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ABSTRACT

Antibodies, crucial for immune defense, primarily rely on complementarity-
determining regions (CDRs) to bind and neutralize antigens, such as viruses. The
design of these CDRs determines the antibody’s affinity and specificity towards its
target. Generative models, particularly denoising diffusion probabilistic models
(DDPMs), have shown potential to advance the structure-based design of CDR
regions. However, only a limited dataset of bound antibody-antigen structures is
available, and generalization to out-of-distribution interfaces remains a challenge.
Physics based force-fields, which approximate atomic interactions, offer a coarse
but universal source of information to better mold designs to target interfaces.
Integrating this foundational information into diffusion models is, therefore, highly
desirable. Here, we propose a novel approach to enhance the sampling process
of diffusion models by integrating force field energy-based feedback. Our model,
DIFFFORCE, employs forces to guide the diffusion sampling process, effectively
blending the two distributions. Through extensive experiments, we demonstrate
that our method guides the model to sample CDRs with lower energy, enhancing
both the structure and sequence of the generated antibodies.

1 INTRODUCTION

Antibodies are key therapeutic proteins due to their ability to selectively bind to a variety of disease-
causing antigens, including viruses. Antibodies consist of two heavy and two light chains, forming a
Y-shaped structure. Critical to their ability to recognize diverse antigens are the six complementarity
determining regions (CDRs) located at the tips of this structure. The diversity of antibodies is derived
from the extensive combinatorial possibilities of these CDRs. A CDR of length L can theoretically
have up to 20L different amino acid sequences, owing to the 20 types of amino acids that can be
placed at each position. Therefore, a key step in developing therapeutic antibodies is designing
effective CDRs that specifically bind to target antigens (Kunik et al., 2012; Sela-Culang et al., 2013).

Traditional approaches to antibody design predominantly rely on animal immunization and computa-
tional methods. Animal immunization is inherently limited to the production of naturally occurring
antibodies and raises ethical concerns (Gray et al., 2020), despite its effectiveness in generating
high-affinity antibodies. Traditional in silico methods, on the other hand, utilize complex biophysical
energy functions (Warszawski et al., 2020; Adolf-Bryfogle et al., 2018) to predict how potential
antibodies might interact with their targets. However, they depend on expensive simulations, are
prone to convergence to local optima, and possess inherent limitations due to the complex nature of
interactions which cannot be efficiently represented by basic statistical functions (Graves et al., 2020).
This situation underscores the need for alternative approaches in antibody design.

Recently, denoising diffusion probabilistic models (DDPMs) have emerged as a powerful technique
for learning and sampling from complex, high-dimensional protein distributions (Watson et al.,
2023; Yim et al., 2023; Trippe et al., 2023). In particular, this advancement has shown potential
in the structure-based design of CDRs. Recent work (Luo et al., 2022; Martinkus et al., 2023) has
demonstrated the capabilities of diffusion models for modeling the CDRs of antibodies at the atomic
level, conditioned on the antigen and an antibody framework. However, the available dataset of bound
antibody-antigen structures is limited, and generalization to out-of-distribution interfaces remains a
challenge. While diffusion models provide accurate approximations within the known distribution,
they struggle with out-of-distribution scenarios. This limitation poses a challenge for advancing CDR
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Figure 1: The antigen-binding region comprises six complementarity-determining regions (CDRs).
Each CDR is constructed from a variety of amino acids, which are themselves made up of atoms.
These atoms are governed by forces, denoted by the symbol F .

design as many antibodies generated in silico with diffusion models fail to demonstrate functionality
in vitro (Shanehsazzadeh, 2024; Zeni et al., 2023; Sidhu & Fellouse, 2006).

To address this challenge, we propose DIFFFORCE, a force-guided DDPM sampling method inspired
by traditional physics-based simulation techniques such as molecular dynamics (MD). Physics-based
force fields, which approximate atomic interactions (as shown in Figure 1), provide a coarse but
universal source of information to better align antibody designs with target interfaces. Integrating this
foundational data into diffusion models overcomes the limitations of distribution learning, as physics-
based models generalize well despite being poor approximators. By combining these approaches,
we enhance the ability to model out-of-distribution interfaces as we are guided by force field energy,
while the structural antibody-like details are left to be determined by the diffusion model. While
previous studies have used force field-based functions to refine antibody structures after diffusion
generation (Luo et al., 2022), or have trained separate networks to approximate the forces for guiding
an unconditional diffusion model (Wang et al., 2024), we are the first to construct a principled method
of force-guided DDPM sampling, effectively blending the two distributions. Given a protein complex
consisting of an antigen and an antibody framework as input, we first initialize the CDR with arbitrary
positions, sequence and orientations. Then, during the sampling stage, we iteratively update the atom
positions guided by the gradients of force field energy, which are calculated for the denoised sample
approximation. We highlight our main contributions as follows:

• We introduce the first force-guided diffusion model, which utilizes a differentiable force
field to guide the sampling process, effectively leveraging the weighted geometric mean
of the two distributions. Unlike existing methods, our model does not require to train a
separate network for energy approximation or condition the diffusion model on energy.

• We propose a method to approximate the denoised sample of antibody atom coordinates,
offering an elegant interpolative interpretation. This enables accurate energy computation,
ensuring the precise application of forces during diffusion sampling. We also present an
approach for approximating the denoised samples of amino acid types and orientations.

We evaluate our model on the CDR sequence-structure co-design task. We show that our proposed
method effectively guides the model to sample CDRs with lower energy, outperforming several
state-of-the-art models. We observe that our model generates more favorable structures earlier in the
sampling process, leading to an enhanced quality of produced antibody sequences.

2 RELATED WORK

Diffusion Models for Antibody Design Antibody design involves creating the sequence and
structure of antibodies that can bind to target antigens. This process differs from general protein
design, where sequences are derived from known structures (Dauparas et al., 2022; Ingraham
et al., 2019), or structures are predicted based on amino acid sequences (Jumper et al., 2021). In
antibody design, the sequences and structures of the CDRs are usually initially unknown. While
various generative models have been proposed to learn such data distribution, diffusion models
(Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021) have recently gained prominence for their
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effectiveness in ensuring stable training and achieving good distribution coverage. Diffusion models
achieve state-of-the-art performance in antibody design by learning to generate new data through
denoising samples from a prior distribution. The DiGress model (Vignac et al., 2023) demonstrated
how to utilize a discrete diffusion process for molecules, while the work of DiffAb (Luo et al., 2022)
proposed the first diffusion model to perform joint design of sequence and structure of the antibody
CDR regions while conditioning on the antigen-antibody complex. AbDiffuser (Martinkus et al.,
2023) improved this further by incorporating strong priors and being more memory efficient with side
chain generation. However, these models still face challenges in accurately modeling the complex
interactions within antigen-antibody interfaces, particularly when dealing with out-of-distribution
data.

Guided Generation Guiding generative models to produce specific outcomes is highly desirable for
a variety of applications (Ho et al., 2022; Nichol et al., 2023). To achieve this, two main methods have
been proposed, a classifier guidance (Dhariwal & Nichol, 2021; Song et al., 2021b) and a classifier-
free guidance (Ho & Salimans, 2021). Recently, a concurrent work (Wang et al., 2024) introduced a
force-guided diffusion model to produce protein conformations aligned with Boltzmann’s equilibrium
distribution, based on the classifier guidance approach. However, this method requires training an
additional network to approximate the intermediate force vector to guide an unconditional model,
which can result in inaccurate estimates. In contrast, our method employs a differentiable force field
for guided sampling, eliminating the need for a separate energy approximation network and ensuring
more accurate energy calculations. Additionally, a loss guidance approach has been proposed (Song
et al., 2023), leveraging differentiable loss functions to guide the model without additional training
on noisy paired data. Similarly, our approach uses a differentiable force field to guide the sampling.

3 METHOD

We propose force-guided DIFFFORCE, a diffusion model targeting CDR region generation for antibod-
ies. Building upon the DIFFAB diffusion model introduced in Section 3.1, we present a novel strategy
in Section 3.2 that integrates force guidance into the diffusion model’s sampling. By employing
force to guide the sampling process, DIFFFORCE achieves CDRs with lower energy, leading to an
improved structure and ultimately the sequence of the generated antibodies. A visualization of the
method is shown in Figure 2.

Figure 2: Antibody CDR generation with different sampling strategies. Upper: Standard DDPM
sampling without force guidance. Lower: Incorporating force guidance into sampling, the model
generates CDR structures with lower energy. Notation explained in the main text.

3.1 DIFFUSION MODEL

Our model builds upon the DIFFAB diffusion model (Luo et al., 2022). DIFFAB represents each
amino acid in an antibody by its type si ∈ {A . . . Y }, the coordinates of its Cα atom xi ∈ R3, and
its orientation Oi ∈ SO(3). Assuming that the structures of the antigen, the antibody framework,
and five other CDRs are known, it designs one CDR loop at a time, denoted as R = {(sj , xj , Oj) |
j = l + 1, . . . , l +m}, given the rest of the antibody-antigen complex C = {(si, xi, Oi) | i ̸= j},
which includes a set of five fixed CDRs.
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The forward diffusion process from t = 0 to T , is Markovian and incrementally adds noise to three
different modalities using non-learnable distributions q: The Cα atom positions follow a Gaussian
distribution, q(xt

j | x0
j ); amino acid types follow a multinomial distribution, q(stj | s0j ); and the

orientations of amino acids follow an isotropic Gaussian distribution, q(Ot
j | O0

j ). The backward
diffusion process (from t = T to 0), refines each modality back towards the original data distribution.
The reverse process is guided by learnable models pθ, which approximate the posterior distributions
at each step using three distinct neural networks (further denoted as F,G,H , respectively) for the
three modalities. For more details on the DIFFAB model, see Section 3 of the original paper (Luo
et al., 2022), and for additional information on DDPMs, refer to Appendix A.

3.2 FORCE GUIDED ANTIBODY DESIGN

3.2.1 FORCE FIELD

Molecular dynamics (MD) simulations provide insights into the dynamic behavior of molecular
systems by numerically integrating Newton’s equations of motion (Chandler et al., 1987) for N
particles:

mi
d2xi

dt2
= Fi = − ∂

∂xi
U(x1, x2, . . . , xN ), (1)

where mi, xi, and Fi represent the mass, position, and force on each particle, respectively. The
energy U(x1, x2, . . . , xN ) is a function of the coordinates of all N particles. By solving Newton’s
equation, MD simulations approximate the evolution of molecular systems over time.

An MD force field is a parametrised function used to evaluate the energy U(x1, x2, . . . , xN ) of a given
configuration. For proteins, these forcefields are typically empirical, due to the large system sizes, and
their functional forms and parameters are tuned to closely match experimental observations. Common
terms include both bonded interactions, such as bond stretching, angle bending, and torsional angles,
and non-bonded interactions, like van der Waals forces and electrostatic interactions.

In the context of antibody design, the force field takes a protein P (e.g., set of atom coordinates x)
and computes the energy U . By calculating the gradient ∇U , we can determine how U varies with
changes in atomic positions. This gradient indicates how to adjust each atom’s position to minimize
the total energy of the protein structure. Lower energy configurations often correspond to more
thermodynamically stable antigen-antibody complexes, which are associated with higher affinity (Ji
et al., 2023). Using the relationship between energy and force, −∇U(x) = F , we can simulate the
equations of motion to evolve this dynamical system according to the energy U .

3.2.2 DIFFFORCE-Cα : INTERPOLATING BETWEEN pdata AND e−κU(x0;C)

For simplicity, we consider the setting where the residues are fixed, and our focus is to guide the Cα

atom coordinates with a prescribed force field. Rather than sample unconditionally from the data
distribution, we are interested in sampling from the following tilted distribution:

π0(x0) =
pdata(x0)e

−κU(x0;C)∫
pdata(x0)e−κU(x0;C)dx0

, (2)

where we use the notation U(x0;C) to denote that C is fixed throughout simulation. This induces
a new distribution we wish to sample from that interpolates between the Boltzmann distribution
e−κU(x0) 1 and pdata(x0). One way to interpret this is to think of pdata(x0) as a prior and e−κU(x0)

acting as a likelihood of the form p(y|x0). Thus π0(x0) is akin to a posterior of the form p(x0|y)
that is in a way conditioned to make the binding energy small. However, unlike (Song et al., 2023;
Komorowska et al., 2024), we do not have an explicit notion of the variable y in this setting. We
highlight that (Wang et al., 2024) concurrently explore an akin setting; however, their approach is
focused on learning a new modified score while our is focused on approximations during inference.

An alternate and akin approach is to construct π0 as a log-concave interpolation, as in annealed
sampling (Neal, 2001), that is to form the weighted geometric mean π0 ∝ p1−β

data exp(−κU(x0))
β for

β ∈ [0, 1]. This has the interpretation that we are now trying to sample from a distribution that is an

1For brevity we have dropped the conditioning on C.
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interpolation between pdata(x0) and e−κU(x0). By leveraging the weighted geometric mean of the
distributions, we ensure that if one distribution suggests a particular outcome is extremely unlikely, it
influences the other, thus pulling the combined distribution towards more realistic outcomes. This
method aligns well with our goal of generating high-quality samples with good binding energies,
providing a balanced compromise between the two. In practice, however, we follow Equation 2 as it
provides a form that is easier to tune and more in line with prior works on conditioning diffusion
models. Due to this connection, we will refer to π0 as the interpolating distribution. To sample from
Equation 2 we estimate the interpolating score ∇xt lnπt(xt) (Chung et al., 2023):

∇xt lnπt(xt) = ∇ ln

∫
π0(x0)p(xt|x0)dx0, (3)

= ∇xt
ln

∫
e−κU(x0;C)pdata(x0)p(xt|x0)dx0, (4)

= ∇xt ln

∫
e−κU(x0;C)p(x0|xt)dx0 +∇xt ln p(xt), (5)

where p(x0|xt) is the transition density of the backwards SDE (the denoising process), which we do
not have access to. Following (Komorowska et al., 2024; Chung et al., 2023), we approximate it with
a point mass centered at its mean:∫

e−κU(x0;C)p(x0|xt)dx0 ≈
∫

e−κU(x0;C)δE[x0|xt](x0)dx0 (6)

= e−κU(E[x0|xt];C). (7)
Then, the approximate interpolating score is given by ∇xt

lnπt(xt) ≈ −κ∇xt
U(E[x0|xt]) +

∇xt
ln p(xt), and we can use Tweedie’s formula (Robbins, 1992) to compute E[x0|xt] given we have

a good approximation of the score:

E [x0 | xt] =
xt + (1− ᾱt)∇xt

ln pt (xt)√
ᾱt

≈ x̂0(xt) =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
. (8)

Here, ᾱt =
∏t

τ=1 ατ =
∏t

τ=1(1− βτ ), where βt is the cosine variance schedule for the diffusion
model, and ϵθ is the standard Gaussian noise added to the xt predicted by the neural network F . This
yields the following sampler, with zt denoting standard Gaussian:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtzt − κ∇xt

U(x̂0(xt)). (9)

We now have ingredients to generate an approximate sample from the interpolating distribution π0.

3.2.3 FORCE GUIDANCE FOR RESIDUE TYPES

We have derived an approach to approximate the Cα atom coordinates at t = 0, further denoted as x̂0.
However, we also need to devise approximations for the amino acid types and orientations to obtain
an estimate for E[R0|Rt], which is required to calculate the energy U . Unlike the Cα coordinates, the
approximations for amino acid types and orientations do not follow Tweedie’s formula. To account
for it, we derive an alternative approach to estimate ŝ0 and Ô0 using the settings provided.

Amino Acid Types The generative diffusion process for amino acid types, denoted by
p(st−1

j |Rt, C) and defined in (Luo et al., 2022, Equation 3), is designed to approximate the poste-
rior q(st−1

j |stj , s0j ). This alignment is quantified using the Kullback–Leibler (KL) divergence, as
suggested in (Hoogeboom et al., 2021, Equation 15):

KL(q(st−1|st, s0)∥p(st−1|st)) = KL
(
C(θpost(s

t, s0))∥C(θpost(s
t, ŝ0))

)
, (10)

where the KL divergence is minimized when the parameterized posterior θpost(s
t, s0) is equivalent

to θpost(s
t, ŝ0) thus making ŝ0 a good predictor for s0 given we observe st. Following this, we can

derive the distribution for the posterior sample at timestep t− 1 as:

q(st−1
j |stj , s0j ) = Multinomial

([
αt

type · onehot(stj) + (1− αt
type) ·

1

20

]
⊙
[
ᾱt−1

type · onehot(s0j ) + (1− ᾱt−1
type ) ·

1

20

])
.

(11)
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Here ᾱt
type =

∏t
τ=1(1−βτ

type) and βt
type is the probability of uniformly resampling another amino acid

from among the 20 types. The neural network G is tasked with predicting s0j , leveraging the learned
distributional characteristics of amino acid types. In order to approximate the denoised sample for
amino acid types at t = 0, namely ŝ0 , the idea is to utilize only the second term of Equation 11:

ŝ0j = ᾱt−1
type · onehot(s0j ) + (1− ᾱt−1

type ) ·
1

20
, (12)

where ŝ0j predicts the amino acid type at t = 0 for each amino acid j.

Amino Acid Orientations The denoising process for amino acid orientations is captured via SO(3)
elements, as described by (Leach et al., 2022) and implemented by (Luo et al., 2022, Equation 11):

p(Ot−1
j |Rt, C) = IGSO(3)

(
Ot−1

j |H(Rt, C)[j], βt
ori

)
, (13)

where H is a neural network that denoises the orientation matrix for amino acid j, IGSO(3) denotes
the isotropic Gaussian distribution on SO(3) parameterized by a mean rotation and a scalar variance,
βt
τ is the variance increase with the step t. To obtain the approximation Ô0

j for amino acid orientation,
we propose an approach of iteratively denoising the sample Ot

j for t iterations, where each iteration
predicts the sample Ot−1

j . Namely, by iteratively applying Equation 13 until timestep t reaches 0 for
each amino acid j, we converge to the approximation Ô0

j , effectively reversing the forward diffusion:

Ô0
j (R

t) ≈ Õ0
j ∼ p(Ot−1

j |Rt, C)

t−1∏
s=1

p(Os−1
j |Rs, C). (14)

We have now obtained denoised approximations of atom coordinates, amino acid types, and orienta-
tions. This estimate can be utilized in further algorithms to compute the energy U .

3.2.4 IMPLEMENTATION

We derive a novel approach for guiding the sampling of Cα atom coordinates with a prescribed force:

Algorithm 1 DIFFFORCE-Cα Sampling with Force Guidance
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: estimate x̂0(Rt) using Eq 8, ŝ0(Rt) using Eq 12 and Ô0(Rt) using Eq 14
5: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(x

t, t)
)
+ σtzt − λsc1t≥λst

∇xtU
(
x̂0, ŝ0, Ô0;C

)
6: Rt−1 =

(
xt−1, st−1, Ot−1

)
, sample st−1, Ot−1 following (Luo et al., 2022)

7: end for
8: return x0, s0, O0

We introduce two hyperparameters, force scale (λsc) and force start (λst). The λsc parameter dictates
the magnitude of the force, gradually adjusted from 0.0 to λsc using a linear scheduling strategy. This
parameter is applied to normalized forces as detailed in Appendix B. The λst parameter defines when
force application begins, with a value of 0.3 indicating initiation of force at 70% of the sampling.

4 EXPERIMENTS

We evaluate the effectiveness of the DIFFFORCE model on the CDR sequence-structure co-design
task. We demonstrate that 1) force guidance effectively guides the model to sample CDRs with
lower energy; 2) using force guidance, DIFFFORCE outperforms current state-of-the-art models by
generating high-quality antibody samples, with an emphasis on the CDR H3 region.

4.1 EXPERIMENTAL SETUP

Baselines We compare DIFFFORCE against two baseline models, the diffusion model DIFFAB
(Luo et al., 2022) and the traditional energy-based method RABD (Adolf-Bryfogle et al., 2018). Both
baseline models are evaluated using default settings. For more details, see Appendix F.
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Dataset and Diffusion Model To evaluate our model, we use the SAbDab database (Dunbar et al.,
2013) (with Chothia numbering scheme), filtering out complexes with resolutions worse than 4Å and
those targeting non-protein antigens. Following (Luo et al., 2022), we cluster antibodies based on
50% H3 sequence identity and select five clusters for the test set, comprising 19 complexes. We use
the codesign_single pre-trained model from DIFFAB, which generates one CDR region at a time.

Energy Energy of protein structures is evaluated using MadraX (Orlando et al., 2023), which
provides the Gibbs free energy (∆G) of the complex. Unlike other force fields, such as Rosetta
(Alford et al., 2017) or FoldX (Schymkowitz et al., 2005), Madrax is fully differentiable. MadraX
evaluates several categories of interaction energies, adapting 7 categories from FoldX (Schymkowitz
et al., 2005) into a differentiable format. The energy considers the full protein structure, whose
reconstruction is described in Appendix D. The energy is reported in kcal/mol.

Metrics To validate our model’s performance, we use three key metrics; 1) Binding Energy Improve-
ment (IMP) is calculated as the percentage of designed CDRs that show a reduction (improvement)
in free binding energy (∆∆G) compared to the reference CDRs, indicating a stronger interaction
with the target antigen. This evaluation uses the InterfaceAnalyzer from Rosetta (Alford et al., 2017).
2) Root Mean Square Deviation (RMSD) measures the average spatial discrepancy between the Cα

atoms of the generated and reference antibody structures, with a higher RMSD indicating greater
structural diversity. 3) Amino Acid Recovery Rate (AAR) is defined as the overlapping ratio of the
generated sequence to the ground truth, evaluating how accurately the generated CDR sequences
replicate the reference sequences (Adolf-Bryfogle et al., 2018).

4.2 RESULTS

We evaluate the performance of DIFFFORCE model on the sequence-structure co-design as introduced
by (Luo et al., 2022), where the reference CDR is removed from the antibody-antigen complex.
The diffusion model is therefore conditioned on antibody framework and antigen. For each antigen-
antibody complex, we generate n = 25 samples for 3 heavy chain CDRs (HCDRs). We choose to
focus on the heavy chain since it typically exhibits greater variability and influences on binding affinity
compared to the light chain (López-Requena et al., 2007). The samples are produced through 100
generative timesteps (T = 100), with each sample maintaining the same length as its corresponding
reference CDR in the test set. Finally, the generated structures, as well as reference original ones, are
relaxed using OpenMM (Eastman et al., 2017) and Rosetta (Alford et al., 2017).

Table 1 shows that DIFFFORCE model recovers all three HCDRs sequences with greater accuracy
(higher AAR) than both DIFFAB and RABD. Furthermore, DIFFFORCE achieves improved binding
scores (higher IMP) for the H1 and H3 regions. The model exhibits RMSDs comparable to those
of DIFFAB. Overall, the most substantial improvement is observed in the H3 region, which can
be attributed to its significantly longer sequence and the smaller variability present in the H1 and
H2 regions. This length allows for a wider range of adjustments and provides a greater scope for
applying force guidance during sampling. This test validates the efficacy of our model in generating
high-quality CDRs, with an emphasis on handling the complex CDR H3 region.

AAR (%) ↑ IMP (%) ↑ RMSD (Å) ↓
Method H1 H2 H3 H1 H2 H3 H1 H2 H3

RABD 22.85 25.50 22.14 43.88 53.50 23.25 2.261 1.641 2.900
DIFFAB 58.70 49.37 26.08 47.91 30.77 23.59 1.438 1.235 3.605
DIFFFORCE 60.78 53.51 29.52 49.45 36.81 30.22 1.561 1.401 3.612

Table 1: Results on CDR sampling. The best result for each metric is highlighted in bold.

Figure 3 presents three generated CDR samples using DIFFFORCE. The binding specificity is
determined by the interaction between the antibody’s paratope region and the antigen’s epitope region
(Peng et al., 2014). The paratope region, comprising the interacting amino acid residues from a
specific CDR region of an antibody, is highlighted in blue. The epitope, defined as the antigen
residues within <= 5Å of the CDR, is marked in red. The antibodies target the SARS-CoV-2 RBD
antigen, potentially offering a treatment strategy for COVID-19 (Law et al., 2021).
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We focus on visualizing the CDR-H3 region, as it is often the most variable part of the antibody,
determining its precise binding capability to a wide range of antigens and playing a key role in the
immune response to pathogens (Regep et al., 2017). The antigen-antibody framework is obtained
from PDB:7DK2. All three samples show enhanced binding energy (∆∆G) as measured by Rosetta,
despite significant structural deviations from the reference. This implies that a larger RMSD in the
predicted CDR structure might indicate a viable alternative with enhanced binding capabilities, rather
than a flaw in the prediction. Notably, Sample 1, which exhibits the best binding energy, appears to
conform the best to the antigen, underscoring the potential advantages of structural deviations.

Figure 3: Generated samples for the CDR-H3 region of the PDB:7DK2 antigen-antibody complex.
The RMSD, binding energy (∆∆G), and amino acid sequences are reported. The antigen is in red,
and the antibody in blue. All samples show improved binding over the reference structure.

4.3 ANALYSIS

We conduct experiments to evaluate DIFFFORCE’s performance in generating antibodies, focusing on
energy and structure. Our findings highlight two key insights: 1) DIFFFORCE consistently demon-
strates improved stability over DIFFAB, indicated by lower energy (Section 4.3.1); 2) DIFFFORCE
achieves better structural conformity earlier in the sampling than DIFFAB (Section 4.3.2).

4.3.1 ENERGY LANDSCAPE

In a proof-of-concept study, we demonstrate that the proposed force guidance enhances the efficacy of
the DIFFFORCE model. This approach generates CDR conformations with lower energy, indicating
increased structural stability compared to DIFFAB. Specifically, we analyze the 7DK2 antigen-
antibody complex, focusing on the heavy chain CDR regions H1, H2, and H3, using hyperparameters
λsc = 0.05 and λst = 0.3. We compare the results of n = 25 samples, all starting from the same
configuration at timestep 70 of the 100-timestep sampling process. The data is smoothed using a
10-period moving average, and energy is measured using MadraX. As shown in Figure 4, the results
indicate a decrease in energy for both models, with DIFFFORCE consistently exhibiting lower energy
values from t = 30 onward. This suggests that the force guidance in DIFFFORCE effectively directs
the sampling, leading to more energetically favorable conformations and more stable antigen-antibody
interactions. For details on hyperparameter choices and for other complexes, refer to Appendix G.

Figure 4: Energy of the PDB:7DK2 antigen-antibody complex’s HCDR regions. Mean and standard
error are based on n = 25 samples. The DIFFFORCE converges to lower energy levels than DIFFAB.
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4.3.2 STRUCTURAL CONFORMITY

To further validate the effectiveness of force guidance, we conduct experiments on the structural
conformity of generated antibody samples using the DIFFFORCE and DIFFAB models, focusing
on the CDR H3 region of the 7DK2 antigen-antibody complex. We set hyperparameters at λsc =
0.1 and λst = 0.3, maintaining consistent seed values across both models. Figure 5 compares
the models’ performance at various sampling stages. Early in the diffusion process, DIFFFORCE
consistently produces structures with better atomic coherence, fewer steric clashes, and higher
structural connectivity than DIFFAB, particularly noticeable at earlier timesteps (e.g., t = 15,
t = 10), indicating better sample fidelity. Additionally, DIFFFORCE achieves better energy at all
sampled timesteps, demonstrating faster convergence to energetically optimal configurations. These
empirical results highlight the potential of force guidance in improving the structural outcomes of
diffusion-based antibody design, as well as reducing the need for post-generation relaxation.

Figure 5: Results for the PDB:7DK2 complex’s CDR-H3 region. Samples for DIFFAB (top) and
DIFFFORCE (bottom) at timesteps t = [15, 10, 5, 0]. The energy and amino acid sequence are
reported. DIFFFORCE achieves better structure and lower energy earlier in the sampling.

5 CONCLUSIONS AND FUTURE WORK

Antibodies play a vital role in the immune system by identifying and neutralizing antigens, such as
viruses. Inspired by the fact that integrating physics-based force fields with generative models can
improve out-of-distribution generalization for antibody design, we introduce DIFFFORCE, a diffusion
model that incorporates force guidance into the sampling. Unlike existing methods, our model does
not require conditioning a diffusion model on energy or training a separate network to approximate
energy. We demonstrate that our model effectively guides the diffusion sampler to generate CDRs
of better energy, outperforming several state-of-the-art models. This results in improved structure
earlier in the sampling and enhances the sequences of the generated antibody CDRs.

While DIFFFORCE demonstrates promising results, it focuses on CDR sequence-structure co-design,
with future potential in designing antibodies without bound framework structures. Moreover, the
generated samples will require wet-lab experiments to confirm efficacy. Despite these and other
limitations discussed in Appendix H, our work represents the first attempt to directly integrate a
differentiable force field within diffusion sampling, effectively blending two distributions together.
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A DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic models (DDPMs), introduced by Ho et al. (2020), represent a
class of generative models that generate data by reversing a diffusion process. This process involves
gradually transforming a sample from a simple distribution, like Gaussian noise, into a complex
data distribution through learned reverse diffusion steps. The forward process incrementally adds
noise to the data over a series of steps, transforming an initial data distribution into a distribution that
is approximately Gaussian. This process is designed as a Markov chain, where each state xt only
depends on the immediate previous state xt−1. The transition from xt−1 to xt is defined as:

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I). (15)

In this equation, αt (where 0 < αt ≤ 1) is a predefined variance schedule decreasing over time,
which determines the proportion of the original data and noise at each step. The variable ϵ represents
isotropic Gaussian noise, introducing randomness into the process. The reverse process aims to
reconstruct the original data by sequentially removing the noise added during the forward process.
This is achieved by training a neural network to estimate the original data distribution at each previous
timestep, effectively learning the reverse of the forward process. The transition from noisy data xt

back to less noisy data xt−1 is modeled as:

p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (16)

Here, µθ(xt, t) and Σθ(xt, t) are the mean and covariance of the Gaussian distribution for xt−1,
parameterized by a neural network with parameters θ. These parameters are learned during training
to minimize the difference between the actual noise and the predicted noise. The training of a DDPM
is based on optimizing the variational lower bound, which effectively focuses on predicting the noise
ϵ added at each step of the forward process. The loss function is defined as:

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
. (17)

This loss function measures the mean squared error between the actual noise ϵ and the noise estimated
by the neural network ϵθ. Successful training minimizes this error, enhancing the model’s ability to
reverse the diffusion process and, thereby, accurately generate samples that resemble the training
data.

Song et al. (2021a) state that DDPMs is an example from the larger class of score-based models.
They demonstrated that the discrete forward and reverse diffusion processes have their continuous
time equivalents, that is, forward Stochastic Differential Equation, namely:

dx = −1

2
β(t)xtdt+

√
β(t)dw, (18)

and it’s reverse:

dxt =

[
−1

2
β(t)xt − β(t)∇x ln pt(xt)

]
dt+

√
β(t)dw̄t, (19)

where the quantity ∇xt
ln pt(xt) is called the score and is closely related to the noise in DDPM

by the equivalence ∇xt
ln pt(xt) = −ϵt/

√
1− ᾱt. Any model trained to predict the noise can be

written in terms of the score, which is an essential property of our work. Whenever we derive some
expression with respect to the score, we can use the noise-based formulation for forward and reverse
diffusion processes by simply substituting ϵt = −

√
1− ᾱt∇xt

ln pt(xt).

B NORMALISATION OF FORCES

Using the relationship between energy and force, we start with the equation:

mi
d2xi

dt2
= Fi = − ∂

∂xi
U(x1, x2, . . . , xN ), (20)
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where Fi is the force acting on the i-th atom, mi is the mass of the i-th atom, xi is the position
vector of the i-th atom, and U is the energy as a function of the positions of all N atoms. Let
F = {f1, f2, . . . , fN} be a set of 3-dimensional vectors representing the forces acting on N atoms.
Each vector fi ∈ R3 consists of the force components along the x, y, and z coordinates for the i-th
atom. We rescale each vector fi such that its magnitude does not exceed a predefined maximum
norm while maintaining its direction. The process involves three main steps:

Norm Calculation Compute the Euclidean norm (or L2 norm) of each vector fi. The Euclidean
norm of fi is defined as:

∥fi∥2 =
√

f2
i,x + f2

i,y + f2
i,z, (21)

where fi,x, fi,y, and fi,z represent the components of the i-th vector fi along the x, y, and z axes,
respectively.

Normalization Normalize each vector fi to obtain a unit vector f̂i by dividing it by its norm. To
avoid division by zero, a small constant ϵ = 1e− 6 is added to the norm. The normalization step is
described as:

f̂i =
fi

∥fi∥2 + ϵ
. (22)

Rescaling Multiply each normalized vector f̂i by a predefined maximum norm (we set the maximum
norm to 1):

fi,rescaled = f̂i × max_norm. (23)

The output is a set of rescaled force vectors F = {f1,rescaled, f2,rescaled, . . . , fN,rescaled}, where each
3-dimensional vector fi,rescaled maintains its original direction and has its components within the
range of −1 to 1, ensuring stability in the sampling algorithm.

C PHYSICAL INTERPRETATION

In molecular dynamics (MD) simulations, the energy of molecular complexes is typically measured
in kilocalories per mole (kcal/mol). The derivative of energy with respect to spatial position, i.e., the
force, is thus expressed in kcal/mol/Å, where Å denotes angstroms (10−10 meters). This conversion
from energy to force is important as it indicates both the magnitude and direction of forces exerted on
atoms, facilitating the prediction of atomic movements over time within the simulation environment.

The relationship between the force applied to an atom and the resulting displacement can be under-
stood through the basic kinematic equation:

∆x = 0.5×
(
F

m

)
×∆t2, (24)

where F is the applied force, m is the mass of the atom, and ∆t is the duration of the timestep. This
equation emphasizes that the displacement (∆x) of an atom is proportional to the applied force and
the square of the time interval, and inversely proportional to the atom’s mass.

Essentially, this process is similar to a diffusion process on the coordinates, with a mini one-step MD
relaxation at every step, where the time-step size is determined by λsc. The size of the timestep can
be inferred from the hyperparameter λsc. Thus, to simplify simulation calculations, a scaling factor
for force, denoted as λsc, is introduced, representing the term 0.5×∆t2

m from Equation 24. Assuming
the mass of a typical carbon-alpha (Cα) atom remains constant and that normalized forces F range
between −1 and 1, the displacement for each simulation timestep can be efficiently computed as:

∆x = λsc × F, (25)

where λsc is the hyperparameter that scales the forces. This relation allows re-interpreting our reverse
diffusion process as a combination of a reverse DDPM step on the coordinates, coupled with a
one-step MD relaxation at every step, where the time-step size is determined by λsc. The size of the
timestep can be inferred from the hyperparameter λsc.
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D STRUCTURE RECONSTRUCTION

To calculate the energy, it is essential to reconstruct the full antibody-antigen complex C along with
the generated CDR region R. This process involves first reconstructing the complete 3D structure
of the atoms in the CDR, following the pipeline outlined in (Luo et al., 2022). The reconstruction
begins by determining the coordinates of the N, C, O, and side-chain Cβ atoms, which are positioned
relative to the Cα location and orientation of each amino acid (Engh & Huber, 2012). After these
core atoms are reconstructed, the remaining side-chain atoms are built using the side-chain packing
function in Rosetta (Alford et al., 2017). Once the CDR region is restored, the full antibody-antigen
complex C is reconstructed. With the complete structure (including the antibody with its 6 CDRs and
framework, as well as the antigen), the energy of the complex can be calculated. This process is then
iteratively performed for λst × 100 timesteps, assuming diffusion occurs over t = 100 timesteps.
The iteration begins when forces are first applied at λst and continues through the sampling process
until the final timestep t = 0.

E ALGORITHMS

The following subsections describe two additional algorithms that were initially considered alongside
our primary method. However, due to the more promising initial results of the main method, we
discontinued further experimentation with these alternatives.

E.1 ALGORITHM 2: SAMPLING WITH FORCE GRADIENTS OF xt

The initial sampling procedure is detailed in Algorithm 2 below.

Algorithm 2 DIFFFORCE-Cα Sampling with Force Guidance
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(x

t, t)
)
+ σtz − λsc1t≥λst∇xtU (xt, st, Ot;C)

5: Rt−1 =
(
xt−1, st−1, Ot−1

)
, sample st−1, Ot−1 following (Luo et al., 2022)

6: end for
7: return x0, s0, O0

E.2 ALGORITHM 3: SAMPLING WITH FORCE GRADIENTS OF x0 VIA APPROXIMATION

Another sampling procedure that was initially considered is detailed in Algorithm 3.

Algorithm 3 DIFFFORCE-Cα Sampling with Force Guidance
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: estimate x̂0(Rt) using Eq 8, ŝ0(Rt) using Eq 12 and Ô0(Rt) using Eq 14
5: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(x

t, t)
)
+ σtz − λsc1t≥λst∇x0U

(
x̂0, ŝ0, Ô0;C

)
6: Rt−1 =

(
xt−1, st−1, Ot−1

)
, sample st−1, Ot−1 following (Luo et al., 2022)

7: end for
8: return x0, s0, O0

F DETAILS OF BASELINES

DiffAb DIFFAB (Luo et al., 2022) models CDR sequences and structures using a diffusion model.
This approach represents the first use of deep learning to integrate antigen 3D structures into antibody
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sequence-structure design, thereby enhancing specificity and efficacy. Results for DIFFAB are
obtained by our own experiments.

RAbD The RosettaAntibodyDesign (RABD) (Adolf-Bryfogle et al., 2018) is a computational
tool for antibody design that utilizes Rosetta energy functions. It employs a Monte Carlo plus
minimization (MCM) approach, wherein changes in antibody sequence and structure are randomly
sampled and optimized through energy minimization to enhance target specificity (Adolf-Bryfogle
et al., 2018). Results for RABD are taken from a recent study Luo et al. (2022).

G ENERGY LANDSCAPE: ADDITIONAL DETAILS AND PLOTS

The selection of hyperparameters λsc = 0.05 and λst = 0.3 for our study was guided by ablation
studies examining the influence of the force start and force scale parameters in the DIFFFORCE model.
The results are detailed in Figure 6, where the displayed values represent the mean. For example, to
calculate the IMP metric for λst = 0.1, we averaged the samples of three HCDR regions: H1, H2,
and H3. For each region, we computed the mean derived from n = 25 samples for the following
combinations: λsc = 0.01, λst = 0.1; λsc = 0.05, λst = 0.1; and λsc = 0.1, λst = 0.1, across 19
test complexes.

The choice of λst = 0.3 was determined by averaging the optimal performance metrics for IMP
and AAR, which peaked at λst = 0.5, and for RMSD, which was lowest at λst = 0.1. Similarly,
λsc = 0.05 was selected because it provided the best outcomes for IMP and AAR at λsc = 0.1,
while maintaining a lower RMSD value at λsc = 0.01. This ensured that multiple key metrics were
optimized simultaneously. We argue that activating the forces earlier during sampling would enhance
AAR and IMP metrics but result in longer sample generation times.

Figure 6: Ablation study showing the impact of the force start (λst) and force scale (λsc) hyperpa-
rameters on DIFFFORCE performance. The displayed values represent the mean. For IMP and AAR
metrics, optimal results are obtained by activating forces early in the sampling process (λst = 0.5,
50% into sampling) with a higher force scale (λsc = 0.1). Conversely, for RMSD, better performance
is achieved by activating forces later (λst = 0.1, 90% into sampling) with a lower force scale
(λsc = 0.01).
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Figure 7 provides an additional example from the experiment, analyzing three antigen-antibody
complexes—PDB:7CHF, PDB:7CHE, and PDB:5TLK. The focus is on the heavy chain CDR regions,
namely CDR-H1, CDR-H2, and CDR-H3. The figure demonstrates that the DIFFFORCE model,
guided with force, generates antibody conformations with lower energy, indicating increased structural
stability compared to DIFFAB.

Figure 7: Energy landscape analysis of three antigen-antibody complexes—PDB:7CHF, PDB:7CHE,
and PDB:5TLK—focused on the heavy chain CDR regions (CDR-H1, CDR-H2, and CDR-H3). The
mean and standard error were derived from n = 25 samples across 25 seeds. The DIFFFORCE model,
guided with force, converges to lower energy levels compared to DIFFAB.

H LIMITATIONS

Computational Cost The iterative use of the MadraX library (Orlando et al., 2023) for force
guidance during sampling is time-consuming due to the calculations involved. This process mimics
molecular dynamics (MD) simulations to continuously update atomic positions based on various
forces, including bond forces, electrostatic interactions, van der Waals forces, and solvent interactions.
Each iteration estimates atomic movements, similar to gradient descent optimization steps. Thus, the
computational demands should be considered when employing this approach.

Reliability of Energy Function In our study, we utilized the Rosetta energy function (Alford et al.,
2017) to evaluate the binding effectiveness of designed antibodies to their target antigens, a common
metric in antibody design. Despite the integral role of Rosetta, along with tools such as FoldX
(Schymkowitz et al., 2005), in simulating protein interactions, their reliability remains a subject of
concern. These computational tools have been documented to exhibit inaccuracies when replicating
experimental results, often due to the oversimplified models of complex molecular interactions they
utilize (Ramírez & Caballero, 2016; 2018). This underscores the necessity for ongoing refinement of
these computational methods.

Evaluation Metrics In the field of antibody design, Amino Acid Recovery (AAR) and Root Mean
Square Deviation (RMSD) are commonly used as evaluation metrics. However, these metrics have
inherent limitations that may compromise the accurate assessment of an antibody’s functional efficacy.
AAR may not always reliably reflect the functional performance of the generated antibody sequences,
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while RMSD primarily assesses the alignment of backbone atoms and overlooks the side chains,
which are crucial for the specificity and strength of antigen-antibody interactions. These limitations
underscore the need for the development of more comprehensive evaluation metrics.

I BROADER IMPACTS

Integrating force guidance within the diffusion sampling process for antibody design can significantly
accelerate therapeutic antibody discovery, with broad implications in fields like protein engineering.
This advancement enables more precise modeling of atomic systems, enhancing predictions of protein
stability, function, and interactions, crucial for designing enzymes and other biologically relevant
molecules. However, potential societal drawbacks exist, particularly in dual-use applications. While
aimed at therapeutic advancements, this approach could be misused to design harmful biological
agents, raising ethical concerns and underscoring the need for regulations to ensure responsible use
for societal benefit.

J COMPUTE DETAILS

The sampling phase was performed using four NVIDIA A100-SXM-80GB GPUs. The relaxation
stage was executed on an Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz, equipped with 48 virtual
cores and 256GB of RAM.

K SOURCE CODE

The code will be made publicly available.
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