z) , w).

A.5 Proof of Theorem 4

Proof. Let Gc = (C, Ec) be a C-DMG and CX, CY, CZ, CW ⊆ C.

Suppose that rule 1 does not apply i.e., (CY/ ⊧dCX ∣ CZ, CW)Gc
CZ

. Then, using Theorem 2 there exists an
ADMG G̃ compatible with Gc

CZ
in which (Y/ ⊧dX ∣ Z, W)G̃ . Notice that there exists an ADMG G compatible

with Gc such that GZ = G̃. Therefore, G is an ADMG compatible with Gc in which (Y/ ⊧dX ∣ Z, W)GZ
and thus

the usual rule 1 of the do-calculus given by Pearl 1995 in the case of ADMGs does not apply.

Suppose that rule 2 does not apply i.e., (CY/ ⊧dCX ∣ CZ, CW)Gc
CZCX

. Then, using Theorem 2 there exists an

ADMG G̃ compatible with Gc
CZCX

in which (Y/ ⊧dX ∣ Z, W)G̃ . Notice that there exists an ADMG G compatible
with Gc such that GZX = G̃. Therefore, G is an ADMG compatible with Gc in which (Y/ ⊧dX ∣ Z, W)GZX

and
thus the usual rule 2 of the do-calculus given by Pearl 1995 in the case of ADMGs does not apply.

Suppose that rule 3 does not apply i.e., (CY/ ⊧dCX ∣ CZ, CW)Gc
CZCX(CW)

. Then, using Theorem 2 there exists
an ADMG G̃ compatible with Gc

CZCX(CW)
in which (Y/ ⊧dX ∣ Z, W)G̃ . Using the same idea as in the proof of

Theorem 3, notice that there exists an ADMG G compatible with Gc such that GZX(W) = G̃. Therefore, G
is an ADMG compatible with Gc in which (Y/ ⊧dX ∣ Z, W)G

ZX(W)
and thus the usual rule 3 of the do-calculus

given by Pearl 1995 in the case of ADMGs does not apply.

A.6 Proof of Theorem 5

Proof. Consider an C-DMG Gc = (C, Ec), its SC-projection Hc and a SC-Hedge F, F′ for Pr(cy ∣ do (cx)). Let
us prove Theorem 5 by induction on the number of bidirected dashed edges in the C-forest F that are in Hc

but not in Gc (i.e., which are artificially induced by cycles). ∀C ∈ C, take VC ∈ C.

Firstly, if F, F′ is a Hedge in Gc then there exists a compatible ADMG G = (V, E) such that C → C ′ ∈ EF′

(resp. ) Ô⇒ VC → VC′ ∈ E (resp. ) and thus if FG = ({VC ∣ C ∈ VF},{VC → VC′ ∣ C → C ′ ∈ EF} ∪ {VC

VC′ ∣ C C ′ ∈ EF}) and F′G = ({VC ∣ C ∈ VF
′
},{VC → VC′ ∣ C → C ′ ∈ EF

′
} ∪ {VC VC′ ∣ C C ′ ∈ EF

′
}) is a

Hedge for Pr(y ∣ do (x)) and thus Pr(cy ∣ do (cx)) = Pr(y ∣ do (x)) is not identifiable.
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Secondly, if there exists CX ∈ CX and CY ∈ CY such that Scc(CX ,Gc) = Scc(CY ,Gc) then, because of
Assumption 1, there exists a compatible ADMG in which there is a directed path from VCY

to VCX
. This

path must be blocked as it is not causal but every vertex on this path is a descendant of VCY
and thus

cannot be adjusted on without inducing a bias. Lastly, assume that Theorem 5 is true for any SC-Hedge
with k bidirected dashed edges which are in Hc but not in Gc and that F has k + 1 such edges. Then, one
cannot identify the macro causal effect by the adjustment formula Shpitser et al. (2010) due to the ambiguity
(Assaad et al., 2024) induced by the cycle on CX or due to the bias induced by the latent confounder of
CX that cannot be removed without using any rule of the do-calculus. Moreover, any decomposition of the
effect using the do-calculus will necessitate the identification of other macro causal effects. These effects
have sub-C-forests of F, F′ as SC-Hedges and at least one of theses sub-C-forests has at most k artificial
bidirected dashed edges induced by cycles. The associated macro causal effect is therefore unidentifiable by
induction.
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