
Appendix433

Broader impact. The broader impact of the proposed framework is significant, as it extends434

the ability to gain trust in machine learning systems. However there are important concerns and435

limitations.436

• Focus on performance metrics In this paper we propose a range of performance metrics,437

which extend well beyond standard metrics concerning expected loss. However, in many438

situations these metrics are not sufficient to capture the effects of the machine learning439

system. Often a number of different metrics are required to provide a clearer picture of440

model performance, while some effects are difficult to capture in any metric. Also, while the441

measures studied offer the ability to more evenly distribute a quantity across a population,442

they do not offer guarantees to individuals. Finally, achieving a more equal distribution of443

the relevant quantity (e.g., loss or income) may have negative impacts on some segments of444

the population.445

• Limitations These are summarized in the Conclusion but are expanded upon here. An446

important assumption in this work, and in distribution-free uncertainty quantification more447

generally, is that the examples seen in deployment are drawn from the same distribution as448

those in the validation set that are used to construct the bounds. Although this is an active449

area of research, here we make this assumption, and the quality of the bounds produced may450

degrade if the assumption is violated. A second limitation is that the scope of hypotheses451

and predictors we can select from is limited, due to theoretical constraints: a correction must452

be performed based on the size of the hypothesis set. Finally, the generated bounds may not453

be tight, depending on the amount of available validation data and unavoidable limits of the454

techniques used to produce the bounds. We did some comparisons to Empirical values of455

the measures we obtained bounds for in the experiments; more extensive studies would be456

useful to elucidate the value of the bounds in practice.457

Organization of the Appendix. (1) In Appendix A, we provide detailed statements and derivations458

of our methodology presented Section 4.1, including how to obtain bounds for those measures459

mentioned in Section 3; (2) in Appendix B, we introduce further societal dispersion measures, beyond460

those presented in Section 3 and corresponding bounds; (3) in Appendix C, we investigate the461

extension of our results to multi-dimensional settings; (4) lastly, in Appendix D and E, we provide462

more complete details and results from our experiments (Section 5).463

A Derivations and proofs for bounding methods464

Section A.1, we first consider how to control, or provide upper bounds on, various quantities when
we are given (F̂ �

n,L, F̂
�
n,U ), which are constructed by {Xi}

n
i=1, such that

P(F̂ �,�
n,L � F � F̂ �,�

n,U ) � 1� �

where the randomness is taken over {Xi}
n
i=1.465

Then, in Section A.2, we will show how we obtain (F̂ �,�
n,L , F̂

�,�
n,U ) by extending the arguments in [32].466

In addition, we show details in Section A.2.2 on how we go beyond the methods in [32] and provide467

a numerical optimization method for tighter bounds.468

Proof of Proposition 1. We briefly describe the the proof for Proposition 1. The proof is mainly469

based on [32], but we include it here for completeness. Notice for any non-decreasing function470

G : R ! R (not just a CDF), there exists the (general) inverse of G as G�(p) = inf{x : G(x) � p}471

for any p 2 R.472

Proposition 2 (Restatement of Proposition 1). For the CDF F of X , if there exists two increasing473

functions FU , FL such that FU ⌫ F ⌫ FL, then we have F�
L ⌫ F�

⌫ F�
U .474

Proof. For any two non-decreasing function G(p) and C(p), by the definition of the general inverse475

function, G(G�(p)) � p. If C ⌫ G, we therefore have C(G�(p)) � G(G�(p)) � p. Applying C�476

to both sides yields C�(C(G�(p))) � C�(p). But x � C�
� C(x) (see e.g. Proposition 3 on p. 6477

 



of [30]) and thus G�(p) � C�(p). Plugging in F and FU as G and C, this can yield F�
⌫ F�

U .478

The other direcion is similar.479

A.1 Control of nonlinear functions of CDFs (Section 4.1)480

A.1.1 Control for monotonic functions481

Recall that we start with the simplest case where ⇠ is a monotonic function in the range of X . It is482

straightforward to have the following claim.483

Claim 1. If we have F̂ �,�
n,L � F � F̂ �,�

n,U with probability at least 1� � for some � 2 (0, 1), if ⇠ is an
increasing function, then

⇠(F̂ �,�
n,L ) ⌫ ⇠(F̂�) ⌫ ⇠(F̂ �,�

n,U )

with probability at least 1 � �. Similarly, if ⇠ is a decreasing function, then ⇠(F̂ �,�
n,L ) � ⇠(F̂�) �484

⇠(F̂ �,�
n,U ) with probability at least 1� �.485

We show how this could be applied to provide bounds for Gini coefficient and Atkinson index by486

controlling the numerator and denominator separately as integrals of monotonic functions of F�.487

Example 1 (Gini coefficient). If given a (1� �)-CBP (F̂ �
n,L, F̂

�
n,U ) and F̂ �

n,L ⌫ 0 1, we can provide488

the following bound for the Gini coefficient. Notice that489

G(X) =

R 1
0 (2p� 1)F�(p)dp

R 1
0 F�(p)dp

=

R 1
0 2pF�(p)dp
R 1
0 F�(p)dp

� 1.

Given F�(p) � 0 (since we only consider non-negative losses, i.e. X is always non-negative), we
know

G(X) 

R 1
0 2pF̂ �,�

n,L (p)dpR 1
0 F̂ �,�

n,U (p)dp
� 1,

with probability at least 1� �.490

Example 2 (Atkinson index). First, we present the complete version of Atkinson index. Namely,491

A(", X) :=

8
>><

>>:
1�

⇣
R 1
0 (F�(p))1�"dp

⌘ 1
1�"

R 1
0 F�(p)dp

, if " � 0, " 6= 1;

1�
exp(

R 1
0 ln(F�(p))dp)R 1
0 F�(p)dp

, if " = 1.

Notice that for " � 0, (·)1�" and ln(·) are increasing functions, thus, for Atkinson index and a (1��)-492

CBP (F̂ �
n,L, F̂

�
n,U ), if F̂ �

n,L ⌫ 0, let us define A�
U (", X) := 1�

⇣
R 1
0 (F̂ �,�

n,U (p))1�"dp

⌘ 1
1�"

R 1
0 F̂ �,�

n,L(p)dp
, if " � 0, " 6=493

1; 1 �
exp(

R 1
0 ln(F̂ �,�

n,U (p))dp)
R 1
0 F̂ �,�

n,L(p)dp
, if " = 1. Then, with probability at least 1 � �, A�

U (", X) is an upper494

bound for A(", X) for all " 2 [0, 1).495

As mentioned in Remark 1, instead of calculating bounds separately for each ", simple post-processing496

enables us to efficiently issue a family of bounds.497

Example 3 (CVaR fairness-risk measures and beyond). Recall that for ↵ 2 (0, 1),

DCV,↵(T (Fg)) = min
⇢2R

⇢
⇢+

1

1� ↵
· Eg⇠PIdx [T (Fg)� ⇢]+

�
� Eg⇠PIdx [T (Fg)].

The function [T (Fg) � ⇢]+ is an increasing function when ⇢ is fixed and its further composition
with the expectation operation is still increasing. If we have (T �

L(Fg), T �
U (Fg)) such that T �

L(Fg) 

1This can be easily achieved by taking truncation over 0. Also, the construction of F̂ �
n,L in Section A.2

always satisies this constraint.



T (Fg)  T �
U (Fg) 2 for all g with probability at least 1� �, then we have

DCV,↵(T (Fg))  min
⇢2R

⇢
⇢+

1

1� ↵
· Eg⇠PIdx [T

�
U (Fg)� ⇢]+

�
� Eg⇠PIdx [T

�
L(Fg)],

and the first term of RHS can be minimized easily since it is a convex function of ⇢.498

A.1.2 Control for absolute and polynomial functions499

Recall that if sL  s  sU , then

sL1{sL � 0}� sU1{sU  0}  |s|  max{|sU |, |sL|}.

More generally, for any polynomial function �(s) =
P

k=0 ↵ksk. Notice if k is odd, sk is monotonic500

w.r.t. s and we can bound501

�(s) 
X

{k is odd, ↵k�0}

↵ks
k
U +

X

{k is odd, ↵k<0}

↵ks
k
L

+
X

{k is even, ↵k�0}

↵k max{|sL|
k, |sU |

k
}+

X

{k is even, ↵k<0}

↵k(sL1{sL � 0}� sU1{sU  0})k.

So, for �(F�), we can plug in F̂ �,�
n,L and F̂ �,�

n,U to replace sU and sL to obtain an upper bound with502

probability at least (1� �). The derivation for the lower bound is similar. We summarize our results503

as the following proposition.504

Proposition 3. If given a (1� �)-CBP (F̂ �
n,L, F̂

�
n,U ),

F̂ �,�
n,U1{F̂

�,�
n,U � 0}� F̂ �,�

n,L1{F̂
�,�
n,L  0} � |F�

| � max{|F̂ �,�
n,L |, |F̂

�,�
n, |}.

Moreover, for any polynomial function �(s) =
P

k=0 ↵ksk, we have505

�(F�) �
X

{k is odd, ↵k�0}

↵k(F̂
�,�
n,L )

k +
X

{k is odd, ↵k<0}

↵k(F̂
�,�
n,U )

k

+
X

{k is even, ↵k�0}

↵k max{|F̂ �,�
n,U |

k, |F̂ �,�
n,L |

k
}

+
X

{k is even, ↵k<0}

↵k(F̂
�,�
n,U1{F̂

�,�
n,U � 0}� F̂ �,�

n,L1{F̂
�,�
n,L  0})k.

Example 4. If we have (T �
L(Fg), T �

U (Fg)) such that T �
L(Fg)  T (Fg)  T �

U (Fg) holds for all g we
consider, then we can provide high probability upper bounds for

⇠(T (Fg1)� T (Fg2))

for any polynomial functions or the absolute function ⇠. For example, with probability at least 1� �

|T (Fg1)� T (Fg2)|  max{|T �
U (Fg1)� T �

L(Fg2)|, |T
�
L(Fg1)� T �

U (Fg2)|}.

We will further show in Appendix B how our results are applied to specific examples.506

A.1.3 Control for a general function507

To handle general non-linearity, we need to introduce the class of functions of bounded variation508

on a certain interval, which is a very rich class that includes all the functions that are continuously509

differentiable or Lipchitz continuous on that interval.510

Definition 4 (Functions of bounded total variation [28]). Define the set of paritions on [a, b] as

⇧ = {⇡ = (x0, x1, · · · , xn⇡ ) | ⇡ is a partition of [a, b] satisfying xi  xi+1 for all 0  i  n⇡�1}.

2T (Fg) here is one of the functionals in the form we studied, so that we can provide upper and lower bounds
for it.



Then, the total variation of a continuous real-valued function ⇠, defined on [a, b] ⇢ R is defined as

V b
a (⇠) := sup

⇡2⇧

n⇡X

i=0

|⇠(xi+1)� ⇠(xi)|

where ⇧ is the set of all partitions, and we say a function ⇠ is of bounded variation, i.e. ⇠ 2 BV([a, b])511

iff V b
a (⇠) < 1.512

Recall that X � 0 in our cases, then, for ⇠(F�), we can have the following bound.513

Theorem 2 (A restatement & formal version of Theorem 1). For a (1� �)-CBP (F̂ �
n,L, F̂

�
n,U ), for

any p 2 [0, 1] such that the total variation of ⇠ is finite on [0, F̂ �,�
n,L (p)], then

⇠(F�(p))  V
F̂ �,�

n,L(p)

0 (⇠)� V
F̂ �,�

n,U (p)

0 (⇠) + ⇠(F̂ �,�
n,U (p)).

Moreover, if ⇠ is continuously differentiable on [0, F̂ �,�
n,L (p)], we can express V s

0 (⇠) as
R x
0 |

d⇠
ds (s)|ds514

for any x 2 [0, F̂ �,�
n,L (p)].515

Proof. By the property of functions of bounded total variation [28], if ⇠ is of bounded total variation
on [0, F̂ �,�

n,L (p)], then, we have that: for any x 2 [0, F̂ �,�
n,L (p)]

⇠(x) = V x
0 (⇠)� (V x

0 (⇠)� ⇠(x))

where both f1(x) := V x
0 (⇠) and f2(x) := V x

0 (⇠)� ⇠(x) are increasing functions. Moreover,

V x
0 (⇠) =

Z x

0

���
d⇠

ds
(s)

���ds

if ⇠ is continuously differentiable.516

Thus, by taking advantage of the monotonicity, we have

⇠(F�(p))  V
F̂ �,�

n,L(p)

0 (⇠)� V
F̂ �,�

n,U (p)

0 (⇠) + ⇠(F̂ �,�
n,U (p)).

So, if ⇠ is of bounded variation on the range of X , then

⇠(F�) � V
F̂ �,�

n,L

0 (⇠)� V
F̂ �,�

n,U

0 (⇠) + ⇠(F̂ �,�
n,U ) = f1(F̂

�,�
n,L )� f2(F̂

�,�
n,U ).

517

A.2 Methods to obtain confidence two-sided bounds for CDFs (Section 4.3)518

We provide details for two-sided bounds and our numerical methods in the following.519

A.2.1 The reduction approach to constructing upper bounds of CDFs (Section 4.3.1)520

We here provide the proof of Lemma 1.521

Lemma 2 (A restatement & formal version of Lemma 1). For 0  L1  L2 · · ·  Ln  1, since
P(8i : F (X(i)) � Li) � P(8i : U(i) � Li) by [32], if we further have P(8i : U(i) � Li) � 1� �,
then we have

P(8i : lim
✏!0+

F (X(i) � ✏)  1� Ln�i+1) � 1� �.

Furthermore, let R(x) be defined as

R(x) =

8
>>>>><

>>>>>:

1� Ln, for x < X(1)

1� Ln�1, for X(1)  x < X(2)

. . .
1� L1, for X(n�1)  x < X(n)

1, for X(n)  x.

Then, F � R.522



Proof. Notice that for given order statistics {X(i)}
n
i=1, let P{X(i)}n

i=1
denote the probability taken523

over the randomness of {X(i)}
n
i=1, and PX denote the probability taken over the randomness of X ,524

which is an independent random variable drawn from F . Let us denote B = �X , and B(i) as the525

i-th order statistic for samples {�Xi}
n
i=1. It is easy to see that B(n�i+1) = �X(i). We also denote526

PB as the probability taken over the randomness of B, and FB as the CDF of B.527

P{X(i)}n
i=1

(8i : lim
✏!0+

F (X(i) � ✏)  1� Ln�i+1) =P{X(i)}n
i=1

(8i : PX(X � X(i)) > Ln�i+1)

=P{X(i)}n
i=1

(8i : PX(�X  �X(i)) > Ln�i+1)

=P{X(i)}n
i=1

(8i : PB(B  B(n�i+1)) > Ln�i+1)

=P(8i : FB � F�
B (U(n�i+1)) > Ln�i+1)

�P(8i : U(n�i+1) > Ln�i+1).

where we use the fact that F�
B (U(n�i+1)) is of the same distribution as B(n�i+1) and the last528

inequality follows from Proposition 1, eq. 24 on p.5 of [30].529

Notice that P(8i : U(n�i+1) > Ln�i+1) = P(8i : U(n�i+1) � Ln�i+1), and according to [32] and530

our assumption, P(8i : F (X(i)) � Li) � P(8i : U(i) � Li) � 1� �.531

The conservative construction of R satisfies R ⌫ F straightforwardly if 8i : lim✏!0+ F (X(i) � ✏) 532

1�Ln�i+1) holds. Thus, we know R ⌫ F with probability at least 1��. Our proof is complete.533

Figure 4: Example illustrating the construction of distribution-free CDF lower and upper bounds
by bounding order statistics. On the left, order statistics are drawn from a uniform distribution. On
the right, samples are drawn from a real loss distribution, and the corresponding Berk-Jones CDF
lower and upper bound are shown in black. Our distribution-free method gives bound b(l)i and b(u)i on
each sorted order statistic such that the bound depends only on i, as illustrated in the plots for i = 5
(shown in blue). On the left, 1000 realizations of x(1), . . . , x(n) are shown in yellow. On the right,
1000 empirical CDFs are shown in yellow, and the true CDF F is shown in red.

A.2.2 Details of numerical optimization method (Section 4.3.2)534

Now, we introduce the details of our numerical optimization method. Recall that one drawback of the535

QBRM bounding approach is that it is not weight function aware: when controlling
R 1
0  (p)F

�(p)dp536

for a non-negative weight function  , the procedure ignores the structure of  , as it first obtains F̂ �
n,L,537

then provides an upper bound
R 1
0  (p)F̂

�,�
n,L (p)dp.538

Our numerical approach can overcome that drawback and can also easily be applied to handle539

mixtures of multiple functionals. The bounds obtained by our method are significantly tighter than540

those provided by methods in [32] in the regime of small data size. Notice that the small data size541

regime is the one people care about because when the data size is large, all the bounds we discussed542

will converge to the same value, and the gap between different bounds will shrink to 0 as the data543

size grows.544



First, by [23] and Proposition 1, eq. 24 on p.5 of [30], we have for any 0  L1  · · ·  Ln  1,545

P
�
8i, F (X(i)) � Li

�
� P

�
8i, U(i) � Li

�

� n!

Z 1

Ln

dxn

Z xn

Ln�1

dxn�1 · · ·

Z x2

L1

dx1,

where the right-hand side integral is a function of {Li}
n
i=1 and its partial derivatives can be exactly546

calculated by the package in [22]. Specifically, the package in [22] enables us to calculate547

�(L1, L2, · · · , Ln, 1) :=

Z 1

Ln

dxn

Z xn

Ln�1

dxn�1 · · ·

Z x2

L1

dx1

for any positive integer n. Notice that the partial derivative of �(L1, L2, · · · , Ln, 1) with respect to548

Li is:549

@Li�(L1, L2, · · · , Ln, 1) =�

Z 1

Ln

dxn

Z xn

Ln�1

dxn�1 · · ·

Z xi+2

Li+1

dxi+1

·

Z Li

Li�1

dxi�1 · · ·

Z x2

L1

dx1,

= ��(Li+1, · · · , Ln, 1) · �(L1, · · · , Li�1, Li),

which we can also use the package in [22] to calculate the partial derivatives.550

Consider providing upper or lower bounds for
R 1
0  (p)F

�(p)dp for non-negative weight function  
as an example. For any {Li}

n
i=1 satisfying P

�
8i, F (X(i)) � Li

�
� 1� �, one can use conservative

CDF completion in [32] to obtain F̂ �
n,L, i.e.

R 1
0  (p)⇠(F̂

�,�
n,L (p))dp =

Pn+1
i=1 ⇠(X(i))

R Li

Li�1
 (p)dp,

where Ln+1 is 1, L0 = 0, and X(n+1) = 1 or a known upper bound for X . Then, we can formulate
tightening the upper bound as an optimization problem:

min
{Li}n

i=1

n+1X

i=1

⇠(X(i))

Z Li

Li�1

 (p)dp

such that
P
�
8i, F (X(i)) � Li

�
� 1� �, and 0  L1  · · ·  Ln  1.

Similarly, for the lower bound, we can use the CDF completion mentioned in Theorem 1, and
construct F̂ �

n,U , then, we can study the following lower bound for
R 1
0  (p)F

�(p)dp,
nX

i=1

⇠(X(i))

Z Ln�i+1

Ln�i

 (p)dp

where X(0) = 0.551

Parameterized model approach. Notice the above optimization problem formulation has a draw-
back: if more samples are drawn, i.e. n increases, then the number of parameters we need to optimize
also increases. In practice, we re-parameterize {Li}

n
i=1 as the following:

Li(✓) =

Pi
j=1 exp(�✓(gj))

1 +
Pn

j=1 exp(�✓(gj))

where gi are random Gaussian seeds. This is of the same spirit as using random seeds in generative552

models. We find that a simple parameterized neural network model with 3 fully-connected hidden553

layers of dimension 64 is enough for good performance and robust to hyper-parameter settings. Take554

the upper bound optimization problem as an example; using the new parameterized model, we have555

min
{✓}n

i=1

n+1X

i=1

⇠(X(i))

Z Li(✓)

Li�1(✓)
 (p)dp (1)



such that

n!

Z 1

Ln(✓)
dxn

Z xn

Ln�1(✓)
dxn�1 · · ·

Z x2

L1(✓)
dx1 � 1� �,

where L0 = 0, Ln+1 = 1, X(n+1) = 1 or a known upper bound for X . We can solve the above556

optimization problem using heuristic methods such as [9].557

Post-processing for a rigorous guarantee for constraints. Notice that we may not ensure the558

constraint n!
R 1
Ln(✓)

dxn

R xn

Ln�1(✓)
dxn�1 · · ·

R x2

L1(✓)
dx1 � 1� � is satisfied in the above optimization559

because we may use surrogates like Langrange forms in our optimization processes. To make sure560

the constraint is strictly satisfied, we can do the following post-processing: let us denote the obtained561

Li’s by optimizing (1) as Li(✓̂). Then, we look for �⇤ 2 [0, Ln(✓̂)] such that562

�⇤ = inf{� : n!�(L1(✓̂)� �, · · · , Ln(✓̂)� �, 1) � 1� �, � � 0}.

Notice there is always a feasible solution as when � = Ln(✓̂),563

n!�(L1(✓̂)� �, · · · , Ln(✓̂)� �, 1) � P
�
8i, U(i) � 0

�
= 1

and �(L1(✓̂) � �, · · · , Ln(✓̂) � �, 1) is a decreasing function of �. We can use binary search to564

efficiently find (a good approximate of) �⇤.565

B Other dispersion measures and calculation566

B.1 Lorenz curve & the extended Gini family567

Lorenz curve. In the main context, Lorenz curve has been mentioned in reference to Gini coefficient568

and Atkinson index. To be more complete, we further demonstrate the definition of Lorenz curve in569

its mathematical form.570

Definition 5 (Lorenz curve). The definition of Lorenz curve is a function: for t 2 [0, 1],571

L(t) =

R t
0 F�1(p) dp

R 1
0 F�1(p) dp

.

We can obtain a lower bound and an upper bound function for the Lorenz curve. Given a (1� �)-CBP572

(F̂ �
n,L, F̂

�
n,U ) and F̂ �

n,L ⌫ 0, we can construct a lower bound function L
�
L(t):573

L
�
L(t) =

R t
0 F̂ �,�

n,U (p) dpR 1
0 F̂ �,�

n,L (p) dp
,

and an upper bound can be obtained by574

L
�
U (x) =

R t
0 F̂ �,�

n,L (p) dpR 1
0 F̂ �,�

n,U (p) dp
.

With probability at least 1� �, the true Lorenz curve sits between the upper bound function and the575

lower bound function for all t 2 [0, 1].576

The extended Gini family. The Gini coefficient can further give rise to the extended Gini family,577

which is a family of variability and inequality measures that depends on one parameter – the extended578

Gini parameter. The definition is as follows.579

Definition 6 (The extended Gini family[37]). The extended Gini coefficient is given by580

G(⌫, X) : =
�⌫Cov(X, [1� F (X)]⌫�1)

E[X]

= 1�
⌫
R 1
0 (1� p)⌫�1F�(p)dp

R 1
0 F�(p)dp

,

where ⌫ > 0 is the extended Gini parameter and Cov(·, ·) is the covariance.581



For the extended Gini coefficient, choosing different ⌫’s corresponds to different weighting schemes582

applied to the vertical distance between the egalitarian line and the Lorenz curve; and if ⌫ = 2, it is583

the standard Gini coefficient.584

Given a (1� �)-CBP (F̂ �
n,L, F̂

�
n,U ) and F̂ �

n,L ⌫ 0, we can construct upper bound for G. Let585

G
�
U (⌫, X) := 1�

⌫
R 1
0 (1� p)⌫�1F̂ �,�

n,U (p)dpR 1
0 F̂ �,�

n,L (p)dp
,

then G
�
U (⌫, X) ⌫ G(⌫, X) with probability at least 1� �.586

B.2 Generalized entropy index587

The generalized entropy index [31] is another measure of inequality in a population. Specifically, the588

definition is: for real number ↵589

GE(↵, X) :=

8
>>>>>><

>>>>>>:

1
↵(↵�1)E

h⇣
X
EX

⌘↵
� 1

i
, ↵ 6= 0, 1

E
⇥

X
EX ln( X

EX )
⇤
, if ↵ = 1

�E
⇥
ln( X

EX )
⇤
, if ↵ = 0.

It is not hard to further expand the expressions and write the generalized entropy index as:590

GE(↵, X) :=

8
>>>>>>><

>>>>>>>:

1
↵(↵�1)

R 1
0

h⇣
F�(p)R 1

0 F�(p)dp

⌘↵
� 1

i
dp, ↵ 6= 0, 1

R 1
0

h
F�(p)R 1

0 F�(p)dp
ln( F�(p)R 1

0 F�(p)dp
)
i
dp, if ↵ = 1

�
R 1
0

h
ln( F�(p)R 1

0 F�(p)dp
)
i
dp, if ↵ = 0.

Notice that (·)↵ is a monotonic function for the case ↵ 6= 0, 1, and ln(·) is also a monotonic function,591

so the bound can be obtained similarly as in the case of Atkinson index. For instance, for ↵ > 1,592

given a (1� �)-CBP (F̂ �
n,L, F̂

�
n,U ),593

1

↵(↵� 1)

Z 1

0

"⇣ F�(p)
R 1
0 F�(p)dp

⌘↵
� 1

#
dp 

1

↵(↵� 1)

Z 1

0

"⇣ F̂ �,�
n,L (p)R 1

0 F̂ �,�
n,U (p)dp

⌘↵
� 1

#
dp.

Other cases can be tackled in a similar way, which we will not reiterate here.594

B.3 Hoover index595

The Hoover index [16] is equal to the percentage of the total population’s income that would have to596

be redistributed to make all the incomes equal.597

Definition 7 (Hoover index). For a non-negative random variable X , the Hoover index is defined as

H(X) =

R 1
0 |F�(p)�

R 1
0 F�(q)dq|dp

2
R 1
0 F�(p)dp

Hoover index involves forms like |F�
� µ| for µ =

R 1
0 F�(p)dp. This type of nonlinear structure598

can be dealt with the absolute function results mentioned in Appendix A.1.2.599

For Hoover index and a (1� �)-CBP (F̂ �
n,L, F̂

�
n,U ), let us define

HU (X) =

R 1
0 max{|F̂ �,�

n,L (p)�
R 1
0 F̂ �,�

n,U (q)dq|, |F̂
�,�
n,U (p)�

R 1
0 F̂ �,�

n,L (q)dq|}dp

2
R 1
0 F̂ �,�

n,U (p)dp
.

Then, with probability at least 1� �, HU (, X) is an upper bound for H(X).600



B.4 Extreme observations & mean range601

For example, a city may need to estimate the cost of damage to public amenities due to rain in a certain602

month. The loss for each day of a month is X1, · · · , Xk i.i.d drawn from F , and the administration603

hopes to estimate and control the dispersion of the losses in a month so that they can accurately604

allocate resources. This involves quantities such as range (maxi2[k] Xi�minj2[k] Xj) or quantiles of605

extreme observations (maxi2[k] Xi). The CDF of extreme observations such as maxi2[k] Xi involves606

a nonlinear function of F , i.e. (F (x))k.607

Example 5 (Quantiles of extreme observations). The CDF of maxi2[k] Xi is F k. Thus, by the result
of Appendix A.1.2, if given a (1� �)-CBP (F̂ �

n,L, F̂
�
n,U ) and 1 ⌫ F̂ �,�

n,U ⌫ F̂ �,�
n,L ⌫ 0, with probability

at least 1� �,
(F̂ �,�

n,L )
k
� F k

� (F̂ �,�
n,U )

k.

We also have
(F̂ �,�

n,U )
k
� F k

� (F̂ �,�
n,L )

k.

Similarly, for mini2[k] Xi, the CDF is 1� (1� F )k, thus, we have

1� (1� F̂ �,�
n,U )

k
� F k

� 1� (1� F̂ �,�
n,L )

k.

We also want to emphasize, even if, X is not necessarily non-negative, we can apply the polynomial608

method in Appendix A.1.2 for F̂ �,�
n,U and F̂ �,�

n,L .609

Example 6 (Mean range). By [13], if we further have prior knowledge that X is of continuous
distribution, the mean of maxi2[k] Xi �minj2[k] Xj can be expressed as:

k

Z
F�(x)[F k�1(x)� F k(x)]dF (x) = k

Z 1

0
F�(F�(p))[F k�1(F�(p))� F k(F�(p))]dp

Notice that both F and F� are increasing. Thus, if given a (1 � �)-CBP (F̂ �
n,L, F̂

�
n,U ), F̂

�
n,L ⌫ 0,

then with probability at least 1� �,
Z 1

0
F̂ �,�
n,L

�
F̂ �,�
n,L (p)

�h
(F̂ �

n,U )
k
�
F̂ �,�
n,L (p)

�
� (F̂ �

n,L)
k
�
F̂ �,�
n,U (p)

�i
dp

is an upper bound of the mean range.610

There are many other interesting societal dispersion measures that could be handled by our framework,611

such as those in [20]. For example, they study tail share that captures “the top 1% of people own X612

share of wealth", which could be easily handled with the tools provided here. We will leave those613

those examples to readers.614

C Extension to multi-dimensional cases and applications615

We briefly discuss extending our approach to multi-dimensional losses. Unfortunately, there is
not a gold-standard definition of quantiles in the multi-dimensional case, and thus we only discuss
functionals of CDFs and provide an example. For multi-dimensional samples {Xi}

n
i=1, each of

k dimensions, i.e. Xi = (Xi
1, · · · , X

i
k), for any k-dimensional vector x = (x1, · · · , xk), define

empirical CDF

F̂n(x) =
1

n

nX

i=1

1{Xi � x}.

where we abuse the notation � to mean all of Xi’s coordinates are smaller than x’s.616

By classic DKW inequality, we have with probability at least 1� �,

|F̂n(x)� F (x)| 

r
ln(k(n+ 1)/�)

2n
.

Meanwhile, we can further adopt Frechet-Hoeffeding bound, which gives,

max{1� k +
kX

i=1

Fi(xi), 0}  F (x)  min{F1(x1), · · · , Fk(xk)}



where Fi is the CDF of the i-th coordinate. Then, we can construct (F̂ �/k,i
n,L , F̂ �/k,i

n,U ) such that
(F̂ �/k,i

n,L � Fi � F̂ �/k,i
n,U ), with probability at last 1� �/k. Thus, by union bound,

max{1� k +
kX

i=1

F̂ �/k,i
n,L (xi), 0}  F (x)  min{F̂ �/k,1

n,U (x1), · · · , F̂
�/k,k
n,U (xk)}

for all x with probability at last 1� �.617

We have618

F (x) � max{1� k +
kX

i=1

F̂ �/k,i
n,L (xi), 0, F̂n(x)�

r
ln(k(n+ 1)/�)

2n
}

F (x)  min{F̂ �/k,1
n,U (x1), · · · , F̂

�/k,k
n,U (xk), F̂n(x) +

r
ln(k(n+ 1)/�)

2n
}

with probability at last 1� 2�.619

Example 7 (Gini correlation coefficient [37]). The Gini correlation coefficient for two non-negative
random variable X and Y are defined as

�X,Y :=
Cov(X,FY (Y ))

Cov(X,FX(X))
=

R R ⇣
FX,Y (x, y)� FX(x)FY (Y )

⌘
dxdFY (y)

Cov(X,FX(X))
,

where FX , FY are marginal CDFs of X,Y and FX,Y is the joint CDF. One can use the multi-620

dimensional CDF bounds and our previous methods to provide bounds for the Gini correlation621

coeffiecient.622

D Experiment details623

This section contains additional details for the experiments in Section 5. We set � = 0.05 (before624

statistical corrections for multiple tests) in all experiments unless otherwise explicitly stated. When-625

ever we are bounding measures on multiple hypotheses, we perform a correction for the size of the626

hypothesis set. Additionally, when we bound measures on multiple distributions (e.g. demographic627

groups), we also perform a correction. Our code will be released publicly upon the publication of this628

article.629

D.1 CivilComments (Section 5.1)630

Our set of hypotheses are a toxicity model combined with a Platt scaler [24], where the model is
fixed and we vary the scaling parameter in the range [0.25, 2] while fixing the bias term to 0. We
use a pre-trained toxicity model from the popular python library Detoxify 3 [10] and perform Platt
Scaling using code from the python library released by [19] 4. A Platt calibrator produces output
according to:

h(v) =
1

1 + exp(wv + b)

where w, b are learnable parameters and v is the log odds of the prediction. Thus we form our631

hypothesis set by varying the parameter w while fixing b to 0. Examples are drawn from the train632

split of CivilComments, which totals 269,038 data points.633

The loss metric for our CivilComments experiments is the Brier Score. For n data points, Brier score
is calculated as:

L =
1

n

nX

i=1

(fi � oi)
2

where fi is prediction confidence and oi is the outcome (0 or 1).634

3https://github.com/unitaryai/detoxify
4https://github.com/p-lambda/verified_calibration

https://github.com/unitaryai/detoxify
https://github.com/p-lambda/verified_calibration


D.1.1 Bounding complex objectives (Section 5.1.1)635

We randomly sample 100,000 test points for calculating the empirical values in Table 1, and draw our636

validation points from the remaining data. We perform a Bonferroni correction on � = 0.05 for the637

size of the set of hypotheses as well as the number of distributions on which we bound our measures638

(in this case the number of groups, 4). We set � = 1.0.639

Numerical optimization details (including training strategy and hyperparameters) are the same as
Section 5.1.2, explained below in Appendix D.1.2. For each group g we optimize the objective

O = T1(Fg) + T2(Fg)

where Fg is the CDF bound for group, T1 is expected loss, and T2 is a smoothed version of a median640

with a = 0.01 (see Appendix D.1.2 and Figure 5).641

For comparison, the DKW inequality is applied to get a CDF lower bound, which is then transformed
to an upper bound via the reduction approach in Section 4.3.1. To get the lower bound bl1:n, we set:

bli = max(0,
# points 6 i

n

n
�

s
log( 2� )

2n
)

D.1.2 Numerical optimization examples (Section 5.1.2)642

We parameterize the bounds with a fully connected network with 3 hidden layers of dimension 64.643

The n gaussian seeds are of size 32, which is also the input dimension for the network. Training is644

performed in two stages, where the network is first trained to approximate a Berk-Jones bound, and645

then optimized for some specified objective O. In both stages of training we aim to push the training646

error to zero or as close as possible (i.e. “overfit”), since we are optimizing a bound and do not seek647

generalization. The model is first trained for 100,000 epochs to output the Berk-Jones bound using a648

mean-squared error loss. Then optimization on O is performed for a maximum of 10,000 epochs,649

and validation is performed every 25 epochs, where we choose the best model according to the bound650

on O. Both stages of optimization use the Adam optimizer [17] with a learning rate 0.00005, and for651

the second stage the constraint weight is set to � = 0.00005. We perform post-processing to ensure652

the constraint holds (see Section A.2.2). For some denominator m (in our case m = 106) we set653

� = 1
m , 2

m , 3
m , ... and check the constraint until it is satisfied.654

This approach is applied to both the experiments in Section 5.1.1 and Section 5.1.2. Details on the655

objective for Section 5.1.1 are above in Appendix D.1.1. In Section 5.1.2, we set � = 0.01 and our656

metrics for optimization are described below:657

CVaR CVaR is a measure of the expected loss for the items at or above some quantile level �. We set658

� = 0.75, and thus we bound the expected loss for the worst-off 25% of the population.659

VaR-Interval In the event that different stakeholders are interested in the VaR for different quantile660

levels �, we may want to select a bound based on some interval of the VaR [�min,�max]. We perform661

our experiment with �min = 0.5,�max = 0.9, which includes the median (� = 0.5) through the662

worst-case loss exluding a small batch of outliers (� = 0.9).663

Quantile-Weighted We apply a weighting function to the quantile loss  (p) = p, such that the loss664

incurred by the worst-off members of a population are weighted more heavily.665

Smoothed Median We study a more robust version of a median:

 (p;�) =
1

a
p
⇡
exp(�

(p� �)2

a2
)

with � = 0.5 and a = 0.01, similar to a normal distribution extremely concentrated around its mean.666

See Figure 5 for an illustration of such a weighting.667

D.2 Bounds on standard measures (Section 5.2)668

This section contains additional details for the experiments in Section 5.2.669



Figure 5: Plot of smoothed median function with � = 0.5 and a = 0.01

D.2.1 RxRx1 (Section 5.2.1)670

We use the code released by [18]5 to pre-train a model on the train split of RxRx1 [33] and we671

evaluate our algorithm on the OOD val split with 9854 total samples. We randomly sample 2500672

items for use in validation (bounding and model selection), and use the remainder of the data points673

for illustrating the empirical distribution induced by the different hypotheses. The thresholds which674

are combined with the pre-trained model to form our hypothesis set are evenly spaced in [�8, 0]675

under the log transformation with base 10, thus leaving the thresholds in the range [10�8, 1].676

Balanced accuracy is calculated as:677

L(Ŷ , Y ) = 1�
1

2
(Sens(Ŷ , Y ) + Spec(Ŷ , Y )), where

Sens(Ŷ , Y ) =
|Ŷ \ Y |

|Y |
and Spec(Ŷ , Y ) =

k � |Y |� |Ŷ \ Y |

k � |Y |
.

where Y is the set of ground truth labels (which in this experiment will always be one label), Ŷ is a678

set of predictions, and k is the number of classes.679

D.2.2 MovieLens-1M (Section 5.2.2)680

MovieLens-1M [12] is a publicly available dataset. We filter all ratings below 5 stars, a typical681

pre-processing step, and filter any users with less than 15 5-star ratings, leaving us with 4050 users.682

For each user, the 5 most recently watched items are added to the test set, while the remaining683

(earlier) items are added to the train set. We train a user/item embedding model using the popular684

python recommender library LightFM 6 with a WARP ranking loss for 30 epochs and an embedding685

dimension of 16.686

For recommendation set Î we compute a loss combining recall and precision against a user test set I
of size k:

L = ↵lr(Î , I)
2 + (1� ↵)lp(Î , I)

2, where

lr(Î , I) = 1�
1

k

X

i2I

{i 2 Î} and lp(Î , I) = 1�
1

|Î|

X

i2Î

{i 2 I}

where ↵ = 0.5. We randomly sample 1500 users for validation, and use the remaining users to plot687

the empirical distributions. The 100 hypotheses tested are evenly spaced between the minimum and688

maximum scores of any user/item pair in the score matrix.689

5https://github.com/p-lambda/wilds
6https://github.com/lyst/lightfm

https://github.com/p-lambda/wilds
https://github.com/lyst/lightfm


E Additional results for numerical optimization (Section 5.1.2)690

Figure 6 compares the learned bounds Gopt to the Berk-Jones (GBJ ) and Truncated Berk-Jones691

(GBJ�t) bounds, as well as the empirical CDF of the real loss distribution.692

Figure 6: Learning tighter bounds on functionals of interest for protected groups. On the left, a
bound is optimized for CVaR with � = 0.75, and on the right a bound is optimized for the VaR
Interval [0.5, 0.9]. In both cases the optimized bounds are tightest on both the target metric as well as
the mean, illustrating the power of adaptation both to particular quantile ranges as well as real loss
distributions.
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