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A SUP-AD Dataset

A.1 Meta-actions

Meta-action statistics. We use the meta-action sequence to formally represent the driving strategy.
Meta actions are classified into 17 categories. We show the distribution of each meta-action being
the first/second/third place in the meta-action sequence, as shown in Figure 1. It indicates that the
meta-actions are quite diverse in the SUP-AD dataset. We also show the distribution of the length of
meta-actions per scene in Figure 2. Most scenes contain two or three meta-actions, and a few scenes
with complex driving strategies contain four or more meta-actions.

Annotation of meta-actions. The meta-action sequence for each driving scene is manually anno-
tated based on the actual driving strategy in the future frames. These meta-actions are designed to
encompass a complete driving strategy and are structured to be consistent with the future trajectory
of the ego vehicle. They can be divided into three primary classes:

1. Speed-control actions. Discerned from acceleration and braking signals within the ego
state data, these actions include These actions can be discerned from acceleration and brak-
ing signals within the ego state data. They include speed up, slow down, slow down rapidly,
go straight slowly, go straight at a constant speed, stop, wait, and reverse.

2. Turning actions. Deduced from steering wheel signals, these actions consist of turn left,
turn right, and turn around.

3. Lane-control actions. Encompassing lane selection decisions, these actions are derived
from a combination of steering wheel signals and either map or perception data. They
involve change lane to the left, change lane to the right, shift slightly to the left, and shift
slightly to the right.

A.2 Scenario Categories

The SUP-AD dataset is comprised of 1,000 video clips of driving scenarios. As illustrated in Fig-
ure 3, it encompasses a wide range of driving scenarios, spanning over 40 categories. Below are
explanations for some of the scenarios:

AEB Data: Automatic Emergency Braking (AEB) data.

Road Construction: A temporary work zone with caution signs, barriers, and construction equip-
ment ahead.

Close-range Cut-ins: A sudden intrusion into the lane of the ego vehicle by another vehicle.

Roundabout: A type of traffic intersection where vehicles travel in a continuous loop.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



400 7 BE First place
Second place
300 4 Third place
200 A
100 A
0' T T .I T
g 2 B > 9 £ £ c o > a T £ =
2 5 3 8 § 2 =5 3 2 2 & 5 2 o5 8
v T o o ¢ o9 T JF T @ w 5 T
S o0 v v 3 £ o Q © © 5 c
¥ 2 o g * £ =2 3 = =
o e c = o ) o wn o [ E
> g £ 2 T 8w . 5
Q bt 7] o > +~ - =
c o < 5 5 > )
T c o 0 £ = ]
© [w] [=2] = [o3
[ - © o = o 2}
(=2l Q U] wn =
c [S + )
@© c © =
c © = c &
Q c < v =
o 2 n
1]
| ..
e
(2]
o
O]

Figure 1: Distribution of each meta action being the first, second, and third place of the meta
action sequence, respectively.

One meta action

Two meta actions

Four or more meta actions

Three meta actions

Figure 2: Distribution of the length of meta actions per scene.

32  Animals Crossing Road: Animals crossing the road in front of the ego vehicle.

a3 Braking: Brake is pressed by human driver of the ego vehicle.
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Figure 3: Diverse driving scenarios in the SUP-AD dataset.

Traffic Police Officers: Traffic police officers managing and guiding traffic.

Blocking Traffic Lights: A massive vehicle obscuring the visibility of the traffic signal.
Cutting into Other Vehicle: Intruding into the lane of another vehicle ahead.

Ramp: A curved roadway that connects the main road to the branch road in highway.
Debris on the Road: Road with different kinds of debris.

Narrow Roads: Narrow roads that require cautious navigation.

Pedestrians Popping Out: Pedestrians popping out in front of the ego vehicle, requiring slowing
down or braking.
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People on Bus Posters: Buses with posters, which may interfere the perception system.

Merging into High Speed: Driving from a low-speed road into a high-speed road, requiring speed-
ing up.

Barrier Gate: Barrier gate that can be raised obstructing the road.

Fallen Trees: Fallen trees on the road, requiring cautious navigation to avoid potential hazards.

Complex Environments: Complex driving environments that requiring cautious navigation.

Mixed Traffic: A congested scenario where cars, pedestrians, and bicycles appear on the same or
adjacent roadway.

Crossing Rivers: Crossing rivers by driving on the bridge.
Screen: Roads with screens on one side, which may interfere the perception system.

Herds of Cattle and Sheep: A rural road with herds of cattle and sheep, requiring careful driving
to avoid causing distress to these animals.

Vulnerable Road Users: Road users which are more susceptible to injuries while using roads, such
as pedestrians, cyclists, and motorcyclists.

Road with Gallet: A dusty road with gallet scattered across the surface.

The remaining scenario categories are: Motorcycles and Trikes, Intersection, People carrying Um-
brella, Vehicles Carrying Cars, Vehicles Carrying Branches, Vehicles with Pipes, Strollers, Children,
Tunnel, Down Ramp, Sidewalk Stalls, Rainy Day, Crossing Train Tracks, Unprotected U-turns,
Snowfall, Large Vehicles Invading, Falling Leaves, Fireworks, Water Sprinklers, Potholes, Over-
turned Motorcycles, Self-ignition and Fire, Kites, Agricultural Machinery.

A.3 Dataset Construction Pipeline

The dataset construction pipeline sequentially includes Long-tail Object/Challenging Scenario Min-
ing, Keyframe Selection, Scene Annotation, and Verification.

Long-tail Object Mining. According to real-world road object distribution, we first define a list
of long-tail object categories, such as weird-shaped vehicles, road debris, and animals crossing the
road. Next, we mine these long-tail scenarios using a CLIP-based search engine, capable of mining
driving data using language queries from a large collection of logs. Following that, we perform a
manual inspection to filter out scenes inconsistent with the specified categories.

Challenging Scenario Mining. In addition to long-tail objects, we are also interested in challenging
driving scenarios, where the driving strategy of the ego vehicle needs to be adapted according to the
changing driving conditions. These scenarios are mined according to the variance of the recorded
driving maneuvers.

Keyframe Selection. Each scene is a video clip, it is essential to identify the ‘keyframe’ to annotate.
In most challenging scenarios, a keyframe is the moment before a significant change in speed or
direction is required. We select this keyframe 0.5s to 1s earlier than the actual maneuver, based on
comprehensive testing, to guarantee an optimal reaction time for decision-making. For scenes that
do not involve changes in driving behavior, we select a frame that is relevant to the current driving
scenario as the keyframe.

Scene Annotation and Verification. We employ a group of annotators to perform the scene anno-
tation, including scene description, scene analysis, and planning, except for waypoints, which can
be auto-labeled from the vehicle’s IMU recordings. To facilitate scene annotation, we make a video
annotation tool with the following features: (1) the annotators can slide the progress bar back and
forth to replay any part of a video; (2) while annotating a keyframe, the annotator can draw bound-
ing boxes on the image together with language descriptions; (3) annotators can select from a list
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of action and decision candidates while annotating driving plans. Each annotation is meticulously
verified by 3 annotators for accuracy and consistency, ensuring a reliable dataset for model training.

A.4 Annotation Examples

We provide more examples of annotation contents in Figure 4, 5, 6, 7, 8, and 9. The scenario
categories of these examples are overturned bicycles and motorcycles, herds of cattle and sheep,
collapsed trees, crossing rivers, barrier gate, and snowfall respectively.

Scene Summary: The ego vehicle changes lanes from the wrong-way lane to the right-way lane, with a bicycle fallen in front.

Weather: Cloudy

Time: Daytime

Critical Object:

Class: Bicycle

Characteristics: ~ Fallen in front of
the vehicle

Influence: Blocking vehicle
future path

Lane Options: Right Lane

Road Environment: ~ Urban

Meta Action: ["Slow down™, "Change lane to the right”, "Go straight slowly"]

Decision Description: Slow down and make sure there's no vehicle coming from the right rear before
changing lanes to the right.

Figure 4: An example of overturned bicycles and motorcycles in the SUP-AD dataset. A bicycle
has fallen in front of the ego vehicle, requiring the ego vehicle to change lanes.

Scene Summary: The ego vehicle is traveling straight in the current lane, and there is a group of slow-moving cows ahead in the lane.

Weather: Cloudy
Time: Daytime

Critical Object:

Class: A herd of cows

Characteristics: ~ Slowly moving
ahead in the ego
lane

Influence: Influencing the
driving speed of
the ego vehicle

Lane Options: Own Lane

Road Environment: ~ Mountain

Meta Action: ["Slow down”, "Go straight slowly"]

Decision Description:  Reduce speed and proceed slowly while maintaining a safe distance from the
group of cows.
Figure 5: An example of herds of cattle and sheep in the SUP-AD dataset. A group of cattle

move slowly in front of the ego vehicle, requiring the ego vehicle to proceed slowly and maintain a
safe distance from the cattle.



Scene Summary: The ego vehicle is moving forward on the current road, and a tree suddenly falls towards the ego vehicle from the left front side.

2
&

Critical Object:

Weather: Cloudy
Class: Tree

= " K . .
5 £ Time: Daytime

Characteristics: Leaning towards
our vehicle on the
left front

Influence: Blocking our
vehicle from
moving forward

Lane Options: Own Lane

Road Environment:  National Road

Meta Action: [“Slow down rapidly”, “Stop”,” Wait”]

Decision Description: Immediately decelerate and come to a stop, wait for the fallen tree to be cleared
before resuming driving.

Figure 6: An example of collapsed trees in the SUP-AD dataset. A tree suddenly falls towards the
ego vehicle, requiring the ego vehicle to decelerate immediately.

Scene Summary: The ego vehicle travels at a constant speed along the current road towards a bridge ahead. The bridge width allows only a single vehicle to pass.
Weather: Cloudy
Time: Daytime

Critical Object:

Class: Narrow bridge

Characteristics: ~ Passable width for
only a single
vehicle

Influence: No stopping
allowed

Lane Options: No Lane Marking

Road Environment:  Narrow Bridge

Meta Action: [“Slow down”, “Go straight slowly™]

Decision Description: Brake and decelerate, drive slowly towards the bridge without stopping on it.

Figure 7: An example of crossing rivers in the SUP-AD dataset. The ego vehicle is going across a
bridge of which width allows only a single vehicle to pass, requiring the ego vehicle to drive without
stopping.

Scene Summary: The ego vehicle turns left towards the park entrance, a horizontal bar is blocking the entrance ahead.

Weather: Cloudy

Critical Object: Time: Daytime

Class: Crossbar

Characteristics: ~ At the entrance/exit
ahead

Influence: Blocking the
vehicle's driving

Lane Options: No Lane Marking
route

Road Environment: ~ Park

Meta Action: [“Slow down”, “Stop”, "Wait"]
Decision Description: "Slow down and stop in front of the horizontal barrier, waiting for permission to
continue."

Figure 8: An example of barrier gate in the SUP-AD dataset. A horizontal barrier blocks the
entrance of a park, requiring the ego vehicle to stop and wait for permission to continue.
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Scene Summary: The ego vehicle is currently driving slowly along a snow-covered road, following the snow-free tire tracks on the road surface.

Weather: Snowy
Critical Object: None

Time: Daytime

Lane Options: No Lane Marking

Road Environment: Snow-covered
Road

Meta Action: [“Go straight slowly™]

Decision Description: "Continue to move forward cautiously at a slow speed.”

Figure 9: An example of snowfall in the SUP-AD dataset. Most of the road is covered by snow,
requiring the ego vehicle to move forward cautiously by following the snow-free tire tracks.

B Evaluation Method

The ability of an autonomous driving system to accurately interpret driving scenes and make log-
ical, suitable decisions is of paramount importance. As presented in this paper, the evaluation of
VLMs in autonomous driving concentrates on two primary components: the evaluation of scene
description/analysis and the evaluation of meta-actions.

B.1 Scene Description/Analysis Evaluation

In terms of scene description/analysis evaluation, the process of interpreting and articulating driv-
ing scenes is subject to inherent subjectivity, as there are numerous valid ways to express similar
descriptions textually, which makes it difficult to effectively evaluate the scene description using
a fixed metric. To overcome this challenge, we utilize GPT-4 to evaluate the similarity between
the scene descriptions generated by the model and the manually annotated ground truth. Initially,
we prompt GPT-4 to extract individual pieces of information from each scene description. Subse-
quently, we score and aggregate the results based on the matching status of each extracted piece of
information.

The ground truth labels for scene descriptions encompass both environment descriptions and event
summaries. Environmental condition description includes weather conditions, time conditions, road
environment, and lane conditions. Event summaries are the characteristics and influence of critical
objects. We employ GPT-4 to extract unique key information from both environment descriptions
and event summaries. The extracted information is then compared and quantified. Each matched
pair is assigned a score, which is estimated based on the extent of the matching, whether complete,
partial, or absent. Instances of hallucinated information incur a penalty, detracting from the overall
score. The aggregate of these scores constitutes the scene description score.

1.0 X mmatched + 0.5 X Tipartial

Score =
Mgt

0 2;’ M
.29 X Nhallucination

ngt

The prompt for GPT-4 in evaluating scene descriptions is carefully designed, as shown in Table 1.
Initially, a role prompt is employed to establish as an intelligent and logical evaluator, possessing a
comprehensive understanding of appropriate driving styles. This is followed by specifying the input
format, which informs GPT-4 that its task involves comparing an output description with a ground
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System Prompt:
You are a smart and logical evaluator with extensive driving experience, and you will try your best to give reasonable and logical evaluation
result.

Input Prompt:

Given two driving scenario descriptions, one is the reference description, the other is the output description from a model. Please extract key
information from the reference description and use it as comparison standards to compare the proximity of the output descriptions. Additionally,
evaluate the completeness of each piece of information. Key information extracted can be classified into environmental conditions and critical
events. Environmental condition information includes weather, time, road environment, and lane conditions. A critical event describes the
event related to ego vehicle$ driving decisions, which is usually given in the format of critical object + verb/adj + influence on ego vehicle. An
example of a critical event is like this: A construction zone is blocking the ego lane and the right lane in front, so the car needs to go around to
avoid it. Now I will give you the reference description and the output description.

The reference description:

Weather: Sunny. || Time: Day. || Road Environment: Urban. | | Lane Options: Left Lane, Own Lane, Right Lane. | | Ego Lane Position:
Middle Lane.

Critical Events: There are police officers ahead inspecting passing vehicles. The police officer in front of your lane is signaling you to stop for
inspection. There are also vehicles queuing in the left lane. The right lane is a merging lane and is currently separated, so you cannot change
lanes to the right.

The output description:

Weather: Sunny. | | Time: Day.

There is a vehicle driving in the distance in front of you. There are traffic police on the left and right, and the traffic police signal to stop.
Compare the two descriptions using extracted key information and output a similarities score on the scale from 0 to 1.0 and an explanation to
describe the logic of calculating the similarity scale. Each matched key information scores 1.0, and each partially matched key information
scores 0.5. Hallucinations will be penalized as well. If any key information exists in the output but not in the reference, a score of -0.25 will be
assigned. The final score is the total score divided by the number of key information extracted in the reference description. For example, if the
total score is 1.5, and the total number of key information in reference description is 3, then the final score would be 1.5/3 = 0.5. Please output
the detailed extraction and evaluation process.

Response:

Reference description key information:

1. Weather: Sunny (environmental conditions)

2. Time: Day (environmental conditions)

3. Road Environment: Urban (environmental conditions)

4. Lane Options: Left Lane, Own Lane, Right Lane (environmental conditions)

5. Ego Lane Position: Middle Lane (environmental conditions)

6. Police officers ahead inspecting vehicles (critical event)

7. The police officer in front of ego vehicle signalling to stop (critical event)

8. Vehicles queuing in the left lane (critical event)

9. Cannot change to the right lane as it§ an merging lane and currently separated (critical event)
Output description key information:

1. Weather: Sunny.

2. Time: Day.

3. Vehicle driving in the distance in front of driver

4. Traffic police on the left and right

5. Traffic police signal to stop

By comparing the output to the reference:

- Key information 1, 2, 6, and 7 are matched, each for 1.0 points(weather and time, police officers and their signal to stop)
- Key information 3 in the output is not mentioned in reference, deduction of -0.25 points.
No scores for:

- Key information 3, 4, 5, 8, and 9.

Total score = (1.0+ 1.0+ 1.0 + 1.0 - 0.25) /9 = 0.417.

Table 1: Evaluation process of scene description by GPT-4. Our proposed evaluation method is
not only capable of extracting and evaluating information from structured scene descriptions but is
also applicable to unstructured descriptions.

truth description. This comparison is based on the extraction and analysis of key information from
both descriptions. Lastly, the prompt outlines the criteria for scoring, as well as the format for the
evaluation output, ensuring a structured and systematic approach to the evaluation process.

B.2 Meta-action Evaluation

The evaluation process for the meta-action sequence must consider both the quantity and the sequen-
tial arrangement of the matched meta-actions. We employ dynamic programming to compare the
model’s output and the annotated ground truth. Our dynamic programming approach is similar to
the method utilized in identifying the longest common subsequence, albeit with two supplementary
considerations.

The first consideration acknowledges the unequal weighting of different meta-actions. For instance,
certain meta actions such as “Slow Down”, “Wait”, and “Go Straight Slowly” exhibit a greater em-
phasis on attitude rather than action. The presence or absence of these actions from a meta-action
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sequence does not alter the basic semantic essence of driving decisions but rather modifies the driv-
ing strategy to be either more assertive or more cautious. For example, a meta action sequence
of “Slow Down -> Stop -> Wait” conveys a similar driving decision as a sequence with only the
meta action “Stop”. Consequently, these sequences should not incur a penalty comparable to other
meta actions such as “Turn Left” or “Change Lane to the Right”. Therefore, these are designated as
“conservative actions”, and a reduced penalty is applied when they do not match during sequence
evaluation.

The second consideration addresses the potential semantic equality among different meta-action
sequences. For example, the sequences “Change Lane to the Left -> Speed Up -> Go Straight
At a Constant Speed -> Change Lane to the Right” and “Change Lane to the Left —> Speed Up
Rapidly -> Go Straight At a Constant Speed -> Change Lane to the Right” might both represent
valid approaches to overtaking a slow-speed vehicle ahead. Recognizing that different meta-action
sequences might convey similar meanings, we initially use GPT-4 to generate variant sequences that
have comparable semantic meanings, in addition to the unique ground truth meta-action sequence, as
shown in Table 2. In the subsequent sequence-matching phase of the evaluation, all these variations,
together with the manually annotated ground truth, are taken into consideration. The highest-scoring
matching is then adopted as the definitive score for the final decision evaluation.

Prompt:

Given a predefined set of action tokens and a sequence of reference driving actions, find all alterna-
tive sequences of actions that have similar meanings but choose slightly different action tokens from
the predefined action tokens.

Predefined action tokens: [Speed up, Slow down, Speed up rapidly, Slow down rapidly, Go straight
slowly, Go straight at a constant speed, Turn left, Turn right, Change lane to the left, Change lane to
the right, Shift slightly to the left, Shift slightly to the right, Stop, Wait, Turn around, Reverse].

For example, if the reference driving action sequence is: Slow down —> Shift slightly to the right ->
Go straight at a constant speed, alternative action sequences with similar meanings could be:

1. Slow down -> Change lane to the right -> Go straight at a constant speed;

2. Slow down rapidly —> Shift slightly to the right -> Go straight at a constant speed;

3. Slow down -> Change lane to the right —=> Go straight slowly;

4. Slow down -> Shift slightly to the right -> Go straight slowly.

Now the reference action sequence is: Slow down -> Shift slightly to the right -> Go straight at a
constant speed. What are the alternative action sequences?

Response:

Given the reference sequence: ’Slow down —> Shift slightly to the right -> Go straight at a constant
speed.” Alternative action sequences with similar meanings based on the provided action tokens are:
1. Slow down -> Change lane to the right -> Go straight at a constant speed.

2. Slow down rapidly —> Shift slightly to the right —-> Go straight at a constant speed.

3. Slow down -> Change lane to the right —=> Go straight slowly.

4. Slow down -> Shift slightly to the right -> Go straight slowly. You’ve provided this example in
your question.

Based on the tokens and the context, these are indeed appropriate alternative sequences.

Table 2: Example of generating alternative action sequences by GPT-4.

The state of dynamic programming is saved in a 2D matrix, wherein each row corresponds to a meta
action in the ground truth action sequence, and each column corresponds to a meta action in the
model output action sequence, noted as S €. The dynamic programming initiates recursive calcu-
lations beginning from the first meta action of both sequences. Each element of the 2D matrix en-
compasses the optimal total score at the current matching position, as well as the preceding matching
condition that yielded the optimal matching. In our dynamic programming algorithm, three transi-
tion equations govern distinct cases: Spigsing fOr missing matching, Sredundant for redundant matching,
and Spaching for successful matching. Successful matching occurs when the meta action is identical
at the 7" position in the reference sequence and the ¢! position in the model-generated sequence.
In the case of missing matching, the meta action at the r*" position in the reference sequence is
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unmatched, prompting a comparison with the - — 1! position in the reference sequence and the ct*
position in the model-generated sequence. Conversely, redundant matching implies that the meta
action at the c!” position in the model-generated sequence is unmatched, leading to further exami-
nation of the r*" position in the reference and the ¢ — 1" position in the model-generated sequence.
The transformation equations for these cases are as follows:

r,c _ r—1,c
S =5 = Pmissing s

missing
Sr;llcmdant =5" ol — Predundant (2)
Sr:;\tihing =grbel 4 Smatching s

She= maX(Sr:l‘i)szing’ rZ(’iLCmdant7 n:;n(éhing%

where Smatching = 1.0 represents the reward score after a successful matching. If an action considered
missing or redundant is classified as a conservative action, the penalties Pmissing and Predundant are
quantified as half of Smaching, i.€., 0.5. Conversely, if an action is not conservative, both penalties
are assigned the same magnitude as Smaeching, 1-€., 1.0. This approach is based on the premise that
omitting a crucial meta action or inaccurately introducing a non-existent one equally hampers the
effectiveness of the action sequence. The final score Scoreyeion should be divided by the length of
the selected reference meta-action sequence, formulated as follow:
Sgre

Score aetion = N 3)

C Co-tuning

To preserve the LLM’s generalization capabilities during the fine-tuning process, we employed co-
tuning with several additional datasets. These include the Talk2Car [1], BDDX [2], Drama [3],
SUTD [4], and LLAVA [5] datasets. For each dataset, we conducted random sampling in a 1:1
ratio corresponding to the data volume of the SUP-AD and nuScenes datasets. Following this co-
tuning approach, we found that the scores on the SUP-AD dataset, under the evaluation metrics
of Scene Description and Meta Action, remained virtually unchanged, simultaneously ensuring the
preservation of the LLM’s original capabilities and its generalization capacity.

D DriveVLM-Dual Onboard Deployment

Base LLM ‘ Ave. MMMU SEEDBench RefCOCO SUP-AD Drivelm-QA  Drivelm-Grounding Realworld-VQA

5% 20% 15% 15% 7.5% 7.5% 15%
MobileLLaMA1.4B [6] | 0.457  0.331 0.59 0.421 0.520 0.686 0.735 0.501
Qwen-1.8B [7] 0.477 0.340 0.622 0.492 0.523 0.680 0.725 0.518
Gemma-2B [8] 0439  0.345 0.571 0.330 0.510 0.680 0.721 0.507
MiniCPM-2.4B [9] 0482  0.379 0.64 0.444 0.539 0.676 0.717 0.553
MobileLLaMA2.7B [6] | 0.496  0.348 0.635 0.557 0.546 0.683 0.725 0.536
Phi3-3.8B [10] 0.538 0.435 0.688 0.608 0.604 0.697 0.743 0.592
Qwen-4B [7] 0.511 0.366 0.671 0.603 0.515 0.681 0.735 0.562
Qwen-4B* 0.529 0373 0.684 0.624 0.596 0.699 0.738 0.553

Table 3: Performance of different LLMs on various datasets using the LLAVA-1.5 [11] architecture
with ViT-L-336 [12] as the image encoder. Note that * indicates using Sigl.LIP-L.-384 [13] as the
image encoder.

Base LLM Due to the limited memory and bandwidth of the vehicle’s hardware, we cannot use
overly large LLMs to maintain real-time inference. Therefore, we chose models with fewer than 4
billion parameters. As shown in Table 3 and 4, our experiments revealed that on the Orin architec-
ture, the ”wide and shallow” Qwen series (wider and fewer layers) models outperform “narrow and
deep” models (narrower and more layers) in inference speed.

10



183
184
185
186
187
188

189
190
191
192

193
194
195
196
197
198

LLM | Promt Length(toks)  Prefill latency (s) ~ Prefill (tok/s) ~Decode (tok/s) Output (toks) Decode latency (s) Model Size (GB) Layer Num Head Size ~ Vocab Size

Gemma-2B [8] 1063 0.95 1121 40.9 59 1.44 4.7 18 256 256000
Phi3-4k [10] 1045 1.3 797.3 49 59 1.2 7.2 32 96 32064
MobileLLaMa-2.7B [6] 1047 0.92 1134 61.7 59 0.96 50 32 80 32000
MobileLLaMa-1.4B [6] 1047 0.23 4634 117.4 59 0.5 25 24 128 32000
Qwen4B [7] 1078 0.57 1882 44.5 59 1.33 75 40 128 151936
Qwenl.8B [7] 1078 0.23 4709 79.6 59 0.74 37 24 128 151936

Table 4: Inference performance of different LLMs after quantization and deployment on an OrinX
chip. The Qwen series achieved the best performance.

MMMU  SEEDBench RefCOC P-AD Drivelm-QA Drivelm-Grounding _Realworld-VQA _ PointVQA

Backbone Token Length  Method ‘ Weighted Total 5 u-s e lgf,)/fo Sl{ S0 e Q © 7?% unding - Real h 502 Q i ;%Q
- 0421 0368 0.657 0.502 0553 0688 0.742 0.541 0.583

33 . Fixed 1x2 + CA-256 0413 0388 0.62 0.327 0543 0.699 0.733 0.536 0.563
VIT-L-336 - Fixed 2x2 + CA-256 0405 0376 0.618 0.306 0518 0692 0.731 0.523 0.594
VIT-L-448 - Fixed 1x2 + CA-256 0383 0391 0.542 0.184 0528 0689 0.718 0.47 0.562
- Fixed 1x2 + S2 0368 0383 0.511 0.198 0469 0689 0.718 0.469 0314

Fixed 1x2 + S2 0368 0381 0.537 0.207 0544 0698 0.729 0.46 0.554

DM-4 + CA-256 0409 0377 0.61 0.277 0544 0.698 0.726 0.525 0.554

DM-6 + CA-256 0381 0381 0.53 0.162 0523 0.7 0729 0.466 0.584

DM-4 + PT 0426 0376 0.653 0.557 0585 0.7 0743 0.54 0598

- DM-4 + SM + LT 0413 0403 0.617 0.293 055 0.699 0.737 0.527 0.532

VIT-L-336 - DM-4 + SM + AAP + LT 0406 0384 0.61 0273 0518 068 0.726 0.52 0.533
ViT-L-33 . DM-4 + SM + CD + LT 0409 0388 0.63 048 0515 0.7 0.734 0.524 0.577

SigLIP-L-384[13] 576 - 0432 0389 0631 0.615 0.624 0.707 0.749 0.556 056
SigLIP-L-768 576 - 0438 0377 0.642 058 0638 0712 0.764 0.561 0.556
SigLIP-L-1152 576 - 0436 0377 0.637 0.595 0628 0715 0.763 0.571 0.564
SigLIP-L-384-768 576 PE 0434 0367 0.632 0.581 0631 0716 0.762 0.556 0.554
SigLIP-L-512-960 480 PE 0442 0369 0.64 0.557 065 0719 0.762 0.579 0.568

Table 5: Performance of different methods for scaling ViT’s original input resolution to higher reso-
lution. “CA” stands for cross-attention, “DM” is the abbreviation for Dynamic Max, “PT” indicates
the use of patch end token, “SM” stands for Spatial Merge, “LT” indicates the use of line end token,
“AAP” is the abbreviation for Adaptive Average Pooling, and “CD” stands for Convolutional Down-
sampling. “PE” represents Position Embedding Interpolation. Among these methods, applying PE
interpolation to SigLIP-L-384, transforming it to accept 768 resolution images as input, achieves a
good trade-off between inference speed and performance.

Visual Encoder High-resolution images are essential for fine-grained understanding in au-
tonomous driving. As shown in Table 5, compared to the basic ViT model used as a visual encoder,
we explored several options, including different GridPatch strategies and PE (Position Embedding)
interpolation. Ultimately, for real-time inference, we selected the simpler SigL.IP-L-384 model with
PE interpolation, achieving high resolution input through original 384 resolution PE interpolation
and fine-tuning parameters with additional conv layers.

Visual Token Compression To address the increased computational load from high-resolution
images, we implemented LDPNetv2 [6] to reduce the number of image tokens by 75% without
compromising performance, as shown in Table 6. Additionally, we enhanced performance by re-
placing avg-pooling layer with convolutional layer in LDPNetv2.

Speculative Sampling Speculative Sampling is used to accelerate inference by preemptively gen-
erating likely outputs. This approach reduces the latency of generating predictions, achieving a
significant speedup without substantial loss in accuracy. As shown in Table 7, we test two specu-
lative sampling method Medusa and Eagle with our inference framework designed specifically for
OrinX chip. Eagle achieved a 2.7x speedup in decode latency compared to Medusa’s 2.17x, making
real-time vehicle deployment feasible.

Projector | Origin Compressed Output(ms) Prefillms) Avg. MMMU SEEDV2 BDD Drivelm-QA  Drivelm-grounding Realworld-VQA RefCOCO SUP-AD
MLP (Baseline) 576 576 666.60 707.93 5627 3790  64.00 5390 67.60 71.70 55.30 44.40 53.90
LDPNetV2 [6] 576 576 661.70 707.42 50.53 37.67  56.71 53.36  68.90 73.20 48.30 21.29 54.70
Perceiver Resampler [14] | 576 576 637.20 666.20 4971 3993 58.84 5221 68.37 71.90 49.61 19.01 48.70
Pixel shuffle 576 256 610.70 655.92 5202 4042 60.20 5519 68.72 71.52 51.44 28.23 48.40
LDPNetV2 576 256 605.32 652.79 5473 3893 62.19 5482 68.57 72.78 50.59 34.32 59.30
Pixel shuffle 576 144 604.98 645.61 4940 3898  61.63 56.06 69.18 73.18 51.05 30.67 58.80
LDPNetV2 576 144 597.15 646.77 55.56 3893  62.63 5623 68.93 72.48 50.59 33.14 59.30
LDPNetV2 576 64 616.20 645.18 56.24 3940  61.80 54.60  68.80 72.60 51.00 41.88 61.20

Table 6: Performance of different methods for visual token compression. Using LDPNetV2 to
compress the original tokens to 75% of the original token count, achieves the best trade-off between
performance and speed.
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200
201
202

204
205
206
207

Eagle + q4f16_ft

Base + q4f16_1  Eagle [15] + q4f16_1 Medusa [16] + q4f16_ft  Eagle + q4f16_ft + Shrink Vocab Size(1024)

Quant Type q4f16_1 q4fl16.1 q4f16_ft q4af16_ft q4f16_ft
Input Size (384, 960) (384, 960) (384, 960) (384, 960) (384, 960)
Prefill Tokens 604 604 613 604 613
Output Tokens 37 39 41 41 41
Prefill Speed (tok/s) 1818 1793 2160.64 2230 2175.35
Decode Speed (tok/s) 109 172 232.34 295.04 518.3
Prefill Latency (s) 0.332 0.340 0.284 0.276 0.274
Decode Latency (s) 0.328 0.216 0.176 0.130 0.071
Acceleration ratio 1 1.57 2.17 2.7 433

Table 7: Performance of different speculative sampling method. “Shrink Vocab Size” means we
reduce the vocabulary to the 1024 most frequently used words. “q4f16_1" is a 4-bit quantiza-
tion method using a 16-bit floating-point representation for efficient model compression, while
“q4f16_ft” includes subsequent fine-tuning to enhance performance post-quantization.

E Qualitative Results

To further demonstrate the effectiveness and robustness of our DriveVLM, we provide additional
visualization results in Figure 10, 11, 12, 13, and 14. In Figure 10, DriveVLM recognizes the
slowly moving vehicle ahead and provides a driving decision to change lanes for overtaking. In
Figures 11 and 12, DriveVLM accurately identifies the type of unconventional vehicles and a fallen
tree, demonstrating its capability in recognizing long-tail objects. In Figure 13, the traffic police
signaling to proceed with hand gestures has been accurately captured by DriveVLM. In Figure 14,
DriveVLM successfully recognizes the road environment of a roundabout and generates a planned
trajectory with a curved path.
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These are a few frames taken at regular intervals from a driving video:<img></img>...<img></img>. Suppose you are :
drlvmg in this scenario, please describe the scene condition.

Scene Condition:

Weather:Sunny.

Time:Night.

Road Environment:Urban.

Lane Options:Own Lane, Right Lane.
Ego Lane Position: Leftmost Lane.

Please list the critical objects in the front view that affect ego vehicle's next driving decisions, E{%}
and box them step by step. —

There are 1 critical object in the front view. The objects include ['Sedan'].
Object 1:<ref>Sedan</ref><box>(404,519),(488,633)</box>.

Matching 2D Objects: - Sedan at img region [404, 519, 488, 633]. )
Matching Information: Object in the BEV view [18.86, 1.77], history trajectory: [(13.9,1.3), (9.2,0.8), (4.3,0.4), (-0.1,0.2)]. =
Describe the characteristics of the object and indicte its influence based on the matching information

Characteristics: Driving slowly ahead in the ego lane. | Influence: Blocking the future path of the ego vehicle.

Ego-States:

Historical Trajectory (last 2 seconds): [(-5.30,0.04), (-10.47,0.16), (-15.38,0.36), (-20.47,0.65)]

Navigation: MAINTAIN.

Please make a summary of the current scene based on the information provided and your previous analysis.

Scene Condition:

Weather:Sunny.

Time:Day.

Road Environment:Urban.

Lane Options:Own Lane, Left Lane.

Ego Lane Position:Rightmost Lane.

Critical Events: The ego vehicle maintains a constant speed along the current lane, with a
slow-moving sedan ahead and no oncoming vehicles in the right rear lane.

Based on the above analysis and the current scenario, please determine the driving meta =&
actions and decisions you will take next.

Meta Actions: ['Change lane to the right’, 'Go straight at a constant speed'].
Decisions: Maintain a safe distance from the vehicle ahead, change lanes to the right, and continue driving.

{ Based on the above decisions and analysis, please plan the 3s future trajectory of the ego vehicle. } %{@}

[(5.3,0.0),(10.5,0.1),(15.6,0.2),(20.7,0.3),(25.8,0.4),(30.9,0.5)]

DriveVLM %ﬁ System Prompt / Planned Trajectory

Figure 10: Visualization of DriveVLM’s output. Drive VLM recognizes the slowly moving vehicle
ahead and provides a driving decision for changing lanes to overtake.
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These are a few frames taken at regular intervals from a driving video:<img></img>...<img></img>. Suppose you are [V;_J@
rdring ni thiscenar o p ehse edcr ibe the scene condition. —

Scene Condition:

Weather:Sunny.

Time:Day.

Road Environment:Urban.

Lane Options:Own Lane, Left Lane.
Ego Lane Position:Rightmost Lane.

Please list the critical objects in the front view that affect ego vehicle's next driving decisions, E{%}
and box them step by step. —

There are 1 critical object in the front view. The objects include ['Water-spraying vehicle'].
Object 1:<ref>Water-spraying vehicle</ref><box>(374,446),(456,596)</box>.
~
Matching 2D Objects: - Water-spraying vehicle at img region [374, 446, 456, 596].
Matching Information: Object in the BEV view [26.03, 4.09], history trajectory: [(26.3,4.1), (27.0,4.0), (28.2,4.1), (29.6,4.2)].
Describe the characteristics of the object and indicte its influence based on the matching information
J
[ Characteristics: Water-spraying vehicle ahead on the current road. | Influence: No influence. ]
~
Ego-States:
Historical Trajectory (last 2 seconds):[(-4.17,-0.00),(-8.51,-0.02),(-12.97,-0.06),(-17.60,-0.10)]
Navigation: MAINTAIN.
Please make a summary of the current scene based on the information provided and your previous analysis.
Scene Condition
Weather:Sunny.
Time:Day.
Road Environment:Urban.
Lane Options:Own Lane, Left Lane.
Ego Lane Position:Rightmost Lane.
Critical Events: The ego vehicle is driving straight on the current road, and there is a
water-spraying vehicle ahead on the road, which has no impact on the ego vehicle.
Based on the above analysis and the current scenario, please determine the driving meta 5@}
actions and decisions you will take next.
Meta Actions: ['Go straight at a constant speed'].
Decisions: Maintain a safe distance from the vehicle ahead and continue driving.
[ Based on the above decisions and analysis, please plan the 3s future trajectory of the ego vehicle. ] %}

[[(4‘1,-0.0),(82,-0.0),(12.2,-0.0),(16.2,-0.1),(20.1,-0.1),(24.0,-0‘1)] ]

@ DriveVLM %@ System Prompt / Planned Trajectory

Figure 11: Visualization of DriveVLM’s output. DriveVLM has identified the type of the uncon-
ventional vehicle ahead.
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These are a few frames taken at regular intervals from a driving video:<img></img>...<img></img>. Suppose you are L/E_)@
driving in this scenario, please describe the scene condition. —

Scene Condition:

Weather:Sunny.

Time:Day.

Road Environment:Urban.

Lane Options:Own Lane, Left Lane.
Ego Lane Position:Rightmost Lane.

Please list the critical objects in the front view that affect ego vehicle's next driving decisions, E)@
and box them step by step. —

There are 1 critical object in the front view. The objects include ['Fallen tree'].

Object 1:<ref>Fallen tree</ref><box>(353,413),(483,566)</box>.
Unmatching 2D Objects: - Fallen tree at img region [353, 413, 483, 566]. =
Describe the characteristics of the object and indicte its influence based on the matching information %

[ Characteristics: In the lane on the left front side of the ego vehicle. | Influence: Blocking the future path of the ego vehicle. ]

Ego-States:

Historical Trajectory (last 2 seconds):[(-6.21,-0.05),(-12.39,-0.20),(-18.43,-0.43),(-24.44,-0.67)]

Navigation: MAINTAIN.

Please make a summary of the current scene based on the information provided and your previous analysis.

Scene Condition:

Weather:Sunny.

Time:Day.

Road Environment:Urban.

Lane Options:Own Lane, Left Lane.

Ego Lane Position:Rightmost Lane.

Critical Events: The ego vehicle is driving straight ahead at a constant speed in
the current lane, with a fallen tree blocking the left lane ahead.

Based on the above analysis and the current scenario, please determine the driving meta =&
actions and decisions you will take next. ;)
Meta Actions: ['Slow down', 'Shift slightly to the right', 'Go straight slowly'].
Decisions: Slow down, shift to the right to avoid the fallen tree, and continue driving.
[ Based on the above decisions and analysis, please plan the 3s future trajectory of the ego vehicle. ] 5‘@}

[ [(6.1,-0.0),(12.1,-0.1),(18.1,-0.2),(24.1,-0.3),(30.1,-0.4),(36.1,-0.5)] ]

@ DriveVLM % System Prompt / Planned Trajectory

Figure 12: Visualization of DriveVLM’s output. DriveVLM precisely detect the fallen tree and its
position, subsequently planning an appropriate detour trajectory.
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These are a few frames taken at regular intervals from a driving video:<img></img>...<img></img>. Suppose you are :
dnvmg in this scenario, please describe the scene condition.

Scene Condition:
Weather:Cloudy.
Time:Day.

Road Environment:Urban.
Lane Options:Own Lane.
Ego Lane Position:DNA.

[ Please list the critical objects in the front view that affect ego vehicle's next driving decisions, and box them step by step. ] :_{:0;’

There are 2 critical objects in the front view. The objects include ['Traffic police', 'Traffic police']
Object 1:<ref>Traffic police</ref><box>(134,523),(350,741)</box>.
Object 2:<ref>Traffic police</ref><box>(694,525),(805,795)</box>.

Unmatching 2D Objects: - Traffic police at img region [134, 523, 350, 741]. )
Describe the characteristics of the object and indicte its influence based on the matching information =

[ Characteristics: Traffic police on the left side of the road ahead | Influence: Signaling that the ego vehicle can proceed. ]

- Traffic police at img region [694, 525, 805, 795]. :—@
Describe the characteristics of the object and indicte its influence based on the matching information.

[ Characteristics: Traffic police on the right side of the road ahead | Influence: Signaling that the ego vehicle can proceed. ]

Ego-States g@
Historical Trajectory (last 2 seconds):[(-1.77,0.00),(-3.65,0.01),(-5.61,0.03),(-7.66,0.04)]

Navigation: MAINTAIN.

Please make a summary of the current scene based on the information provided and your previous analysis.

Scene Condition:

Weather:Cloudy.

Time:Day.

Road Environment:Urban.

Lane Options:Own Lane.

Ego Lane Position:DNA.

Critical Events: The ego vehicle is driving straight, with traffic police on
both sides of the road ahead signaling that it can proceed.

Based on the above analysis and the current scenario, please determine the driving meta L/;_{:JQ}
actions and decisions you will take next. —
Meta Actions: ['Go straight at a constant speed'].
Decisions: Maintain a constant speed and continue driving straight.

[ Based on the above decisions and analysis, please plan the 3s future trajectory of the ego vehicle. ] :—@

[ [(1.8,0.0),(3.6,0.0),(5.5,0.0),(7.4,0.0),(9.4,0.0),(11.5,0.1)] ]

DriveVLM E@j System Prompt / Planned Trajectory

Figure 13: Visualization of DriveVLM’s output. The traffic police signaling to proceed with hand
gestures has been accurately captured by DriveVLM.
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These are a few frames taken at regular intervals from a driving video:<img></img>...<img></img>. Suppose you are =
dnvmg in this scenario, please describe the scene condition. @7

Scene Condition:
Weather:Sunny.

Time:Night.

Road Environment:Roundabout.
Lane Options:Intersection.

Ego Lane Position:Do not apply.

Please list the critical objects in the front view that affect ego vehicle's next driving decisions, EJ@
and box them step by step. —

There are 1 critical object in the front view. The objects include [SUV'].
Object 1:<ref>Water-spraying vehicle</ref><box>(590,545),(955,676)</box>.

Matching 2D Objects: - SUV at img region [590, 545, 955, 676]. oy
Matching Information: Object in the BEV view [16.23, 2.84], history trajectory: [(14.7,5.3), (13.7,7.7), (13.0,9.9), (12.8,12.4)]. @
Describe the characteristics of the object and indicte its influence based on the matching information

Characteristics: Driving around the roundabout in front of the ego vehicle. | Influence: No influence.

Ego-States: D@
Historical Trajectory (last 2 seconds):[(-3.04,-0.11),(-5.84,-0.42),(-8.22,-0.83),(-10.29,-1.28)]

Navigation: MAINTAIN.

Please make a summary of the current scene based on the information provided and your previous analysis.

Scene Condition:

Weather:Sunny.

Time:Night.

Road Environment:Roundabout.

Lane Options:Intersection.

Ego Lane Position:Do not apply.

Critical Events: The ego vehicle is driving on the roundabout road, and SUV is driving
around the roundabout ahead, with no impact on the ego vehicle

Based on the above analysis and the current scenario, please determine the driving meta =&
actions and decisions you will take next. ;

Meta Actions: ['Go straight at a constant speed', 'Turn right'].
Decisions: Maintain a safe distance and continue driving.

[ Based on the above decisions and analysis, please plan the 3s future trajectory of the ego vehicle. } LV;—_{%}

[(3.0,-0.1),(5.9,-0.4),(8.7,-0.9),(11.3,-1.6),(13.7,-2.7),(16.0,-4.2)]

DriveVLM E{%} System Prompt / Planned Trajectory

Figure 14: Visualization of DriveVLM’s output. DriveVLM successfully recognizes the road
environment of a roundabout and generates a planned trajectory with a curved path.
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