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1. Introduction
Graph Neural Networks (GNNs) commonly as-

sume fixed-hop propagation and static edge struc-
tures, limiting their robustness in noisy and incom-
plete graphs. We propose DRTR (In Figure 1), an
adaptive multi-hop graph learning framework that
dynamically calibrates node-wise distances and re-
constructs local topologies during training, leading
to more expressive and robust representations.

Fig. 1: Distance-Aware Graph Learning

2. RelatedWorks
Adaptive Structure Learning in GNNs Conven-
tional Graph Neural Networks (GNNs) such as
GCN [1], GraphSAGE [2], and GAT [3] adopt fixed-hop
message passing schemes and pre-defined neighbor
aggregation strategies. However, recent studies rec-
ognize that structural connections in graphs often
suffer from noise, imbalance, or redundancy [4]. To
address this, various works have explored structure
learning [5, 6, 7], which attempts to refine or recon-
struct the graph topology during training. Nonethe-
less, many such methods rely on end-to-end opti-
mization or learn a static edge mask, which lacks
the flexibility to respond to evolving node semantics
during multi-hop propagation.

Distance-aware Message Passing Several stud-
ies have attempted to incorporate distance or
importance-based filtering into message passing.
For instance, Personalized PageRank (PPR)-based
methods [8, 9] reweight neighbor contributions
based on precomputed transition probabilities.
Meanwhile, GAMLP [10] and ImprovingTE [11]
explicitly leverage multi-hop propagation, with
hop-specific encoders and contextual subgraph
tokens. However, these approaches still depend on
fixed-hop sampling, which may not fully capture
varying node proximities or information decay

Fig. 2: An instance of TheDistanceComputation and
Topology Reconstruction

across hops. Unlike prior work, DRTR dynamically
recomputes node distances during training using
the proposed Distance Recomputator, allowing for
more context-aware and adaptive neighborhood
construction.
In constrast, DRTR (an instance in 2) bridges the
gap between dynamic topology learning, relevance-
aware aggregation, and distance-sensitive diffusion,
providing a unified framework that extends beyond
existing adaptive GNN approaches.

3. Method
Given graph G = (V, E), node features X, and

depthK, DRTR performs adaptiveK-hop attention-
based propagation:

h ∗ v(k) =
∑
∗u ∈ N (k)(v)α_vu(k)W(k)x ∗ u, (1)

with attention coefficients:

α(k)
vu =

exp
(
LeakyReLU(a⊤[Wxv∥Wxu′ ])/τk

)∑
u′∈N (k)(v) exp (LeakyReLU(a⊤[Wxv∥Wxu′ ])/τk)

.

(2)
Final embeddings aggregate across all hops:

zv =

K∑
k=1

γk · h(k)
v , where

K∑
k=1

γk = 1. (3)

3.1 Distance Recomputator (DR)
We dynamically prune distant neighbors:

d(k)vu = ∥xv−xu∥22+λkδ
(k)
vu , d(k)vu > α⇒ prune. (4)

3.2 Topology Reconstructor (TR)
We augment the topology by adding latent edges:

E ← E ∪ {(v, u) | ∥xv − xu∥22 < β}. (5)
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4. Experiments
To assess the broader applicability of DRTR, we

extend our evaluation to two real-world downstream
tasks beyond node classification:

Task 1: Recommendation (Link Prediction) We
apply DRTR to a recommendation setting based on
the MovieLens-100K dataset, where user–item inter-
actions are modeled as a bipartite graph. The goal is
to predict missing user–item links.
We follow a standard link prediction pipeline

using node embeddings from a DRTR-augmented
GraphSAGE model. Evaluation metrics include AUC
and Average Precision (AP):

Model AUC AP
GraphSAGE 93.1 91.7
GraphSAGE+GDRA 94.0 92.5
GraphSAGE+GKHDA 94.3 92.8
GraphSAGE+GKHDDRA 95.1 93.6

Table 1: Link prediction results on MovieLens-100K.
DRTR improves both ranking metrics.

Task 2: Molecular Property Prediction We eval-
uate DRTR on the ZINC-12K dataset for molecu-
lar graph regression, using a GCN-based backbone.
Each molecule is represented as a graph with atoms
as nodes and bonds as edges. The task is to predict
molecular properties (e.g., solubility, logP).
We report Mean Absolute Error (MAE, ↓) across

three targets:

Model logP QED SA
GCN 0.423 0.218 0.387
GCN+GDRA 0.401 0.205 0.375
GCN+GKHDA 0.395 0.203 0.372
GCN+GKHDDRA 0.383 0.197 0.366

Table 2: Molecular property prediction on ZINC-12K
(MAE ↓). DRTR enhances representation in
dense chemical graphs.

Summary These results show DRTR’s ability to:

• Improve ranking and predictive performance in
sparse user–item graphs (recommendation).

• Preserve fine-grained local-global dependen-
cies in dense, noisy molecular graphs.

This validates DRTR’s generality across structural
domains—sparse bipartite graphs, dense chemical
graphs, and traditional citation networks.

5. Conclusion
DRTR introduces dynamic distance recalibration

and topology reconstruction, providing robust graph
representations that outperform traditional GNNs in
various downstream tasks.
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