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ABSTRACT

Recently, many mesh-based graph neural network (GNN) models have been pro-
posed for modeling complex high-dimensional physical systems. Remarkable
achievements have been made in significantly reducing the solving time compared
to traditional numerical solvers. These methods are typically designed to i) reduce
the computational cost in solving physical dynamics and/or ii) propose techniques
to enhance the solution accuracy in fluid and rigid body dynamics. However, it
remains under-explored whether they are effective in addressing the challenges of
flexible body dynamics, where instantaneous collisions occur within a very short
timeframe. In this paper, we present Hierarchical Contact Mesh Transformer
(HCMT), which uses hierarchical mesh structures and can learn long-range de-
pendencies (occurred by collisions) among spatially distant positions of a body
— two close positions in a higher-level mesh correspond to two distant positions
in a lower-level mesh. HCMT enables long-range interactions, and the hierarchi-
cal mesh structure quickly propagates collision effects to faraway positions. To
this end, it consists of a contact mesh Transformer and a hierarchical mesh Trans-
former (CMT and HMT, respectively). Lastly, we propose a flexible body dynam-
ics dataset, consisting of trajectories that reflect experimental settings frequently
used in the display industry for product designs. We also compare the performance
of several baselines using well-known benchmark datasets. Our results show that
HCMT provides significant performance improvements over existing methods.
Our code is available at https://github.com/yuyudeep/hcmt.

1 INTRODUCTION

There is escalating interest in accelerating or replacing expensive traditional numerical methods with
learning-based simulators (Li et al., [2020; [2021}; Raissi et al., 2019} |Cho et al., 2023). Learning-
based simulators have delivered promising outcomes across various domains, e.g., molecular (Noé
et al.| [2020), aero (Bhatnagar et al., 2019), fluid (Kochkov et al.l [2021} [Stachenfeld et al.l [2021),
and rigid body dynamics (Byravan & Fox||2017). In particular, graph neural networks (GNNs) with
a mesh have demonstrated their strength and adaptability on these topics (Sanchez-Gonzalez et al.,
2020; [Pfaff et al.,|2020). These methods are capable of i) directly operating on simulation meshes
and ii) modeling systems with intricate domain boundaries. However, solving flexible dynamics
with contacts remains under-explored.

Fig. [ and Table [T] represent the complexity of various physical systems. Flexible dynamics must
consider factors such as mass, damping, and stiffness, and due to its high non-linearity, it presents
challenging problems (see Appendix |A] for the importance of flexible dynamics with contacts).
Therefore, in solving collision problems in flexible dynamics within a very short timeframe, it is
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Figure 2: An illustration of the contact propa-
. P . . . tion via one-hop propagation in various levels.

non-linearity in various physical systems. Typi- gation v i .

cally, implicit methods are used in static system, Level 2 is the ¢-th level mesh (after pooling nodes

while explicit methods 2007) are em- from the previous level) in our hierarchical mesh

ployed in dynamic domain. Flexible dynamics structure. After node pooling, our ”.l“ran.sformer
solve problems with highly non-linear charac- accelerates contact propagation, which is a key

teristics and occur quickly in a very short time. in simulating flexible body collision dynamics.

Figure 1: Relationship between velocity and

Table 1: A comparison table of various systems. The biggest difference between rigid and flexible
dynamics is that stress cannot be calculated. M(x), D(x), and T(x) represent mass, damping, and
stiffness matrices, respectively. In Table, we drop the dependency on x for simplicity. f denotes an
external force vector in governing equations. X and o are acceleration and stress, respectively.

Behavior System Governing Equation Output Solver Dataset

Flexible  Static Tx =f %,0 Implicit Deforming, Deformable Plate
Rigid Dynamic Mx(t) + Dx(t) = £(t) %  Explicit Sphere Simple
Flexible Dynamic Mx(t) + Dx(t) + Tx(¢t) = f(¢t) %,0 Explicit Impact Plate

essential to verify whether mesh-based GNNs are effective in handling the phenomenon, where the
impact of collisions is propagated far from the point of collision between two objects. GNN models
typically perform local message passing 2020), which means that they cannot quickly
propagate the influence of collision over long distances. To achieve such long-range propagation,
multiple GNN layers are required, which increases the training/inference time. Therefore, GNN-
based simulators have a trade-off relation between accuracy and training time (Bojchevski et al.,

2020; Zhang et al.} [2022).

Recent studies (Janny et al.} 2023} [Han et al.} [2022)) in fluid dynamics and mesh domains introduce
Transformer to apply global self-attention. However, Transformers require a computational com-
plexity of O(N?) to generate predictions (Kreuzer et al., 2021), where NV is the number of nodes.
Additionally, flexible dynamics require an additional instantaneous contact edge for two colliding
objects to represent a collision, which slows down training. For this reason, when there are a large
number of nodes, the naive adoption of Transformers for modeling collisions still incurs high costs.

To address these challenges, we propose a novel method called Hierarchical Contact Mesh Graph
Transformer (HCMT). The multi-level hierarchical structure of HCMT i) quickly propagates col-
lisions and ii) decreases training time due to the reduced number of nodes in Level ¢, i.e., the i-th
mesh, resulting from pooling nodes from previous level (cf. Fig.[2). HCMT with higher-level meshes
focuses on long-range dynamic interactions. In addition, HCMT has two Transformers: one for con-
tact dynamics, and the other for flexible dynamics. Finally, we introduce a novel benchmark dataset
named Impact Plate. Impact Plate replicates simulations conducted in the display industry for mo-
bile phone display rigidity assessments. We evaluate our model on three publicly available datasets
(Sphere Simple 2020), Deforming Plate (Pfaff et al., 2020), Deformable Plate (Link-
erhiigner et al] [2023)) and the novel Impact Plate, and our model achieves consistently the best
performance.

The main contributions of this paper can be summarized as follows:
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* We propose a Hierarchical Contact Mesh Transformer (HCMT), which, to the best of our
knowledge, incorporates collisions into flexible body dynamics for the first time.

* We efficiently use two Transformers with different roles for flexible and contact dynamics.

* We provide an Impact Plate benchmark dataset based on explicit methods where collisions
occur in a very short timeframe. Various design parameters have been applied to make it
suitable for use in manufacturing.

* HCMT outperforms baseline models in static, rigid, and flexible dynamics systems.

2 RELATED WORK

2.1 GNN-BASED MODELS AND HIERARCHICAL MODELS IN PHYSICAL SYSTEMS

The prediction of complex physical systems using GNNs is an active research area in scientific
machine learning (Belbute-Peres et al., |2020; Rubanova et al, [2021; Mrowca et al., [2018; [Li et al.,
2019; 2018). The most representative work is MGN (Pfaff et al.l |2020), which uses a message
passing network to learn the dynamics of physical systems. It is applied to various systems such as
Lagrangian and Eulerian. Due to local processing nature of MGN, signal tends to propagate slowly
through the mesh (graph). MGN has a local processing that requires one layer for one propagation
step. Therefore, MGN requires many layers for long-distance propagation.

Recently, several hierarchical models have been introduced to increase the propagation radius (Gao
& Ji, [2019; [Fortunato et al., [2022; |[Han et al.l [2022; Janny et al.l 2023} |Cao et al., |2022} |Grigorev
et al., |2023). Hierarchical models in these studies are divided into two types: The first type is
a dual-level structure: i) GMR-Transformer-GMUS (Han et al., [2022)) uses a pooling method to
select pivotal nodes through uniform sampling, ii) EAGLE Transformer (Janny et al.,|2023) proposes
a clustering-based pooling method and shows promising performance in fluid dynamics, and iii)
MS-MGN (Fortunato et al., 2022) proposes a dual-layer framework that passes messages on two
different resolutions (fine and coarse resolutions) for mesh-based simulation learning. The second
type has a multi-level structure: i) |Cao et al|(2022) analyzes the limitations of existing pooling
strategies and proposes bi-stride pooling, which uses breadth-first search (BFS) to select nodes, ii)
HOOD (Grigorev et al., 2023)) leverages multi-level message passing with unsupervised training to
predict clothing dynamics in real-time for arbitrary types of garments and body shapes.

2.2 CONTACT AND COLLISION MODELS

The field dealing with contact/collision problems is primarily used in computer games (De Jong
et al., [2014)), animation (Hahnl [1988; [Erleben, 2004), and robotics (Posa et al., [2014). A method
has been proposed to use a GNN for quick motion planning in path-finding as the time required for
object collision detection is significant (Yu & Gaol 2021). In mesh-based GNN models, collisions
are determined by recognizing edge-to-edge or edge-to-vertex interactions close to each other (Zhu
et al., 2022). Additionally, as the used node-to-node contact/collision recognition method assumes
that contacts always occur at nodes, FIGNET (Allen et al., 2022b)) has been proposed to intro-
duce face-to-face (or edge-to-edge) recognition and utilize face features for training. Due to the
simulation-to-real gap, there are works demonstrating the learning and prediction of contact discon-
tinuities by GNNs using both real and simulation datasets (Allen et al.,[2023)). Previous studies have
mainly focused on addressing contact recognition issues or improving accuracy in rigid body dy-
namics. However, while it is possible to determine the motion of an object in rigid body dynamics,
it is not applicable in flexible dynamics because the stress distribution is unknown.

3 METHODLOGY

3.1 PROBLEM DEFINITION

Our model extends the encoder-processor-decoder framework of GNS (Sanchez-Gonzalez et al.,
2020) and MGN (Pfaff et al.| 2020) for solving flexible dynamics. The encoder and decoder in
HCMT follow those in GNS and MGN, but we enhance the processor by designing a hierarchical
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Figure 3: Overview of Hierarchical Contact Mesh Transformer (HCMT) with four layers: encoder,
CMT, HMT, and decoder. The light blue graph in GG corresponds to a ball in the Impact Plate
dataset, while the green graph represents a plate.
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Figure 4: Hierarchical architecture of HMT layer in Fig.[3] The overall process of HMT layer is
constructed by repetitively stacking HMT blocks and pooling. Utilizing this hierarchical structure is
highly effective in reducing computational complexity.

Transformer that consists of i) contact mesh Transformer (CMT) for propagating contact messages
and ii) hierarchical mesh Transformer (HMT) for handling long-range interactions.

At time ¢, we represent the system’s state using a current mesh M* = (V, E), which includes node
coordinates, density p;, and Young’s modulus Y; within each node, as well as connecting edges m;;.
The objective of HCMT is to predict the next mesh M+, utilizing both the current mesh M* and the
previous meshes M*~P, ... M?!~! where p is a history size. Finally, The rollout trajectory can be
generated through the simulator iteratively based on the previous prediction; Mt, M+ .. Mt++,
where « is the length of total steps.

3.2 OVERALL ARCHITECTURE

Fig. |§| shows the overall architecture of HCMT which consists of an encoder, a contact mesh Trans-
former (CMT), a hierarchical mesh Transformer (HMT), and a decoder. The overall workflow is as
follows — for simplicity but without loss of generality, we discuss predicting M**! from M? only:

1. The mesh M? is transformed into a graph Gy = (Vj, Eo, (') via encoders: the features of
the i-th node, the (¢, j) mesh edge , and the (4, ¢) contact edge, f;, m;;, and c;, in M*, are
transformed to hidden vectors, z; € Vj, e;; € Ey, and s;, € C, by their respective encoders.

2. CMT layer captures the contact dynamics from those transformed hidden vectors. CMT
propagates contact messages through the contact edges between two colliding objects (e.g.,
a ball and a plate).

3. HMT layer follows CMT layer by taking the output of CMT as its input. HMT module
uses a hierarchical graph with nodes properly pooled into the mesh structure to enable
long-range propagation. We only consider propagation over mesh edges by a contact-then-
propagate strategy, i.e., contact edges are excluded in this process.

4. The decoder predicts the next velocity of each node by using the last hidden representa-
tion produced by HMT layer and utilizes an updater to calculate the node positions of the
objects.
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Figure 5: (a) depicts our proposed CMT block and dual self-attention blocks. The mesh attention
on the left only computes attention weights a;; for each of the edges of two colliding objects nodes.
The contact attention on the right only considers the weights b;, of contact edges. (b) describes our
proposed HMT module. The mesh self-attention in HMT is the same as mesh attention in CMT.

3.3 LEARNING FLEXIBLE BODY DYNAMICS

Features and Encoder Layer The mesh M? is transformed into a graph Gy = (Vg, Eg,C).
Mesh nodes become graph nodes V), mesh edges become bidirectional mesh-edges E in the graph.
Contact edges are connections between two different objects’ nodes or self-contacts within an object,
resulting in C' in the graph. For every node, we find all neighboring nodes within a radius and
connect with them via contact edges, excluding previously connected mesh edges. The subscript ‘0’
in G denotes the initial level of our hierarchical mesh structure.

It is imperative that our model can learn collision behaviors in a scenario where its node positions
is not fixed, and the mesh shape undergoes changes. Therefore, we structure the state of the system
using two edge features: i) mesh edge feature m?j, where (i,j) € Ey, contains information about
connections within objects, and ii) contact edge feature c;4, where (4, ¢) € C, represents connections
between two objects within the collision range. Notably, the contact edge feature is a novel addition
not found in fluid models. Both features are defined based on relative displacements between nodes.

For detailed information of features used in each domain, see Table[7]in Appendix [C]

Next, the features are transformed into a hidden vector at every node and edge. The hidden vec-
tors for nodes are denoted as z; and for mesh and contact edges as e?j and s;,, respectively. The
transformation is carried out by the encoder MLP €,0de, €mesh, aNd €contact- The encoder €pesn shares
weight parameters across levels because edge connections are lost when the level changes and new
edge features need to be generated.

Contact Mesh Transformer (CMT) Layer CMT layer follows the encoder and utilizes both
mesh and contact edge encoded features (see Fig.[5[a)). We use a dual-branch self-attention method
with two different edges in the collision dynamics to capture the effects of the collision, resulting
in a better node representation. As shown in Fig. [5(a), dual-branch self-attention branches into
two self-attentions. In this case, both edge features are used to take into account the dynamically
changing positions of the nodes and the length information of the edges in the dynamics system when

computing the self-attention weights. For the self-attention weight aff for mesh edges in an object,

the mesh edge feature e?j can capture the relative distance between two nodes affected by collisions
and is used in the calculation of the self-attention weight aff as shown in Equation El Another

self-attention weight, bfq’g, is calculated by including the contact edge feature s;, (see Equation .

The two attention weights for the dual-branch self-attention of the ¢-th block and the k-th head are
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defined as follows:
, FLLN(z¢) - KFLN
aff = softmax; (clip(Qz (=) (= )

Vd,

) + EMLN(e )W“LN ), ()

MLN(zf) - KFYLN(z
bf’é = softmax, clip(QZ (z)) K. ( q)) Ek [LN (Siq) Wk ZLN (Siq), 2)
q Vd,
zt = concat( e, Z " Z(Vk “LN(z))), IiZ, Z bk ‘ (VILN(zy)) 3)
JEN; q€T;

where N; is the set of the neighbors of node 4, excluding contact edges between other objects and

T; is the set of the neighbors for contact edges between different objects. a f/, bk * are the attention
scores for mesh and contact edges, respectively. Q%¢, K&, Vk¢ ERL WhE ¢ Rdz *d= are train-
able parameters. k¥ = 1 to H denotes the number of attention heads, and || denotes concatenation.
We use clamping for numerical stability (see Appendix [L3). d, is the dimension of node hidden

vector. We adopt a Pre-Layer Norm architecture (Xiong et al.;, 2020), which is denoted as LN(-).

To move on to the next block, the output zf“ is projected and passed to the Feed Forward Network
(FFN) and represented by the residual update method as follows:

7T = 7! + 0%z + FEN (LN(z! + 0%z))), “)

where O € R24-%24 jg the learned output projection matrix. Notably, in our model, the edge
network remains unaltered and does not undergo updates.

Hierarchical Mesh Transformer (HMT) Layer Our proposed HMT layer propagates messages
through mesh edges in an object. HMT layer begins after the initial collision dynamics that have
been captured by CMT layer. By using only mesh edge features, HMT layer uses only the mesh
self-attention, as shown in Fig. E] (b). Note that the behavior is identical to the mesh attention in
CMT layer. HMT layer uses node pooling to construct hierarchical graphs so that the propagation
of nodes can reach a long-range of nodes. The updated G from CMT layer is pooled up to level
A From G. We apply the node pooling operation to construct {G1, G2, -+ , G5} (with decreasing
numbers of nodes) and the propagation by the mesh self-attention occurs at each level G; (see Fig. '
The reduced number of mesh edges due to pooling can reduce the computational complex1ty of the
model, i.e., the training speed, and at the same time consider a longer range of interactions. HMT
layer can achieve the effect of shortcut message passing, as shown in Fig. 2] and further extend the
impact of collisions over long-range distances. One block of HMT layer is defined as follows:

Qi “LN(h!) - KL LN (k)
Vdp,

af]gf = softmax; (clip( ) + EZ»ZLN(efj1)> 'WZ’ZLN(ef;1)7 5)

- Vi V]

by = il D alf (Vi LN(h))), ©6)
JEN;

hi™ = h! + 04 h! + FFEN} (LN(h! + O} hY)). (7)

The (¢ — 1)-th edge feature uses the (L — ¢)-th edge feature after reaching the final level A. Note
that h}, the input to the first block of HMT, is the same as zle,

Pooling Method Our pooling method consists of two steps: i) sampling nodes and ii) remeshing.
In the first step, For node sampling, we follow the node selection method using the breadth-first-
search (BFS) proposed by |Cao et al.|(2022). As the level increases, the number of nodes is reduced
by almost half compared to the previous level. A pooling operation is performed for each individual
object.

In the second step, we regenerate mesh edges using Delaunay triangulation (Lee & Schachter;,|[1980;
Lei et al., [2023) based on the selected nodes at each level. Delaunay triangulation produces a well-
shaped mesh because triangles with large internal angles are selected over triangles with small in-
ternal angles when satisfying the Delaunay criterion|'| By performing the remeshing procedure, the
overall quality of the mesh is improved. For detailed results, see Tables ] and [5]in Appendix [B]

"This criterion is known as the empty circumcircle property.
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Decoder and Updater We describe the decoder and updater based on Impact Plate dataset. Ac-
cording to the MGN approach, the model predicts one or more output features 0, such as velocity fcf
and next stress &f“ by employing an MLP decoder. Finally, )Ei is used to calculate the next position
%1 through the updater, which performs a first-order integration (x*! = % + x?).

Training Loss We use the one-step MSE loss as a training objective. Since stresses are included,
the position and stress MSE in flexible dynamics are calculated as follows:

[Vol [Vol
1 1
L= (XEJFI _ 5(§+1)2 + (O‘erl _ &§+1)2. (8)
ol 2 il 2

3.4 DISCUSSION

In this subsection, we discuss the importance of contact edge features in the design of HCMT and
compare HCMT with existing graph Transformers in the mesh domain.

Why Mesh and Contact Edge Features are Important? The contact edge represents crucial
information that depicts the collision phenomenon between two objects. It is defined as the relative
displacement between nodes where contact occurs within a specific radius, which can distinguish
the strength or weakness of a collision. When an object is deformed after a collision, the shape of
the mesh (cell) also changes, so mesh edges also contain important information. Hence, collision
models place considerable emphasis on considering the impacts of collisions as the decrease or
increase of edge lengths. Edge consists of both mesh edge, which encompasses mesh connections
within objects, and contact edge, which considers the effects of collisions for flexible dynamics.

Comparison with Transformer-based Models EAGLE (Janny et al., 2023)), which learns fluid
dynamics, does not use edge features in its Transformer but in its last GNN. In Eulerian-based
fluid dynamics, node positions and edge lengths are fixed, making edge functions less useful. In
flexible dynamics where contact occurs, however, contact edges carry important messages. In addi-
tion, because the object is severely deformed, mesh edge features are also greatly affected. GMR-
Transformer-GMUS (Han et al., |2022) is a representative example of applying a Transformer in the
mesh domain. GMR-Transformer-GMUS uses one Transformer without edge features, while our
model uses two Transformers with edge features. Graph Transformer (Dwivedi & Bresson) [2020)
(GT) has been extended to incorporate edge representations, which can work with information asso-
ciated with edges. In comparison with them, we utilize both mesh and contact edge features to infer
accurately.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We use 4 datasets of 3 different types: i) Impact Plate dataset for flexible dynamics,
ii) Deforming Plate and Deformable Plate for static dynamics, and iii) Sphere Simple for rigid
dynamics. Impact Plate is created with traditional solver with ANSYS (Stolarski et al., |2018) to
validate the efficacy of our model in flexible dynamics (see Table[6]in Appendix [C).

Baselines, Setups and Hyperparameters As baselines, we use MGN (Pfaff et al.,[2020), a state-
of-the-art model in the field of complex physics, and GT (Dwivedi & Bresson, 2020) with edge
features. A detailed description for all baselines is provided in Appendix [D| The number of blocks
L = L¢ + Ly is set to 15. For further details on hyperparameters, see Table 8]in Appendix [E]

4.2 EXPERIMENTAL RESULTS

Table [2shows the results of comparing our HCMT to two baselines. HCMT outperforms in all cases
(e.g., 49% improvement in position RMSE for Impact Plate) and has the lowest standard deviations.
We also report empirical complexity in Appendix
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Table 2: RMSE (rollout-all, x102) for our model and the baselines. Improv. means the percentage
improvement over the runner-up and bold denotes the best performance.

Model Impact Plate Deforming Plate Sphere Simple Deformable Plate
Position Stress Position Stress Position Position
GT  59.18+445 39,291421,529 11.3440.28 9,168,298+164,941 243.85+141.08 13.7440.47
MGN 40.734+2.94 35,871+£11,893 7.83+0.16 4,644,483+92,520 33.2646.33 10.7840.54
HCMT 20.71+0.57 14,742+502 7.49+0.07 4,535,956+49,937  30.41+1.71 7.67+0.42
Improv. 49.2% 58.9% 4.3% 2.3% 8.6% 28.9%

(a) Level 0 (b) Level 2 (% = 0.26) (c) Level 4 (% =0.07) (d) Level 6 (% =0.02)

Figure 6: Level-wise mesh visualization of Impact Plate. See more visualizations in Appendix [B]
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Figure 7: 2D cross-sectional contour of the stress field in Impact Plate. In the red bounding box,
HCMT is the most similar to the node positions in the ground truth. Brighter colors mean higher
stress. Rollout images of other datasets can be found in Appendix [}

Result HCMT shows superior performance in terms of long-term prediction across all domains
compared to MGN and GT. In particular, we can see that HCMT outperforms other methods in
Impact Plate, where strong impacts occur, and that our hierarchical architecture effectively propa-
gates collisions. Fig.[6|shows that as the level increases, shortcut message passing is possible in our
method. Fig.[7]shows the stress on the falling ball and plate after a collision, visually demonstrating
the superiority of HCMT. We also report generalization abilities of HCMT in Appendix [G]

Visualize Attention Map We visualize the
dual-branch self-attention maps of CMT layer
on Impact Plate in Fig.[8]— we note that the self-
attention is naturally sparse in G. The contact
and mesh self-attention show non-overlapping
attention maps and the varying importance of
contact and mesh edges. The red bounding box
in Fig. [§] (a) represents the importance of con-
tact edges between the ball and the plate, and the
blue box in Fig. [8](b) signifies the self-attention
among plate nodes, and the yellow box rep-
resents interactions through edges among ball
nodes (see Appendix [J] for self-attention map of ~Figure 8: Self-attention maps in CMT (see fig.[13]
HMT and results in different datasets). in Appendix [I3]for map of HMT).

[—
Nodes of Plate Nodes of Ball Nodes of Plate Nodes of Ball

(a) Contact Self-Attention (b) Mesh Self-Attention
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Table 3: The results of ablation studies.

Model Impact Plate Deforming Plate Sphere Simple  Deformable Plate
Position ~ Stress  Position Stress Position Position
HCMT 20.34 14,447 7.37 4,475,616 28.30 7.67
Late-Contact 42.90 22,874 7.74 4,991,179 38.81 7.97
Only HMT 46.27 31,932 22.32 33,773,408 144.73 24.69
Only CMT 55.63 28,764 7.96 4,662,353 30.15 7.67
HCMT+LPE 21.11 14,920 7.52 4,618,027 30.16 7.87
65 12 35
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Figure 9: Sensitivity to \. The red dashed lines represent RMSE (rollout-all, x10%) of MGN.

4.3 ABLATION AND SENSITIVITY STUDIES

This subsection describes the ablation and sensitivity studies for HCMT. Additional studies and
analyses are in Appendix [I}

Ablation Studies We define the following 4 models for ablation studies: i) “Late-Contact”, where
the order of CMT layer is followed by HMT layer, ii) “Only CMT”, which uses only CMT layer,
iii) “Only HMT”, which uses only HMT layer, and iv) “HCMT+LPE”, which adds Laplacian po-
sitional encoding (LPE) (Dwivedi & Bresson, [2020). In Table [3| “Late-Contact” performs worse
than HCMT. This shows that in HCMT, the contact-then-propagate strategy, where CMT layer is
followed by HMT layer, is appropriate for propagating the forces generated by the interaction and
reaction of two objects. In all cases, “Only CMT” performs better than “Only HMT”. Finally,
“HCMT+LPE” performs the best among the ablation models, but shows a slight performance drop
compared to our HCMT. We conjecture that this is because our feature definitions already include
node positions and therefore, additional positional encodings are not needed for nodes.

Sensitivity to the Number of Level Fig.[0]shows the position RMSE varying the number of level
A. For Impact Plate, the RMSE tends to decrease as the level increases due to short time intervals
and substantial impacts. For Deformable Plate, due to a small number of nodes, there is a tendency
for the RMSE to decrease as the level decreases. For Deforming Plate, levels 2 to 4 show the best
RMSE because a plate is affected by an object pushing it up to about half the total plate size. For
Sphere Simple, the RMSE gets worse as the level increases, but it shows the best result at level 4.

5 CONCLUSION AND FUTURE WORK

We presented HCMT, a novel mesh Transformer that can effectively learn flexible body dynamics
with collisions. HCMT uses a hierarchical structure and two different Transformers to enable long-
range interactions and quickly propagate collision effects. We show that HCMT outperforms other
baselines on a variety of systems, including flexible dynamics. We believe that HCMT has potential
to be used in a variety of applications, such as product design and manufacturing. Future work
topics include learnable pooling methods and combining mesh-based simulators with high-quality
mesh generation models (Lei et al., 2023} Nash et al.| 2020) from complex geometries for design

optimization (Allen et al, 2022a).
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A  WHY IS A STUDY ON FLEXIBLE DYNAMICS NECESSARY?

Collision simulation is a widely utilized methodology in various industries such as shipping (Go-
erlandt & Kujalal [2011)), automotive (Gui et al. |2018)), aviation (Liu et al.l 2021}, etc. In collision
dynamics, there are i) rigid body dynamics where the shape of the mesh remains unchanged and ii)
flexible body dynamics where it can change. Rigid body dynamics forms meshes of objects where
collisions can occur, allowing them to detect collisions and predict the movement of the objects by
calculating their accelerations. However, the goal of flexible body dynamics is to determine the
maximum stress value and the part of interest on an object after a collision has occurred. Exceeding
the yield strength (Pavlina & Van Tyne, |2008) results in product damages, making it possible to pro-
duce robust products through simulations for detecting vulnerable areas and changing their designs.
For instance, when evaluating the rigidity of a display panel to prevent damages caused by external
forces, a cover is attached to the back of the panel (Xue et al.l 2013)). The reliability varies based on
design elements such as the material, shape, thickness, and material of the cover. Therefore, before
prototype production, a robust design (Jirathearanat et al.l 2004) can be derived through flexible
body dynamics.

Among previous studies, the hierarchical GNN model, BSMS-GNN (Cao et al., 2022), despite per-
forming long-range interactions, exhibits lower accuracy in the collision domain compared to MGN.
GNN-based hierarchical models, MS-GNN (Fortunato et al.| 2022)) and HOOD (Grigorev et al.,
2023)), focus on studying the fluid domain or rigid body dynamics. Therefore, we need research on
flexible body dynamics and verification of the effectiveness of the hierarchical structure.

B POOLING METHOD DETAILS

Our pooling strategy proceeds in two steps. In the first step, nodes are selected using breadth-first
search (BFS), and in the second step, Delaunay triangulation is applied to regenerate the mesh in
a high-quality shape for HMT. Delaunay triangulation divides a plane into triangles by connecting
points on the plane in such a way that the minimum angle of the resulting triangles is maximized.
Table 4| represents the number of nodes at each level after BFS pooling. In each level the number
of nodes decreases by half compared to its previous level. Table [5] shows the mesh quality before
and after remeshing. The quality of the meshes (cells) is evaluated using the scaled Jacobian met-
ric (Moxey et al.,|2014)), and a scaled Jacobian value closer to 1 indicates a mesh with a shape closer
to an equilateral triangle, signifying higher mesh quality. Angle refers to the interior angles within
the triangular cell, and as the minimum angle decreases and the maximum angle increases, the shape
of the mesh appears more distorted. The angle and the scaled Jacobian values are the average values
across all levels within the training data. Fig.|10|shows the results of remeshing.

Table 4: The number of nodes for each level.
Datasets Level O Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Impact Plate 2208 1108 559 285 148 78 42
Deforming Plate 1276 658 344 183 98 55 32
Sphere Simple 1731 898 523 330 224 170 138
Deformable Plate 138 77 48 32 24 20 18

Table 5: The quality of the cells is evaluated using the scaled Jacobian, and a scaled Jacobian closer
to 1 indicates a mesh with a shape closer to an equilateral triangle, i.e., high mesh quality.

Dataset Before remeshing After remeshing
Max Angle (°) Min Angle (°) Jacobian Max Angle (°) Min Angle (°) Jacobian
Impact Plate 120.4 16.7 0.32 99.4 272 0.51
Deforming Plate 1114 21.4 0.41 98.2 28.3 0.53
Sphere Simple 110.0 204 0.39 104.6 23.9 0.45
Deformable Plate 114.8 21.6 0.41 104.9 28.4 0.53
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Figure 10: Images show before and after remeshing from the Impact Plate for each level. The
blue dots represent the pooled nodes, and when Delaunay triangulation is applied, the mesh quality
improves.

C ADDITONAL DATASET DETAILS

Table [6] represents that our datasets are created with various solvers and different physics systems.
Specifically, Sphere Simple involves self-contacts, while Deforming Plate, Deformable Plate, and
Impact Plate do not exhibit self-contacts. In a dynamics system, there is a simulation time step At.
The length of steps x is determined from the time at which the simulation ends.

Table[7]represents that the input f; and output o, features are defined for each domain. Node features
f; contain physical properties. Node types n; correspond to boundary conditions. For Impact Plate,
required properties such as density p; and Young’s modulus Y; are added as node features for flexible
dynamics. Young’s modulus characterizes a material’s ability to stretch and deform, and it is defined
as the ratio of tensile stress to tensile strain.

Mesh edges are defined by a relative displacement vector u;; and its norm |u;;| in mesh space
and a relative displacement vector x;; and its norm |x;;| in world space, which are used for object
propagation. For every node, we find all neighboring nodes within a radius and connect with them
via contact edges, excluding previously connected mesh edges. (|x; — X4| < ). In the mesh space
coordinates, the opponents between the nodes are the same in all steps in one trajectory. However,
the position of the nodes represented by the world space coordinates has a different value for each
step. For example, in Sphere Simple, the world space containing the position of the node where the
ball or cloth moves is expressed as 3D coordinates, and the cloth and ball without thickness have a
mesh space expressed as 2D coordinates.
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Table 6: Dataset description: Simulators, system timeframe, etc. Self-contact indicates the case
where different nodes of the same object collide with each other.

Datasets At(ms) Steps x Simulator Mesh Type Self-Contact System Dimension
Impact Plate 0.002 52 ANSYS  Triangles X Flexible dynamics 2D
Deforming Plate  None 400 COMSOL Tetrahedral X Static 3D
Sphere Simple 10 500  ArcSim  Triangles o Rigid dynamics 3D
Deformable Plate None 52 SOFA  Triangles X Static 2D
Table 7: Details of features for each dataset.
Datasets Inputs m;; Inputs c;q Inputs f; Outputs o;
_1 .
Impact Plate wij, [, X, (X Xigs [Xig|  my, (xE—x{7Y), 00, Y, X;, 0
Deforming Plate  w;j, |usj|, Xij, |Xij]  Xig, |Xig] n; X X;, 0;
. t— .
Sphere Simple Wij, [Wij|, Xij, X5 Xig, [Xigl n;, (x{ —x; ) X;
Deformable Plate Wiy, |llij |7 Xijy ‘Xij‘ Xigs |Xiq| n;,v; X;

C.1 IMPACT PLATE

The evaluation of Impact Plate follows industry-standard practices, primarily assessing the stiffness
of panels — these are commonly used in the display industry (Xue et al.| 2013). Impact Plate
involves a strong impact in a short timeframe, representing significant geometric and contact non-
linearity in its dynamics. When transitioning from 2D to 3D modeling, the computational cost
increases roughly 10-20 times. Therefore, if a ball falls at the center of the plate, there is no need
to use a 3D model. Fig. [TT] depicts two visualizations before and after the ball impact. The most
significant part is the transfer of the strong contact energy when the two objects collide. Once the
falling height and the mass of ball are determined, the potential energy is calculated. At the moment
of collision with the plate, the energy is converted to the internal energy of the panel, generating
internal stress in the plate. If the stress value generated in the plate exceeds the ultimate strength of
the material, the plate is damaged. Therefore, the final product design is determined through plate
thickness and material configurations according to the required energy.

Impact Plate uses an explicit method that is typically used to calculate short-term solutions. For
example, Deforming Plate represents a static system and uses implicit methods. Therefore, there is
no need to predict the location of the obstacle (pusher) node because it is determined by the boundary
conditions. For flexible dynamic systems, such as Impact Plate where a ball falls and collides with
a place due to gravity, calculations involving the positions of the ball nodes and mesh deformations
are required. Therefore, in flexible dynamic systems, the location of the obstacle (ball) must be
predicted.

This benchmark dataset incorporates various design parameters, including plate properties, thick-
ness, density, modulus, drop height, mesh size, and etc. These parameters have been randomly
varied to generate a dataset consisting of 2,000 trajectories, along with 200 validation and test tra-
jectories. We use ANSYS (Stolarski et al.|[2018) to create the dataset.

C.2 DEFORMING PLATE

Deforming Plate verifies the stress on a plate when a pusher presses on the plate. We excluded two
trajectories out of 1,200 training data trajectories. Those two trajectories are excluded because they
contain stress singularity (Williams|, |1952), where excessive strain in a single cell causes the stress
to become nearly infinite. This exclusion is necessary as it interferes with the learning process.
Fig.[I2]represents the trajectory number 233 in Deforming Plate. The indicated arrows represent the
point with excessive deformation. At the trajectory number 173, stress singularity occurred when
the pusher pressed the thin plate, so we excluded it as well.
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(a) Before the ball drops (b) After a collision

Figure 11: After the collision, the energy from the ball is transferred to the place, resulting in the
deformation of the plate and the corresponding stress distribution. The red area indicates areas of
high stress.

(a) Before stress singularity occurs (b) After stress singularity occurs

Figure 12: Before and after stress singularity occurs due to an excessive deformation of the elements.
The red arrows indicate the nodes where stress singularity has occurred.

D BASELINE DETAILS

We compare our methodology with two competitive approaches. The first one is MGN (Pfaff et al.
2020), which performs multiple message passing, and the second one is GT (Dwivedi & Bresson
2020) which employs self-attention. We use the official implementation released by the authors on
GitHub for all baselines:

« MGN: https://github.com/google-deepmind/deepmind-research/
tree/master/meshgraphnets

e GT: https://github.com/graphdeeplearning/graphtransformer

MGN To align with the MGN methodology, we apply 15 iterations of message passing in all
datasets. To learn collision phenomena, we added a contact edge encoder and processor, and directly
incorporated stress values into the loss. All MLPs have a hidden vector size of 128.

GT For an accurate comparison with HCMT, we use the FFN of the same HCMT without using
positional encoding. The encoder/decoder were set to those in MGN. There are 15 transformer
blocks with 4 heads. The hidden dimension size inside its Transformer is set to 128. FFN used three
linear layers and two ReLU activations. To ensure numerical stability, the results obtained with the
exponential term within the softmax function are constrained to fall in the range of [—2, 2].
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E HYPERPARAMETER DETAILS

Table[8]shows the hyperparameters in noise, radius, and the number of training steps applied to each
dataset. The radius -y is an important hyperparameter for collision detection.

Random-walk noises are added to positions in the same way as GNS (Sanchez-Gonzalez et al.
2020) and MGN (Pfaff et al.}[2020) for improvements in cumulative errors. The numbers of contact
propagation modules and mesh propagation modules are hyperparameters, and the number of blocks
L = Lo + Ly is set to 15. Following MGN, the hidden vector size of the encoder/decoder is set to
128 and the Adam optimizer is used. The batch size is set to 1, and exponential learning rate decay
from 10~* to 107 is applied. The hidden vector dimensions d., d;, for CMT and HMT are set to
128, and the number of heads H is 4. For reproducibility, we introduce the best hyperparameter
configurations for each dataset in Table [§]

Table 8: best hyperparameters of configures

Dataset Le Ly X Noise Std. Dev.  ~  #Training Steps
Impact Plate 2 13 6 0.003 0.4 2,000,000
Deforming Plate 10 5 2 0.003 0.03 10,000,000
Sphere Simple 6 9 4 0.001 0.05 10,000,000
Deformable Plate 12 3 1 0.001 0.08 675,000

F COMPUTATIONAL EFFICIENCY

Table 0] shows Computational Efficiency. For Deforming Plate and Impact Plate, our method show
similar learning times to those of MGN. Our model has a shorter training time on Sphere Simple
compared to MGN. In the case of Sphere Simple, self-contacts occur and there are many contact
edges. In the case of Deformable Plate, edge features are encoded at each level with a fixed number
of small nodes and edges, which has a negative impact on learning time for our method.

For Impact Plate, the inference time per step for HCMT is 81 ms/step. For ANSYS (i.e., numerical
solver), it is 14,280 ms/step. Compared to ANSYS, HCMT is about 176 times faster.

Table 9: Shows training time/step (ms) for each model.

Model  Impact Plate Deforming Plate ~ Sphere Simple = Deformable Plate

GT 79.31 76.93 130.36 56.65
MGN 51.56 51.11 89.28 38.63
HCMT 51.12 53.53 59.02 53.16
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G GENERALIZATION ABILITY OF HCMT

HCMT can generalize outside of the training distribution with respect to the design parameters of
the system (e.g., plate thickness and drop height of ball) since HCMT uses the relative displacements
between nodes as edge features (Sanchez-Gonzalez et al. |2020; [Pfaff et al.,2020). This provides
more general-purpose understanding of flexible dynamics used during training. We compare HCMT
with MGN to evaluate their generalization abilities toward unseen design parameter distributions
during training.

We define 3 test datasets using our original Impact Plate dataset to study the generalization ability
of HCMT: i) We call the test dataset where we increase the plate thickness from 1.0 to 1.2 in the
range of 0.5 to 1.0 as “Thicker Impact Plate,” ii) we denote the test dataset where we increase the
drop height of ball from 500 to 1000 in the range of 1000 to 1200 as “Higher Impact Plate,” iii) we
denote the test dataset with increased both plate thickness and ball drop height as “Thicker & Higher
Impact Plate.” The 3 test datasets have 50 trajectories generated from untrained design parameters.

Table [10| shows the generalization abilities of MGN and HCMT in RMSE (rollout-all, x103). The
results of HCMT show lower RMSEs than MGN in all test datasets and show better generalization
ability.

Table 10: The generalization ability of MGN and HCMT models according to various test datasets
not included in the training distribution is shown in terms of RMSE (rollout-all x10%).

Test Datasets MGN HCMT
Position  Stress  Position  Stress
Impact Plate 44.18 28,928 20.34 14,447
Thicker Impact Plate 54.50 25,037 17.38 12,163
Higher Impact Plate 31.23 35,552 29.59 22,509

Thicker & Higher Impact Plate 25.23 24,719 21.52 13,745

H EFFECT OF STRESS SINGULARITY ON LEARNING

In the process of simulations using numerical solvers, singularity is a phenomenon in which the
behavior of an object rapidly changes at a specific point or area within an object, resulting in very
large stress. It mainly occurs when the load is concentrated in a very small area. We evaluate how
stress singularities affect the learning outcomes of MGN and HCMT. The experiments are conducted
with trajectories where stress singularities occur in Deforming Plate (see Appendix [C.2).

Table E] shows the results with and without stress singularities. In the case of MGN, when stress
singularities are not included, its position and stress RMSEs decrease by 4.3% and 11.0%, respec-
tively. HCMT’s RMSEs decrease by 5.1% and 10.4% in the same setting. Moreover, HCMT shows
better performance than MGN in all cases.

Table 11: Results of whether stress singularity is included or not in Deforming Plate (RMSE, rollout-
all, x103).

Model With Singularity Without Singularity

Position Stress Position Stress

MGN 7.98 5,085,048 7.64 4,526,531
HCMT 7.77 4,995,446 7.37 4,475,616
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I ADDITIONAL ABLATION STUDY

1.1 CMT DUAL OR SINGLE-BRANCH

We modify the CMT’s dual-branch Layer to a single-branch configuration and conduct additional
experiments to assess the performance impact of integrating edge mesh and contact edge features.
The biggest difference between edge mesh and contact mesh is that contact mesh has no relative
displacement in its mesh space.

Table shows the difference between the dual-branch and single-branch configurations within
HCMT. It shows that better performance is achieved when using the dual-branch configuration.

Table 12: Ablation study results on whether to combine mesh and contact edges. The results of
ablation studies (RMSE, rollout-all, x103).

Impact Plate Deformable Plate

Model
Position  Stress Position
HMCT with CMT Dual-Branch 20.34 14,447 7.67
HMCT with CMT Single-Branch 20.30 16,046 8.05

1.2 PERFORMANCE IMPROVEMENT WITH REMESHING

Our proposed pooling method has a remeshing step. We perform additional ablation studies to
evaluate the performance with and without remeshing. We proceed by setting the level of HCMT to
6. As shown in Table we observe that, particularly for stress, the performance is better when the
remeshing step is included.

Table 13: Ablation study on remeshing effect (RMSE, rollout-all, x 10%). A scaled Jacobian closer
to 1 indicates a mesh with a shape closer to an equilateral triangle, signifying higher mesh quality.

Impact Plate

Model Jacobian
Position  Stress
HCMT without remeshing 0.32 19.21 17,482
HCMT with remeshing 0.51 20.34 14,447

1.3 CLAMPING FOR NUMERICAL STABILITY

The process of clamping, i.e., the clip function in the self-attention of CMT and HMT, is used after
taking the exponent of the internal term of the softmax function for numerical stability (Dwivedi
& Bresson, 2020). We experiment to analyze the effect of clamping (see Equation |1} Equation
and Equation [5). Clamping ranges used for CMT and HMT are analyzed sequentially increasing
from 1 to 4. We proceed by setting the level of HCMT to 6. Table [I4] shows the position and stress
RMSE:s according to each clamping range. The optimal setting is from -2 to 2.

Table 14: Ablation study on numerical stability (RMSE, rollout-all, x 10?).

Clamping range Impact Plate

Position  Stress

-1to 1l 36.36 63.169
-2to2 20.34 14,447
-3to3 37.11 58.792
-4to4 42.58 62913
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J  SELF-ATTENTION MAPS

Figs show the self-attention maps of CMT’s dual-branch and HMT.

(a) Contact of CMT (b) Mesh of CMT (c) Level 0 of HMT

(d) Level 1 of HMT (e) Level 2 of HMT (f) Level 3 of HMT

"

(g) Level 4 of HMT (h) Level 5 of HMT (i) Level 6 of HMT

Figure 13: Self-attention maps of CMT and HMT on Impact Plate. In HMT, the top-left represents
edges connected to plate nodes, while the bottom-right represents edges connected to ball nodes.
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(a) Contact of CMT (b) Mesh of CMT (c) Level 0 of HMT

(d) Level 1 of HMT (e) Level 2 of HMT (f) Level 3 of HMT

(g) Level 4 of HMT

Figure 14: Self-attention maps of CMT and HMT on Sphere Simple. The reason it exhibits a
different pattern compared to other domains is due to self-contacts. For example, when a cloth is
folded, contacts occur among the cloth’s nodes.
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(a) Contact of CMT (b) Mesh of CMT (c) Level 0 of HMT

(d) Level 1 of HMT (e) Level 2 of HMT

Figure 15: Self-attention maps of CMT and HMT on Deforming Plate. In the case of CMT, there is a
slightly broader area of significance compared to Impact Plate because more of the obstacle’s surface
is involved in contact. Map of HMT shows an increasing number of meaningful connections as the
level increases. The top-left represents connected mesh edges of the obstacle, while the bottom-right
represents connected mesh edges of the plate
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(a) Contact of CMT (b) Mesh of CMT (c) Level 0 of HMT

(d) Level 1 of HMT

Figure 16: Self-attention maps of CMT and HMT on Deformable Plate. Figure shows extensive
feature maps in Deformable Plate, with more pronounced deformations in the plate than in the
ball. The top-left represents edges connected to ball nodes, while the bottom-right represents edges
connected to plate nodes.
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K RESULT DETAILS

The results in each table are the rollout-all RMSE results for MGN, GT, and HCMT from five
different seeds.

Table 15: MGN RMSE-all x103

Seed Deformable Plate ~ Sphere Simple Deforming Plate Impact Plate
Position Position Position Stress Position  Stress
10 11.32 32.88 7.64 4,526,531 44.18 28,928
20 10.48 27.46 7.93 4,766,444 43.50 27,323
30 10.63 44.39 7.86 4,618,953 38.63 58,179
40 11.44 26.89 7.66 4,574,221 36.36 38,165
50 10.01 34.70 8.05 4,736,266 40.97 26,760
mean 10.78 33.26 7.83 4,644,483 40.73 35,871
std 0.54 6.33 0.16 92,520 2.94 11,893
Table 16: GT RMSE-all x10?
Seed Deformable Plate ~ Sphere Simple Deforming Plate Impact Plate
Position Position Position Stress Position  Stress
10 14.13 371.79 11.21 9,014,384 61.05 26,804
20 13.05 189.89 11.44 9,332,153 60.23 25,328
30 14.31 134.32 11.83 9,403,657 64.97 28,948
40 13.82 717.75 11.18 9,043,427 51.44 33,372
50 13.38 445.48 11.04 9,047,868 58.22 82,005
mean 13.74 243.85 11.34 9,168,298 59.18 39,291
std 0.47 141.08 0.28 164,941 4.45 21,529
Table 17: HCMT RMSE-all x 103
Seed Deformable Plate  Sphere Simple Deforming Plate Impact Plate
Position Position Position Stress Position  Stress
10 7.67 28.30 7.37 4,475,616 20.34 14,447
20 8.05 30.95 7.56 4,609,359 21.70 15,685
30 7.35 30.06 7.53 4,489,145 20.92 14,257
40 8.18 29.40 7.56 4,534,407 20.11 14,524
50 7.07 33.35 7.44 4,571,253 20.45 14,798
mean 7.67 30.41 7.49 4,535,956 20.71 14,742
std 0.42 1.71 0.07 49,937 0.57 502
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Table 18: Detailed measurements

Metrics Datasets GT MGN HCMT
Deformable Plate  Position 0.886+0.006 0.779+0.011 0.72440.006
Sphere Simple Position 0.071+0.006 0.0764+0.004 0.121+0.015
RMSE-1 x10° Deforming Plae oSO 017820009 0.129:£0.007 0.128::0.008
tress 2,919,024+154,061  1,461,039+332,815  1,161,493+87.110
Tmpact Plate Position 0.031+0.002 0.029+0.002 0.023+0.001
Stress 67648 686412 682+13
Deformable Plate  Position 13.74+0.47 10.7840.54 7.67+0.42
Sphere Simple Position 243.85+141.08 33.26+6.33 30.41+1.71
RMSE-all x10° Deformine Pl Position 11.34028 7.8340.16 7.49+0.07
EPIIC  giress  9,168,298+164941 464483102520  4,535,956:449937
Impact Plate Position 59.18+4.45 40.73+2.94 20.71+0.57
Stress 39,291421,529 35,871+11,893 14,7424502
Deformable Plate 55.65 38.63 53.16
Training time/step (ms) Sphere Simple 130.36 89.28 59.02
Deforming Plate 76.93 51.11 53.53
Impact Plate 79.31 51.56 51.12
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L OTHER VARIABLE CONTOUR AND ROLLOUT IMAGES

Figs. [T7] [18] [I9] [20] are rollout images of Impact Plate, Deforming Plate, Sphere Simple, and De-
formable Plate, over time or step flow.

Ground Truth

HCMT

MGN

GT

Figure 17: The stress contours of various model-predicted rollouts compared to the ground truth at
Impact Plate.

Ground Truth

HCMT

MGN

(XXX

GT

Figure 18: The stress contours of various model-predicted rollouts compared to the ground truth at
Deforming Plate.
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Ground Truth

HCMT

MGN

GT

Figure 19: The image of various model-predicted rollouts compared to the ground truth at Sphere
Simple.

Ground Truth
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Figure 20: The image of various model-predicted rollouts compared to the ground truth at De-
formable Plate.
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