
Published as a conference paper at ICLR 2025

EDGE PROMPT TUNING FOR GRAPH NEURAL
NETWORKS

Xingbo Fu
University of Virginia
xf3av@virginia.edu

Yinhan He
University of Virginia
nee7ne@virginia.edu

Jundong Li
University of Virginia
jundong@virginia.edu

ABSTRACT

Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data
in a self-supervised manner has emerged as a prominent technique in recent years.
However, inevitable objective gaps often exist between pre-training and down-
stream tasks. To bridge this gap, graph prompt tuning techniques design and learn
graph prompts by manipulating input graphs or reframing downstream tasks as
pre-training tasks without fine-tuning the pre-trained GNN models. While recent
graph prompt tuning methods have proven effective in adapting pre-trained GNN
models for downstream tasks, they overlook the crucial role of edges in graph
prompt design, which can significantly affect the quality of graph representations
for downstream tasks. In this study, we propose EdgePrompt, a simple yet effec-
tive graph prompt tuning method from the perspective of edges. Unlike previous
studies that design prompt vectors on node features, EdgePrompt manipulates in-
put graphs by learning additional prompt vectors for edges and incorporates the
edge prompts through message passing in the pre-trained GNN models to better
embed graph structural information for downstream tasks. Our method is com-
patible with prevalent GNN architectures pre-trained under various pre-training
strategies and is universal for different downstream tasks. We provide compre-
hensive theoretical analyses of our method regarding its capability of handling
node classification and graph classification as downstream tasks. Extensive ex-
periments on ten graph datasets under four pre-training strategies demonstrate the
superiority of our proposed method against six baselines. Our code is available at
https://github.com/xbfu/EdgePrompt.

1 INTRODUCTION

Recent years have witnessed the remarkable success of Graph Neural Networks (GNNs) (Kipf &
Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018; Xu et al., 2019; Wu et al., 2019; Chen
et al., 2020; Wang et al., 2023b) for modeling ubiquitous graph-structured data in various real-world
scenarios, including social networks (Wei et al., 2023; Zhou et al., 2023), point cloud analysis (Wang
et al., 2019; Zhou et al., 2021), and healthcare systems (Fu et al., 2023; Wan et al., 2024a; Liu et al.,
2024). Such success is mainly attributed to their impressive capability to incorporate node features
and graph structures into the representations of graph data. Generally, GNN models are trained for
specific downstream tasks in an end-to-end manner. Nevertheless, the end-to-end manner for train-
ing powerful GNN models usually encounters significant challenges in practical deployments (Hu
et al., 2020b; Sun et al., 2022a; Liu et al., 2023; Fang et al., 2023). First, annotating a sufficient
number of labels for graph data is typically time-consuming and resource-intensive in the real world.
Second, well-trained GNN models cannot be well generalized to other tasks, even on the same graph
data (Wang et al., 2024b). To grapple with these critical challenges, applying pre-training techniques
on graph data has become increasingly prevalent.

Numerous recent studies have focused on designing effective pre-training strategies for training
powerful GNN models without using any label information from downstream tasks (Veličković
et al., 2019; Hu et al., 2020b; You et al., 2020; Hou et al., 2022; Xia et al., 2022; Wang et al., 2024a;
Wan et al., 2024b). The philosophy behind these pre-training strategies is to first train a GNN
model on pre-training tasks via self-supervised learning and subsequently transfer the pre-trained
GNN model to specific downstream tasks. Generally, there exists inevitable objective gaps between

1

https://github.com/xbfu/EdgePrompt

Published as a conference paper at ICLR 2025

Table 1: A brief comparison of graph prompt tuning methods in the existing studies. (PT=Pre-
training, DT=Downstream task)

Method PT Compatibility DT Universality Prompt Insertion

GPPT (Sun et al., 2022a) ✗ ✗ Task Embedding
GraphPrompt (Liu et al., 2023) ✓ ✓ Readout
GraphPrompt+ (Yu et al., 2024b) ✓ ✓ Hidden Representation
ALL-in-one (Sun et al., 2023) ✓ ✓ Node Feature
GPF-plus (Fang et al., 2023) ✓ ✓ Node Feature
MultiGPrompt (Yu et al., 2024d) ✗ ✓ Hidden Representation

EdgePrompt+ (Ours) ✓ ✓ Edge Aggregation

pre-training and the downstream tasks. For example, the GNN model can be pre-trained for link
prediction via self-supervised learning, while the downstream task may be node classification. To
bridge the objective gap between pre-training and downstream tasks, we typically need to adapt the
pre-trained GNN model for downstream tasks by either fine-tuning or graph prompt tuning. During
fine-tuning, the parameters of the pre-trained GNN model are updated for downstream tasks (Huang
et al., 2024; Zhili et al., 2024; Sun et al., 2024). Unlike fine-tuning, graph prompt tuning usually
keeps the pre-trained GNN model frozen and instead trains graph prompts for downstream tasks (Sun
et al., 2022a; Liu et al., 2023; Fang et al., 2023; Sun et al., 2023; Tan et al., 2023; Yu et al., 2024b;
Ma et al., 2024; Yu et al., 2024a; Li et al., 2025).

While recent graph prompt tuning methods show great prowess in adapting pre-trained GNN models
for various downstream tasks, the existing methods still have several fundamental limitations. First,
a few studies (Sun et al., 2022a; Yu et al., 2024d) design graph prompt tuning methods based on
specific pre-training strategies, which hinders their application to off-the-shelf pre-trained GNN
models. Second, the important dependency information carried by graph structures is ignored in
the existing studies (Fang et al., 2023; Liu et al., 2023; Sun et al., 2023). As illustrated in Table 1,
these methods focus on designing and learning graph prompts primarily by applying them to node
features or node representations. In this scenario, graph prompts are unable to enhance pre-trained
GNN models in capturing complex graph structural information for downstream tasks.

Although the significant role of edges in graph learning has been amplified by a cornucopia of
studies (Schlichtkrull et al., 2018; Gong & Cheng, 2019; Vashishth et al., 2020; Yang & Li, 2020),
unfortunately, none of the existing studies have exploited edges for graph prompt tuning. Naturally,
we may ask a question: how can we devise an edge-level graph prompt tuning method to effectively
enhance the performance of a pre-trained GNN model for downstream tasks? In this study, we
aim to answer this question through a pioneering investigation into designing edge prompts for
downstream tasks. In our investigation, we need to overcome two key challenges. First, edge prompt
design needs to be universal, capable of handling graphs of varying sizes and different downstream
tasks, such as node classification and graph classification. Second, edge prompt design must be
compatible with prevalent GNN models pre-trained by various strategies, especially with those that
cannot accommodate edge attributes. These two challenges make the edge prompt design nontrivial,
requiring an ingenious approach to graph prompt tuning.

To address the above issues, we propose a novel graph prompt tuning method named EdgePrompt
purely from the perspective of edges, fundamentally differing from node-level prompt designs in the
existing studies (Sun et al., 2023; Fang et al., 2023). The intuition of EdgePrompt is to manipulate
the input graph by adding extra learnable prompt vectors to edges and thereby enhance the capa-
bility of pre-trained GNN models for downstream tasks. In EdgePrompt, all the edges in the input
graph learn a shared prompt vector at each layer of the pre-trained GNN model. The edge prompts
will be aggregated along with node representations during the forward pass of the message-passing
mechanism. To further enhance the capacity of edge prompts, we propose an advanced version
EdgePrompt+ that enables each edge to learn its customized prompt vectors. We provide theoretical
analyses to support that our proposed method has the capability of enhancing the pre-trained GNN
models for downstream tasks. We conduct extensive experiments over ten graph datasets under four
pre-training strategies. The results validate the superiority of our proposed method compared with
six baselines. Our contributions to this study can be summarized as follows:

2

Published as a conference paper at ICLR 2025

• We devise a simple yet effective graph prompt tuning method, EdgePrompt and its variant
EdgePrompt+, from the perspective of edges to narrow the objective gap between pre-
training and downstream tasks.

• We provide comprehensive analyses of our method regarding its capability of handling
various downstream tasks, including node classification and graph classification.

• We conduct extensive experiments over ten datasets under four pre-training strategies to
evaluate the effectiveness of our proposed method. Experimental results demonstrate the
superiority of our method compared with six baselines for both node classification and
graph classification tasks.

2 RELATED WORK

Graph Pre-training. Numerous studies have proposed to train powerful GNN models via self-
supervised learning (Veličković et al., 2019; Sun et al., 2020; Hu et al., 2019; You et al., 2020;
Jin et al., 2020; Rossi et al., 2020; Xia et al., 2022; Hou et al., 2022; Wang et al., 2023a). These
studies can be roughly categorized into two genres: contrastive methods and generative methods.
Contrastive methods typically aim to maximize the agreement between augmented instances of the
same object. For instance, DGI (Veličković et al., 2019) and InfoGraph (Sun et al., 2020) adopt
the mutual information maximization between the local augmented instances and the global repre-
sentation. GraphCL (You et al., 2020) maximizes the agreement between two views of the same
graph by different augmentation strategies. SimGRACE (Xia et al., 2022) uses GNN models with
perturbed parameters to obtain contrastive views without data augmentation. In the meantime, gen-
erative methods attempt to pre-train GNN models by reconstructing specific information in the input
graph. For example, GraphMAE (Hou et al., 2022) pre-trains GNNs by reconstructing masked node
features. In addition, edge prediction is also employed as the pre-training technique by a cornucopia
of studies (Rossi et al., 2020; Jin et al., 2020; Sun et al., 2022a; Liu et al., 2023).

Graph Prompt Tuning. To bridge the gap between pre-training and downstream tasks, graph
prompt tuning methods modify the input graph with learnable prompt vectors for downstream tasks,
while keeping the pre-trained GNN model frozen. For example, GPF-plus (Fang et al., 2023) trans-
forms the input graph to a prompted one by adding extra learnable prompt vectors to node features
for downstream tasks. All-in-one (Sun et al., 2023) unifies various downstream tasks as graph-level
tasks and similarly learns prompt vectors that are added to node features. GPPT (Sun et al., 2022a)
mainly focuses on node classification as the downstream task and adopts link prediction as the pre-
training strategy. It narrows the gap between pre-training and downstream tasks by converting node
classification to link prediction. GraphPrompt (Liu et al., 2023) designs graph prompts as a feature
weighting vector to obtain task-specific (sub)graph-level representations. MultiGPrompt (Yu et al.,
2024d) chooses to insert prompt vectors into node representations at each hidden layer. However,
all the aforementioned studies ignore the role of edges when designing graph prompts, which are
widely regarded as fundamental properties in graph data.

3 PRELIMINARIES

Let G = (V, E) denote a graph where V = {v1, v2, · · · , vN} is the set of N nodes, and E is the edge
set. X ∈ RN×D denotes the node feature matrix where the i-th row xi represents a D-dimensional
feature vector of node vi ∈ V . The edges in G can also be represented by an adjacency matrix
A ∈ {0, 1}N×N where each entry aij = 1 if (vi, vj) ∈ E , otherwise aij = 0. Generally, GNN
models aim to learn expressive node representations through the message-passing mechanism (Kipf
& Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017; Xu et al., 2019) where the repre-
sentation of a target node is iteratively updated by aggregating the representations of its neighboring
nodes. Specifically, a GNN model has two fundamental operators: AGG(·) extracting the neighbor-
ing information of the node, and COMB(·) integrating the previous representation of the node and
its neighboring information. Mathematically, the l-th layer of an L-layer GNN model f updates the
representation of node vi ∈ V by

h
(l)
i = COMB(l)(h

(l−1)
i ,AGG(l)({h(l−1)

j : vj ∈ N (vi)})), (1)

3

Published as a conference paper at ICLR 2025

𝒑𝟑 𝒑𝟐 𝒆𝟏𝟑 𝒆𝟏𝟐
𝒗𝟏 𝒗𝟐𝒗𝟑

𝒑𝟏 𝒑𝟏
𝒗𝟏 𝒗𝟐𝒗𝟑

𝒆𝟑𝟏 𝒆𝟐𝟏

(a) Learning prompt vectors on nodes (b) Learning prompt vectors on edges

Figure 1: Learning prompt vectors on a node may uniformly pass them to its neighboring nodes
while learning prompt vectors on edges can result in customized prompt aggregation.

where h(l)
i ∈ RDl denotes the Dl-dimensional representation of node vi at the l-th layer, and N (vi)

denotes the neighbors of node vi. h
(0)
i ∈ RD is initialized with node vi’s feature xi. The final node

representation h
(L)
i after the L-th layer of the GNN model can be subsequently used for various

downstream tasks (e.g., node classification and graph classification) with a trainable classifier g.

4 METHODOLOGY

In this section, we present our proposed method EdgePrompt and its variant EdgePrompt+. Figure 1
illustrates the difference between node prompt-based methods (Sun et al., 2023; Fang et al., 2023)
and our edge prompt-based method. We first formulate the research problem studied in this paper.
Then we introduce our design on edge prompts in EdgePrompt and EdgePrompt+ in detail. Fur-
thermore, we provide comprehensive analyses to demonstrate that our method has the capability of
benefiting pre-trained GNN models for node classification tasks. At last, we extend our method to
graph classification as the downstream task.

4.1 PROBLEM SETTING

This study focuses on the standard problem of graph prompt tuning following previous studies (Fang
et al., 2023; Sun et al., 2023). We consider a GNN model pre-trained by a pre-training task. We
aim to adapt the pre-trained GNN model to a downstream task on a graph dataset through graph
prompt tuning while keeping its parameters frozen. Specifically, given a pre-trained GNN model f ,
the goal is to transform the input graph G to a prompted graph G′ = T (G) with learnable prompts
and obtain expressive node representations on G′ by f for a specific downstream task. Here, T is a
graph transformation to obtain G′ by adding prompts to G. The key problem in graph prompt tuning
is to design and learn suitable graph prompts to benefit downstream tasks.

4.2 EDGE PROMPT DESIGN

Inspired by pixel-level visual prompts (Bahng et al., 2022; Wu et al., 2022) in Computer Vision,
the existing studies (Sun et al., 2023; Fang et al., 2023) design graph prompts at the data level by
adding extra learnable prompt vectors to node features. Nevertheless, this strategy does not take
account of the dependencies between nodes in graph data, which can significantly impact the final
node representations via the message-passing mechanism in GNN models (Fatemi et al., 2021; Sun
et al., 2022b; Liu et al., 2022a;b). Motivated by this, we propose to design our graph prompt tuning
method from the perspective of edges in this study.

EdgePrompt. Considering the dependencies between nodes in graph data, we design learnable
prompt vectors on edges and manipulate the input graph to a prompted one with the edge prompts;
therefore, the pre-trained GNN model can generate expressive node representations on the prompted
graph for the downstream task. More concretely, for each edge (vi, vj) ∈ E , we aim to learn a
prompt vector e(l)ij ∈ RDl−1 on it at the l-th layer of the pre-trained GNN model. Typically, this
prompt vector can be regarded as the learnable properties of edges. As discussed previously, one
critical challenge arises here: many popular GNN models, such as GCN (Kipf & Welling, 2017),
do not accommodate edge attributes during the message-passing mechanism. Therefore, they are
unable to absorb e

(l)
ij into node representations. To overcome this issue, we propose to aggregate

the prompt vector along with node representations through the message-passing mechanism during

4

Published as a conference paper at ICLR 2025

the forward pass at each layer of the pre-trained GNN model. Specifically, to compute h
(l)
i of

each node vi at the l-th layer, the GNN model will aggregate not only h
(l−1)
j from its neighboring

node vj ∈ N (vi) but also e
(l)
ij associated with edge (vi, vj). Mathematically, we can reformulate

Equation (1) with the edge prompt vector at the l-th layer of the pre-trained GNN model by

h
(l)
i = COMB(l)(h

(l−1)
i ,AGG(l)({h(l−1)

j : vj ∈ N (vi)}, {e(l)ij : vj ∈ N (vi)})). (2)

To obtain the prompt vector, one simple yet effective way is to learn a global prompt vector shared
by all the edges. Let p(l) ∈ RDl−1 denote the global prompt vector at the l-th layer of the pre-trained
GNN model. The prompt vector for each edge (vi, vj) at the l-th layer can be written as

e
(l)
ij = p(l), ∀(vi, vj) ∈ E . (3)

The above design with global prompt vectors on edges is termed EdgePrompt in our method.

EdgePrompt+. Although EdgePrompt designs graph prompts from the perspective of edges, a
single shared prompt vector for all the edges is insufficient to model different complex dependencies
between nodes. Motivated by this, we conceive an advanced version of the above EdgePrompt,
called EdgePrompt+, to learn customized prompt vectors on edges. Specifically, instead of using a
shared prompt vector p(l) for all the edges at the l-th layer, each edge (vi, vj) ∈ E will learn its own
customized prompt vector e(l)ij . Nevertheless, learning |E| independent prompt vectors is infeasible
in practice. When we optimize prompt vectors for downstream tasks (e.g., node classification), we
may have only a limited number of labeled nodes. Therefore, most edges cannot receive supervision
information (Fatemi et al., 2021) for optimizing their prompt vectors, especially in a few-shot setting.
In this case, it will be hard to directly learn e

(l)
ij for edge (vi, vj) ∈ E if it is not involved in computing

the representations of any labeled nodes. To overcome this issue, we propose to learn the prompt
vectors as a weighted average of multiple anchor prompts. To achieve this, we first construct a set
of Ml anchor prompts P(l) = {p(l)

1 ,p
(l)
2 , · · · ,p(l)

Ml
} at the l-th layer of the pre-trained GNN model,

where each vector p
(l)
m ∈ RDl−1 is a learnable anchor prompt. For each edge (vi, vj) ∈ E , its

customized prompt vector e(l)ij at the l-th layer is computed as the weighted average of the anchor

prompts in P(l) with the score vector b(l)ij ∈ RMl . Mathematically, we can obtain e
(l)
ij at the l-th

layer by

e
(l)
ij =

Ml∑
m=1

b
(l)
ijm · p(l)

m , (4)

where b(l)ijm denotes the m-th entry in b
(l)
ij . Since all the edges share the same anchor prompts P(l) at

the l-th layer, the score vector b(l)ij directly determines how e
(l)
ij differs from those of the other edges.

Therefore, our next goal is to conceive an effective strategy to obtain the desired b
(l)
ij . According

to Equation (2), e(l)ij of edge (vi, vj) affects message passing between nodes vi and vj , so we may

naturally consider b(l)ij to depend on both nodes vi and vj . Motivated by this, we propose to compute

b
(l)
ij at the l-th layer using a score function ϕ(l) followed by the softmax operation. Formally, we

compute b
(l)
ij by

b
(l)
ij = Softmax(ϕ(l)(vi, vj)), (5)

where Softmax(·) represents the softmax operation. Here, ϕ(l) takes each pair of nodes vi and vj as
the input and generates the score vector. Basically, it describes the relationship of two nodes at the
l-th layer and embeds them into a single vector. Many typical formulations (Veličković et al., 2018;
Brody et al., 2022; Yang et al., 2021) can be used to achieve this goal. In this study, we adopt the
classic attention mechanism (Veličković et al., 2018) as ϕ(l) by

ϕ(l)(vi, vj) = LeakyReLU([h
(l−1)
i ||h(l−1)

j] ·W (l)), (6)

where W (l) ∈ R2Dl−1×Ml is the weight matrix of ϕ(l) at the l-th layer, and [·||·] denotes the vector
concatenation. In-depth investigations into different variants of the score function ϕ will be reserved

5

Published as a conference paper at ICLR 2025

for our future work. It is worth noting that GPF-plus (Fang et al., 2023) can be regarded as a special
case of EdgePrompt+ with the score function as a linear mapping of xi.

With the learnable edge prompts, we can obtain more suitable node representations h
(L)
i for node

vi ∈ V by the pre-trained GNN model for node classification. Given the labeled node set VL ∈ V ,
we optimize our edge prompts and a classifier g by

min
g,{P(1),··· ,P(L),W (1),··· ,W (L)}

1

|VL|
∑

vi∈VL

ℓD(g(f(G′)i), yi), (7)

where yi is the ground-truth label of node vi ∈ VL, and ℓD is the downstream task loss, i.e., the
cross-entropy loss for classification tasks.

4.3 ANALYSIS OF EDGE PROMPT TUNING FOR NODE CLASSIFICATION

In this subsection, we provide a comprehensive analysis to investigate why our proposed Edge-
Prompt+ is more effective for node classification than existing approaches, particularly those that
focus on learning additional prompt vectors on node features.

We first provide our insights regarding the issue of uniform message passing on prompt vectors.
As introduced previously, GPF-plus (Fang et al., 2023) and All-in-one (Sun et al., 2023) design
learnable prompt vectors on the node level and manipulate the input graph by adding the prompt
vectors to node features. For each node vi, its learned prompt vector pi completely depends on
its node feature xi. In many prevalent GNN models, such as GCNs, the prompt vector will be
uniformly aggregated by neighboring nodes through the message-passing mechanism (Yang et al.,
2021). Taking node v1 in Figure 1(a) as an example, its two neighboring nodes v2 and v3 will
always receive the same prompt vector p1 from node v1 in pre-trained GCN models. Unfortunately,
such propagation of prompt vectors may not benefit node classification. Instead, the prompt vector
aggregated by a node can retain adverse information from different classes. In contrast, our proposed
EdgePrompt+ designs prompt vectors on edges. Unlike one shared prompt vector of a node for all
its neighboring nodes, EdgePrompt+ enables these neighboring nodes to receive different learned
prompt vectors (e.g., e21 and e31 in Figure 1(b)) from the node. In this way, the issue of uniform
passing on prompt vectors can be mitigated.

Furthermore, we would like to provide a theoretical analysis of how edge prompts in our proposed
EdgePrompt+ can benefit node classification. Our analysis is based on random graphs generated by
the contextual stochastic block model (CSBM) (Tsitsulin et al., 2022; Ma et al., 2022). Specifically,
we consider a random graph G generated by the CSBM consisting of two node classes c1 and c2.
For each node vi, its node feature xi follows a Gaussian distribution xi ∼ N (µ1, I) if it is from
class c1, otherwise xi ∼ N (µ2, I). Generally, we assume µ1 ̸= µ2. In the graph G, edges are
generated following an intra-class probability p and an inter-class probability q. More concretely,
a pair of nodes will be connected by an edge with probability p if they are from the same class;
otherwise, the probability is q. In this section, we use G ∼ CSBM(µ1,µ2, p, q) to denote a random
graph generated by the CSBM.

Our analysis aims to investigate the improvement of linear separability under pre-trained GCN mod-
els caused by edge prompts in EdgePrompt+. Specifically, we focus on the linear classifiers with the
largest margin based on node representations after GCN operations with and without edge prompts.
Typically, if the expected distance between the two class centroids is larger, the node representations
will have higher linear separability by the linear classifier.

Theorem 1. Given a random graph G ∼ CSBM(µ1,µ2, p, q) and a pre-trained GCN model f ,
there always exist a set of M ≥ 2 anchor prompts P = {p1,p2, · · · ,pM} and the score vectors
bi,j for each edge (vi, vj) that improve the expected distance after GCN operation between classes
c1 and c2 to T times without using edge prompts, where T ∈ (1, 1 + p

|p−q|].

A detailed proof can be found in Appendix A. According to Theorem 1, we will have a larger
expected distance between the two class centroids after GCN operation with edge prompts in Edge-
Prompt+. In this case, the node representations from the two classes will have a lower probability
of being misclassified. Therefore, we can conclude that our proposed EdgePrompt+ benefits pre-
trained GNN models for node classification.

6

Published as a conference paper at ICLR 2025

4.4 EXTENSION TO GRAPH CLASSIFICATION

In the last subsection, we present our edge prompt design in EdgePrompt and EdgePrompt+ for
node classification. As discussed previously, edge prompts should be capable of handling various
downstream tasks, including graph classification. In this subsection, we would like to introduce how
EdgePrompt and EdgePrompt+ tackle graph classification.

In graph classification, we have a set of labeled graphs {G1,G2, · · · ,GK} with their label set
{y1, y2, · · · , yK}. To obtain the representation of the entire graph G, we typically integrate the
final representations of all nodes in G via a permutation-invariant READOUT function (Xu et al.,
2019), such as sum and mean, as the entire graph’s representation hG = READOUT({hi|vi ∈ V}).
Therefore, we can optimize our edge prompts and a classifier g by

min
g,{P(1),··· ,P(L),W (1),··· ,W (L)}

1

K

K∑
k=1

ℓD(g(f(G′
k)), yk). (8)

Now we analyze the capability of EdgePrompt for graph classifications. The goal of our analysis
is to investigate whether learning edge prompts in EdgePrompt can result in consistent graph repre-
sentations with those using any prompt strategies. To this end, we propose the following theorem.
Theorem 2. Given an input graph G = (X,A) and its transformation G′ = (X ′,A′) by an
arbitrary transformation function T , there exists a set of edge prompt vectors {p(1),p(2), · · · ,p(L)}
in EdgePrompt that can satisfy

f(X,A, {p(1), · · · ,p(L)}) = f(X ′,A′) (9)

for any pre-trained GNN model f .

The complete proof of Theorem 2 is provided in Appendix B. According to Theorem 2, we can
conclude that our edge prompts have the capability to get graph G’s representation which is equal to
those of its variants by transformations with any prompt strategies. According to Theorem 1 by Fang
et al. (2023), our EdgePrompt has a comparable universal capability with GPF. Since EdgePrompt+
provides finer edge prompts than EdgePrompt, it will have a stronger universality than EdgePrompt.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and downstream tasks. We evaluate the effectiveness of our proposed method on node
classification over five public graph datasets, including Cora (Yang et al., 2016), CiteSeer (Yang
et al., 2016), Pubmed (Yang et al., 2016), ogbn-arxiv (Hu et al., 2020a), and Flickr (Zeng et al.,
2020). In addition, we adopt five graph datasets from TUDataset (Morris et al., 2020), including
ENZYMES, DD, NCI1, NCI109, and Mutagenicity, to conduct experiments for graph classification.
Basic information and statistics about these datasets can be found in Appendix C.1.

Pre-training strategies. To evaluate the compatibility of our proposed method with various pre-
training strategies, we consider four pre-training strategies in our experiments. For contrastive
methods, we use GraphCL (You et al., 2020) and SimGRACE (Xia et al., 2022). For generative
methods, we use two edge prediction-based methods, i.e., EP-GPPT and EP-GraphPrompt, adopted
by GPPT (Sun et al., 2022a) and GraphPrompt (Liu et al., 2023), respectively. We provide detailed
descriptions of these pre-training strategies in Appendix C.2.

Baselines. We evaluate our proposed method against five state-of-the-art graph prompt tuning meth-
ods in our experiments, including GPPT (Sun et al., 2022a), GraphPrompt (Liu et al., 2023) All-in-
one (Sun et al., 2023), GPF (Fang et al., 2023), and GPF-plus (Fang et al., 2023). Since GPPT is
specifically designed for node classification, we only report its performance for node classification
tasks. In addition, we also report the performance of solely training classifiers without any prompts
(named as Classifier Only) in our experiments.

Implementation details. In our experiments, We use a 2-layer GCN (Kipf & Welling, 2017) as the
backbone for node classification tasks and a 5-layer GIN (Xu et al., 2019) as the backbone for graph
classification tasks. The size of hidden layers is set as 128. The classifier adopted for downstream

7

Published as a conference paper at ICLR 2025

Table 2: Accuracy on 5-shot node classification tasks over five datasets. The best-performing
method is bolded and the runner-up is underlined.

Pre-training Tuning Cora CiteSeer Pubmed ogbn-arxiv FlickrStrategies Methods

GraphCL

Classifier Only 53.05±4.76 38.62±3.43 64.28±4.51 21.15±1.64 24.32±2.93

GPPT 50.96±6.67 39.50±1.67 60.47±4.75 17.99±1.14 24.35±1.84

GraphPrompt 55.71±4.62 40.81±2.11 63.47±2.23 21.03±1.92 26.08±3.44

ALL-in-one 38.00±4.17 40.27±2.09 58.61±3.49 16.42±2.98 25.08±3.44

GPF 58.52±4.07 43.55±2.80 67.67±3.14 21.73±1.75 23.98±1.71

GPF-plus 52.24±4.59 38.47±3.27 64.30±4.58 21.03±1.96 25.32±2.02

EdgePrompt 58.60±4.46 43.31±3.23 67.76±3.01 21.90±1.71 24.83±2.78

EdgePrompt+ 62.88±6.43 46.20±0.99 67.41±5.25 23.18±1.26 25.57±3.04

SimGRACE

Classifier Only 52.27±2.74 40.45±3.55 56.72±3.80 20.75±2.92 25.53±3.98

GPPT 52.07±7.65 40.25±3.29 58.65±5.12 17.76±1.80 23.37±4.66

GraphPrompt 51.42±2.80 41.74±2.22 55.98±2.94 20.48±2.57 25.88±3.81

ALL-in-one 34.64±4.06 38.95±2.35 54.18±4.70 16.72±2.90 27.68±4.58

GPF 58.23±4.19 44.87±4.35 61.55±3.79 21.86±2.91 26.51±4.69

GPF-plus 52.27±3.34 41.02±3.49 56.95±3.86 21.44±3.77 28.35±5.50

EdgePrompt 58.37±4.51 43.94±4.15 61.10±3.69 21.85±2.54 30.12±5.04

EdgePrompt+ 62.40±7.97 46.62±2.53 64.91±5.58 22.74±2.34 28.50±4.08

EP-GPPT

Classifier Only 28.65±4.82 26.77±2.03 40.14±5.69 11.57±1.91 28.39±7.44

GPPT 41.28±6.92 35.32±1.27 53.41±3.99 13.73±1.16 29.83±3.73

GraphPrompt 31.65±3.33 26.98±1.24 44.18±5.57 11.31±1.89 26.02±1.16

ALL-in-one 31.57±2.16 28.87±2.57 46.02±4.23 15.94±0.75 31.89±1.14

GPF 37.56±3.81 29.74±1.73 48.86±7.32 16.95±1.58 29.68±6.73

GPF-plus 28.87±3.18 26.65±1.91 40.32±5.77 11.78±1.55 29.41±6.79

EdgePrompt 37.26±4.53 29.83±1.01 47.20±7.06 17.22±1.31 31.17±6.58

EdgePrompt+ 56.41±3.62 43.49±2.62 61.51±4.91 17.78±2.16 32.70±6.21

EP-GraphPrompt

Classifier Only 59.00±5.74 44.54±4.44 72.09±5.70 31.28±1.50 27.83±4.77

GPPT 54.29±7.90 45.81±3.54 66.56±4.06 25.34±1.85 28.41±3.68

GraphPrompt 60.22±4.04 47.07±3.09 73.13±5.07 32.40±1.30 28.10±3.27

ALL-in-one 42.55±2.99 44.36±2.52 67.66±6.38 15.22±3.04 31.79±6.19

GPF 62.62±6.40 49.02±4.53 73.62±6.42 31.88±1.08 28.98±5.30

GPF-plus 58.23±5.68 44.60±4.47 72.15±5.64 31.58±1.09 28.96±4.63

EdgePrompt 62.74±6.77 48.69±4.36 73.60±5.14 32.67±1.83 29.81±3.59

EdgePrompt+ 64.47±7.04 49.71±2.25 73.72±5.10 31.41±1.88 32.09±4.93

tasks is linear probes for all the methods. We use an Adam optimizer (Kingma & Ba, 2015) with
learning rates 0.001 for all the methods. The batch size is set as 32. The number of epochs is set
to 200 for graph prompt tuning. The default number of anchor prompts at each GNN layer is 10
for node classification tasks and 5 for graph classification tasks. We use the 5-shot setting for node
classification tasks and the 50-shot setting for graph classification tasks. We conduct experiments
five times with different random seeds and report the average results in our experiments.

5.2 MAIN RESULTS

We first compare the overall performance of our proposed methods and other baselines. Table 2
reports the results of our method and six baselines on 5-shot node classification tasks over five
datasets under four pre-training strategies. According to the table, we observe that our method
can consistently achieve the best or most competitive performance among graph prompt tuning
methods across different pre-training strategies. Generally, EdgePrompt+ has better performance
than EdgePrompt, which is consistent with our analyses in Section 4.3 and validates the necessity of
our design on customized edge prompts.

In addition, we conduct experiments on 50-shot graph classification tasks over five datasets under
four pre-training strategies and report the results in Table 3. According to the table, we observe
that EdgePrompt+ can always get the best place or runner-up for every experimental setting, espe-

8

Published as a conference paper at ICLR 2025

Table 3: Accuracy on 50-shot graph classification tasks over five datasets. The best-performing
method is bolded and the runner-up underlined.

Pre-training Tuning ENZYMES DD NCI1 NCI109 MutagenicityStrategies Methods

GraphCL

Classifier Only 30.50±1.16 62.89±2.19 62.49±1.95 61.68±0.93 66.62±1.87

GraphPrompt 27.83±1.61 64.33±1.79 63.19±1.71 62.18±0.48 67.62±0.65

ALL-in-one 25.92±0.55 66.54±1.82 57.52±2.61 62.74±0.78 63.43±2.53

GPF 30.08±1.25 64.54±2.22 62.66±1.83 62.29±0.90 66.54±1.85

GPF-plus 31.00±1.50 67.26±2.29 64.56±1.10 62.84±0.22 66.82±1.63

EdgePrompt 29.50±1.57 64.16±2.13 63.05±2.11 62.59±0.93 66.87±1.88

EdgePrompt+ 34.00±1.25 67.98±2.05 66.30±2.54 66.52±0.91 67.47±2.37

SimGRACE

Classifier Only 27.07±1.04 61.77±2.40 61.27±3.64 62.12±1.10 67.36±0.71

GraphPrompt 26.87±1.47 62.58±1.84 62.45±1.52 62.41±0.69 68.03±0.78

ALL-in-one 25.73±1.18 65.16±1.47 58.52±1.59 62.01±0.66 64.43±1.00

GPF 28.53±1.76 65.64±0.70 61.45±3.13 61.90±1.26 67.19±0.74

GPF-plus 27.33±2.01 67.20±1.56 61.61±2.89 62.84±0.23 67.69±0.64

EdgePrompt 29.33±2.30 63.97±2.14 62.02±3.02 62.02±1.03 67.55±0.85

EdgePrompt+ 32.67±2.53 67.72±1.62 67.07±1.96 66.53±1.30 68.31±1.36

EP-GPPT

Classifier Only 29.08±1.35 62.12±2.82 56.85±4.35 62.27±0.78 66.30±1.78

GraphPrompt 26.67±1.60 61.61±1.91 58.77±0.97 62.16±0.89 66.37±1.17

ALL-in-one 24.92±1.33 63.61±2.12 59.14±2.12 59.70±1.37 64.86±1.60

GPF 28.33±1.73 63.48±2.08 58.14±4.16 62.52±1.39 66.10±0.96

GPF-plus 29.25±1.30 66.92±2.34 62.93±3.23 64.13±1.42 67.57±1.45

EdgePrompt 28.33±3.41 64.03±2.26 59.85±3.15 62.98±1.44 66.36±1.22

EdgePrompt+ 32.75±2.26 66.16±1.60 63.58±2.07 65.15±1.60 68.35±1.57

EP-GraphPrompt

Classifier Only 31.33±3.22 62.58±2.40 62.09±2.31 60.19±1.71 65.13±0.81

GraphPrompt 30.20±1.93 64.72±1.98 62.57±1.45 62.32±0.95 65.85±0.65

ALL-in-one 29.07±1.16 65.60±2.38 58.67±2.42 57.69±1.08 64.66±0.76

GPF 30.93±1.76 66.21±1.66 61.80±2.78 62.27±1.18 65.61±0.59

GPF-plus 30.67±3.06 67.50±2.45 62.59±2.09 61.98±1.60 65.51±1.10

EdgePrompt 30.80±2.09 65.87±1.35 61.75±2.49 62.33±1.65 65.77±0.90

EdgePrompt+ 33.27±2.71 67.47±2.14 65.06±1.84 64.64±1.57 66.42±1.31

cially over ENZYMES, NCI1, and NCI109. In addition, we observe that GPF and EdgePrompt have
relatively small performance gaps (always < 1.8%) in the table (we also observe this in node clas-
sification tasks). As indicated in Theorem 2, our proposed EdgePrompt has a comparable universal
capability with GPF to achieve graph representations equivalent to any graph transformation. These
observations effectively support our theoretical claim in this study.

5.3 CONVERGENCE ANALYSIS

In this subsection, we would like to investigate the convergence speeds of our method compared
with baselines. Figure 2 illustrates the accuracy curves of our method and the baselines under two
pre-training strategies. According to Figure 2, we can observe that EdgePrompt+ can generally
converge faster than other methods.

5.4 INFLUENCE OF PROMPT NUMBERS

We conduct experiments to investigate the impact of different numbers of anchor prompts on model
utility. Figure 3 and Figure 4 illustrate the performance of EdgePrompt+ with 1, 5, 10, 20, and
50 anchor prompts at each layer for node classification and graph classification tasks, respectively.
Note that EdgePrompt+ will be degraded to EdgePrompt when we have only one anchor prompt
at each GNN layer. From the two figures, we can conclude only one anchor prompt vector (i.e.,
EdgePrompt) is insufficient in most cases where each edge will learn a global prompt vector. In
the meantime, EdgePrompt+ with too many anchor prompts (e.g., 50) may not further improve the
performance. We recommend 5 or 10 as the initial number of anchor prompts.

9

Published as a conference paper at ICLR 2025

0 25 50 75 100125150175200
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

(a) Cora with SimGRACE

0 25 50 75 100125150175200
Epochs

10
15
20
25
30
35
40
45
50

Ac
cu

ra
cy

(b) CiteSeer with SimGRACE

0 25 50 75 100125150175200
Epochs

30
35
40
45
50
55
60
65
70

Ac
cu

ra
cy

(c) PubMed with SimGRACE

0 25 50 75 100125150175200
Epochs

0

5

10

15

20

25

30

Ac
cu

ra
cy

(d) Flickr with SimGRACE

0 25 50 75 100125150175200
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

(e) Cora with EP-GPPT

0 25 50 75 100125150175200
Epochs

10
15
20
25
30
35
40
45
50

Ac
cu

ra
cy

(f) CiteSeer with EP-GPPT

0 25 50 75 100125150175200
Epochs

30
35
40
45
50
55
60
65
70

Ac
cu

ra
cy

(g) PubMed with EP-GPPT

0 25 50 75 100125150175200
Epochs

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ac
cu

ra
cy

(h) ogbn-arxiv with EP-GPPT

Classifier Only GPPT GraphPrompt All-in-one GPF GPFplus EdgePrompt EdgePrompt+

Figure 2: Convergence speeds of different methods.

GraphCL EP-GraphPrompt
(a) Cora

50

60

70

80

Ac
cu

ra
cy

GraphCL EP-GraphPrompt
(b) CiteSeer

30

40

50

60

Ac
cu

ra
cy

GraphCL EP-GraphPrompt
(c) PubMed

60

70

80

90
Ac

cu
ra

cy

GraphCL EP-GraphPrompt
(d) ogbn-arxiv

10

20

30

40

Ac
cu

ra
cy

#(Anchor Prompts)=1 #(Anchor Prompts)=5 #(Anchor Prompts)=10 #(Anchor Prompts)=20 #(Anchor Prompts)=50

Figure 3: Results of EdgePrompt+ with varying numbers of anchor prompts on node classification.

GraphCL EP-GPPT
(a) ENZYMES

20

25

30

35

40

Ac
cu

ra
cy

GraphCL EP-GPPT
(b) DD

55

60

65

70

75

Ac
cu

ra
cy

GraphCL EP-GPPT
(c) NCI1

55

60

65

70

75

Ac
cu

ra
cy

GraphCL EP-GPPT
(d) Mutagenicity

55

60

65

70

75

Ac
cu

ra
cy

#(Anchor Prompts)=1 #(Anchor Prompts)=5 #(Anchor Prompts)=10 #(Anchor Prompts)=20 #(Anchor Prompts)=50

Figure 4: Results of EdgePrompt+ with varying numbers of anchor prompts on graph classification.

6 CONCLUSION

Graph prompt tuning is an emerging technique to bridge the objective gap between pre-training and
downstream tasks. Unlike previous studies focusing on designing prompts on nodes, we propose a
simple yet effective method, EdgePrompt and its variant EdgePrompt+, that manipulates the input
graph by adding extra learnable prompt vectors to edges and thereby obtaining a prompted graph
suitable for downstream tasks. We provide comprehensive theoretical analyses of our method re-
garding its capability of handling node classification and graph classification. We conduct extensive
experiments over ten graph datasets under four pre-training strategies. Experiment results demon-
strate the superiority of our method compared with six baselines.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under grants IIS-2006844,
IIS-2144209, IIS-2223769, IIS-2331315, CNS-2154962, BCS-2228534, and CMMI-2411248,
the Commonwealth Cyber Initiative Awards under grants VV-1Q24-011, VV-1Q25-004, and the
iPRIME Fellowship Awards.

10

Published as a conference paper at ICLR 2025

REFERENCES

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models. arXiv preprint arXiv:2203.17274, 2022.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, 2020.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. Advances in Neural Information Processing Systems, 2023.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves struc-
ture learning for graph neural networks. Advances in Neural Information Processing Systems,
2021.

Xingbo Fu, Chen Chen, Yushun Dong, Anil Vullikanti, Eili Klein, Gregory Madden, and Jundong Li.
Spatial-temporal networks for antibiogram pattern prediction. In 2023 IEEE 11th International
Conference on Healthcare Informatics (ICHI), 2023.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 2019.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, 2017.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2020b.

Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Pre-training graph neural
networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728, 2019.

Renhong Huang, Jiarong Xu, Xin Jiang, Chenglu Pan, Zhiming Yang, Chunping Wang, and Yang
Yang. Measuring task similarity and its implication in fine-tuning graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang.
Self-supervised learning on graphs: Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Jiazheng Li, Jundong Li, and Chuxu Zhang. Instance-aware graph prompt learning. Transactions
on Machine Learning Research, 2025.

Xin Liu, Jiayang Cheng, Yangqiu Song, and Xin Jiang. Boosting graph structure learning with
dummy nodes. In International Conference on Machine Learning, 2022a.

11

Published as a conference paper at ICLR 2025

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsuper-
vised deep graph structure learning. In Proceedings of the ACM Web Conference 2022, 2022b.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023,
2023.

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph
neural networks in epidemic modeling. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 6577–6587, 2024.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2022.

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V Chawla. Hetgpt: Harnessing the
power of prompt tuning in pre-trained heterogeneous graph neural networks. In Proceedings of
the ACM on Web Conference 2024, 2024.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In 15th International
Conference on Extended Semantic Web Conference, 2018.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations, 2020.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022a.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and S Yu Philip. Graph
structure learning with variational information bottleneck. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2022b.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023.

Yifei Sun, Qi Zhu, Yang Yang, Chunping Wang, Tianyu Fan, Jiajun Zhu, and Lei Chen. Fine-
tuning graph neural networks by preserving graph generative patterns. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual node tuning for few-shot node clas-
sification. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2023.

Anton Tsitsulin, Benedek Rozemberczki, John Palowitch, and Bryan Perozzi. Synthetic graph gen-
eration to benchmark graph learning. arXiv preprint arXiv:2204.01376, 2022.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In International Conference on Learning Representa-
tions, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

12

Published as a conference paper at ICLR 2025

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Guancheng Wan, Zewen Liu, Max SY Lau, B Aditya Prakash, and Wei Jin. Epidemiology-aware
neural ode with continuous disease transmission graph. arXiv preprint arXiv:2410.00049, 2024a.

Guancheng Wan, Yijun Tian, Wenke Huang, Nitesh V Chawla, and Mang Ye. S3gcl: Spectral, swift,
spatial graph contrastive learning. In Forty-first International Conference on Machine Learning,
2024b.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 2019.

Zehong Wang, Qi Li, Donghua Yu, Xiaolong Han, Xiao-Zhi Gao, and Shigen Shen. Heterogeneous
graph contrastive multi-view learning. In Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM), pp. 136–144. SIAM, 2023a.

Zehong Wang, Donghua Yu, Qi Li, Shigen Shen, and Shuang Yao. Sr-hgn: Semantic-and relation-
aware heterogeneous graph neural network. Expert Systems with Applications, 224:119982,
2023b.

Zehong Wang, Donghua Yu, Shigen Shen, Shichao Zhang, Huawen Liu, Shuang Yao, and Maozu
Guo. Select your own counterparts: Self-supervised graph contrastive learning with positive
sampling. IEEE Transactions on Neural Networks and Learning Systems, 2024a.

Zehong Wang, Zheyuan Zhang, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph
foundation model with transferable tree vocabulary. Advances in neural information processing
systems, 2024b.

Xuemei Wei, Yezheng Liu, Jianshan Sun, Yuanchun Jiang, Qifeng Tang, and Kun Yuan. Dual
subgraph-based graph neural network for friendship prediction in location-based social networks.
ACM Transactions on Knowledge Discovery from Data, 2023.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International conference on machine learning, 2019.

Junyang Wu, Xianhang Li, Chen Wei, Huiyu Wang, Alan Yuille, Yuyin Zhou, and Cihang Xie.
Unleashing the power of visual prompting at the pixel level. arXiv preprint arXiv:2212.10556,
2022.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 2018.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Confer-
ence 2022, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo, et al. Diverse
message passing for attribute with heterophily. Advances in Neural Information Processing Sys-
tems, 2021.

Yulei Yang and Dongsheng Li. Nenn: Incorporate node and edge features in graph neural networks.
In Asian conference on machine learning, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems,
2020.

13

Published as a conference paper at ICLR 2025

Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. Hgprompt: Bridging homogeneous and
heterogeneous graphs for few-shot prompt learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2024a.

Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang. General-
ized graph prompt: Toward a unification of pre-training and downstream tasks on graphs. IEEE
Transactions on Knowledge and Data Engineering, 2024b.

Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and
prompt learning. arXiv preprint arXiv:2408.12594, 2024c.

Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Multigprompt for multi-task pre-
training and prompting on graphs. In Proceedings of the ACM on Web Conference 2024, 2024d.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

WANG Zhili, DI Shimin, CHEN Lei, and ZHOU Xiaofang. Search to fine-tune pre-trained graph
neural networks for graph-level tasks. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE), 2024.

Haoran Zhou, Yidan Feng, Mingsheng Fang, Mingqiang Wei, Jing Qin, and Tong Lu. Adaptive
graph convolution for point cloud analysis. In Proceedings of the IEEE/CVF international con-
ference on computer vision, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022.

Zhilun Zhou, Yu Liu, Jingtao Ding, Depeng Jin, and Yong Li. Hierarchical knowledge graph learning
enabled socioeconomic indicator prediction in location-based social network. In Proceedings of
the ACM Web Conference, 2023.

A PROOF OF THEOREM 1

Theorem 1. Given a random graph G ∼ CSBM(µ1,µ2, p, q) and a pre-trained GCN model f ,
there always exist a set of M ≥ 2 anchor prompts P = {p1,p2, · · · ,pM} and the score vectors
bi,j for each edge (vi, vj) that improve the expected distance after GCN operation between classes
c1 and c2 to T times without using edge prompts, where T ∈ (1, 1 + p

|p−q|].

Proof. For each node vi in graph G, we can approximately regard that the labels of its neighboring
nodes are independently sampled from a neighborhood distribution Dc1 = [p

p+q ,
q

p+q] if node vi is
in class c1 or Dc2 = [q

p+q ,
p

p+q] if node vi is in class c2 (Ma et al., 2022). When we do not consider
edge prompts, the expected feature obtained from the GCN operation will be

E[h1] =
p

p+ q
· µ1 +

q

p+ q
· µ2 (10)

for nodes in class c1 and

E[h2] =
q

p+ q
· µ1 +

p

p+ q
· µ2 (11)

for nodes in class c2. Here, we ignore the linear transformation in the GCN operation since it can be
absorbed by the linear classifier. To evaluate the linear separability of linear classifiers, we calculate
the expected distance d between the two classes c1 and c2 by

d = ||E[h1]− E[h2]|| =
|p− q|
p+ q

· ||µ1 − µ2||. (12)

14

Published as a conference paper at ICLR 2025

When we consider edge prompts in EdgePrompt+, we need to involve them into the aggregation in
the GCN operation. Without loss of generality, we can fix bijm = 0 for m ∈ [3,M]. Therefore, for
each edge (vi, vj), its prompt vector will be

eij =

Ml∑
m=1

bijm · pm = bij1 · p1 + bij2 · p2. (13)

Obviously, bij2 = 1− bij1. In addition, we can set the two prompt vectors as µ1 and µ2, i.e.,

eij = bij1 · µ1 + bij2 · µ2. (14)

Then the new expected feature obtained from the GCN operation with edge prompts will be

E[h′
1] =

p · (µ1 + b11 · µ1 + (1− b11 · µ2)) + q · (µ2 + b12 · µ1 + (1− b12 · µ2))

p+ q
(15)

for nodes in class c1 and

E[h′
2] =

q · (µ1 + b21 · µ1 + (1− b21 · µ2)) + p · (µ2 + b22 · µ1 + (1− b22 · µ2))

p+ q
(16)

for nodes in class c2. Here, b11 ∈ [0, 1] represents the expected score between nodes from class 1,
b22 ∈ [0, 1] represents the expected score between nodes from class 2, b12 ∈ [0, 1] and b21 ∈ [0, 1]
represents the expected score between nodes across classes. Different from the original design in
our method, we can set b12 = b21 for simplicity. Therefore, the new expected distance with edge
prompts will be

d′ = ∥E[h′
1]− E[h′

2]∥

=

∥∥∥∥ (p− q + b11 · p− b22 · p)µ1 − (−(1− b11) · p− q + p+ (1− b22) · p)µ2

p+ q

∥∥∥∥
=

|(p− q + (b11 − b22) · p)|
p+ q

· ||µ1 − µ2||

(17)

To improve the linear separability of the two classes, we hope to get d′ > d. In this case, we may
assume

d′ = T · d =
|T · (p− q)|

p+ q
· ||µ1 − µ2|| (18)

with T > 1. Therefore, we need

b11 − b22 =
(T − 1) · (p− q)

p
. (19)

Since b11 ∈ [0, 1] and b22 ∈ [0, 1], we need

−1 ≤ (T − 1) · (p− q)

p
≤ 1. (20)

Then we have
T ≤ 1 +

p

|p− q|
. (21)

Therefore, We can conclude that we can always find a set of M ≥ 2 anchor prompts P =
{µ1,µ2,p3, · · · ,pM} and the above score values for each edge (vi, vj) that improve the expected
distance after GCN operation between classes c1 and c2 to T times without using edge prompts,
where T ∈ (1, 1 + p

|p−q|].

B PROOF OF THEOREM 2

Before we prove Theorem 2, we would like to prove the following lemma.

Lemma 1. Given an input graph G = (X,A) and an extra feature prompt p̂ in GPF, there exists a
set of edge prompt vectors {p(1),p(2), · · · ,p(L)} in EdgePrompt that can satisfy

f(X,A, {p(1), · · · ,p(L)}) = f(X + p̂,A) (22)

for any pre-trained GNN model f .

15

Published as a conference paper at ICLR 2025

Proof. Following GPF (Fang et al., 2023), we first consider a single-layer GIN (Xu et al., 2019)
with a linear transformation. Mathematically, we can compute the node representation matrix in a
GIN layer by

H = (A+ (1 + ϵ) · I) ·X ·W = A ·X ·W + (1 + ϵ) ·X ·W . (23)

In GPF, the feature prompt p̂ is added to the feature vector for each node. Then the new node
representation matrix with p̂ can be written as

Hp̂ = (A+ (1 + ϵ) · I) · (X + [1]N · p̂) ·W
= (A+ (1 + ϵ) · I) ·X ·W + (A+ (1 + ϵ) · I) · [1]N · p̂ ·W
= H + (A+ (1 + ϵ) · I) · [1]N · p̂ ·W
= H + [Degi + 1 + ϵ]N · p̂ ·W

(24)

where [1]N ∈ RN×1 represents an N-dimensional column vector with values of 1, [Degi+1+ϵ]N ∈
RN×1 represents an N-dimensional column vector with the value of i-th row is Degi + 1 + ϵ, and
Degi represents the degree of node vi.

In EdgePrompt, the prompt vector will be associated with each edge. Therefore, we can write the
node representation matrix with edge prompt p by

Hp = A · (X + [1]N · p) ·W + (1 + ϵ) ·X ·W
= A ·X ·W +A · [1]N · p ·W + (1 + ϵ) ·X ·W
= H +A · [1]N · p ·W
= H + [Degi]

N · p ·W

(25)

To obtain the same graph representation, we have

Sum(Hp̂) = Sum(Hp), (26)

where Sum(H) computes the sum vector for each row vector of a matrix. We can simplify the
above equation by

Sum(Hp̂) = Sum(Hp)

⇒ Sum(H + [Degi + 1 + ϵ]N · p̂ ·W) = Sum(H + [Degi]
N · p ·W)

⇒ Sum([Degi + 1 + ϵ]N · p̂ ·W) = Sum([Degi]
N · p ·W)

⇒ (Deg +N +N · ϵ) · p̂ ·W = Deg · p ·W

(27)

where Deg =
∑

vi∈gV Degi. To obtain the above equation, we only need

p =
Deg +N +N · ϵ

Deg
· p̂. (28)

Therefore, for any feature prompt p̂, we can always find an edge prompt p in Equation (28) that
satisfies Lemma 1.

Extension to other GNN backbones. Various GNN backbones can be expressed as H = S ·X ·W ,
where S is the diffusion matrix (Gasteiger et al., 2019). Different S only impact the coefficient
before p̂ in Equation (28).

Extension to multi-layer GNN models. For multi-layer linear GNN models, the diffusion matrix
S(l) at each layer can be integrated as one overall S.

Theorem 2. Given an input graph G = (X,A) and its transformation G′ = (X ′,A′) by an
arbitrary transformation function T , there exists a set of edge prompt vectors {p(1),p(2), · · · ,p(L)}
in EdgePrompt that can satisfy

f(X,A, {p(1), · · · ,p(L)}) = f(X ′,A′) (29)

for any pre-trained GNN model f .

16

Published as a conference paper at ICLR 2025

Table 4: Basic information and statistics of graph datasets adopted in our experiments.
Dataset #(Graphs) #(Nodes) #(Edges) #(Features) #(Classes) Task Level

Cora 1 2,708 10,556 1,433 7 Node
CiteSeer 1 3,327 9,104 3,703 6 Node
Pubmed 1 19,717 88,648 500 3 Node
Flickr 1 89,250 899,756 500 7 Node
ogbn-arxiv 1 169,343 1,166,243 128 40 Node

Dataset #(Graphs) #(Avg. Nodes) #(Avg. Edges) #(Features) #(Classes) Task Level

ENZYMES 600 32.63 124.27 3 6 Graph
DD 1,178 284.32 1,431.32 89 2 Graph
NCI1 4,110 29.87 64.60 37 2 Graph
NCI109 4,127 29.68 64.26 38 2 Graph
Mutagenicity 4,337 30.32 61.54 14 2 Graph

Proof. Given any feature prompts, Lemma 1 indicates that we can always find edge prompts that
lead to the same representation of a graph for any pre-trained GNN models. Given Theorem 1
by (Fang et al., 2023), the input graph with a learnable feature prompt can always obtain the same
representation as those of any transformed graphs. Therefore, we can conclude that our edge prompts
in EdgePrompt have the capacity to obtain the representation equal to those of any transformed
graphs for any pre-trained GNN models.

C MORE DETAILS ABOUT EXPERIMENTAL SETUP

C.1 DATASETS

Table 4 shows the basic information and statistics of graph datasets adopted in our experiments.

C.2 PRE-TRAINING STRATEGIES

We provide more details about the four pre-training strategies adopted in our experiments.

• GraphCL (You et al., 2020) is a contrastive method for pre-training GNN models. The
intuition of GraphCL is to maximize the agreement between two views of a graph perturbed
by different data augmentations. We adopt node dropping and edge perturbation to generate
two graph views. A GNN model generates two graph representations of the same graph. A
nonlinear projection head will map the two graph representations to another latent space.
The contrastive loss will be used to optimize the GNN model and the projection head.

• SimGRACE (Xia et al., 2022) is an augmentation-free contrastive method for GNN pre-
training. We first construct a perturbed version of the GNN model by adding noise sampled
from the Gaussian distribution. Given an input graph, the perturbed GNN model will gen-
erate its representation that forms a positive pair with that generated by the original GNN
model.

• EP-GPPT (Sun et al., 2022a) pre-trains a GNN model using edge prediction. A set of edges
in the original graph is randomly masked. The pre-training task is to predict whether a
node pair is connected. Unconnected node pairs are randomly selected to form the negative
samples in pre-training.

• EP-GraphPrompt (Liu et al., 2023) similarly uses edge prediction for GNn pre-training.
Given a node in the input graph, we randomly sample one positive node from its neigh-
bors and one negative node that does not link to it. The pre-training task is to maximize
the similarity between the connected nodes while minimizing the similarity between the
unconnected nodes.

17

Published as a conference paper at ICLR 2025

Table 5: Average running time (seconds per epoch) on 5-shot node classification tasks over five
datasets.

Tuning Methods Cora CiteSeer Pubmed ogbn-arxiv Flickr

Classifier Only 0.116 0.136 0.663 1.186 5.156
GPPT 0.141 0.151 0.713 1.381 5.828

GraphPrompt 0.126 0.136 0.673 1.377 4.362
All-in-one 0.477 0.578 3.090 6.085 7.357

GPF 0.121 0.131 0.678 1.070 3.482
GPF-plus 0.116 0.131 0.668 1.075 3.427

EdgePrompt 0.121 0.136 0.693 1.106 3.824
EdgePrompt+ 0.146 0.156 0.804 1.377 5.894

Table 6: Average running time (seconds per epoch) on 50-shot graph classification tasks over five
datasets.

Tuning Methods ENZYMES DD NCI1 NCI109 Mutagenicity

Classifier Only 0.216 0.176 0.291 0.332 0.302
GraphPrompt 0.276 0.211 0.347 0.357 0.322

All-in-one 0.457 0.643 1.337 1.397 1.206
GPF 0.221 0.191 0.342 0.322 0.307

GPF-plus 0.231 0.191 0.347 0.296 0.312
EdgePrompt 0.226 0.196 0.347 0.296 0.317

EdgePrompt+ 0.332 0.302 0.442 0.382 0.402

D MORE EXPERIMENTAL RESULTS

D.1 RESULTS ON MODEL EFFICIENCY

Table 5 and Table 6 provide the average running time (seconds per epoch) for node classification
and graph classification, respectively. From the two tables, we can observe that most graph prompt
tuning method has similar computing time except All-in-one. All-in-one needs more time per epoch
since it uses alternating strategies. EdgePrompt has almost the same efficiency as Classifier only
without any prompts. In addition, EdgePrompt+ does not introduce significant computational cost.

D.2 RESULTS ON GRAPH DATA WITH EDGE FEATURES

In our experiments, we conduct experiments over graph data without edge features. However, in the
real world, many graphs may inherently have edge features. Our method is still compatible with this
case. We report the performance of our method and other baselines over BACE and BBBP from the
MoleculeNet dataset (Wu et al., 2018) in Table 7. From the table, we can observe that our method
can outperform other baselines over the two datasets under two pre-training strategies.

D.3 RESULTS WITH EDGE PROMPTS AT THE FIRST LAYER

Unlike previous studies, we learn prompt vectors at each layer of the pre-trained GNN model. This
strategy can consistently avoid adverse information aggregated from different classes. For example,
node v3 in Figure 1 may receive adverse information from node v1 when node v3 and node v1 are
from different classes. If we learn edge prompts only at the first layer, node v3 will still receive
adverse information from node v1 at the following layers. In contrast, our method in EdgePrompt+
instead learns layer-wise edge prompts, which can consistently avoid the above issue at each layer.
We conduct experiments on our methods with edge prompts only at the first layer. Table 8 and
Table 9 show the performance for node classification and graph classification, respectively. From
the tables, we observe performance degradation in most cases, especially for EdgePrompt+. This
observation validates our design of learning edge prompts at each layer of the pre-trained GNN
model.

18

Published as a conference paper at ICLR 2025

Table 7: Accuracy on 50-shot graph classification tasks over two datasets with edge features. The
best-performing method is bolded and the runner-up underlined.

Pre-training Strategies Tuning Methods BACE BBBP

SimGRACE

Classifier Only 57.62±1.92 63.56±1.03

GraphPrompt 59.37±0.53 63.39±1.75

All-in-one 56.73±1.33 65.72±3.48

GPF 57.36±1.52 63.89±1.66

GPF-plus 57.16±2.21 64.17±1.29

EdgePrompt 58.12±1.04 63.89±1.26

EdgePrompt+ 60.46±2.63 70.50±1.92

EP-GraphPrompt

Classifier Only 60.40±1.03 66.17±1.15

GraphPrompt 61.69±1.36 66.86±0.70

All-in-one 56.17±1.54 61.72±6.97

GPF 60.89±0.71 66.72±0.84

GPF-plus 61.39±0.22 67.58±0.67

EdgePrompt 61.09±1.22 66.94±0.97

EdgePrompt+ 64.66±2.20 72.75±2.12

Table 8: Accuracy on 5-shot node classification tasks over three datasets. The best-performing
method is bolded.

Pre-training Strategies Tuning Methods Cora CiteSeer Pubmed

GraphCL

EdgePrompt (first layer) 57.74±4.42 42.41±3.21 67.33±3.57

EdgePrompt 58.60±4.46 43.31±3.23 67.76±3.01

EdgePrompt+ (first layer) 61.66±6.81 44.96±2.63 67.54±3.95

EdgePrompt+ 62.88±6.43 46.20±0.99 67.41±5.25

EP-GPPT

EdgePrompt (first layer) 36.74±4.79 29.47±3.16 47.98±6.42

EdgePrompt 37.26±4.53 29.83±1.01 47.20±7.06

EdgePrompt+ (first layer) 56.10±6.39 42.10±1.41 60.61±7.57

EdgePrompt+ 56.41±3.62 43.49±2.62 61.51±4.91

Table 9: Accuracy on 50-shot graph classification tasks over three datasets. The best-performing
method is bolded.

Pre-training Strategies Tuning Methods ENZYMES NCI1 NCI109

SimGRACE

EdgePrompt (first layer) 28.83±1.74 61.58±2.71 61.82±1.15

EdgePrompt 29.33±2.30 62.02±3.02 62.02±1.03

EdgePrompt+ (first layer) 28.58±2.45 61.81±3.03 62.36±0.98

EdgePrompt+ 32.67±2.53 67.07±1.96 66.53±1.30

EP-GraphPrompt

EdgePrompt (first layer) 30.75±1.03 61.81±2.57 62.07±1.42

EdgePrompt 30.80±2.09 61.75±2.49 62.33±1.65

EdgePrompt+ (first layer) 31.92±1.41 62.07±2.64 61.66±1.64

EdgePrompt+ 33.27±2.71 65.06±1.84 64.64±1.57

D.4 MORE RESULTS ON CONVERGENCE PERFORMANCE

Figure 5 illustrates the accuracy curves of our method and the baselines under two pre-training
strategies for graph classification.

D.5 RESULTS WITH DIFFERENT SHOTS

We conduct experiments with different shots. Table 10 shows the performance for 10-shot node
classification tasks. In addition, we also conduct experiments for 100-shot graph classification tasks

19

Published as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epochs

15

20

25

30

35

40

Ac
cu

ra
cy

(a) ENZYMES with SimGRACE

0 25 50 75 100 125 150 175 200
Epochs

45

50

55

60

65

70

Ac
cu

ra
cy

(b) NCI1 with SimGRACE

0 25 50 75 100 125 150 175 200
Epochs

45

50

55

60

65

70

Ac
cu

ra
cy

(c) NCI109 with SimGRACE

0 25 50 75 100 125 150 175 200
Epochs

15

20

25

30

35

40

Ac
cu

ra
cy

(d) ENZYMES with EP-GraphPrompt

0 25 50 75 100 125 150 175 200
Epochs

45

50

55

60

65

70

Ac
cu

ra
cy

(e) NCI1 with EP-GraphPrompt

0 25 50 75 100 125 150 175 200
Epochs

45

50

55

60

65

70

Ac
cu

ra
cy

(f) NCI109 with EP-GraphPrompt

Classifier Only GraphPrompt All-in-one GPF GPFplus EdgePrompt EdgePrompt+

Figure 5: Convergence speeds of different methods.

and report the results in Table 11. Since ENZYMES uses up all graphs as the training samples in
the 100-shot setting, we run experiments on the remaining four datasets.

E FUTURE WORKS

In the future, we will investigate the performance of our method under more pre-training strategies,
such as DGI (Veličković et al., 2019), InfoGraph (Sun et al., 2020), GraphMAE (Hou et al., 2022).
In addition, we will explore other designs for edge prompts, such as conditional prompting Yu
et al. (2024c); Zhou et al. (2022). Furthermore, we will also study how to adapt our method for
heterogeneous graphs.

20

Published as a conference paper at ICLR 2025

Table 10: Accuracy on 10-shot node classification tasks over five datasets. The best-performing
method is bolded and the runner-up is underlined.

Pre-training Tuning Cora CiteSeer Pubmed ogbn-arxiv FlickrStrategies Methods

GraphCL

Classifier Only 65.43±2.29 43.97±4.39 68.23±1.05 26.78±1.66 30.34±2.33

GPPT 58.38±3.43 44.65±8.47 67.71±6.35 26.54±3.69 28.80±5.93

GraphPrompt 63.55±2.49 46.17±3.07 67.73±1.83 25.51±1.00 26.74±1.90

ALL-in-one 51.57±7.11 43.31±2.78 61.20±2.83 21.84±2.45 24.63±3.75

GPF 70.06±1.88 47.34±4.22 70.70±1.30 27.43±1.51 27.59±2.21

GPF-plus 65.32±1.93 43.97±3.97 68.32±0.91 26.75±1.32 29.81±1.43

EdgePrompt 70.20±1.77 47.85±4.19 70.54±1.55 27.52±1.20 28.58±2.50

EdgePrompt+ 74.27±3.46 52.93±4.20 72.70±2.50 28.79±1.21 30.74±2.30

SimGRACE

Classifier Only 62.18±3.15 45.62±3.74 60.60±1.87 27.09±0.93 30.35±1.90

GPPT 60.00±5.11 40.27±7.11 62.16±6.35 27.26±3.44 30.31±6.39

GraphPrompt 59.26±2.06 47.22±3.37 62.53±1.71 25.66±0.83 30.16±1.22

ALL-in-one 49.83±2.90 43.94±2.83 59.99±1.99 20.03±3.03 29.64±3.72

GPF 67.73±4.06 49.08±3.36 63.58±1.65 27.92±0.94 32.96±3.94

GPF-plus 62.22±3.36 45.44±4.15 60.67±1.77 27.09±0.82 33.89±3.31

EdgePrompt 68.28±4.05 49.29±3.45 63.67±1.66 27.88±1.00 33.56±3.58

EdgePrompt+ 72.57±3.50 52.78±3.29 69.56±2.58 28.70±0.91 32.17±2.77

EP-GPPT

Classifier Only 34.12±3.25 28.42±3.32 45.05±4.12 15.94±1.80 31.96±5.48

GPPT 48.43±6.16 35.94±6.09 56.50±9.44 23.58±1.84 29.58±6.81

GraphPrompt 35.08±1.43 28.12±1.56 48.71±5.28 13.38±1.84 29.08±3.51

ALL-in-one 35.12±1.62 27.19±2.63 47.11±1.56 16.57±0.37 32.30±2.42

GPF 49.61±0.40 35.19±2.46 50.52±2.75 22.48±2.21 31.60±5.54

GPF-plus 33.60±2.34 28.18±3.31 45.13±4.67 16.07±1.82 30.81±7.60

EdgePrompt 50.43±0.83 34.56±3.04 50.90±2.51 22.61±2.21 30.80±6.58

EdgePrompt+ 69.65±6.44 50.74±2.80 60.83±4.36 21.66±2.06 30.78±5.75

EP-GraphPrompt

Classifier Only 68.17±3.25 47.94±3.58 75.49±1.79 36.69±0.80 31.38±8.08

GPPT 68.93±4.55 48.83±8.45 74.78±6.81 25.65±3.55 32.85±3.09

GraphPrompt 68.95±2.57 50.26±2.21 75.73±1.40 36.86±0.84 30.39±5.31

ALL-in-one 57.74±3.19 46.14±5.72 74.24±3.04 22.84±2.60 30.61±5.28

GPF 72.24±2.92 51.07±3.76 77.77±2.42 36.91±1.09 29.74±8.94

GPF-plus 68.32±3.75 48.33±3.62 75.57±1.73 36.63±1.08 29.40±8.30

EdgePrompt 72.20±2.47 51.40±3.60 77.35±2.52 37.16±1.18 32.01±4.61

EdgePrompt+ 75.08±3.11 56.09±2.63 76.66±2.07 37.28±1.43 34.49±7.10

21

Published as a conference paper at ICLR 2025

Table 11: Accuracy on 100-shot graph classification tasks over four datasets. The best-performing
method is bolded and the runner-up underlined.

Pre-training Tuning DD NCI1 NCI109 MutagenicityStrategies Methods

GraphCL

Classifier Only 63.23±1.42 62.03±1.60 62.18±1.59 68.29±1.26

GraphPrompt 62.80±1.15 62.17±1.21 61.79±0.99 68.14±0.94

All-in-one 66.33±1.78 60.69±1.15 62.00±0.37 64.39±2.74

GPF 66.75±1.14 62.48±1.65 61.98±0.97 68.41±1.60

GPF-plus 68.49±1.98 65.39±2.27 64.85±1.41 68.78±1.22

EdgePrompt 66.96±1.05 63.84±1.75 62.42±0.91 68.69±1.59

EdgePrompt+ 67.81±1.49 67.54±1.40 67.94±0.81 70.52±0.58

SimGRACE

Classifier Only 63.74±0.96 63.27±1.68 63.20±2.00 67.65±1.28

GraphPrompt 63.82±0.95 63.58±1.35 61.52±1.10 67.97±0.97

All-in-one 68.92±0.61 59.94±2.12 62.79±0.48 64.47±2.02

GPF 65.90±2.02 64.32±1.55 63.48±1.82 67.44±1.01

GPF-plus 67.04±1.53 65.28±2.05 64.72±1.64 67.95±0.88

EdgePrompt 65.99±2.29 65.09±1.46 63.65±1.69 68.23±0.81

EdgePrompt+ 68.03±1.85 67.24±1.87 67.59±1.63 69.50±0.54

EP-GPPT

Classifier Only 62.68±1.93 58.47±1.07 63.24±0.67 66.57±1.26

GraphPrompt 60.55±1.53 59.11±0.66 62.76±0.85 67.12±1.42

All-in-one 62.51±1.25 59.06±1.47 62.07±0.96 65.04±0.84

GPF 63.82±3.44 59.31±1.49 63.75±0.63 66.64±1.34

GPF-plus 68.87±2.80 64.48±2.57 65.10±0.81 69.00±1.10

EdgePrompt 64.84±3.27 60.57±1.57 63.60±0.67 67.15±1.40

EdgePrompt+ 68.28±2.03 66.28±1.15 66.72±1.34 71.52±1.58

EP-GraphPrompt

Classifier Only 65.95±1.79 62.88±0.81 62.02±2.27 67.39±0.80

GraphPrompt 66.24±1.70 62.93±0.97 62.27±1.05 67.67±0.74

All-in-one 66.45±1.24 60.73±1.46 58.56±0.70 66.53±1.10

GPF 68.37±2.66 62.68±1.45 63.75±1.67 67.98±0.97

GPF-plus 68.89±3.93 63.91±0.99 63.55±2.42 67.84±0.96

EdgePrompt 67.81±3.64 63.33±1.40 64.00±1.91 68.04±1.07

EdgePrompt+ 69.04±2.96 66.80±0.55 65.94±1.15 71.48±1.89

22

	Introduction
	Related Work
	Preliminaries
	Methodology
	Problem Setting
	Edge Prompt Design
	Analysis of Edge Prompt Tuning for Node Classification
	Extension to Graph Classification

	Experiments
	Experimental Setup
	Main Results
	Convergence Analysis
	Influence of Prompt Numbers

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	More Details about Experimental Setup
	Datasets
	Pre-training Strategies

	More Experimental Results
	Results on Model Efficiency
	Results on Graph Data with Edge Features
	Results with Edge Prompts at the First Layer
	More Results on Convergence Performance
	Results with Different Shots

	Future Works

