A APPENDIX

A.1 DESCRIPTION OF METRICS

We introduce two important statistical metrics: the Matthews Correlation Coefficient (MCC) and
the Pearson Correlation Coefficient (PCC). Both of these coefficients are crucial in assessing the re-
lationship between variables in our model, with their maximum values reaching up to 100%. Higher
values of these indicators signify better model performance.

1. Matthews Correlation Coefficient (MCC): The MCC is widely used in binary classifica-
tion problems to evaluate the performance of such models. It is defined as:

TP xTN —FP x FN
/(TP +FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =

where:
e TP = Number of True Positives
* TN = Number of True Negatives
* FP = Number of False Positives
e FN = Number of False Negatives

True Positives and True Negatives represent accurate predictions of the model, while False
Positives and False Negatives denote incorrect predictions.

2. Pearson Correlation Coefficient (PCC): The PCC measures the strength and direction of
a linear relationship between two continuous variables. It is calculated as:

PCC — Z?:l(gij 9)(yi — 7))
Vi @i - 920 (v — 9)?
where:

* 9, = Predicted value by the model
* y; = Actual value

* { = Mean of predicted values

¢ 9 = Mean of actual values

For tasks such as EMP, TF-M, TF-H, PD, CPD, and SSP, which are classification tasks, the evalua-
tion metric used is the MCC. In contrast, for the EAP task, which is a regression task, the evaluation
metric is the PCC.

A.2 COMPARISON OF RANDOMMASK METHOD WITH ALTERNATE TOKENIZATION
APPROACHES

In addition to using the BPE tokenizer method, DNABERT-2 also changed the model architec-
ture, adopted a new activation function, and utilized larger multi-species DNA data for pre-training.
DNABERT2-BPE is an open source pre-trained weight from the author of DNABERT-2. To ensure
a fair comparison, we trained DNABERT2-6mer and DNABERT?2-6mer + RM using the 6mer tok-
enizer under the same architecture, pre-training data, and pre-training hyperparameters. The results
showed in Table[I]in Supplementary Material. "+RM” indicates the use of the RandomMask strat-
egy. It can be observed that the models using +RM show better performance. We plan to release the
model weights and pre-training code open source soon.

A.3 COMPARISON OF DNABERT MODELS ON ADDITIONAL BENCHMARKS

After comparison, some of the benchmarks used by HyenaDNA are already included in the GUE
benchmark we used above. Below are some of the remaining datasets showed in Table[2]of Supple-
mentary Material. We tested DNABERT1+RM. Since DNABERT2-6mer+RM has just completed
pre-training, these downstream tasks are still running, and we will release them all later. The first
three rows of results are from the original paper. The results in the original paper are accurate to one
decimal place. For consistency, our test results in this table are only kept to one decimal place.



Table 1: Performance Comparison of Different Alternate Tokenization Models

Model EMP | TF-M | TF-H | PD CPD | SSP | EAP
DNABERT 51.81 | 60.40 | 64.10 | 90.48 | 71.88 | 85.44 | 68.43
DNABERT + RM 65.83 | 67.96 | 69.73 | 92.74 | 70.24 | 87.20 | 69.56
DNABERT2-BPE 64.47 | 68.00 | 70.11 | 87.91 | 70.53 | 84.99 | 67.79
DNABERT2-6mer 48.22 | 65.32 | 64.87 | 88.55 | 68.19 | 84.36 | 66.37
DNABERT2-6mer + RM | 68.16 | 76.28 | 70.99 | 90.68 | 72.97 | 88.91 | 70.41

Table 2: Performance Comparison on Additional Benchmarks.

Avg. | Cod. vs Interg. | Hum. vs Worm | Hum. Enh. Cohn | Hum. Enh. Ens. | Hum. OCR Ens. | Hum. Reg. | Hum. Non-Prom.

CNN 80.7 87.6 930 695 689 68.0 933 846
Trans. 84.4 88.8 95.6 705 83.5 73.0 915 87.7
HyenaDNA 88.3 87.6 9.5 73.8 89.2 80.9 93.8 96.6
DNABETR 37.8 93.2 97.0 74.3 89.0 81.0 88.5 917
DNABERT +RM | 89.4 94.5 96.9 76.6 91.3 82.7 90.3 93.4

A.4 COMPARISON WITH DIFFERENT LENGTHS OF K-MER

The mid-term Same-lenth involves copying the Non-overlapping tokens six times and splicing them
together to obtain the same sequence length as Overlapping (i.e., Non-overlapping: tokenl token2,
Same-lenth: tokenl token2 tokenl token2 tokenl token2 tokenl token2 tokenl token2 tokenl to-
ken2).

Table 3: Expanded Comparison of Non-overlapping, Same-length, and Overlapping Tokenization Strategies
for DNABERT

Downstream Tasks | EMP | TF-M | TF-H PD CPD | SSP | EAP
Task type CLS CLS CLS CLS CLS CLS | REG
Sequence length 500 100 100 300 70 400 250
Same-lenth better v v v

NT

Non-overlapping 45.37 | 39.81 | 55.25 | 88.43 | 62.56 | 80.39 | 38.94
Same-lenth 44.88 | 47.59 | 60.57 | 86.96 | 63.98 | 80.96 | 37.98
Overlapping 46.47 | 61.99 | 63.95 | 90.88 | 68.55 | 84.34 | 64.67
DNABERT

Non-overlapping 43.65 | 34.87 | 54.50 | 87.62 | 65.82 | 79.91 | 55.31
Same-lenth 4298 | 38.60 | 53.27 | 85.33 | 64.09 | 80.76 | 38.62
Overlapping 51.81 | 59.60 | 63.55 | 91.76 | 72.84 | 85.44 | 68.43

An interesting phenomenon in Table 3] of Supplementary Material. In NT that uses overlap for pre-
training, stretching the sequence length will indeed produce obvious gains in TF-M, TF-H and CPD.
Combined with details of downstream tasks data, the common feature of these three tasks is that the
DNA sequence length is short. The DNA sequence lengths of TF-M, TF-H and CPD are 100, 100
and 70 nucleotides respectively. The DNA sequence lengths of EMP, PD, SSP and EAP are 500,
300, 400 and 250 respectively.

But in general, the overlapping tokenizer to obtain more diverse tokens is better than simply length-
ening the sequence length.

A.5 ANALYZE REPRESENTATION OF THE MODELS

In the original DNABERT, the attention weight pattern is fixed. Adding RandomMask will diversify
the attention weight pattern. In the Figure [T] and f] of Supplementary Material, the comparison of
the attention weights of different layers of DNABERT show that the attention weights of the 4th
and 5th layers always focus on the [CLS] token. Taking a closer look, look at (a) in Figure []in
Supplementary Material. We can see that adding RandomMask will diversify the attention weight
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Figure 1: Attention weights from different layers of DNABERT.
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Figure 2: Attention weights from 4th layer of the different tokens. Compare the attention weight of different
tokens DNABERT and RandomMask.

pattern. This is due to the fact that the model with RandomMask can continuously learn compared
to the original model.

In Figure [3] of Supplementary Material, It can be seen that after adding RandomMask, the training
curve can continue to decline. We believe that it is the pattern fixation of attention weights rather
than the sparseness of attention weights that limits model capabilities.

A.6 CURRICULUM LEARNING AND RANDOMMASK

Curriculum learning was proposed by Yoshua Bengio in 2009. It is a training strategy that mimics
the human learning process by presenting the examples in an easy-to-difficult order. It has been
shown to improve the performance and convergence stability of various large language models.

The paper in ACL2020 that explores curriculum learning for large language models, titled Cur-
riculum Learning for Natural Language Understanding. This paper proposes a curriculum learning
approach that reviews the training set in a crossed way to distinguish easy and hard examples and
arranges a curriculum for large language models on various NLU tasks. We wanted to increase the
difficulty of the DNA sequence pre-training task and at the same time ensure the stability of the
training, so we adopted a curriculum learning solution.
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Figure 3: The loss curves with t-SNE visualizations of the embedding spaces during the training of DNABERT
(the first row) and DNABERT with RandomMask (the second row).

In Table EI of Supplementary Material, we tried consecutive masks 6, 12, 14, 28, and 40 tokens
during the entire pre-training process. Finally, it was found that this RandomMask from mask 6 to
mask 14 achieved the best performance.

Table 4: Performance Results with Different Continuously Mask Number and RandomMask.

mask EMP | TF-M | TF-H | PD CPD | SSP | EAP

Mask 6 (DNABERT) | 51.81 | 60.40 | 64.10 | 93.05 | 71.88 | 85.44 | 68.43
Mask 12 52.96 | 67.12 | 67.05 | 92.01 | 71.05 | 86.62 | 67.03
Mask 14 51.44 | 66.86 | 66.60 | 92.59 | 70.67 | 85.31 | 69.16
Mask 28 50.95 | 65.94 | 67.75 | 91.03 | 70.70 | 83.33 | 66.85

Mask 40 4993 | 66.19 | 67.54 | 90.21 | 70.01 | 82.35 | 63.37
RandonMask 65.83 | 67.96 | 69.73 | 93.40 | 70.24 | 87.20 | 69.56

In Table [3] of Supplementary Material, we tested both options from easy to hard and from hard
to easy. In the table below, we divide pre-training into two stages equally. Mask 6 to 12 means
masking 6 tokens continuously in the first stage and masking 12 tokens continuously in the second
stage. Mask 12 to 6 means masking 12 tokens continuously in the first stage and masking 6 tokens
continuously in the second stage. It can be found that the former has better performance.

Table 5: Performance results with different pre-training strategies

strategy EMP | TF-M | TF-H | PD CPD | SSP | EAP
Mask 6to 12 | 59.22 | 67.83 | 66.37 | 92.81 | 71.51 | 86.20 | 67.38
Mask 12to 6 | 53.15 | 63.47 | 65.18 | 90.42 | 71.93 | 83.95 | 66.37




A.7 DETAILS IN FINETUNING

Table 6: Default hyperparameter settings for DNABERT and DNABERT + RandomMask in downsteam tasks.

EMP TF CPD PD SSP EAP

Optimizer AdamW

Optimizer momentum 081, B2 =0.9, 0.999

Batch size 32 32 32 32 32 64
Training epoch 100 10 10 5 10 10
Learning rate 3e-5

Weight decay 0

Table 7: Default hyperparameter settings for the Nucleotide Transformer in downsteam tasks.

EMP TF CPD PD SSP EAP

Optimizer AdamW

Optimizer momentum 51, B2 = 0.9, 0.999

Batch size 32 32 32 32 32 64
Training epoch 100 10 10 5 10 10
Learning rate 3e-5 led4 led led4 led led
Weight decay 0

Table 8: Default hyperparameter settings for HyenaDNA in downsteam tasks

SSP EMP CPD&PD EAP
Optimizer AdamW
Optimizer momentum B1, B2 =0.9,0.999
Batch size 256
Training epoch 100
Learning rate 6e-4 6e-4 Te-4 6e-4
Weight decay 0.20.07,02% 0.0%%%,0.1,0.2° 0.0 0.2
Embed dropout 0.1 0.0, 0.113°,0.22 0.0 0.2
Resid dropout 0.17,0.28 0.0%,0.1,0.2° 0.1 0.1
Reverse complement aug. false false true false

LH3, 2H3K4mel, >H3K4me2, *H3K36me3, °H4, H4ac, 7splice site acceptor, 8splice site donor



A.8 DOWNSTREAM TASK EMBEDDING
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Figure 4: t-SNE of the downstream tasks’ embeddings generated by DNABERT and DNABERT + Random-

Mask.

DNABERT using RandomMask produce clearer boundaries, and the separation between different

species is more obvious.
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