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Abstract. Given a medical image and a question in natural language,
medical VQA systems are required to predict clinically relevant answers.
Integrating information from visual and textual modalities requires com-
plex fusion techniques due to the semantic gap between images and text,
as well as the diversity of medical question types. To address this chal-
lenge, we propose aligning image and text features in VQA models by
using text from medical reports to provide additional context during
training. Specifically, we introduce a transformer-based alignment mod-
ule that learns to align the image with the textual context, thereby in-
corporating supplementary medical features that can enhance the VQA
model’s predictive capabilities. During the inference stage, VQA operates
robustly without requiring any medical report. Our experiments on the
Rad-Restruct dataset demonstrate a significant impact of the proposed
strategy and show promising improvements, positioning our approach as
competitive with state-of-the-art methods in this task.

Keywords: Medical Visual Question Answering - VQA - Medical Image
Interpretation - Radiology

1 Introduction

Medical Visual Question Answering systems can streamline healthcare workflow
efficiency by allowing quick retrieval of relevant information from medical images.
This can save valuable time for healthcare providers and offer additional insights
into diagnostic procedures while assisting in clinical decision-making. Despite
holding such potential, the application in the medical field has been minimal due
to the small-scale of available datasets, the complex nature of medical images,
the diversity of questions and the high level reasoning required to answer them.

* Corresponding author.
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Initial research [5,11] attempted to transfer advances in general VQA to
the medical domain. However, Medical VQA faces unique constraints related
to the acquisition and processing of data [16]. Usually, constructing medical
VQA datasets require costly expert annotation and professional knowledge, e.g.,
extracting Question-Answer (QA) pairs directly from a medical image needs
domain specific expertise. This limitation often restricts the data collection pro-
cess leading to small size datasets. Unlike general-domain VQA datasets, such as
VQA [3], that contains hundreds of thousands of samples, medical VQA datasets
are limited to tens of thousand images and QA pairs|4,6,7,14].

Recent research focuses on harnessing the potential of attention-based pre-
trained biomedical visual language models such as BioGPT [18] and BLIP-2[15]
in a generative strategy. For instance, Van Sonsbeek et al. [24] proposed map-
ping visual features to a set of tokens that prompt a GPT-XL decoder [23]. For
classification-based VQA, capturing high-quality medical features is crucial. For
this purpose, Mixture Enhanced Visual Features model (MEVF) [19] uses the
Denoising Auto-Encoder (DAE) as a visual extractor to enhance the quality of
visual features extracted from medical images. With a typical focus on either
visual feature extraction or fusion models, recent works [12,2] have seen a surge
in the deployment of vision-language models as image encoders for their signif-
icant capability of producing high-quality features. However, such approaches
rely heavily on transformers and attention mechanism for feature aggregation
and fusion [25]. While attention has proven to be effective in cross-modal set-
tings [2] and text-image fusion [1], this ties the advancement of medical VQA
to the development status of attention mechanism and restricts the progress to
fusion models. In contrast, this work posits that incorporating additional infor-
mation to provide textual context during training could enhance both feature
extraction and feature fusion.

Inspired by the NLP Question Answering task [20], we propose to use free-
text medical reports as additional context to enhance visual feature extraction
during training. Specifically, medical reports provide context we use to align im-
age features with the same embedding space as the questions. This alignment
improves the quality of image features, enabling accurate responses to questions
during the inference stage without requiring additional context input. Our focus
is on a closed-ended classification VQA task, where the targets are a predefined
set of answers. In our pipeline, we first summarize medical reports using the
GPT model [8] to effectively clean and pre-process the raw free-text for bet-
ter encoding. Then, our model incorporates context features from summarized
medical reports through a trainable alignment module that learns meaningful
correlations between the textual and visual features. This enhances the image
content as a reference for the question and helps identify fine-grained visual de-
tails guided by the medical text. To generate the final classification input of the
VQA model, a fusion module is trained to combine the aligned image-context
features and the encoded question features. Moreover, we use a vision encoder
of a pre-trained vision-language model as an image encoder and an LLM-based
encoder for text encoding without extra finetuning. By doing so, we significantly
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reduce the number of trainable parameters and the computational complexity
of our model. Experiments on the Rad-Restruct dataset [21] show an increase in
performance outperforming the baseline model, with a state-of-the-art accuracy.

In summary, our research contributes in three distinct aspects. First, we
propose the first approach to use free-text medical reports as context to guide
the prediction of answers in medical VQA. Second, we harness the power of pre-
trained models throughout our model while reducing computational complexity
by 90%. Finally, we prove through experiments that our strategy outperforms
the baseline methods on different metrics with state-of-the-art accuracy.

2 Methodology

Figure 1 presents an overview of our architecture. The primary objective of
this method is to utilize free-text reports to enhance the visual reference space,
thereby providing a more comprehensive context for answering questions. To
achieve this, we first encode the medical report associated with each image to
generate textual context, and introduce a module to align this context with image
features. Subsequently, we fuse the context-image features with the question
vector and feed them into an MLP classifier for final answer prediction. Our
framework has 5 main components: 1) a text encoder for encoding the question
and context, 2) an image encoder for encoding image features, 3) an alignment
module that learns to align and fuse the context and image features, 4) a fusion
model that learns to combine the aligned context-image vector with the question
features, and 5) a classifier that is trained to predict the answer.

2.1 Report Context Processing

The majority of free-text medical reports are divided into sections i.e., Impres-
sion and Findings. Following prior literature on report generation [13], we focus
on the Impression section as it provides less general information, and more de-
tailed medical findings. The extracted text is summarized using a prompted
GPT model and the output summary is used as context. The summarizing pro-
cess aims not only to potentially shorten the reports but also to clean and
simplify the text descriptions. Herein, we denote the training data as follows:
D = (ci,qi,li,yi)fvzl where ¢; represents the context (text), ¢; the question
(text), I; is the image, and y; the corresponding ground truth label (text).

2.2 Model Architecture

For an input image I;, we extract the visual features V; using a pre-trained image
encoder Fjpqge. Formally,

VI = Eimage(Ii)~ (1)
Similarly, we obtain feature vectors of the question V; and context V. through
a text encoder Ei..; as follows:

V;; - Etext(Qi)v ‘/c = Etewt(ci)- (2)
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Fig. 1: Model architecture of our proposed context-guided VQA method. Fyeqy
and Ejmqege denote, respectively, an image and a text encoder . fuign is an
alignment network and ffusion denotes a fusion model. The leftmost section
illustrates the process of extracting context from free-text reports using GPT
API. The encoders extract V,, V¢, and V;, then the context embedding U, is
aligned in fqign. Next, frusion produces a final embedding vector U; which
serves as the input of the MLP classifier that predicts the answer g;. The history
vector H; contains tokens of all the previous questions with their answers.

To learn correlations between the image and context, we integrate a transformer-
based alignment network fqi4n that produces a final context embedding U, as
follows:

U.= falign(‘/ca VI) (3)
falign is a stack of three multi-head self-attention layers that compute cross-
attention scores between textual and image features. Here, we consider context
as query, and image embeddings as key-value pairs. Each layer learns to attend
to both image and textual context, producing context-aligned image features.
The final aligned representation is obtained via the upper attention layer. The
aligned image features implicitly represents image regions that are most relevant
to the textual content.

Following the work of Pellegrini et al. [21], we adopt an autoregressive strat-
egy and incorporate history information as input. At each step, the history vector
H; contains the previous (higher-level) questions with their answers. For exam-
ple, the question "In which part of the body?" requires prior knowledge from
higher level questions such as "Is there an opacity in the lung?". The history
vector is constructed by concatenating previous and current question tokens.

Next, a multi-modal transformer-based fusion model ffysion is trained to
combine the question and the image-context features to generate a final embed-
ding vector U; for classification. Formally,

Ui = ffusion(UcaHh‘/q)v (4)
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Original Report Summary

A cardiac pacemaker/defibrillator device is redemonstration
of the left chest wall with a single XXXX projecting over the
right atrium and 2 leads projecting over the right ventricle.
The cardiac silhouette is mildly enlarged, unchanged. No
focal pulmonary consolidation. No pneumothorax. No pleural
effusion. Minimal degenerative changes of the thoracic
spine.

A cardiac pacemaker/defibrillator device is seen on the left
side of the chest with one lead over the right atrium and two
leads over the right ventricle. The heart size is slightly
enlarged but no significant changes are noted. There is no
evidence of lung infection, air in the chest cavity, or fluid
buildup. Minor degenerative changes are present in the spine.

Fig.2: An example of a summarized report by the GPT model. The generated
summary has been cleaned of special characters, privacy tokens and image-
related measurement numbers, and simplified to use more natural language.

where H; is the history information for the current question ¢;. For each image,
H; begins as an empty list. After the first question is answered, the list is updated
to include the question and its answer tokens. This process repeats after each
subsequent question until the set has been completed. Finally, the MLP classifier
predicts the answer y; given the features of the resulting U;.

During the training phase, the alignment module is trained using both the
context and the image features to produce a vision-context vector. Similar to [21],
we train our model with a cross-entropy loss in an autoregressive manner taking
in consideration the question history. For inference, our approach assumes an
absence of context and takes as input the image and questions. The alignment
module creates a context vector using the image through the learned textual
representation during the training process.

3 Experiments

Dataset. We use the Rad-Restruct dataset [21], which contains 3720 Xray im-
ages, 3597 structured reports, and 180k questions. For each image, a correspond-
ing free-text report is retrieved from the IU-Xray dataset [9]. Images were nor-
malized and cropped to 224 x224. We use the original 80-10-10 split for training,
validation, and testing, respectively. Rad-Restruct questions are categorized into
3 levels. Level 1, the highest level, contains general-purpose questions such as
"Are there any foreign objects?". Level 2 questions ask for more specific findings,
like "Is there pneumonia in the lung?”, and level 3 questions are related to de-
tailed findings, for example, asking for the degree or a description of a disease,
"What are the attributes?”. This hierarchical structure allows an autoregressive
parsing of the questions, making lower-level questions depend on higher-level
ones, which aims to provides more context for difficult questions in level 3 ques-
tion. In addition, there are 96 classes in total. The questions can be single-choice
or multiple-choice, with each having a defined set of possible options. To the
best of our knowledge, at the time of the experiment, Rad-Restruct is the only
available dataset that enables our experimental design by providing access to all
three components, medical images, free-text reports, and QA pairs.
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Context Extraction. To extract the context from radiology reports, we use
the prompted GPT 3.5 Turbo with the following prompt: ’Please summarize
the following X-ray report while keeping the medical terms.’ Figure 2 shows
an example of a summarized report by the GPT API. The GPT model aims
to generate natural language text comprehensively. In doing so, it rephrases
reports into simplified vocabulary, excluding sensitive medical details that could
be beneficial. We address this concern by requesting the retention of medical
terms. The length of generated summaries varies based on the original report
and content nature. We impose a maximum size of 512 tokens, truncating when
needed. These summaries serve as a direct context for training our model.

Training and Evaluation. As an image encoder, we use PubMedClip [10],
a variant of the CLIP model [22] designed for medical VQA, it is pre-trained
on several medical image modalities. Following the model introduced in [21], we
adopt the RadBert model as a text encoder, with the Bert Tokenizer. RadBert
is a domain-specific large language model based on Roberta model [17], and was
trained on a large corpus of radiology reports. To encode text inputs, we leverage
RadBert’s pre-trained embeddings, which capture domain-specific semantics and
contextual. The encoders are frozen, preserving their pre-trained weights and
preventing further parameter modification. As a classifier, we use a 5-layer MLP
with batch normalization and a dropout rate of 0.2. The model is trained for
200 epochs on a NVIDIA RTX A6000 GPU. We use Adam Optimizer with a
learning rate of le-5 and a batch size of 32.

4 Results

Table 1 shows the performance of our Context-VQA method and the state-of-
the-art

method hi-VQA [21] on the Rad-Restruct dataset. For a fair comparison, we
use the same evaluation approach and script as hi-VQA and report our results
accordingly using the conventional metrics Accuracy, F1, Precision, and Recall.
The main results in table 1 correspond to the best run scores among multiple
runs. As accuracy, we provide the report accuracy, a metric that is specific to
the dataset.

Rad-Restruct was built to structure the text reports in the IU-Xray dataset
into a form populated by hierarchical questions. Thereby, each image is accom-
panied by its set of questions referred to as a structured report. The report
accuracy metric represents the accuracy of reports that were fully predicted cor-
rectly. Thus, a report is considered correct if all questions at all levels for a
given image are perfectly answered. Context-VQA outperforms hi-VQA on this
specific metric with almost a 10% increase. This translates to an increase of
fully predicted reports’ questions by 10%. The evaluation was done using the

® Released dataset results https://github.com/ChantalMP /Rad-
ReStruct/tree/master
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Table 1: Performance comparison on Rad-Restruct dataset. We compare 5 meth-
ods, a visual baseline [21], hi-VQA, both the published results and the re-
leased dataset results, re-VQA (our reproduced hi-VQA results) and our method
Context-VQA.

Report Accuracy| F-1 |Precision|Recall
Visual baseline [21] 31.3 30.7| 65.6 | 31.2
hi-VQA [21] 32.6 31.7| 70.7 32.1
hi-VQA ° 30.2 32.0| 64.6 33.3
re-VQA 29.8 28.7| 61.2 29.8
Context-VQA 39.7 32.9| 904 |33.6

Table 2: A comparison of the hi-VQA and Context-VQA for each question level.
Context-VQA scores the best accuracy over all levels, while F1 and Recall alter-
nate between the two models on different levels.

hi-VQA Context-VQA
Accuracy| F-1 |Precision|Recall| Accuracy| F-1 |Precision|Recall
Level 1 33.6 |64.3| 81.0 64.5| 34.7 |67.2| 80.7 61.2

Level 2 (L2) all] 31.0 |71.6| 85.2 72.0| 32.9 |71.8| 88.9 70.8
- L2 diseases 48.1 |73.5| 83.8 71.3 52.1 |72.8| 89.6 |T72.7

- L2 signs 719 |74.2 93.1 |74.4| 74.3 |73.7] 90.6 73.7
- L2 objects 87.4 |67.0] 771 67.5 91.4 |67.2| 85.0 | 68.6
- L2 regions 524 |68.1] 82.1 69.5| 61.2 |68.7| 85.4 | 68.3
Level 3 30.2 4.1 49.9 6.2 32.5 | 32| 68.7 4.2

script provided in [21], allowing direct comparison to hi-VQA. Our results sig-
nificantly outperform the hi-VQA on the other metrics, with precision improved
by 29%. We want to clarify that when discussing results, "hi-VQA" refers to the
updated results provided by the authors along with the dataset after the paper
was published.

Furthermore, Table 2 shows the performance on each level of questions.
Context-VQA steadily achieves state-of-the-art accuracy on all levels. Although,
the F-1 score shows a slight decrease for some type of questions in level 2 and
level 3, level 1 and level 2 (all) show higher overall performance. In addition,
it is noteworthy that our approach, with only 16M trainable parameters was
able to perform closely or even better than hi-VQA (164M parameters). We
also note that we compare to the released dataset results instead of the scores
reported in the paper. Figure 3 illustrates qualitative examples of predictions
of Context-VQA compared to the baseline predictions. Questions are arranged
sequentially from left to right, level-wise, indicating their hierarchical depen-
dency. In the first instance, hi-VQA predicts a negative response to the initial
question, consequently influencing subsequent questions to also receive negative
predictions. In examples 2 and 3, we observe that for these cases Context-VQA
accurately predicts lower-level questions, which are often challenging and influ-
enced by preceding questions. This explains the ability of our model to correctly
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- T Q: Are there any signs in the skeletal system?
\ Ground truth: Yes
Hi-VQA: N¢
T b

Q: Is there kyphosis in the skeletal system?
Ground truth: Yes

-VQA: Yes
Ours: Yes

Q: I there an deformity in the skeletal system?

Ground truth: yes
Hi-VQA: No
Ours: yes

Q: In which part of the body?
Ground truth: thoracic vertebrae
Hi-VQA: lumbar vertebrae

Ours: thoracic vertebrae

Q: In which part of the body?
Ground truth: thoracic vertebrae
Hi-VQA.

Ours: thoracic vertebra

Q: What is the degree?
Ground truth: mild
Hi-VQA: no selection
Ours: milc

“
L |
Q: Is there anything abnormal in the thoracic vertebrae? Q: In which area? Q: What are the attributes?
Ground truth: Yes Ground truth: unspecified Ground truth: degenerative
Hi-VQA: Yes Hi-VQA: righ Hi-VQA: no selectior
Ours: Yes Ours: unspec d Ours: degenerative

Fig.3: Examples of the predictions where Context-VQA outperforms the hi-
VQA model. The questions are successive from left to right, representing the
hierarchical dependency.

Table 3: The computational complexity of our leveraged model against the full
architecture and the baseline

hi-VQA |Context-VQA |Fully trained Context-VQA
Number of parameters (M)| 164 16 232
Training time per epoch |1h30min 35min 1h48min

predict sequential questions leading to the improvement in report accuracy, as
previously reported.

Computational complexity By leveraging the pretrained encoders, we achieve
a substantial reduction in the number of trainable parameters,from 232M to 16 M,
against hi-VQA’s 164M parameters. Consequently, the training time is reduced.
Experiments on a single A6000 GPU record the training time of 1h30min per
epoch for hi-VQA against 35min required by Context-VQA, as demonstrated in
Table 3. Notably with fewer parameters and less computational time, Context-
VQA still performs well on the Rad-Restruct dataset.The fully trained Context-
VQA model refers to our model with all components, including the encoders,
trained. With 232 million trainable parameters, this model takes an average of
1 hour and 48 minutes to train for a single epoch. However, due to the risk of
overfitting on the relatively small dataset, we have strategically decided against
pursuing this approach as it may not yield the most generalizable results.

Ablation Studies We conducted ablation studies to assess the impact of con-
textual information on the prediction capabilities of our Context-VQA model. In
the first experiment, we integrated the context as an input in the baseline hi-VQA
model by tokenizing and feeding it into the text encoder alongside the question.
The textual features were then concatenated with the visual features and pro-
cessed in the fusion module. This experiment aimed to demonstrate the impact
of incorporating textual information. The results, labeled as "hi-VQA+context,"
are presented in Table 3, showing a performance improvement compared to the
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Table 4: A Comparison experiment investigating the impact of the context and
the alignment module.

Report Accuracy| F-1 |Precision|Recall
hi-VQA 30.2 32.0| 64.6 33.3
hi-VQA + context 32.3 30.4| 76.6 30.2
Ours — faiign 32.6 28.7| 80.0 28.8
Context-VQA 39.7 32.9| 90.4 | 33.6

baseline model. To further examine the significance of the alignment module, we
adopted a similar approach of incorporating contextual information as an addi-
tional input in our model without further alignment. The results are reported
as "our —fuign" in Table 4. We note that the recall and F1 scores exhibited
a slight decrease, primarily attributed to the lack of encoder updates, which
limited improvements in feature extraction.

5 Conclusion

In this work, we proposed a novel approach to enhance medical Visual Question
Answering (VQA) systems by leveraging free-text medical reports as contextual
information. We use the context by incorporating an adaptive text-image align-
ment module that learns to align textual and visual features. Through exten-
sive evaluation on Rad-Restruct dataset, we validated the efficacy of integrating
context-based information alongside images and questions that provides richer
medical features for VQA with significant performance gains. Given the rise of
datasets with additional medical reports and EHR, this work paves the way for
further exploration and refinement of context-based approaches in advancing
the capabilities of medical VQA systems and ultimately improving medical Al
systems’ outcomes.
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