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A ETHICAL CLAIM

Despite the potential of offline RL to learn from the static datasets without the necessity to access the
online environment, the offline method does not guarantee the optimal policy. Therefore, online fine-
tuning is essential for policy improvement. In this study, we propose a novel and versatile reward
augmentation framework, named Sample Efficient Reward Augmentation (SERA) which can be
seamlessly plugged into various model-free algorithms. We believe our approach is constructive
and will enhance the sample efficiency of offline-to-online RL. Additionally, given that SERA is an
integrated algorithm, we also believe it can broadly and readily benefit existing algorithms.

B THEORETICAL ANALYSIS

In this section, we provide the supplementary mathematical analysis for SERA.

B.1 ANALYSIS OF APPROXIMATE STATE MARGINAL MATCHING.

Approximate Marginal Matching (ASMM). Given the empirical state distribution ρπ(s) under
current empirical policy π and target density p∗(s), the optimization of minDKL(ρπ(s)||p∗(s)) is
equivalent to Equation 1.

minDKL(ρπ(s)||p∗(s)) ≜ maxEs∼ρπ(s)[log p
∗(s) +Hπ[s]]. (1)

ASMM. In section 3.2, due to the absence of an explicit definition for p∗, we propose the concept
of implicit SMM, i.e., minDKL(ρπ(s)||p∗(s)) ≈ maxEs∼ρπ(s)[Hπ[s]]. Here we will provide a
complementary analysis to assess the feasibility of this method.

Why does ASMM encourage covering the target density? We commence our analysis by ex-
pressing maxEs∼ρπ(s)[Hπ(s)] in an alternative form:

maxEs∼ρπ(s)[Hπ(s)] = maxEs∼ρπ(s)[− log ρπ(s)]

= max

∫
s∼dom(ρπ)

−ρπ(s) log ρπ(s)ds

= max

∫
s∼dom(ρπ)

−ρπ(s) log(
ρπ(s)

p∗(s)
× p∗(s))ds

= max

∫
s∼dom(ρπ)

−ρπ(s)(log p∗(s) + log
ρπ(s)

p∗(s)
)ds

= min

∫
s∼dom(ρπ)

ρπ(s) log p
∗(s) + ρπ(s) log

ρπ(s)

p∗(s)
ds
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where dom(ρπ) donates the domain of state space under function ρπ . Subsequently, we employ a
logarithmic inequality, i.e. 1− 1

x ≤ log x ≤ x− 1, to further derive the aforementioned expression:

min

∫
s∼dom(ρπ)

ρπ(s) log p
∗(s) + ρπ(s) log

ρπ(s)

p∗(s)
ds ≥ min

∫
s∼dom(ρπ)

ρπ(s)−
ρπ(s)

p∗(s)
+ ρπ(s)− p∗(s)ds

= 2−max

∫
s∼dom(ρπ(s))

ρπ(s)

p∗(s)
+ p∗(s)ds

≥ 2−max

∫
s∼dom(ρπ(s))

1

p∗(s)
+ p∗(s)ds

It is worth noting that, given that p∗(s) is the fixed target state density and p∗(s) ∈ [0, 1] for all
s ∈ dom(p∗), we have ( 1

p∗(s) + p∗(s)) > 0. Therefore, the process of maximising Es∼ρπ(s)[H[s]]
is equivalent to maximizing

∫
s∼dom(ρπ(s))

1
p∗(s) + p∗(s)ds. This leads the domain of ρπ(s)(which

is initially smaller than the domain of p∗(s) due to limited state exploration at the beginning of state
entropy maximization) to cover the domain of p∗(s).

Trade off between ρπ and p∗ when maximizing entropy. We further derivate Equation B.1 and
obtained :
maxEs∼ρπ(s)[Hπ(s)] = maxEs∼ρπ(s)[− log ρπ(s)]

= max

∫
s∼dom(ρπ)

−ρπ(s) log ρπ(s)ds

= max

∫
s∼dom(ρπ)

−ρπ(s) log(
ρπ(s)

p∗(s)
× p∗(s))ds

= max

∫
s∼dom(ρπ)

−ρπ(s) log p∗(s)− ρπ(s) log
ρπ(s)

p∗(s)
ds

= min

∫
s∼dom(ρπ)

ρπ(s) log p
∗(s)︸ ︷︷ ︸

term.1

ds+max

∫
s∼dom(ρπ)

−ρπ(s) log
ρπ(s)

p∗(s)︸ ︷︷ ︸
term.2

ds

Analysis term.1: We further derive term1:

At first,

Jterm1 = max

∫
s∼dom(ρπ)

ρπ(s) log
1

p∗(s)
ds

≥
∫
s∼dom(ρπ)

ρπ(s) log
ρπ(s)

p∗(s)
ds

= DKL(ρπ(s)||p∗(s))

(2)

meanwhile, we study Jterm1
−DKL(ρπ(s)||p∗(s)).

Jterm1 −DKL(ρπ(s)||p∗(s))

=

∫
s∼dom(ρπ)

ρπ(s) log
1

p∗(s)
− ρπ log

ρπ(s)

p∗(s)
ds

=

∫
s∼dom(ρπ)

ρπ(s) log
1

ρπ(s)
ds

≤
∫
s∼dom(ρπ)

ρπ(s)[
1

ρπ(s)
− 1]ds

=

∫
s∼dom(ρπ)

(1− ρπ(s))ds

≤
∫
s∼dom(ρπ)

ds

(3)
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Therefore, Jterm1
≤ (DKL(ρπ(s)||p∗(s)) +

∫
s∼dom(ρπ)

ds) and minimizing term1 is equivalent to
maximizing the KL divergence between ρπ(s) and p∗(s), then push ρπ(s) away from p∗(s).

Analysis term.2: We can observe that term.2 is a form of KL deivergence:

Jterm2
= max

∫
s∼dom(ρπ)

−ρπ(s) log
ρπ(s)

p∗(s)

= minDKL(ρπ(s)||p∗(s)),
(4)

Thus, optimizeing term.2 is equiv to minimize the KL divergence between p∗(s) and ρπ(s), thereby
driving ρπ approaching p∗(s).

Analysis Summary: In conclusion, based on the Analysis term.1 and Analysis term.2, it can be
deduced that the optimization of term 1 makes ρπ(s) away from p∗(s), whereas the optimization of
Term 2 facilitates the convergence of ρπ(s) towards p∗(s). Therefore, these two objectives represent
a trade-off, offering the advantage of encouraging the agent to approach the target distribution while
maintaining its capacity for exploration.

B.2 MATHEMATICS ANALYSIS OF SERA ALGORITHM

In this section, we examine the mathematical viability of the SERA framework, focusing on two key
aspects: 1) Guarantee of Soft policy optimization 2) Prevention of OOD state actions.

We first introduce the modified soft Q Bellman backup operator, denoted as Equation 5,

T π
seraQ (st,at) ≜ r (st,at) + raug (st,at) + γEst+1∼p [V (st+1)] (5)

In this equation, the term V (st) = Eat∼π [Q (st,at)− log π (at | st)] is defined.

Lemma B.1 (Soft Policy Evaluation with SERA.) Given the modified soft bellman backup oper-
ator T π

sera in Equation 5, along with a mapping Q0 : S × A → R where |A| < ∞. We define an
iterative sequence as Qk+1 = T πQk. It can be shown that when index k tends towards infinity, the
sequence Qk converges to a soft Q-value of π.

proof. Let us define the SERA reward as follows

rπsera (st,at) ≜ r (st,at)+λTanh (H (st | min (Qϕ1(st,at), Qϕ2(st,at))))+Est+1∼p [H (π (· | st+1))]
(6)

and rewrite the update rule as
Q (st,at)← rπsera (st,at) + γEst+1∼p,at+1∼π [Q (st+1,at+1)] . (7)

Then we can apply mathematical analysis of convergence for policy evaluation as outlined in Sutton
& Barto (1998) to prove the result. It is essential to note that the assumption |A| < ∞ is necessary
to ensure the boundedness of the SERA reward.”

Lemma B.2 (Soft Policy Improvement with SERA) Let πold ∈ Π, and let πnew be the solution to
the minimization problem defined as:

πnew = arg min
π′∈Π

DKL

(
π′ (· | st) ∥

exp (Qπold (st, ·))
Zπold (st)

)
. (8)

Then, it follows that Qπnew (st,at) ≥ Qπold (st,at) for all (st,at) ∈ S ×A provided that |A| <∞.

proof. Starting from Equation 9, which has been established in the work by (Haarnoja et al., 2018),
as:

Eat∼πnew [Qπold (st,at)− log πnew (at | st)] ≥ V πold (st) , (9)
we proceed to consider the soft Bellman equation, which can be expressed as:
Qπold (st,at) = r (st,at) + raug (st,at) + γEst+1∼p [V

πold (st+1)]

≤ r (st,at) + raug (st,at) + γEst+1∼p

[
Eat+1∼πnew [Qπold (st+1,at+1)− log πnew (at+1 | st+1)]

]
...
≤ Qπnew (st,at)

(10)
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Here, we have iteratively expanded Qπold on the right-hand side by applying both the soft Bellman
equation and the inequality from Equation 9.

Theorem B.3 (Converged SERA Soft Policy is Optimal) Repetitive using Lemma 1 and Lemma
2 to any π ∈ Π leads to convergence towards a policy π∗. And it can be proved that Qπ∗

(st,at) ≥
Qπ (st,at) for all policies π ∈ Π and all state-action pairs (st,at) ∈ S×A, provided that |A| <∞.

proof.

Let πi represent the policy at iteration i. According to Lemma 2, the sequence Qπi exhibits a
monotonic increase. Given that rewards and entropy and thus Qπ are bounded from above for
policies within the set Π, the sequence converges to a certain policy π∗. It is essential to demonstrate
that π∗ is indeed an optimal policy. Utilizing a similar iterative argument as employed in the proof
of Lemma 2, we can establish that Qπ∗

(st,at) > Qπ (st,at) holds for all (st,at) ∈ S × A. In
other words, the soft value associated with any other policy in Π is lower than that of the converged
policy. Consequently, π∗ is confirmed as the optimal policy within the set Π.

Theorem B.4 (Conservative Soft Q values with SERA) By employing a double Q network, we
ensure that in each iteration, the Q-value from the single Q network, denoted as Qπi

single Q (st,at),
is greater than or equal to the Q-value obtained from the double Q network, represented as
Qπi

double Q (st,at), for all (st,at) ∈ S ×A, where the action space is finite.

proof. Let’s begin by defining Q̂ (st,at) = min (Qϕ1 (st,at) , Qϕ2 (st,at)) . We then proceed to
examine the difference between the augmented rewards in the context of SERA for the single Q and
double Q networks:

raug(st,at|Q̂ (st,at))− raug(st,at|Q (st,at))

=

N∑
i=0

log 2max(||si − sknni ||, ||Q̂ (st,at)− Q̂knn (st,at) ||)−

N∑
i=0

log 2max(||si − sknni ||, ||Q (st,at)−Qknn (st,at) ||)

= log

∏N
i=0 max(||si − sknni ||, ||Q̂ (st,at)− Q̂knn (st,at) ||)∏N
i=0 max(||si − sknni ||, ||Q (st,at)−Qknn (st,at))||

≈ log

∏N
i=0 max(||si − sknni ||,H(Q̂))∏N
i=0 max(||si − sknni ||,H(Q)||)

≤ log

∏N
i=0 max(||si − sknni ||,H(Q))∏N
i=0 max(||si − sknni ||,H(Q))

= 0

(11)

Consequently, we establish that raug(st,at|Q̂(st,at)) ≤ raug(st,at|Q(st,at)). Now we consider
the modified soft Bellman equation

Qπi

doubleQ (st,at)

=r (st,at) + raug(st,at|Q̂(st,at)) + γ · Est+1∼p[V̂ (st+1)]

=r (st,at) + raug(st,at|Q̂(st,at)) + γ · Est+1∼p,at+1∼π

[
Q̂ (st+1,at+1)− log π (at+1 | st+1)

]
...

=r (st,at) + raug(st,at|Q̂(st,at)) + γ · Est+1∼p,at+1∼π[r
mod(st+1,at+1|Q̂(st+1,at+1))] · · ·+

γn · Est+n∼p,at+n∼π[r
mod(st+n,at+n|Q̂(st+n,at+n))] + · · ·+ entropy terms

≤r (st,at) + raug(st,at|Q(st,at)) + γ · Est+1∼p,at+1∼π[r
mod(st+1,at+1|Q(st+1,at+1))] · · ·+

γn · Est+n∼p,at+n∼π[r
mod(st+n,at+n|Q(st+n,at+n))] + · · ·+ entropy terms

=Qπi

singleQ (st,at)
(12)
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where we have repeatedly expanded Q̂ in terms of SERA rewards to obtain the final inequality
Qπi

singleQ ≥ Qπi

double Q.

5
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C EXPERIMENTAL SETUP

In this section, we introduce the benchmarks and dataset we utilized, specifically, we mainly utilize
gym-mujoco and antmaze to test our algorithm.

C.1 GYM MUJOCO

Our benchmars from gym-mujoco domain mainly includes halfcheetah, ant, hopper and
walker2d, and concrete information of these benchmarks can be referred to table 1. In paticular,
the action and observation space of these locomotion benchmarks are continuous and any decision
making will receive an immediate reward.

Environment Task Name Samples Observation Dim Action Dim

halfcheetah medium 106 6 17
walker2d medium 106 6 17
hopper medium 106 3 11
ant medium 106 8 111

halfcheetah medium-replay 2.02×105 6 17
walker2d medium-replay 3.02×105 6 17
hopper medium-replay 4.02×105 3 11
ant medium-replay 3.02×105 8 111

Table 1: Introduction of D4RL tasks (Gym-Mujoco).
C.2 ANTMAZE

Our benchmars from antmaze mainly includes antmaze-large-diverse,
antmaze-medium-diverse, antmaze-large-play and antmaze-medium-play,
concrete information of our benchmarks can be referred to table 2.

Environment Task Name Samples Observation Dim Action Dim

antmaze large-diverse 106 29 8
antmaze large-play 106 29 8
antmaze medium-diverse 106 29 8
antmaze medium-play 106 29 8

Table 2: Introduction of D4RL tasks (Antmaze).

D IMPLANTATION DETAILS

D.1 OFFLINE-TO-ONLINE IMPLANTATION

The workflow of our method is similar to the most of offline-to-online algorithms that we firstly
pre-train on offline datasets, followed by online fine-tuning (Interacting with online environment to
collect online dataset and followed by fine-tuning on offline and online datasets).

D.2 EVALUATION DETAILS

Our evaluation method can be refered to Fu et al. (2021). That is for each evaluation, we freeze
the parameter of trained model, and then conducting evaluation 10∼50 times and then computing
the normalized score via scoreevaluation−scoreexpert

scoreexpert−scorerandom
, and then averaging these normalized evaluation

scores.

D.3 SERA IMPLANTATION

In SERA framework, we modify our reward as :
rmod(s,a) = λ · Tanh(H(s|min(Qϕ1

(s,a), Qϕ2
(s,a))))︸ ︷︷ ︸

raug

+r(s,a), (s,a) ∼ Donline (13)

6
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To calculate the intrinsic reward raug for the online replay buffer Donline, we use the KSG estimator,
as defined in Equation 14, to estimate the conditional state density of the empirical dataset Donline

raug(s,a) =
1

ds
ϕ(nv(i)+1)+log 2 ·max(||si−sknni ||, ||Q̂(s,a)−Q̂(s,a)knn||), (s,a) ∼ Donline.

(14)
Given that the majority of our selected baselines are implemented using the double Q({Qϕ1

, Qϕ2
}),

the offline pre-trained double Q can be readily utilized for the computation of intrinsic rewards, and
we found that the performance of SERA is sutured when λ is set to 1. We also provide a (Variance
Auto Encoder) VAE implantation (Equation 15) of SERA, this realization is computing efficiency,
but require extraly training a VAE model, due to Equation ?? won’t require training thus we mainly
test Equation ??.

raug(s,a) = − log pϕ̂(s|Q̂(s,a)) = − logEz∼qϕ(z|s,Q̂(s,a))[
pϕ̂(s|Q̂(s,a))

qϕ(z|s, Q̂(s,a))
], (s,a) ∼ Donline. (15)

We will test and compare the performance difference and computing efficiency between Equation 15
and Equation 14 in the future.

D.4 CODEBASE

Our implementation is based on Cal-QL:https://github.com/nakamotoo/Cal-QL,
VCSE:https://sites.google.com/view/rl-vcse. Additionally, we have included our
source code in the supplementary material for reference. Readers can refer to our pseudocode (see
Algorithm 1) for a comprehensive understanding of the implementation details. Q̂ see 1.

Algorithm 1 Training SERA
Require: Pre-collected data Doffline.
1: Initialize πθ , and Qϕ1 , Qϕ2 .

// Offline Pre-training Stage.
2: for k = 1, · · · ,K do
3: Learn Qϕ on Doffline by Equation 17 or 16 //We compute target Q value via Qtarget, learning Qtarget by

Empirical Momentum Average (EMA),i.e., Qtarget = (1− α)Qϕ + αQtarget.
4: Learn πθ on Doffline with Equation 18.
5: end for

// Online Fine-tuning Stage.
6: for k = 1, · · · ,K do
7: Interacting πθ to obtain Donline.
8: Augmenting Reward in Donline by Equation 14.
9: Sample a batch offline data Doffline, and build training batch,i.e., Dmix = Doffline ∪ Donline //mixture of

offline and online is not necessary required, it depends on the quality of offline dataset.
10: Learn πθ , Qϕ1 , and Qϕ2 on Dmix with the same objective in offline stage.
11: end for

Training Objective. Since SERA satisfy the guarantee of soft Q optimization, we primarily val-
idate our method on CQL and Cal-QL, regarding the training objective of Cal-QL and CQL, we
update Cal-QL’s Q Network using Equation 16, and we update CQL’s Q Network using Equation 17:

L(Q) = E(s,a,s′)∼D[(Q
π(s,a)−BπMQ(s,a))2]+Es∼D,a∼π[max(Qπ(s,a), V µ(s))]−E(s,a)∼D[Q

π(s,a)].
(16)

L(Q) = E(s,a,s′)∼D[(Q
π(s,a)− Bπ

MQ(s,a))2] + E(s,a,s′)∼D[−Qπ(s,a) +Qπ(s′, π(s′))], (17)

where D is the batch training data. Meanwhile, updating their policies by Equation 18:

J (πθ) = Es∼D[−Qπ(s, πθ(s)) + α log(πθ(s))]. (18)

1where ϕ1 and ϕ2 are the params of double Q Networks and Q̂(s,a) = min(Qϕ1(s,a), Qϕ2(s,a)), and
xknn
i is the nx(i)-th nearest neighbor of xi.
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D.5 COMPUTING RESOURCES

Our experiments were run on a computer cluster with 4×32GB RAM, AMD EPYC 7742 64-Core
CPU, and NVIDIA-A100 GPU, Linux. Most of our code base (The implantation of Cal-QL, CQL,
TD3+BC, SAC) are based on JAX 2, part of our implantation (IQL, AWAC) are based on Pytorch3

(We use different deep learning frameworks mainly to preliminary validate that our algorithm can
work in various of deep learning frameworks).

D.6 OUR HYPER-PARAMETER

Hyper-parameter of SERA. The K-nearest neighbors (knn) for SERA are configured as follows:
[0, 10, 15, 25, 50, 85, 100, 110], and the parameter λ in Equation 13 is set to 1.

Hyper-parameter of Baselines In the context of these algorithms, we conducted tests related
to AWAC and IQL using the repository available at https://github.com/tinkoff-ai/
CORL, while tests related to Cal-QL and CQL were performed using the repository accessible at
https://github.com/nakamotoo/Cal-QL. The following five tables present fundamental
but critical hyperparameter settings for five baseline algorithms.

Table 3: Hyper-parameters of AWAC.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

Buffer size 20000000
Batch size 256
learning rate 3e−4

γ 0.99
awac τ 5e-3
awac λ 1.0

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 4: Hyper-parameters of IQL.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

Batch size 256
learning rate of π 3e−4

learning rate of V 3e−4

learning rate of Q 3e−4

γ 0.99
IQL τ 0.7 # Coefficient for asymmetric loss
β (Inverse Temperature) 3.0# small beta → BC, big beta → maximizing Q

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

2https://github.com/google/jax.git
3https://pytorch.org/
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Table 5: Hyper-parameters of TD3+BC.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256
TD3 alpha 2.5

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 6: Hyper-parameters of Cal-QL. We only provide the basic setting, for more detail setting,
please directly refer to https://nakamotoo.github.io/projects/Cal-QL

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 7: Hyper-parameters of CQL. CQL uses Cal-QL’s code-base, and we only need to remove
Cal-QL’s calibration loss when deploying CQL.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

9
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E APPENDED EXPERIMENTAL RESULTS

In Table 8, we have provided completed offline-to-online results, including the ant-maze domain
and the medium and medium-replay scenarios in the gym-mujoco environment, which is matched
Figure ??. From Table 8, it can be observed that CQL paired with SERA exhibits the best average
performance on the selected tasks. In Table 9, we compare a series of different efficient offline-to-

Task IQL AWAC TD3+BC CQL CQL+SERA Cal-QL Cal-QL+SERA

antmaze-large-diverse 59 00 00 89.2 89.8 86.3 94.5
antmaze-large-play 51 00 00 91.7 92.6 83.3 95.0
antmaze-medium-diverse 92 00 00 89.6 98.9 96.8 99.6
antmaze-medium-play 94 00 00 97.7 99.4 95.8 98.9

halfcheetah-medium 57 67 49 69.9 87.9 45.6 46.9
walker2d-meidum 93 91 82 123.1 130.0 80.3 90.0
hopper-medium 67 101 55 56.4 62.4 55.8 61.7
ant-medium 113 121 43 123.8 136.9 96.4 104.2

halfcheetah-medium-replay 54 44 49 39.5 53.73 25.7 26.7
walker2d-medium-replay 90 73 90 87.6 107.65 7.4 29.7
hopper-medium-replay 91 56 88 4 15.0 3.5 1.8
ant-medium-replay 123 127 127 30 116.6 55.1 68.0

Average Fine-tuned 82.2 56.7 48.6 75.1 90.9 61.3 68.1

Table 8: Normalized score after online fine-tuning. We report the online fine-tuned normalized
return. SERA obviously improves the performance of CQL and Cal-QL. In particular, CQL-SERA
(mean score of 90.9) is the best out of the 12 selected baselines. Notably, part of Antmaze’s baseline
results are quoted from existing studies. Among them, AWAC’s results are quoted from Kostrikov
et al. (2021) and CQL’s results are quoted from Nakamoto et al. (2023).

online methods, including APL, PEX, and BR. Specifically, we tested these methods on the ant-maze
domain and the medium and medium-replay tasks in the gym-mujoco environment. We found
that SERA shows the best overall performance, indicating that SERA, when paired with CQL, can
achieve superior results.

Task CQL+APL CQL+PEX CQL+BR CQL+SUNG CQL+SERA

antmaze-large-diverse 0 0 0.1 44.1 89.8
antmaze-large-play 0 0 0 52.7 92.6
antmaze-medium-diverse 36.8 0.3 13.6 85.6 98.9
antmaze-medium-play 22.8 0.3 22.2 86.3 99.4

halfcheetah-medium 44.7 43.5 56.7 79.7 87.9
walker2d-meidum 75.3 34.0 81.7 86.0 130.0
hopper-medium 102.7 46.3 97.7 104.1 62.4

halfcheetah-medium-replay 78.6 45.5 64.9 75.6 53.7
walker2d-medium-replay 103.2 40.1 88.5 108.2 107.7
hopper-medium-replay 97.4 66.5 78.8 101.9 15.2

Average Fine-tuned 56.2 27.6 50.4 82.4 83.8

Table 9: Comparison of various efficient offline-to-online methods.

F EXTENDED EXPERIMENTS

F.1 TREND OF STATE ENTROPY CHANGING

State Entropy as Intrinsic Reward. If the state density ρ(s) is unknown, we can instead using
non-parametric entropy estimator to approximate the state entropy (Seo et al., 2021). Specifically,
given N i.i.d. samples {si}, the k-nearest neighbors (knn) entropy estimator can be defined as4:

Ĥk
N (S) =

1

N

N∑
i=1

log
N · ||si − sknni ||ds

2 · n̂
ds
2

π̂

k · Γ(ds

2 + 1)
∝ 1

N

N∑
i=1

log ||si − sknni ||. (19)

4ds is the dimension of state and Γ is the gamma function, n̂π̂ ∝ 3.14.
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Visualization of State Entropy Changing. In this experiment, for each training step, we select
the buffer and randomly sample 5000 instances to approximate the entropy using Equation 2. and
then plot the trend of approximated state entropy. For the majority of the tasks, the state entropy
of AWAC-SERA was either progressively greater than or consistently exceeded that of AWAC-base.
This indicates that SERA effectively enhances the agent’s exploratory tendencies, enabling them
cover much more observation region.

Figure 1: The Changing of Approximated Entropy along with increasing training steps. We found
that the approximated state entropy in the buffer collected by AWAC using SERA was greater in the
later stages of online finetuning.
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F.2 PRETRAINED Q VS. RANDOM Q

Pre-trained Q condition versus un-pre trained Q condition. To validate the statement in our
main paper that intrinsic reward computation is influenced by the initialization of Q, we conducted
experiments comparing the effects of pre-trained initialized Q and from-scratch5 trained Q during
intrinsic reward calculation. Our findings indicate that intrinsic rewards based on offline-initialized
Q generally outperform those derived from a from-scratch trained Q across most tasks.

Figure 2: Offline Pre-trained Q condition vs. Randomly initialized Q condition. In the majority
of our selected Gym-Mujoco tasks, the use of offline-initialized intrinsic reward conditions yielded
better performance and higher sample efficiency. To provide clarity, AWAC-base means AWAC
algorithm without any modification, AWAC-SERA signifies AWAC with SERA augmentation, and
AWAC-SERA (scratch) denotes AWAC with SERA where the computation of reward conditions sat-
isfying note 5
.
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F.3 Q CONDITION VS. V CONDITION

Differing from Kim et al. (2023), SERA conditions its intrinsic reward on
min(Qϕ1(s,a), Qϕ2(s,a)) rather than V (s). In comparison to VCSE, SERA’s advantage lies
in its consideration of transitions. For example, assuming that there exist two transitions
T1 = (s,a1, s1) and T2 = (s,a2, s2), since T1 and T2 have the same current observation, they will
yield the same value conditioned intrinsic reward − log(s|V (s)). This can introduce bias in the
value learning process especially when current observation corresponds to a substantial number
of valuable decisions and a limited number of low-value decisions. This is because low-value
decisions can still receive relatively high intrinsic rewards based on the higher value expectations

5We use from-scratch Q to compute intrinsic reward, while continuing to utilize the offline-initialized Q for
conducting online fine-tuning.
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V (s) for the current state, subsequently influencing the agent’s decision-making. However, if we
condition intrinsic reward on Q(s,a), it can take into account the decision-making simultaneously.

To further validate our claims, we chose AWAC as baseline and used both Q-network and V-network
to compute the intrinsic reward’s condition. We conducted tests on halfcheetah-medium,
walekr2d-medium, hopper-medium and ant-medium. As shown in Figure 3, using the
Q-network to compute condition has better performance compared to using V-network to compute
condition.

Figure 3: Q condition vs. V condition. In this experiment, we selected AWAC as the base algorithm
and compared using V network and Q network to calculate the intrinsic reward’s condition. The
experimental results indicate that using the Q-network to compute the condition leads to overall
better performance for AWAC.
.
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G EXTENDED RELATED WORK

In this section, we systematically introduce recent developments in offline-to-online learning and
summarize the corresponding methods,

The first perspective involves adopting a conservative policy optimization during online fine-tuning,
typically achieved through the incorporation of policy constraints. Specifically, there are three main
approaches within this category. The first approach constrains the predictions of the fine-tuning
policy within the scope of offline support during online fine-tuning (Liu et al., 2023). While this
method contributes to achieving stable online fine-tuning performance, it tends to lead to overly
conservative policy learning, and the accuracy of the estimation of offline support also influences
the effectiveness of online fine-tuning. The second approach utilizes an offline dataset to constrain
policy learning (Nair et al., 2021; Kostrikov et al., 2021; Xiao et al., 2023; Mark et al., 2023).
However, the effectiveness of fine-tuning cannot be guaranteed if the dataset quality is poor. This
method is sensitive to the quality of the dataset. The third approach employs pre-trained policies
to constrain online fine-tuning, but this paradigm is influenced by the quality of the pre-trained
policy (Zhang et al., 2023; Yu & Zhang, 2023).

The second perspective involves adopting a conservative approach during offline training, specifi-
cally using pessimistic constraints to learn Q to avoid OOD (Out-of-Distribution) issues. Research
in this category primarily includes: Learning a conservative Q during offline pretraining and em-
ploying an appropriate experience replay method during online learning or using Q ensemble during
offline pre-training to avoid OOD issues (Lee et al., 2021; Lyu et al., 2022; Hong et al., 2023). How-
ever, as this approach introduces conservative constraints during critic updates, the value estimates
between offline and online are not aligned, leading to a decrease in performance during early online
fine-tuning. Therefore, Cal-QL introduces a calibrated conservative term to ensure standard online
fine-tuning (Nakamoto et al., 2023).

Addtionally, there are also some other methods, such that ODT (Zheng et al., 2022) combined
sequence modeling with Goal conditioned RL to conduct offline-to-online RL.
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