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ABSTRACT

Diffusion models are generative models that have recently demonstrated impres-
sive performances in terms of sampling quality and density estimation in high
dimensions. They rely on a forward continuous diffusion process and a backward
continuous denoising process, which can be described by a time-dependent vector
field and is used as a generative model. In the original formulation of the diffusion
model, this vector field is assumed to be the score function (i.e. it is the gradient
of the log-probability at a given time in the diffusion process). Curiously, on the
practical side, most studies on diffusion models implement this vector field as a
neural network function and do not constrain it be the gradient of some energy
function (that is, most studies do not constrain the vector field to be conservative).
Even though some studies investigated empirically whether such a constraint will
lead to a performance gain, they lead to contradicting results and failed to provide
analytical results. Here, we provide three analytical results regarding the extent of
the modeling freedom of this vector field. Firstly, we propose a novel decomposi-
tion of vector fields into a conservative component and an orthogonal component
which satisfies a given (gauge) freedom. Secondly, from this orthogonal decom-
position, we show that exact density estimation and exact sampling is achieved
when the conservative component is exactly equals to the true score and therefore
conservativity is neither necessary nor sufficient to obtain exact density estima-
tion and exact sampling. Finally, we show that when it comes to inferring local
information of the data manifold, constraining the vector field to be conservative
is desirable.

1 INTRODUCTION

Generative models generate data from noise. To do so, most generative models learn a mapping
from the noisy latent space to the structured data space. Different mappings and different learning
procedures lead to different models. For instance, for Normalizing Flows (Kobyzev et al.| 2021},
this mapping is bijective and trained on maximum likelihood. In contrast, for Generative Adversarial
Networks (GANs) (Goodfellow et al.,2020) this mapping is not bijective, and the training objective
is the Jensen-Shanon divergence between the model and data distribution. Recently, a new class of
generative models - diffusion models - have shown tremendous success in various domains, even
outperforming GANSs regarding the visual fidelity of high-resolution images (Yang et al., [2022).
Unlike a classical generative model that learns a single mapping from latent to data space, diffusion
models incrementally add structure by an infinite series of denoising steps.

Mathematically, this can be described using stochastic differential equations such that starting from
structured data at time ¢ = 0, the data is unstructured at time ¢ = 1. Crucially, this process can be
reversed using the gradient of the true score function of the underlying stochastic process, that is,
by using s(x,t) := Vlogp(x,t) for t € [0,1] and x € RP where p(x,t) describes the density at
time ¢. Here, we call diffusion model a neural network sy with parameters § which approximates
s(x,t). Even though s(x,t) is the gradient of the scalar function log p(x, t), diffusion models are
typically unrestricted in the sense that there is no guarantee that sy is the gradient of some scalar
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function, that is there is no guarantee that sg is a conservative vector field. Several authors thus
discussed the question whether sy should be conservative or not by construction (Salimans & Ho),
20215 |Chao et al., 2023} [Lai et al. 2023 Wenliang & Moran, 2022; Du et al., 2023} |Cui et al.
2022). However, we argue that this is the wrong question to ask for the density estimation- and
sampling ability of diffusion models. The right question to ask is if there is a functional freedom in
diffusion models such that instead of learning the true score s(x, t), it is sufficient to learn a broader
class of vector fields s(x,t) + 7(x,t). To do so, we will derive in section [D| non-trivial necessary
and sufficient conditions for r(x,¢) such that the corresponding generative model generates exact
samples and learns the density exactly as well. We call this functional freedom gauge freedom in
diffusion models[1]

As a direct consequence of this gauge freedom, we show that conservativity is neither necessary
nor sufficient for exact density estimation and sampling. To the best of our knowledge, this is
the first theoretical answer to the question of whether a diffusion model should be conservative by
construction or not. Indeed, all previous work exclusively argued based on empirical evidence with
contradicting results, as we will discuss shortly. Surprisingly, we also show that conservativity is
sufficient when investigating local features of the data-manifold, such as local variability. In section
[5] we present a method for estimating the intrinsic dimensionality of the data manifold by analyzing
the local variability when approaching the data manifold. Overall, our findings can be summarized
in terms of two takeaway messages to practitioners using diffusion models:

1. For density estimation or sampling, there is no need to constrain the diffusion model to be
conservative. However, for exactness, the gauge freedom condition needs to be fulfilled.

2. For analyzing local features of the data manifold, such as the intrinsic dimensionality, a
conservative diffusion is guaranteed to make the right conclusions.

Different authors studied the question of whether a diffusion model should be conservative or not.
Salimans & Hol|(2021) observed that, in terms of image generation, constraining sy to be conserva-
tive does lead to a similar performance as having no constraints on sy. To ensure that sg is conser-
vative, Salimans & Ho|(2021) proposed to calculate the gradient of a scalar function, which requires
an additional backward pass and is thus computationally more demanding than directly modeling a
vector-valued sg. As a result of this observation, it is widely accepted that sy can be unconstrained
without losing much of generality (Song et al.l 2021} Salimans & Ho| 2021} |Yang et al.| 2022} |[Liu
et al., 2022; Zeng, [2023; |Wenliang & Moran, 2022). However, in some application domains, using
a consistent score function (Arts et al.,[2023; Neklyudov et al.l 2023)) may be more suited.

Despite the findings of [Salimans & Hol (2021)), it is mathematically unsatisfactory to construct sy,
knowing that it is generally not consistent. This mathematical ghost is haunting the diffusion com-
munity, which is reflected in a surge of recent papers addressing this conflict (Chao et al., 2023}
Lai et al., 2023; [Wenliang & Moran, [2022; |Du et al., 2023} |Cui et al., 2022) . The corresponding
conclusions are contradicting. For instance, while Wenliang & Moran| (2022)) report that a non-
conservative sy learns a vector field that constrains the samples to be within the data-manifold and
thus only little sampling improvements can be expected by enforcing sg to be conservative, . Thus,
only little sampling improvements can be expected by enforcing sg to be conservative, |Chao et al.
(2023) observe that a non-conservative sg may lead to a degraded sampling performance. However,
Chao et al.|(2023) also observed that an unconstrained sy may enhance the density estimation ability.
Therefore, Chao et al.[(2023) and |Cui et al.| (2022) suggest implicitly enforcing conservativity by
adding a penalty term to the usual objective function instead of explicitly modeling s¢ as a gradient
of a scalar. This penalty term is ||Vsg — Visg”||p where Vsg is the Jacobian of sg and || - ||
is the Frobenius norm of a matrix. As a vector field parametrized by a neural network is conser-
vative if and only if the Jacobian is symmetric under some mild conditions (Im et al., |2016), this
penalty indeed offers an incentive for sy to be conservative without losing the architectural freedom
of unconstrained sg.

On the practical side, Du et al.| (2023)) and [Saremi| (2019) give additional reasons in favor of con-
servative vector fields. Du et al.| (2023) compose several likelihood models into a new one through
multiplication, division, or summation. The latter refers to a mixture of distributions. However,

'In electromagnetics, the electric scalar potential, and the magnetic vector potential are not uniquely defined
but enjoy some freedom, called gauge freedom, see chapter 10.1 in |Griffiths| (2005) or|Abedi & Surace|(2019)
for a study on the gauge freedom in the context of non-linear filtering.



Published as a conference paper at ICLR 2024

as discussed in |Du et al.| (2023)), one can not use mixture composition without explicit likelihood
functions, that is, without conservative vector fields in the case of diffusion models. In addition,
conservative vector fields enable the use of more accurate numerical samplers such as Hamiltonian
Monte Carlo (Duane et al., 1987} Neal, 2011)). Surprisingly, Saremi| (2019) showed that for an un-
constrained sy to be conservative (thus being able to learn s exactly), the weights of the first hidden
layer must be parallel to the weights of the output layer. The author concludes that the neural net-
work is required to represent only one feature in its first hidden layer,” providing a strong argument
for explicitly constraining sy to be conservative.

2 NOTATIONS AND BACKGROUND

The high-level principle of diffusion models is to remove structure by adding noise incrementally in
a way that can be reversed (Sohl-Dickstein et al., 2015};Song & Ermonl |[2020). Recently, Song et al.
(2021)) unified different mathematical formulations of such models under the umbrella of stochastic
differential equations (SDEs). For a comprehensive overview of the young history of diffusion
models and alternative formulations, we refer to|Yang et al.|(2022)). For our purposes, we adapt the
notations and concepts of [Song et al.| (202 1)), which we will repeat in the following for convenience.

Let xg € RP be random sample from the data distribution po(x). Let us further assume that this
random sample serves as an initialization for the following stochastic differential equation:

dx; = f(x, t)dt + g(t)dw, (1)

where f : RP x [0,1] — RP is a vector field, also known as drift, and g : [0, 1] — R is the diffusion
coefficient determining the magnitude of noise added at time ¢ as w; is a D—dimensional Brownian
motion. The stochastic process {x };¢[o,1] is referred to as forward process.

In principle, the drift f and diffusion coefficient g can be chosen almost arbitrarily. However, as one
wants to ultimately reverse the process and generate new data, f and g need to be chosen such that
the limiting distribution p; is known and can be easily sampled from.

Sampling: Surprinsingly, |Song et al.| (2021) showed, based on results from |Anderson| (1982),
that one can write down the reverse process {X; }+c[o,1) With starting distribution p; and limiting
distribution py explicitly as a backward ODE using the gradient of log p, s(x,t) := Vlog p(x, t),

dx; = f(x;,t)dt  withx; ~ p(x,1), (2)
where f(x¢,t) == f(x¢,t) — 29%(t)s(x¢,t). This allows one to sample new data from p(-,0) by
sampling from p(-, 1) and solving the ODE (2)) backwards (that is from ¢t = 1 to ¢t = 0).

Density estimation: Moreover, equation (2) allows for estimating the density exactly by making
use of the instantaneous change of variables formula (Chen et al., [2018]),
1

log p(x0, 0) = log p(x1, 1) + / V- F(xe, )t 3)
0

where V- denotes the divergence operator. The latter applied on f (x4, t) is the trace of the Jacobian

of f (x¢, t) which can be efficiently estimated through automatic differentiation (Paszke et al.,[2017)
using the Skilling-Hutchinson trace estimator (Skilling}, [1989; |[Hutchinson, [1990) ,

V- f(xi,t) = Tr (Vf(xt, t)) = Eerpe) [eva(xt,t)s] @)

where, typically, p(e) = N(0,1), and V f(xy, ) is the Jacobian of f(x,t). Note that equation (3)
depends on the whole trajectory {X; };c[0,1) drawn from .

Therefore, once we can learn s(x, t) = V log p(x, t), we can sample new data through equation (2)),
and calculate the density explicitly through equation (3)) (efficiently even in high-dimension thanks
to equation @) see |Han et al|(2015)). Unexpectedly, to estimate s(x,¢) using a neural network
with parameters 6, sy, it is sufficient to estimate the conditional score log po:(x¢|Xo) - a procedure
known as score matching (Hyvérinen & Dayan, 20055 |Song & Ermonl [2019). With sufficient data
and model flexibility, we have that s« (x,t) = V log p(x, t) for almost all x and ¢ where

0" = argéninIEtNu(O_yl) (A ExyEx, x, [|[50(x¢,t) — V1og por(x¢]x0)[3] } - (5)
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The time ¢ is uniformly distributed on [0,1], ¢ ~ #/(0,1), and A(¢) : [0,1] — R is a positive
weighting function. The expectation Ey, |, is the expectation over po;(x¢|xo) such that given the
drift and diffusion coefficient f and g, respectively, we can sample from this conditional distribution
efficiently at the one hand, and calculate V log po:(x:|x0) explicitly on the other hand. However,
data is typically limited, and sy is not arbitrarily flexible such that s¢ will not match the true score
s(x, t) after training. Hence, constraining sy to be conservative or not can impact performance.

3 GAUGE FREEDOM FOR EXACT SAMPLING AND DENSITY ESTIMATION

To sample a data point with a diffusion model sy, the initial value problem (IVP) (Z) needs to be
solved. Let sy be a vector field of the form

S0 (Xa t) =V logp(x, t) + 7o (X7 t) (6)

where 75 : RP x R — RP? is summarizing the discrepancy between the learned vector field sy (x, t)
and the true score s(x,t) = Vlog p(x, t). What is the gauge freedom of 7y such that sampling with
sp(x, t) is equivalent to sampling with the true score s(x, t)?

An equivalent description of the underlying ODE in (2) in terms of the corresponding density p(x, t)
can be derived using the Fokker-Planck equation or also known as Kolmogorov forward equation.
This equation, without diffusion term, is given by

8175;; t) =-V- (f(x7 t)p(x, t)) ) (7)

see appendix D.1 in[Song et al.| (2021). This equation holds for every given point x. The change
in density along a path {x; },c[0,1] is given by the instantaneous change of variables formula from
equation [3] see appendix A.2 in Chen et al.| (2018) for details on how to derive the instantaneous
change of variables formula from the Fokker-Planck equation. We will discuss the difference be-
tween equation (7) and equation (3] in more detail in section[D].

Let the vector field corresponding to IVP (2) when using sg instead of s be denoted by

Jale, ) 1= 10 0) = 307 W)sx,0), ®

From that perspective, the above question can be reformulated as follows: What is the gauge freedom

of ry such that the evolution of p(x, ¢) does not change when replacing f with fg" Suppressing the
arguments to avoid clutter, standard calculus yields

b N L L
==V (fp) ==pV-f = f'Vp=—p (V- f+ [ Viogp) ©)
where we have used Vp = pV log p in the last step (we hence assume that p # 0). Now, replacing

f by fg in equation @), we have that the density will not change whenever

V- (5o0mn)) + (5o 0rtx, t))Twogp<x, H=0 (10)

which is equivalent to
V -ro(x,t) + ro(x,t) T Viogp(x,t) = 0 (11)

as g2 is typically independent of x and strictly positive. Therefore, whenever rg fulfills equation
for all x € RP and ¢ € [0, 1], we have that sy and s will lead to the same samples and densities
since the evolutions of the corresponding marginal probability distributions are the same.

The gauge freedom condition yields a unique decomposition of any square-integrable (with
respect to the measure induced by p(+,¢)) diffusion model sy into a sum of a conservative vector
field and a remainder term satisfying equation (IIJ), see theorem[I] This unique decomposition has
some direct consequences, which we summarize in corollary (1| First, it shows that whenever the
diffusion model sy is conservative, the remainder must vanish, 79(x,t) = 0. Second, it follows
that exact sampling and density estimation is provided if and only if the conservative part is the true
score, that is sy is given by equation (6)
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Theorem 1 (Orthogonal decomposition) Let t € [0,1]. For any vector field v € L?(p), there
exists a unique conservative vector field V¢ € L*(p), and a unique vector field r € L?(p) fulfilling
the gauge freedom condition (I1)) such that

v(x,t) = Vo(x,t) + r(x,t). (12)

Corollary 1 Let v € L?(p) with unique decompositions V¢ and r such that v(x,t) = Vo(x,t) +
r(x,t), with r satisfying the gaufe freedom condition .

(a) Ifv(x,t) is conservative, then it must hold that r(x,t) = 0.

(b) v(x,t) provides exact density estimation and samples for the IVP 2| (replacing s by v) if
and only if Vo(x,t) = Vog p(x, t).

Theorem [1| shows that the space of conservative vector fields in L?(p) is orthogonal to the space
of vector fields fulfilling the gauge freedom condition in L?(p), see figute [I| This orthogonality
provides a new intuition on the score matching loss in diffusion models. Let sg(x,t) = Vyg(x,t) +
ro(x,t) € L?(p), where rg satisfies the gauge freedom condition (11), then

E[lls(x,t) = so(x,)|I3] = E [[[s(x,t) — do(x,1)|13] +E [l[re(x,1)|13] - (13)

where the expectation is over x ~ p(x,t). Thus score mathcing minimizes two terms. The first
one on the right hand side of equation (I3) is relevant (since when it is zero, correct sampling and
density estimation can be obtained). The second term is irrelevant since it does not affect sampling
and density estimation. However, for unconstrained sy this second term will be generally different
from 0, see[Saremi| (2019)), showing that unconstrained sy cannot match s exactly.

Remark 1 A divergence-free remainder term is gauge freedom for the instantaneous change of
variable formula derived in |Chen et al.| (2018), see section @] in the appendix. Note, however,
that this is not sufficient for exact sampling and density estimation as opposed to equation .
The instantaneous change of variable formula derived in|Chen et al.|(2018) describes an ordinary
differential equation for p(xy,t), that is, how p(xy,t) changes totally as a function of time. The
Fokker-Planck equation @ on the other hand, describes how p(Xt, t) changes partially as a function
of time treating x; as constant. The latter is a much stronger requirement ensuring that all vector
fields with remainder term satisfying condition ([1) correspond to the same marginals and thus
stochastically equivalent sample paths.

4  CONSERVATIVITY IS NEITHER NECESSARY NOR SUFFICIENT FOR EXACT
DATA GENERATION AND LIKELIHOOD ESTIMATION

A direct consequence of the gauge freedom for diffusion models derived in section [3]is that con-
servativity is neither necessary nor sufficient for exact likelihood estimation or generating samples
from the true data distribution, see figure|l} To substantiate the theoretical framework with an empir-
ical illustration, in this section we construct a simple counter-example of a vector field sg which is
not conservative but still satisfies the sufficient condition for exact density estimation and sampling,

equation (TT).

Let the target distribution be Gaussian with a diagonal covariance matrix. Then, by the additive
closure of Gaussian distributions, the true score s transforming a standard Gaussian to the target
Gaussian must take the following form,

2
s(x¢,t) = Vlog p(x,t) = —X; 'x, with 31 = <Ul O(t) a‘g(t)) (14)
2

where 0%(t), 03 (t) > 0. Defining the remainder term as

. 0 —oi(t
ro(xe,t) = Roxe, with R, = <ag(t> il )>, (s)

it is easy to verify the gauge freedom condition from equation (TI): on the one hand, ry is
divergence-free as the trace of the Jacobian R; is 0. On the other hand, we have that

_ 0 1
ro(xe, )" - Viogp(xe, t) = —xi R Ty ', = —x/ (_1 0) x; = 0. (16)
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Finally, note that 7y cannot be conservative since the Jacobian is not symmetric (Schwarz theorem).
Therefore, we have constructed a simple counter-example proving that the gauge freedom condition,
equation (TT), can be satisfied without the necessity of sg to be conservative. This example can be
straightforwardly generalized for higher dimensions.

Conservativity is also not sufficient as, for example, 74 (x;,t) = —s(xy, t) would reduce the back-
ward ODE from equation to be defined solely by the drift term f. For f = 0, such an ODE
would only generate samples from the limiting distribution p; (x) as no dynamics are involved.

@ ® |
exact sampling and exact.samphng 'fmd
density estimation density estimation

v=Vor

conservative

log p

conservative

>

gauge freed. satisfying
gauge freed. satisfying

Figure 1: Every vector field v € L?(p) can be orthogonally decomposed into a conservative vector
field V¢ and a remainder term r that satisfies the gauge freedom condition given by equation (TT).
(A) Exact sampling and density estimation is obtained when the conservative component V¢ of the
vector field v is equal to the true score (i.e. V¢ = V log p) - which is the case for all the points on
the green dashed line. So v does not need to be conservative. (B) Even if v is conservative, it is not
sufficient to guarantee exact sampling and density estimation since it may be different than the true
score.

5 A CONSERVATIVE VECTOR FIELD IS DESIRED FOR EXACT LOCAL
INFORMATION

In this section, we show how to estimate the intrinsic dimensionality of the data manifold when-
ever sy matches the true score s. Additionally, we provide empirical evidence that with a non-
conservative vector field, the ID is not estimated correctly while using the derived method we can
estimate the ID correctly if sy is constrained to be conservative (not necessarily matching s ex-
actly). This suggests that constraining the diffusion model to be conservative should be preferred
for inferring local information.

A sample from a diffusion model is the solution to an initial value problem, see equation (Z). We
denote the solution of this IVP as ¢:(x1) where x; ~ p(x,1). Note that this solution is unique
whenever f and g are globally Lipschitz in both state and time @ksendal (2003). How does this
solution depend on the initial value x;? Let s > 0 and € ~ N (0, I), then we have that

Pu(x1 + s€) = du(x1) + 88(]557551(1)5 +0)
and hence for s — 0,
Pl 15€) =) 4 vy (e, )Y (x0,0)T) (a7

S

d T .
where we have defined Y (x1,t) = %57)(:1), and — denotes convergence in distribution. Equation
(1'7) means that a diffusion model maps locally a Gaussian distribution into a Gaussian distribution.
Therefore, we can relate local information on the manifold, such as directions and strengths of
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@ forward SDE dx; = f(xy,t)dt + g(t)dwy - @
«—— backward ODE dx; = [f(xi,t) — 39*()s(x, t)] db ——
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AQ(O)'> 0 o Aa2(t) >0
(manifold direction) (manifold direction)
A(t) > 0ast—0 Ai(t) >0

(off-manifold direction) (off-manifold direction)

Figure 2: Intuition of how the singular values of Y (x1,t) = 84)5)(:1‘1) evolve over time for a low-

dimensional data-manifold. The singular value in the manifold direction will saturate, while the
singular values in the off-manifold direction will tend to O (bottom left).

variability, to the singular vectors and singular values of Y'(x1,0), respectively, see figure 2. A
similar result to equation was also observed for normalizing flows (Cunningham et al., [2022;
Horvat & Pfister, [2022), and was exploited by [Horvat & Pfister| (2022) to use normalizing flows for
estimating the intrinsic dimensionality of low-dimensional manifolds. In the following, we want to
estimate the ID similarly using diffusion models. For the sake of brevity, from now on, we drop the
dependence of Y (x1,t) on x; and set Y; := Y (xy,t).

Figure serves as an illustration of the main idea. Starting from a low-dimensional manifold, an arc
embedded in R?, with a density py, we gradually transform the data-density to a standard Gaussian
p1. To sample a new data point, we first sample x;, and to analyze how a vicinity of x; evolves
through the backward diffusion, we can study how the singular values of Y; change as a function of
time (bottom row). Crucially, since the data lives on a low-dimensional manifold, the singular value
of Y; associated with the off-manifold directions must approach zero when ¢ — 0. At the same
time, the other singular value will converge to some fixed value. Indeed, the sensitivity to the initial
condition of the backward denoising process is much larger along the “on-manifold” direction than
on the “off-manifold” direction. Therefore, if we can study how the singular values of Y; evolve
as a function of time, the number of saturating singular values will correspond to the true intrinsic
dimensionality.

Unfortunately, we cannot access Y;. However, a standard result from the study of ODE is that Y; is
the solution of

dY, = Vf(¢e(x1),t)Yedt, Yo=1 (18)

where V f(¢;(x1),t) is the Jacobian of f(x,t) evaluated at (¢;(x1),t), see [Teschl (2012). This
description of Y; allows us to express the singular values of Y; in terms of the eigenvalues of
V f(¢+(x1),t) which we can calculate in practice when we approximate the gradient of the true
score V log p(x,t) using a diffusion model sg(x,t). In the supplementary materials, we prove the
following theorem:

Theorem 2 Let the data distribution p(-,0) be supported on a low-dimensional manifold M of
dimension d embedded in RP. Let s¢(x,t) € L*(p) be a diffusion model trained on data from
p(-,0) providing exact samples and density estimation. Let P;(x;) := Y (x1,t)Y (x1,t)T have
smooth eigenvalues in t for all x; € RP where Y (x1,t) = %57)(:]). Suppose that there exists an
e > 0 such that [Py(x1), V fo(¢1(x1),1)] = 0 forall t € [0,€], that is, P,(x1) and V fo(¢¢(x1), 1)
commute for all t € [0, €]. Then, we have that

Sg Is conservative —> rank {exp (Vf(xo, O))} = rank [exp (Vfg (%0, O))} =d, (19)
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where xg = ¢g(x1).

Theorem (2) shows that the intrinsic dimensionality can be estimated using the rank of the Jacobian
of fy. In the following, we will empirically confirm this.

Remark 2 If both P; and V fg}t are diagonalizable on the one hand, and P; and V f~9)t have the
same eigenvectors on the other hand, we have that indeed [P;,V fg ;] = 0. For sufficiently small

g, the eigenvectors of V fo1(x) will align with the normal and tangent space of the manifold,
see discussion in \Wenliang & Moran| (2022). Also, (Permenter & Yuan, |2023) support this hy-
pothesis as they show that denoising is approximately projecting close to the data manifold. As
also the singular vectors of P; will align with the normal and tangent space, the assumption that

[Py(x1), V.fo(¢e(x1),1)] = 0, Vt € [0,&], for a sufficiently small £ is reasonable.

Intrinsic dimensionality estimation using diffusion models: We consider a 2—dimensional Gaus-
sian embedded in R® as a toy example and a proof of concept. Thus, the intrinsic dimensional-
ity of the data-manifold is 2. We train a conservative and non-conservative diffusion model using
f(x,t) = 0and g(t) = 25" as drift and diffusion coefficient, respectively. The non-conservative dif-
fusion model is simply an unconstrained neural network sg (X, t) = 19 where 1 : R® x R+q — R5.
The conservative version is sg(x,t) = V|[tg(x,t)||3 as suggested by [Du et al[(2023). In ﬁgure
A, we see the evolution of the singular values as stated in theorem 2] as a function of time in log-log
scale. Each color stands for 1 of a total of 5 singular values. If we use a conservative vector field
(left plot), the singular values evolve as predicted; that is, 2 of them saturate, whereas the remain-
ing 3 diverge. All 5 singular values saturate for the non-conservative vector field, and the intrinsic
dimensionality cannot be estimated using the singular values of Y;. Although we only show the
trajectories for one representative sample, we observe the same behavior across different samples

In figure 3] B, we show that our method scales with increasing embedding and intrinsic dimension.
Our method perfectly matches the true intrinsic dimension for a sphere with dimension D/2 — 1
embedded in D for different values of D. We conduct more experiments in the supplementary on
different manifolds (spheres, tori, swiss rolls) with different embedding dimensions and observe that
the results do not change: a conservative sg can estimate the intrinsic dimension exactly whereas
a non-conservative does not - even if we increase the number of parameters used for sy or add a
penalty term enforcing conservativity by symmetrizing the Jacobian of sy as suggested by |(Chao
et al. (2023)) and (Cui et al.| (2022).

Note that alsoWenliang & Moran|(2022) and |Batzolis et al.| (2022)) estimate the intrinsic dimension
using diffusion models. However, [Wenliang & Moran| (2022) does not come with any theoretical
guarantee for estimating d correctly, and Batzolis et al.| (2022) does not estimate the ID correctly for
spheres. Besides, our main motivation is to discuss the gauge freedom and conservativity question
and their importance for correctly inferring local information. We did not focus on developing a
state-of-the-art ID estimator, which is why we leave a thorough comparison of recent ID estimators
based on neural networks (Horvat & Pfister;, [2022; Batzolis et al., [2022; [Wenliang & Moran), [2022;
Tempczyk et al., 2022; Mohan et al., 2019) for the future.

6 DISCUSSION

In this paper, we have argued that instead of asking whether a diffusion model should be a con-
servative vector field (as required by the original theory) or not (as usually done in practice), a
better question to ask is if there exists a greater class of diffusion models without sacrificing exact-
ness in both density estimation and sampling ability. Indeed, we have demonstrated theoretically
that diffusion models enjoy a gauge freedom for data synthesis and density estimation. As a direct
consequence of this gauge freedom, we have shown that conservativity is neither necessary nor suf-
ficient for exact density estimation or perfect sampling. To the best of our knowledge, this is the first
theoretical answer to the conservity question, which was previously only addressed empirically with
contradicting and unsatisfying results. Our theory also provides new intuition on the score-matching
objective and confirms previous results that an unconstrained diffusion model will likely not learn
the true score exactly.

>We added some slack to the curves for better display as some overlap.
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Figure 3: A: Singular values of Y; as predicted by lemmal[T]in the appendix for sy conservative (left)
and non-conservative (right). Each color represents one singular value (5 in total as the embedding
dimension is 5). B: Intrinsic dimensionality estimation of sphere with dimension d = D/2 — 1
embedded in D for different values of d.

In practice, enforcing the gauge freedom conditions may be challenging since, to do so, one would
need access to the true score function. However, since time-continuous diffusion models are trained
to learn the transitional probability function po:(x+|xo) for all times ¢ and data points xg, see equa-
tion (3)), one could add penalty terms to enforce the gauge freedom conditions accordingly. We leave
this exploration for the future.

Finally, we derived in the appendix lemma which relates the singular values of Y (¢,x1) (which
are unknown) to the singular values of fy (which can be calculated), for conservative vector fields
only. As the singular values of Y; describe how a small neighborhood of the initial value x; evolves
when applying the sample generating ODE, we have used this information to estimate the intrinsic
dimensionality of the data-manifold. We have seen empirically that only if sy is indeed conservative,
we obtain the right behavior as predicted by theorem@. Though one key assumption of theorem 2]
is strong, namely that the commutator of Y;Y,” and V fy vanishes sufficiently close to the manifold,
we demonstrated on different manifolds that, nevertheless, the singular values behave as predicted,
and the true ID can be estimated. Therefore, we hypothesize that, indeed, the eigenvectors of V fy
and Y;Y,T align close to the data manifold. Finally, the intrinsic dimensionality should be also
estimated correctly if the remainder term 79 of sy = s + 7y fulfills the gauge freedom condition.
However, as discussed, this is difficult to ensure in practice. Relaxing the conditions of theorem |Z|
to accommodate for the general case is an interesting direction to pursue and might provide new
insights on the gauge freedom condition.

As a takeaway message, when using diffusion models for data synthesis or density estimation, con-
servativity is neither necessary nor sufficient, but the gauge freedom condition from equation (TT)) is
necessary for the remainder term 7y when the diffusion model is expressed as sg = s+19. However,
when one is interested in inferring local information of the data-manifold using diffusion models,
we recommend working with a conservative vector field such that the right conclusion can be made.

ACKNOWLEDGMENTS

We express our sincere gratitude to the anonymous reviewers for their meticulous examination of our
manuscript and their valuable recommendations. We would like to extend special acknowledgment
to Reviewer h3ie, whose insightful observations regarding gauge freedom significantly contributed
to the formulation of theorem [T] and corollary [T}, see https://openreview.net/forum?
1d=92KVI9xAMhF &noteId=jwbeNMgn9r for details.


https://openreview.net/forum?id=92KV9xAMhF&noteId=jwbeNMqn9r
https://openreview.net/forum?id=92KV9xAMhF&noteId=jwbeNMqn9r

Published as a conference paper at ICLR 2024

REFERENCES

Ehsan Abedi and Simone Carlo Surace. Gauge freedom within the class of linear feedback particle
filters. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 666—671. IEEE, 2019.

Brian D. O. Anderson.  Reverse-time diffusion equation models.  Stochastic Processes
and their Applications, 12(3):313-326, May 1982. ISSN  0304-4149. doi:  10.
1016/0304-4149(82)90051-5. URL https://www.sciencedirect.com/science/
article/pii/0304414982900515.

Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zuegner, Marco Federici, Ce-
cilia Clementi, Frank Noé, Robert Pinsler, and Rianne van den Berg. Two for One: Diffu-
sion Models and Force Fields for Coarse-Grained Molecular Dynamics, February 2023. URL
http://arxiv.org/abs/2302.00600. arXiv:2302.00600 [cs].

Georgios Batzolis, Jan Stanczuk, and Carola-Bibiane Schonlieb. Your diffusion model secretly
knows the dimension of the data manifold. arXiv preprint arXiv:2212.12611, 2022.

Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, and Chun-Yi Lee. On Investigating the Conserva-
tive Property of Score-Based Generative Models, January 2023. URL http://arxiv.org/
abs/2209.12753. arXiv:2209.12753 [cs].

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. In Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/69386f6bb1dfed68692a24c8686939b9-Abstract.htmll

Chenwei Cui, Zehao Yan, Guangshen Liu, and Liangfu Lu. Generalizing and Improving Jaco-
bian and Hessian Regularization, December 2022. URL http://arxiv.org/abs/2212.
00311} arXiv:2212.00311 [cs, math].

Edmond Cunningham, Adam D. Cobb, and Susmit Jha. Principal Component Flows. In Pro-
ceedings of the 39th International Conference on Machine Learning, pp. 4492-4519. PMLR,
June 2022. URL https://proceedings.mlr.press/v162/cunningham22a.htmll
ISSN: 2640-3498.

Lokenath Debnath and Piotr Mikusinski. Introduction to Hilbert spaces with applications. Academic
press, 2005.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B. Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce, Reuse, Recycle: Com-
positional Generation with Energy-Based Diffusion Models and MCMC, February 2023. URL
http://arxiv.org/abs/2302.11552. arXiv:2302.11552 [cs, stat].

Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid Monte
Carlo. Physics Letters B, 195(2):216-222, September 1987. ISSN 0370-2693. doi: 10.
1016/0370-2693(87)91197-X. URL https://www.sciencedirect.com/science/
article/pi1/037026938791197X.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commun. ACM, 63(11):
139-144, October 2020. ISSN 0001-0782, 1557-7317. doi: 10.1145/3422622. URL https:
//dl.acm.org/doi/10.1145/3422622,

David J Griffiths. Introduction to electrodynamics, 2005.

Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant computation through
stochastic chebyshev expansions. In International Conference on Machine Learning, pp. 908—
917. PMLR, 2015.

Christian Horvat and Jean-Pascal Pfister. Intrinsic dimensionality estimation using normalizing
flows. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 12225-12236. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/4f918fa3a7¢c38b2d9%08b484bccd33334-Paper—Conference.pdf.

10


https://www.sciencedirect.com/science/article/pii/0304414982900515
https://www.sciencedirect.com/science/article/pii/0304414982900515
http://arxiv.org/abs/2302.00600
http://arxiv.org/abs/2209.12753
http://arxiv.org/abs/2209.12753
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
http://arxiv.org/abs/2212.00311
http://arxiv.org/abs/2212.00311
https://proceedings.mlr.press/v162/cunningham22a.html
http://arxiv.org/abs/2302.11552
https://www.sciencedirect.com/science/article/pii/037026938791197X
https://www.sciencedirect.com/science/article/pii/037026938791197X
https://dl.acm.org/doi/10.1145/3422622
https://dl.acm.org/doi/10.1145/3422622
https://proceedings.neurips.cc/paper_files/paper/2022/file/4f918fa3a7c38b2d9b8b484bcc433334-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4f918fa3a7c38b2d9b8b484bcc433334-Paper-Conference.pdf

Published as a conference paper at ICLR 2024

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 19(2):433—
450, January 1990. ISSN 0361-0918. doi: 10.1080/03610919008812866. URL https:
//doi.org/10.1080/03610919008812866. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/03610919008812866.

Aapo Hyvirinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Daniel Im, Mohamed Belghazi, and Roland Memisevic. Conservativeness of untied auto-encoders.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing Flows: An Introduc-
tion and Review of Current Methods. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 43(11):3964-3979, November 2021. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.
2992934. Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, and Ste-
fano Ermon. Improving Score-based Diffusion Models by Enforcing the Underlying Score
Fokker-Planck Equation, January 2023. URL http://arxiv.org/abs/2210.04296.
arXiv:2210.04296 [cs].

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional Visual
Generation with Composable Diffusion Models. In Shai Avidan, Gabriel Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision — ECCV 2022, Lecture
Notes in Computer Science, pp. 423-439, Cham, 2022. Springer Nature Switzerland. ISBN 978-
3-031-19790-1. doi: 10.1007/978-3-031-19790-1_26.

Sreyas Mohan, Zahra Kadkhodaie, Eero P Simoncelli, and Carlos Fernandez-Granda. Robust and
interpretable blind image denoising via bias-free convolutional neural networks. arXiv preprint
arXiv:1906.05478, 2019.

Radford M. Neal. MCMC using Hamiltonian dynamics. May 2011. doi: 10.1201/b10905. URL
http://arxiv.org/abs/1206.1901. arXiv:1206.1901 [physics, stat].

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action Matching: Learn-
ing Stochastic Dynamics from Samples, February 2023. URL http://arxiv.org/abs/
2210.06662. arXiv:2210.06662 [cs].

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, E. Yang, Zach DeVito,
Zeming Lin, Alban Desmaison, L. Antiga, and Adam Lerer. Automatic differen-
tiation in PyTorch. October 2017. URL https://www.semanticscholar.
org/paper/Automatic-differentiation-in-PyTorch-Paszke-Gross/
b36a5bbl1707bb9c70025294b3a310138aae8327al

Frank Permenter and Chenyang Yuan. Interpreting and improving diffusion models using the eu-
clidean distance function. arXiv preprint arXiv:2306.04848, 2023.

Tim Salimans and Jonathan Ho. Should EBMs model the energy or the score? April 2021. URL
https://openreview.net/forum?id=9AS—-TF2 jRNb.

Saeed Saremi. On approximating V f with neural networks. arXiv preprint arXiv:1910.12744, 2019.

John Skilling. The Eigenvalues of Mega-dimensional Matrices. In J. Skilling (ed.), Maximum
Entropy and Bayesian Methods: Cambridge, England, 1988, Fundamental Theories of Physics,
pp. 455-466. Springer Netherlands, Dordrecht, 1989. ISBN 978-94-015-7860-8. doi: 10.1007/
978-94-015-7860-8 48. URL https://doi.org/10.1007/978-94-015-7860-8__
48l

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. PMLR, 2015.

11


https://doi.org/10.1080/03610919008812866
https://doi.org/10.1080/03610919008812866
http://arxiv.org/abs/2210.04296
http://arxiv.org/abs/1206.1901
http://arxiv.org/abs/2210.06662
http://arxiv.org/abs/2210.06662
https://www.semanticscholar.org/paper/Automatic-differentiation-in-PyTorch-Paszke-Gross/b36a5bb1707bb9c70025294b3a310138aae8327a
https://www.semanticscholar.org/paper/Automatic-differentiation-in-PyTorch-Paszke-Gross/b36a5bb1707bb9c70025294b3a310138aae8327a
https://www.semanticscholar.org/paper/Automatic-differentiation-in-PyTorch-Paszke-Gross/b36a5bb1707bb9c70025294b3a310138aae8327a
https://openreview.net/forum?id=9AS-TF2jRNb
https://doi.org/10.1007/978-94-015-7860-8_48
https://doi.org/10.1007/978-94-015-7860-8_48

Published as a conference paper at ICLR 2024

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribu-
tion, October 2020. URL http://arxiv.org/abs/1907.05600, arXiv:1907.05600 [cs,
stat].

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations, February
2021. URL http://arxiv.org/abs/2011.13456. arXiv:2011.13456 [cs, stat].

Piotr Tempczyk, Rafat Michaluk, Lukasz Garncarek, Przemystaw Spurek, Jacek Tabor, and Adam
Golinski. Lidl: Local intrinsic dimension estimation using approximate likelihood. In Interna-
tional Conference on Machine Learning, pp. 21205-21231. PMLR, 2022.

Gerald Teschl. Ordinary Differential Equations and Dynamical Systems. American Mathematical
Soc., August 2012. ISBN 978-0-8218-8328-0. Google-Books-ID: FZOCAQAAQBAJ.

Li Kevin Wenliang and Ben Moran. Score-based generative model learn manifold-like structures
with constrained mixing. In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion Models: A Comprehensive Survey of
Methods and Applications, October 2022. URL http://arxiv.org/abs/2209.00796.
arXiv:2209.00796 [cs].

Weili Zeng. How to Construct Energy for Images? Denoising Autoencoder Can Be Energy Based
Model, March 2023. URL http://arxiv.org/abs/2303.03887. arXiv:2303.03887
[cs].

Bernt @ksendal. Stochastic Differential Equations. Universitext. Springer, Berlin, Heidelberg, 2003.
ISBN 978-3-540-04758-2 978-3-642-14394-6. doi: 10.1007/978-3-642-14394-6. URL http:
//link.springer.com/10.1007/978-3-642-14394-6.

A PROOF OF THEOREM 1

Letv € L?(p), that is
H’l}”%z(p) = Exmop(x,t) [Ug(X)] = /RD v (x)p(x, t)dx < oco. (20)

Note that L?(p) is a Banach space with a scalar product inducing above norm. This scalar product
allows to define the orthogonal complement of the subspace of conservative vector fields in L?(p).
As we will see below, this complement is exactly the space of vector fields fulfilling the gauge
freedom condition. Finally, this complement is also a closed subse and thus, Banachs projection
theorem guarantees the desired unique decomposition, see theorem 3.6.6 [Debnath & Mikusinski
(2005).

What is left to show is the aformentioned orthogonality. Let V¢ € L?(p), and r € L?(p) fulfilling
the gauge freedom condition (TI). We have that

<V¢|T>L2(p) = Epr(x,t) [V¢(X7 t)T(X, t)]
_ /R Vol r(x, Op(x, t)dx

=— - o(x, 1) (V - 7(x,t) + r(x, )T Viog p(x, t))dx

0 21

where in the second to last equation we have use the integration by parts formula. Thus, V¢ is
orthogonal to 7 in the Hilbert space L?(p). O

=

3A proof of this standard result from the study of Hilbert spaces can be found in [Debnath & Mikusinski
(2005)), theorem 3.6.2.
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B PROOF OF COROLLARY

Corollary (a) is a direct consequnce of the uniqueness of the decomposition. One direction of corol-
lary (b) is shown in the beginning of section (3). There, we have shown that if the conservative part
of v indeed matches the true score, then v provides exact samples for the IVP 2]

Now, we assume that v provides exact samples for the IVP[2| Thus, the difference between v and
the true score needs to fulfill the Gauge freedom condition @, that is

vd)(xv t) -V IOg p(X7 t) + T(Xv t) (22)

fulfills equation (TT). However, r already fulfills equation (TI)), and conservative vector fields are
orthogonal to vector fields fulfilling equation . Therefore, the conservative part Vo (x,t) —
V log p(x, t) needs to vanish. With other words, it must hold that V¢(x,t) = V log p(x, t) which
was left to show. [

C PROOF OF THEOREM 2]

As we assume that sy is conservative and yields exact sampling and density estimation, corollary
implies that sy = s. Thus, we have that fg = f What is left to show is that the rank of the

matrix exponential exp (V f(x, t)) converges to d. To do so, we will relate the singular values of

P; with the eigenvalues of V f (x,t) through lemmal Note that the rank of lim; o Y;Y,” where
Yi(x1) = 8¢’ (xl) must be d as ¢;(x1) is the solution to the IVP from equation and Po =YoY&

defines the local variability on the manifold (which is d-dimensional) see equation (17). As the rank
of Py is given by the number of non-zero singular values of Yy, we will see how the aformentioned

relation allows us to estimate d by the number of non-exploding eigenvalues of lim;_,o V f (x,t), or
equivalently: the rank of exp (V f(x, O)) .

Lemma 1 With the same assumptions as in theorem let V f(¢¢(x1), ) have eigenvalues i, (t) <
- < up(t), then the eigenvalues 0 < A1(t) < --- < Ap(t) of Pi(x1) are given by

Ai(t) = Ai(e) exp <2 /: ui(s)ds) (23)
forallt €0,¢]

Proof of Iemmal The singular values of Y;(x;) are given by the elgenvalues of YT(xl)Yt(xl)
We simply write Y; instead of Y;(x1) in the following. Note that P, = Y}Y has the same eigen-
values as Y,T'Y; (but not necessarily the same eigenvectors). Let p; be an eigenvector of P; with
eigenvalue \; # 0 (see lemma 2)), that is P;p; = A;p;. Then, taking the time derivative on both
sides of the eigenvector equation, we get

Pipi + P:pi = \ipi + \ibs 24)

Note that every symmetric matrix has an eigenvector decomposition consisting of orthonormal
eigenvectors. In this context, p; is either orthogonal to p; (hence an eigenvector of P) or p; = 0.
In both cases we have that (p;, p;) = 0. Therefore, if we multiply both sites of equation with
pl from the left, we have that

(pi|Ppi) = \i. (25)
Note that ) ) . . .
P =YY+ VY =VfP, + PVf (26)

since Yt V f,Y; where V f, := V f(¢:(x1),t), and thus for the transpose holds YT = YTV fI =
YIv f¢ (note that V f; is symmetric as sy is conservative by assumption). Introducing the com-

mutator [P;, V ft] := Vf.P, — P,V f,, whichis 0 forall ¢t € [0, €] by assumption, we can further
simplify above equation for ¢ € [0, €]

P, =[P,V f]+2PVf, =2P,V /. (27)
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Note that [Pt, v ft] =0 1mphes that V fip; is an eigenvector of Py as P,V fipi = VfiPp; =
i Vftpl If \; #0in equat10n , then we have that Vftpl = p;p; for some p; € R\{0} as oth-

erwise Vfth p;p; for some j 7é 7 and hence (pz|Ptp,> = 2<pz|PtVfth> =2u;Aj(pi|p;) =0
which is a contradiction to A; # 0.

If /.\Z- = 0, however, then we must have for all i that V ftpl- is an element in the space spanned

by all eigenvectors except p;. In other words, V ft is a change-of-basis with a permutation matrix
as a change-of-basis matrix. However, such a transformation cannot be symmetric which we have

assumed for V ft
Therefore, we have that )\2 # 0and V ftpi = Ui P;-

Then, ) ~
Pip; = 2P,V fipi = 2 14 Ps- (28)

Finally, inserting this into equation (23)) we have that

).\i = <pz’|Ptpi>

— Ai = (pil2\ipipi)
<~ ).\i = 2#2')\2'

Ai

W
= N =2
= 4 In(\;) =2

dt i) = 2/
= Ai(t) = Ai(e) exp (2/ ui(s)ds) (29)
¢

Note that we for the third step, we need that A; # 0 which we proof below in lemma [2| This ends
the proof. [

Lemma 2 The eigenvalues \;(t) are non-zero for all t > 0.

Proof: Liouvilles formula for the determinant of the matrix solution, see lemma 3.11 in [Teschl
(2012), to the ODE

dY; = V f(¢(x0), 1)Vt
Yo=1 (30)

states that

t
dﬁY}dﬁY&mp(/'ﬁ(Vﬂ@@m%ﬂ)&). G1)
0

The trace of V f(¢+(x0), t) is given by 3, 1;(t), and the determinant of Y; by TI;\;(t). The right-
hand side is always non-zero. Therefore, each factor on the left-hand side is non-zero. This is what
we wanted to show. [

Finally, we finish the proof of theorem 2] The rank of P, is d by the characterisation of P; through
equation [I7] On the other hand, the rank is given by the number of non-zero eigenvalues of P;.
These eigenvalues can be calculated using the eigenvalues of V f. see lemma I Thus, (D — d)

eigenvalues of V ft must converge to —oo for ¢ — 0 which corresponds to the rank of exp V f9 0
which is what we wanted to show. 1.

D IF EXACT SAMPLING IS PROVIDED, HELMHOLTZ DECOMPOSABILITY IS
SUFFICIENT FOR EXACT DENSITY ESTIMATION

In the previous section, we have derived a gauge freedom for diffusion models expressed in equation
(T0). By initially considering the ODE formulation of the sampling procedure, we have exploited
the equivalent description of sample trajectories in terms of the underlying marginal probability
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densities given by the Fokker-Planck equation. The close relation between sampling and density
estimation is not surprising as evaluating the density, see equation (3], requires knowledge of the en-
tire sample trajectory. In this section, we show that if the model generates exact samples, Helmholtz
decomposibility is sufficient for exact density estimation.

Let sy be given by equation @) with ry(x,t) being a rotation field (that is a vector field with V -
rg(x,t) = 0). Replacing the true score by sg(x,t) for evaluating the model likelihood in equation
(@), will lead to the same likelihood because

Tr (Vsg(x¢,t)) = Tr (V2 log p(x¢,t)) + Tr(Vry(xy,t)) = Tr (V2 log p(x¢,t)) + V - ro(x, 1)

which results in Tr (V2 log p(x¢, t)) as the trace of the Jacobian of ry is equal to the divergence of
rg which is 0 for all rotation fields. Therefore, for a given path {x; }+¢[o,1], the diffusion model sq
as defined in equation (6) and the true score s yield the same density when using equation (3] to
estimate po(Xg), no matter how close sy is to the true score.

E INTRINSIC DIMENSIONALITY ESTIMATION

As mentioned at the end of Section 5.1 of the main text, we perform more experiments for estimating
the intrinsic dimensionality.

For the non-conservative diffusion model, we simply use a standard feed-forward neural network
where we first embed the data into 100 dimensions and linearly transform it followed by a non-
linearity (first step). Further, we embed the resulting features into 200 dimensions, again linearly
transform it followed by a non-linearity, and finally project back into the data dimensions (second
step). We embed the time into 100 dimensions using a Gaussian-Fourier projection and add these
embeddings to the features after the first step. The conservative version additionally takes the gradi-
ent of the corresponding L2-norm with respect to the inputs.

In figure5|and ] we show the evolution of the singular values (in log-log scale) as a function of time
for the Swiss Roll, Sphere, and Torus embedded in D = 3 on the left and for embedding dimension
D = 5 on the right, respectively. On each side, we show the evolution for both a conservative and
not conservative diffusion model sg. The number of lines corresponds to the embedding dimensions
D as this is the number of singular values of Y. We can see that for sy conservative, always 2 of
in total D singular values saturate when approaching the manifold (that is when ¢ — 0). However,
the remaining singular values do not saturate and tend to —oo, that is the singular values tend to 0
(confirming the intuition from the main text). For sy not conservative, however, all singular values
saturate showing that sy does not behave as predicted close to the manifold. Even if we add a penalty
term the Jacobian enforcing symmetry and thus conservativity, as suggested in |Chao et al.| (2023)),
we observe the same scaling behavior.
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Figure 4: Singular values trajectories of as torus for different embedding dimensions (D = 3 and
D = 5). We show the evolution of both a conservative and not conservative diffusion model.
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Figure 5: Singular values trajectories of the Swiss Roll and sphere for different embedding dimen-
sions (D = 3 and D = 5). We show the evolution of both a conservative and not conservative

diffusion model.
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